WorldWideScience

Sample records for surfaces contact angle

  1. Surface tension and contact angles of molten cadmium telluride

    Science.gov (United States)

    Balasubramanian, R.; Wilcox, W. R.

    1990-01-01

    The surface tension and contact angle of molten cadmium telluride (CdTe) were measured as a function of temperature by the sessile drop technique. A FORTRAN code was developed to calculate the surface tension of sessile drops, with the contact angle ranging from O to 180°. The wetting of cadmium telluride melt was studied on different surfaces. The surface tension of cadmium telluride was about 160 ±5 dynes · cm-1[1.6 m-1] at the melting point of 1093°C. The contact angle of CdTe melt was about 65° on a quartz optical flat, 75° on commercial fused quartz, and 125° on boron nitride coated quartz.

  2. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    Science.gov (United States)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  3. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Contact angles of nanodrops on chemically rough surfaces.

    Science.gov (United States)

    Berim, Gersh O; Ruckenstein, Eli

    2009-08-18

    The experimental observations of Gao and McCarthy [Gao, L.; McCarthy, T. Langmuir, 2007, 23, 3762] that only the interfacial area near the leading edges of the drop on physically smooth but chemically rough solid surfaces affects the contact angle and that most of the contact area has no effect is checked for nanodrops on the basis of a density functional theory. The contact angle was calculated for three cases: (i) the leading edges of the drops are located on much higher or (ii) much lower hydrophobic surfaces than the remaining surface beneath the drop; (iii) the surface is composed of a periodic array of two kinds of stripelike solid plates. In the first two cases, if the distance between the leading edges and the region which has higher or lower hydrophobicity is sufficiently large, there is agreement with the experiments mentioned. However, when those distances are sufficiently small, the internal part affects the value of the angle. In the third case, we found that the internal part always affects the wetting angle. All these peculiarities, as well as the contact angle hysteresis, can be explained by accounting for the local conditions in the vicinity of the leading edges of the drop.

  5. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  6. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  7. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  8. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.

    Science.gov (United States)

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne

    2014-02-18

    A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

  9. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  10. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1 -0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012), 10.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  11. Surface tension and contact angle of molten semiconductor compounds. II. gallium arsenide

    Science.gov (United States)

    Shetty, Rajaram; Balasubramanian, Raghuraman; Wilcox, William R.

    1990-02-01

    The surface tension and contact angle of molten GaAs were measured by the sessile drop technique. The dependence of surface tension and contact angle on temperature and on the deviations from stoichiometry was determined. A computer program was used to calculate the properties from the sessile drop profile. The wetting behavior of the melt was studied on the following surfaces: quartz, sandblasted quartz, carbon-coated quartz and pyrolytic boron nitride. The surface tension of molten GaAs decreased with increasing temperature, and decreased slightly with excess As. The degree of wetting increased in the following order: pyrolytic boron nitride, sandblasted quartz, carbon-coated quartz and plain quartz. The contact angle decreased with increasing temperature and seemed to decrease slightly with increasing As.

  12. Surface tension and contact angle of molten semiconductor compounds. I. cadmium telluride

    Science.gov (United States)

    Shetty, Rajaram; Balasubramanian, Raghuraman; Wilcox, William R.

    1990-02-01

    The surface tension and contact angle of molten CdTe were measured by the sessile drop technique. The dependence of surface tension and contact angle on temperature and on the deviations from stoichiometry was determined. A computer program was used to calculate the properties from the sessile drop profile. The wetting behaviour of the melt was studied on the following surfaces: quartz, HF-etched quartz, sandblasted quartz, carbon-coated quartz and pyrolytic boron nitride. The surface tension of molten CdTe decreased with increasing temperature, but increased slightly with excess Cd. The degree of wetting increased in the following order: pyrolytic boron nitride, carbon-coated quartz, sandblasted quartz, HF-etched quartz and plain quartz. The contact angle decreased with increasing temperature and seemed to increase slightly with increasing Cd.

  13. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  14. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  15. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    Science.gov (United States)

    Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-11-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.

  16. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    International Nuclear Information System (INIS)

    Reinke, Svenja K; Hauf, Katharina; Heinrich, Stefan; Vieira, Josélio; Palzer, Stefan

    2015-01-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations. (paper)

  17. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  18. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  19. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  20. On the interfacial behavior of ionic liquids: surface tensions and contact angles.

    Science.gov (United States)

    Restolho, José; Mata, José L; Saramago, Benilde

    2009-12-01

    In this work the liquid/vapour and the solid/liquid interfaces of a series of ionic liquids: 1-ethyl-3-methylpyridinium ethyl sulfate, [EMPy][EtSO4], 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHMIM][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4], were investigated. The surface tension was measured in a wide temperature range, (298-453) K. The contact angles were determined on substrates of different polarities. Both on the polar (glass) and the non-polar substrates ((poly-(tetrafluoroethylene) and poly-(ethylene)), the liquids with maximum and minimum surface tensions lead, respectively, to the highest and the lowest contact angles. The dispersive, gamma(L)(d), and non-dispersive, gamma(L)(nd), components of the liquid surface tension, gamma(L), were calculated from the contact angles on the non-polar substrates using the Fowkes approach. The polarity fraction, gamma(L)(nd)/gamma(L), was compared with the polarity parameter, k, obtained from the fitting of the surface tension vs. temperature data to the Eötvös equation. Good agreement was found for the extreme cases: [OMIM][BF4] exhibits the lowest polarity and [BMIM][BF4], the highest. When compared with the polarity fractions of standard liquids considered as "polar" liquids, the ionic liquids studied may be considered as moderately polar.

  1. DETERMINING THE VALUE OF SURFACE FREE ENERGY ON THE BASIS OF THE CONTACT ANGLE

    Directory of Open Access Journals (Sweden)

    Mariusz Kłonica

    2017-03-01

    Full Text Available This paper presents the results of tests concerning the value of surface free energy on the basis of measurements of contact angle with measure liquids: distilled water and diiodomethane. The surface of steel-316L samples was modified in an ozone atmosphere, and the concentration of ozone and the conditioning time of the samples in the reaction chamber were changed. The results of tests concerning the measurements of the value of surface free energy were subject to analysis. Also analysed were the components of SFE: the polar and dispersive components. The obtained test results were analysed in statistical terms. The paper ends with conclusions.

  2. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves.

    Science.gov (United States)

    Destgeer, Ghulam; Jung, Jin Ho; Park, Jinsoo; Ahmed, Husnain; Sung, Hyung Jin

    2017-01-03

    A sessile droplet of water carrying polystyrene microparticles of different diameters was uniformly exposed to high frequency surface acoustic waves (SAWs) produced by an interdigitated transducer (IDT). We investigated the concentration behavior of the microparticles as the SAWs generated a strong acoustic streaming flow (ASF) inside the water droplet and exerted a direct acoustic radiation force (ARF) on the suspended particles, the magnitude of which depended upon the particle diameter. As a result of the ARF, the microparticles were concentrated according to their diameters at different positions inside the sessile droplet placed in the path of the SAW, right in front of the IDT. The microparticle concentration behavior changed as the sessile droplet contact angle with the substrate was varied by adding surfactant to the water or by gradually evaporating the water. The positions at which the smaller and larger microparticles were concentrated remained distinguishable, even at very different experimental conditions. The long-term exposure of the droplets to the SAWs was accompanied by the gradual evaporation of the carrier fluid, which dynamically changed the droplet contact angle as well as the concentration of particles. Complete evaporation of the fluid left behind several concentrated yet separated clusters of particles on the substrate surface. The effect of the droplet contact angle on particles' concentration behavior and consequent separation of particles has been uniquely studied in this SAW-based report.

  3. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo

    2011-05-17

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low concentration of Rhodamine-B (RB) (2 × 10 -7 mol/L). Interestingly, RB at that concentration was found to be aggregated at the air-liquid and solid (hydrophobic patch only)-liquid interfaces, which helps us to distinguish the liquid and solid interfaces as well as hydrophobic and hydrophilic patches by their corresponding fluorescent intensities. From the measured local contact angles, the line tension can be easily derived and the value is found to be (-2.06-1.53) × 10-6 J/m. © 2011 American Chemical Society.

  4. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall

    Science.gov (United States)

    Misyura, S. Y.

    2017-08-01

    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  5. Surface composition and contact angle relationships for differently prepared solid dispersions.

    Science.gov (United States)

    Dahlberg, Carina; Millqvist-Fureby, Anna; Schuleit, Michael

    2008-10-01

    Solid dispersions are promising drug delivery forms which offer the possibility to disperse a hydrophobic drug in a hydrophilic matrix and thereby improve the dissolution behavior and the bioavailability of the drug. One important aspect and a prerequisite in understanding the drug dissolution mechanism from solid dispersions is a better analytical monitoring of the solid dispersion surface properties, such as powder surface composition and water adsorption properties. In this paper, we have considered chemical and structural surface analysis data for solid dispersions processed by spray drying or roto-evaporation and compared these data with information obtained by contact angle measurements. Firstly, we establish the usefulness and suitability of X-ray photoelectron spectroscopy (XPS) for determination of surface chemical composition and scanning electron microscopy (SEM) for determining the structure of solid dispersions composed of different types of carriers, drugs and drug concentrations. Secondly, we measure contact angles of solid dispersions to describe wettability, to finally establish a link between the surface chemical composition, the powder structure and the wetting behavior. These experimental methods offer a rapid screening tool for the selection of carrier, drug concentration and/or process in early development. In addition, they provide a useful tool for investigating structural aspects of solid dispersions which have intrinsic relevance for drug dissolution and stability.

  6. Relation between the size of fog droplets and their contact angles with CR39 surfaces

    International Nuclear Information System (INIS)

    Grosu, G; Andrzejewski, L; Veilleux, G; Ross, G G

    2004-01-01

    The formation of fog on CR39 surfaces has been studied. Water droplets form fog coalesce with time, especially during the first 20 s at the beginning of the formation of fog. Consequently, their mean diameter increases. Formation of fog being related to the wettability of the surfaces, the latter has been increased by the implantation of Ar ions into CR39 surfaces under an oxygen partial pressure. A very wetting CR39 surface with advancing (ACA) and receding (RCA) contact angles below 5 deg. has been obtained with an implantation dose of 1.28x10 17 Ar + cm -2 . In this condition, no formation of fog was observed. Characterization using x-ray photoelectron spectroscopy has shown that the molecular structure of CR39 is strongly modified by Ar + implantation, which would be responsible for the increase in wettability. Unfortunately, both ACA and RCA increase with time, which is called ageing, and the formation of fog is again observed. The diameter and concentration of water droplets forming fog have been plotted against the contact angle. These plots show that no formation of fog occurs for ACA 15 He + cm -2 and an energy of 2 keV, sufficient to push the ions deeper than the Ar depth profile, delays the ageing effect in such a way that ACA ≅ 40 deg. is reached after ∼2000 h and no formation of fog is observed during these first ∼2000 h

  7. Surface properties of dental polymers: measurements of contact angles, roughness and fluoride release

    Directory of Open Access Journals (Sweden)

    Fátima Namen

    2008-09-01

    Full Text Available OBJECTIVE: Earlier studies on some dental materials measured roughness and/or contact angles or fluoride release separately. In the present study, five dental polymers were investigated to ascertain their contact angles, wettability, roughness, and fluoride release in dry or wet conditions. METHODS: Samples for 5 materials were prepared and stored dry or wet in deionized water pH 6.8. Samples were submitted to finishing/polishing procedures, and the measurements in Goniometer, roughness (µm and fluoride analysis RESULTS AND CONCLUSIONS: Except for the Ariston pHc, all the materials displayed high contact angles when measured with water, showing hydrophobic characteristics. Roughness changed the contact angles, especially those of Ariston (α < 0.05. Fluoride did not modify the contact angles, but increased the roughness of the finished material.

  8. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.

    Science.gov (United States)

    Adão; Saramago; Fernandes

    1999-09-01

    The surface free energy per unit area of a solid, gamma(S), is a fundamental property of materials and determines their surface and interfacial behavior in processes like wetting and adhesion. In this study the gamma(S) of a series of styrene-acrylonitrile random copolymers is evaluated. Three different approaches are used to determine the components in which the surface free energy can be decomposed. Using the geometric and the harmonic mean approach, the dispersive, gamma(d), and polar, gamma(p), components of the solid surface free energy were determined and compared to the Lifshitz-van der Waals, gamma(LW), and acid-base, gamma(AB), components using the approach developed by C. J. van Oss et al. (1987, Adv. Colloid Interface Sci. 28, 35). The acid-base approach was also used to evaluate the work of adhesion of the test liquids: water, glycerol, and thiodiglycol. It was found that the contact angles of these liquids follow closely the predictions of Cassie equation. The evaluation of the surface free energy components on one hand and the relative magnitude of the work of adhesion components on the other hand, suggest that below 50% of acrylonitrile the polystyrene repeating units are preferentially at the surface. Above 50% of acrylonitrile the segregation of the low-energy homopolymer at the surface decreases. Copyright 1999 Academic Press.

  9. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  10. Determination of surface heterogeneity of D-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography.

    Science.gov (United States)

    Ho, Raimundo; Hinder, Steven J; Watts, John F; Dilworth, Sarah E; Williams, Daryl R; Heng, Jerry Y Y

    2010-03-15

    The sensitivity of two techniques in tracking changes in surface energetics was investigated for a crystalline excipient, D-mannitol. Macroscopic crystals of D-mannitol were grown from saturated water solution by slow cooling, and sessile drop contact angle was employed to measure the anisotropic surface energy. The facet-specific surface energy was consistent with localised hydroxyl group concentrations determined by X-ray photoelectron spectroscopy (XPS), and was also in excellent agreement with the surface energy distribution of the powder form of mannitol measured via a new methodology using inverse gas chromatography (IGC) at finite concentrations. The gamma(SV)(d) was found to vary between 39.5 mJ/m(2) and 44.1 mJ/m(2) for contact angle and between 40 mJ/m(2) and 49 mJ/m(2) for IGC measurements. We report here, a high level of surface heterogeneity on the native mannitol crystal surfaces. When the surfaces of both D-mannitol samples (powder and large single crystals) were modified by dichlorodimethylsilane to induce surface hydrophobicity, both IGC and contact angle revealed a homogeneous surface due to functionalisation of mannitol crystal surface with methyl groups resulting in gamma(SV)(d) of approximately 34 mJ/m(2). It was shown that both IGC and contact angle techniques are able to detect surface chemical variations and detailed surface energetic distribution. 2010 Elsevier B.V. All rights reserved.

  11. New procedure to measure simultaneously the surface tension and contact angle.

    Science.gov (United States)

    Champmartin, S; Ambari, A; Le Pommelec, J Y

    2016-05-01

    This paper proposes a new procedure to simultaneously measure the static contact angle and the surface tension of a liquid using a spherical geometry. Unlike the other existing methods, the knowledge of one of both previous parameters and the displacement of the sphere are not mandatory. The technique is based on the measurement of two simple physical quantities: the height of the meniscus formed on a sphere at the very contact with a liquid bath and the resulting vertical force exerted on this object at equilibrium. The meniscus height, whose exact value requires the numerical resolution of the Laplace equation, is often estimated with an approximate 2D model, valid only for very large spheres compared to the capillary length. We develop instead another simplified solution of the Young-Laplace equation based on the work of Ferguson for the meniscus on a cylinder and adapted for the spherical shape. This alternative model, which is less restrictive in terms of the sphere size, is successfully compared to numerical solutions of the complete Young-Laplace equation. It appears to be accurate for sphere radii larger than only two capillary lengths. Finally the feasibility of the method is experimentally tested and validated for three common liquids and two "small" steel spheres.

  12. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  13. Some remarks on the solid surface tension determination from contact angle measurements

    International Nuclear Information System (INIS)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław

    2017-01-01

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  14. The Influence of Long-Range Surface Forces on the Contact Angle of Nanometric Droplets and Bubbles.

    Science.gov (United States)

    Stocco, Antonio; Möhwald, Helmuth

    2015-11-03

    For a droplet or a bubble of dimensions below 100 nm, long-range surface forces such as long-range van der Waals forces can compete with capillarity, which leads to a size dependence of the contact angle. This is discussed in this work, where we also show that the effect cannot simply be described by a normalized line tension. We calculate interfacial profiles for typical values of van der Waals forces and discuss the role of long-range surface forces on the contact angle of nanobubbles and nanodrops.

  15. Some remarks on the solid surface tension determination from contact angle measurements

    Science.gov (United States)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław

    2017-05-01

    The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  16. Contact angle studies on PDMS surfaces fouled by bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, VT

    2010-01-01

    Full Text Available proteins. This is a limitation to microfluidic applications that require hydrophobic surfaces where proteins are involved. This study determines the change in wetting of PDMS after fouling by a protein, bovine serum albumin (BSA), by measuring contact...

  17. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NARCIS (Netherlands)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.; Nieken, U.

    2016-01-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting

  19. Contact angle and surface free energy of experimental resin-based dental restorative materials after chewing simulation.

    Science.gov (United States)

    Rüttermann, Stefan; Beikler, Thomas; Janda, Ralf

    2014-06-01

    To investigate contact angle and surface free energy of experimental dental resin composites containing novel delivery systems of polymeric hollow beads and low-surface tension agents after chewing simulation test. A delivery system of novel polymeric hollow beads differently loaded with two low-surface tension agents was used in different amounts to modify commonly formulated experimental dental resin composites. The non-modified resin was used as standard. Surface roughness Ra, contact angle Θ, total surface free energy γS, its apolar γS(LW), polar γS(AB), Lewis acid γS(+) and base γS(-) terms were determined and the results prior to and after chewing simulation test were compared. Significance was phollow beads highly loaded with low-surface tension agents were found to significantly increase contact angle and thus to reduce surface free energy of experimental dental resin composites prior to and after chewing simulation test. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Effect of Spreading Time on Contact Angle of Nanofluid on the Surface of Stainless Steel AISI 316 and Zircalloy 4

    Science.gov (United States)

    Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.

    2017-05-01

    The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.

  1. A new approach to influence contact angle and surface free energy of resin-based dental restorative materials.

    Science.gov (United States)

    Rüttermann, Stefan; Trellenkamp, Taina; Bergmann, Nora; Raab, Wolfgang H-M; Ritter, Helmut; Janda, Ralf

    2011-03-01

    The purpose of the present study was to identify novel delivery systems and active agents which increase the water contact angle and reduce the surface free energy when added to resin-based dental restorative materials. Two delivery systems based on zeolite or novel polymeric hollow beads (Poly-Pore), loaded with two low surface tension active agents (hydroxy functional polydimethylsiloxane and polydimethylsiloxane) or a polymerizable active agent (silicone polyether acrylate) were used to modify commonly formulated experimental dental resin composites. The non-modified resin was used as a standard (ST). Flexural strength, flexural modulus, water sorption, solubility, polymerization shrinkage, surface roughness Ra, contact angle θ, total surface free energy γS, and the apolar γSLW, polar γSAB, Lewis acid γS+ and base γS- components, and the active agents surface tensions γL were determined (Ptension active agents were found not to influence the physical properties but to significantly increase the water contact angle and thus reduce surface free energy of dental resin composites. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Nanodrop on a nanorough hydrophilic solid surface: contact angle dependence on the size, arrangement, and composition of the pillars.

    Science.gov (United States)

    Berim, Gersh O; Ruckenstein, Eli

    2011-07-01

    A two-dimensional nanodrop on a hydrophilic solid surface decorated with nanopillars is examined using a nonlocal density functional theory. It is shown that, in contrast to the commonly used Wenzel formula, even an extremely small roughness can considerably increase the contact angle. The contact angle depends on the distance between pillars, their height and width, as well as their composition. It was found that for all selected pillar heights and compositions, the largest contact angle is obtained when the distance between pillars acquires a size at which the liquid molecules can no longer penetrate between them. The further decrease in the interpillar distance decreases the contact angle, in qualitative agreement with the Cassie-Baxter formula. Considering pillars of various compositions, the role of the gradient of the fluid-solid interaction potential is examined. The presence of such a gradient does not allow the formation of a stable nanodrop on the surface. However, asymmetrical metastable nanodrops can be formed. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in

  4. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  5. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  6. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  7. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness.

    Science.gov (United States)

    Sturz, Candida R C; Faber, Franz-Josef; Scheer, Martin; Rothamel, Daniel; Neugebauer, Jörg

    2015-01-01

    Available chair-side surface treatment methods may adversely affect prosthetic materials and promote plaque accumulation. This study investigated the effects of treatment procedures on three resin restorative materials, zirconium-dioxide and polyetheretherketone in terms of surface roughness and hydrophobicity. Treatments were grinding with silicon carbide paper or white Arkansas stone, blasting with prophylaxis powder and polishing with diamond paste. Surface roughness was assessed using confocal laser scanning. Hydrophobicity as measured by water contact angle was determined by computerized image analysis using the sessile drop technique. All of the specific surface treatments performed led to significant changes in contact angle values and surface roughness (Ra) values. Median contact angle values ranged from 51.6° to 114°. Ra values ranged from 0.008 µm to 2.917 µm. Air-polishing as well as other polishing procedures increased surface roughness values in all materials except zirconium dioxide. Polyetheretherketone displayed greatest change in contact angle values after air-polishing treatment.

  8. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  9. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    International Nuclear Information System (INIS)

    Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L.

    2016-01-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  10. Contact angle and contact angle hysteresis measurements using the capillary bridge technique.

    Science.gov (United States)

    Restagno, Frédéric; Poulard, Christophe; Cohen, Céline; Vagharchakian, Laurianne; Léger, Liliane

    2009-09-15

    A new experimental technique is proposed to easily measure both advancing and receding contact angles of a liquid on a solid surface, with unprecedented accuracy. The technique is based on the analysis of the evolution of a capillary bridge formed between a liquid bath and a solid surface (which needs to be spherical) when the distance between the surface and the liquid bath is slowly varied. The feasibility of the technique is demonstrated using a low-energy perfluorinated surface with two different test liquids (water and hexadecane). A detailed description of both experimental procedures and computational modeling are given, allowing one to determine contact angle values. It is shown that the origin of the high accuracy of this technique relies on the fact that the contact angles are automatically averaged over the whole periphery of the contact. This method appears to be particularly adapted to the characterization of surfaces with very low contact angle hysteresis.

  11. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    Science.gov (United States)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  12. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells.

    Science.gov (United States)

    Eliaz, Noam; Shmueli, Sharon; Shur, Irena; Benayahu, Dafna; Aronov, Daniel; Rosenman, Gil

    2009-10-01

    This work demonstrates the effects of both surface preparation and surface post-treatment by exposure to electron beam on the surface texture, contact angle and the interaction with bone-forming cells of electrochemically deposited hydroxyapatite (HAp) coating. Both the surface texture and the contact angle of the ground titanium substrate changed as a result of either heat treatment following soaking in NaOH solution or soaking in H(2)O(2) solution. Consequently, the shape of the current transients during potentiostatic deposition of HAp changed, and the resulting coatings exhibited different surface textures and contact angles. The developed interfacial area ratio Sdr and the core fluid retention index Sci were found more reliable than the mean roughness R(a) and the root-mean-square roughness Z(rms) in correlating the adhesion of the coating to the metal substrate and the cellular response with surface texture. The NaOH pretreatment provided the highest surface area and induced the highest cell attachment, even though the H(2)O(2) treatment provided the highest hydrophilicity to the metal substrate. Electrodeposition at pH 6 was found preferable compared to electrodeposition at pH 4.2. The ability to modify the cellular response by exposure to unique electron-beam surface treatment was demonstrated. The very high hydrophilicity of the as-deposited HAp coating enhanced its bioactivity.

  13. Formation of Surface Nanobubbles and the Universality of Their Contact Angles: A Molecular Dynamics Approach

    NARCIS (Netherlands)

    Weijs, Joost; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2012-01-01

    We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface

  14. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Wettability of natural root mucilage studied by atomic force microscopy and contact angle: Links between nanoscale and macroscale surface properties

    Science.gov (United States)

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.

    2017-04-01

    Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of

  16. Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO 2 ) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO 2 ) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO 2 + quartz) contact angles. - Abstract: The wetting characteristics of CO 2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO 2 /water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl 2 , and MgCl 2 ) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  17. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  18. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    Science.gov (United States)

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  19. Applicability of contact angle techniques used in the analysis of contact lenses, part 1: comparative methodologies.

    Science.gov (United States)

    Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John

    2013-05-01

    Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.

  20. A smart surface from natural rubber: the mechanism of entropic control at the surface monitored by contact angle measurement

    Directory of Open Access Journals (Sweden)

    Sureurg Khongtong

    2006-03-01

    Full Text Available Surface oxidation of crosslinked natural rubber provided a hydrophilic substrate (sticky surface that became more hydrophobic (less sticky when equilibrated against hot water. This unusual temperaturedependent surface reconstruction is interpreted as the result of recoiling of entropic unfavorable uncoiled chains induced when rubber surface was oxidized. Subsequent equilibration of these annealed samples against water at room temperature returned their original hydrophilicity. The degree of this surface reconstruction and its kinetics are also dependent on the amounts of crosslinking of the samples.

  1. Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement

    International Nuclear Information System (INIS)

    Cui Naiyi; Upadhyay, Deepesh J.; Anderson, Colin A.; Meenan, Brian J.; Brown, Norman M.D.

    2007-01-01

    Surface properties of a Melinex 800 PET polymer material modified by an atmospheric-pressure air dielectric barrier discharge (DBD) have been studied using X-ray photoelectron microscopy (XPS) and contact angle measurement. The results show that the material surface treated by the DBD was modified significantly in chemical composition, with the highly oxidised carbon species increasing as the surface processing proceeds. The surface hydrophilicity was dramatically improved after the treatment, with the surface contact angle reduced from 81.8 o for the as-supplied sample to lower than 50 deg. after treatment. Post-treatment recovery effect is found after the treated samples were stored in air for a long period of time, with the ultimate contact angles, as measured, being stabilised in the range 58-69 deg. after the storage, varying with the DBD-treatment power density. A great amount of the C-O type bonding formed during the DBD treatment was found to be converted into the C=O type during post-treatment storage. A possible mechanism for this bond conversion has been suggested

  2. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin

    2012-08-29

    In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  3. Contact angle measurement of natural materials.

    Science.gov (United States)

    Zhao, Tianyi; Jiang, Lei

    2018-01-01

    Contact angle (CA) is the most important parameter used to quantify the wettability of solid surfaces. In order to evaluate wettability performance, numerous methods have been developed to measure the CA of solid surfaces. Recent years have seen increased focus on the special wettability performance of various biological materials. Biomimetic wettability has become one of the most popular research fields, and novel CA measurements have been invented accordingly. In this protocol, we introduce several CA measurement techniques mainly based on the image capture method, which is commonly to investigate the wettability of natural materials. According to the solid/liquid/gas context, we classify CA measurements into three types: in air, under liquid, and air bubble measurements, and describe methods for each. The precise measurement of CA together with study of surface structure can reveal the mechanisms of special wettability, thus accelerating the investigation of biomaterials. Copyright © 2017. Published by Elsevier B.V.

  4. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Emanuel A. [University of Alabama in Huntsville, Huntsville, AL (United States)], E-mail: ewaddell@chemistry.uah.edu; Shreeves, Stephen [University of Alabama in Huntsville, Huntsville, AL (United States); Carrell, Holly; Perry, Christopher [Oakwood College, Huntsville, AL (United States); Reid, Branden A. [Morgan State University, Baltimore, MD (United States); McKee, James [University of Alabama in Birmingham, Birmingham, AL (United States)

    2008-06-30

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO{sub x} (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  5. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Science.gov (United States)

    Waddell, Emanuel A.; Shreeves, Stephen; Carrell, Holly; Perry, Christopher; Reid, Branden A.; McKee, James

    2008-06-01

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO x (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  6. A 'conveyor belt' model for the dynamic contact angle

    International Nuclear Information System (INIS)

    Volpe C, Della; Siboni, S

    2011-01-01

    The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily detected, and in a repeatable way, are advancing and receding contact angles. In this paper, we discuss a simple model which accounts for the onset of advancing and receding contact angles measured by the Wilhelmy microbalance, one of the most powerful techniques for contact angle measurements. The model also explains the experimental observation that advancing and receding contact angles become closer to each other when the system is gently 'shaken', by supplying mechanical energy in an appropriate way. The model may be pedagogically useful in introducing students and teachers to aspects of capillary phenomena which are not usually discussed in basic physics courses.

  7. Modeling and experimental study of oil/water contact angle on biomimetic micro-parallel-patterned self-cleaning surfaces of selected alloys used in water industry

    Energy Technology Data Exchange (ETDEWEB)

    Nickelsen, Simin; Moghadam, Afsaneh Dorri, E-mail: afsaneh@uwm.edu; Ferguson, J.B.; Rohatgi, Pradeep

    2015-10-30

    Graphical abstract: - Highlights: • Wetting behavior of four metallic materials as a function of surface roughness has been studied. • A model to predict the abrasive particle size and water/oil contact angles relationship is proposed. • Active wetting regime is determined in different materials using the proposed model. - Abstract: In the present study, the wetting behavior of surfaces of various common metallic materials used in the water industry including C84400 brass, commercially pure aluminum (99.0% pure), Nickle–Molybdenum alloy (Hastelloy C22), and 316 Stainless Steel prepared by mechanical abrasion and contact angles of several materials after mechanical abrasion were measured. A model to estimate roughness factor, R{sub f}, and fraction of solid/oil interface, ƒ{sub so}, for surfaces prepared by mechanical abrasion is proposed based on the assumption that abrasive particles acting on a metallic surface would result in scratches parallel to each other and each scratch would have a semi-round cross-section. The model geometrically describes the relation between sandpaper particle size and water/oil contact angle predicted by both the Wenzel and Cassie–Baxter contact type, which can then be used for comparison with experimental data to find which regime is active. Results show that brass and Hastelloy followed Cassie–Baxter behavior, aluminum followed Wenzel behavior and stainless steel exhibited a transition from Wenzel to Cassie–Baxter. Microstructural studies have also been done to rule out effects beyond the Wenzel and Cassie–Baxter theories such as size of structural details.

  8. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Felix, T., E-mail: tsfelix81@gmail.com [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Cassini, F.A.; Benetoli, L.O.B. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Dotto, M.E.R. [Physics Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Debacher, N.A. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2017-05-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R{sub RMS} (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91{sub (PET)} and 0.88{sub (PEEK)}, β = 0.25{sub (PET)} and z = 3,64{sub (PET)}.

  9. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  10. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shubina, V.; Gaillet, L.; Ababou-Girard, S.; Gaudefroy, V.; Chaussadent, T.; Farças, F.; Meylheuc, T.; Dagbert, C.; Creus, J.

    2015-01-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L −1 , the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe 2+ and Fe 3+ mixed-oxide layer and the outer layer, mostly composed of Fe 3+ associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties

  11. Evaluating the effect of dentin surface pretreatment on the static contact angle of a drop of a bonding agent: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mehrdad Barekatain

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the effect of dentinal pretreatment on the static contact angle of a bonding agent as a measure of dentin surface wettability. Materials &Methods: Twenty mid-coronal dentin surfaces were prepared and randomly allocated to four groups (n=5 according to the priming solutions. All segments were etched with 35% phosphoric acid gel for 15 s, rinsed for 30 s and dried. Each group was rehydrated with 10 µL of distilled water, 0.2 % chlorhexidine, 70% ethanol and 5.25% Sodium Hypochlorite respectively and the excess solution was removed after 60 sec using an absorbent paper. Using a micro syringe, a droplet of the Adper Single Bond 2 was placed on each prepared surface. Then the profile and the static contact angle of the droplet were analyzed with a video-based optical contact angle measuring system. The statistical analysis was performed using One-way ANOVA and Dunnett’s t tests (p<0.05. Results: There was a statistically significant difference between the water and sodium hypochlorite groups which indicates the negative effect sodium hypochlorite may have on dentinal surface energy. (p=0.013. The differences between the water and ethanol groups (p=0.168 and between the water and chlorhexidine groups (p=0.665 were not significant. Conclusion: The use of 5.25% sodium hypochlorite as a priming solution in bonding procedure is not recommended. There is no improvement in dentinal surface wettability by using 70% ethanol or 0.2% chlorhexidine instead of water and the recommendation for use of any of the two should be based on other long-term or short-term effects they may have on the bonding procedure.

  12. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Rahimzadeh, Amin; Chouqi, Zineb; Miao, Yihe; Eslamian, Morteza

    2018-02-01

    Perovskite solar cells (PSCs) are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2) substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2) are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  13. Quantized contact angles in the dewetting of a structured liquid.

    Science.gov (United States)

    Ilton, Mark; Stasiak, Pawel; Matsen, Mark W; Dalnoki-Veress, Kari

    2014-02-14

    We investigate the dewetting of a disordered melt of diblock copolymer from an ordered residual wetting layer. In contrast to simple liquids where the wetting layer has a fixed thickness and the droplets exhibit a single unique contact angle with the substrate, we find that structured liquids of diblock copolymer exhibit a discrete series of wetting layer thicknesses each producing a different contact angle. These quantized contact angles arise because the substrate and air surfaces each induce a gradient of lamellar order in the wetting layer. The interaction between the two surface profiles creates an effective interface potential that oscillates with film thickness, thus, producing a sequence of local minimums. The wetting layer thicknesses and corresponding contact angles are a direct measure of the positions and depths of these minimums. Self-consistent field theory is shown to provide qualitative agreement with the experiment.

  14. Contact angle measurement with a smartphone

    Science.gov (United States)

    Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  15. Contact angle measurement with a smartphone.

    Science.gov (United States)

    Chen, H; Muros-Cobos, Jesus L; Amirfazli, A

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  16. Contact angles and their hysteresis as a measure of liquid-solid adhesion.

    Science.gov (United States)

    Extrand, C W

    2004-05-11

    The wetting behavior of a series of aliphatic polyamides was examined. Polyamides and polyethylene were molded against glass to produce smooth surfaces. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while contact angle hysteresis increased. Wetting free energies calculated from contact angles were equal to those from dewetting, suggesting that contact angle hysteresis did not arise from surface anomalies, but from hydrogen bonding between water and the amide groups in the polyamide surfaces.

  17. Determination of Contact Angle from Contact Area of Liquid Droplet Spreading on Solid Substrate

    Directory of Open Access Journals (Sweden)

    Rhoda H. GUMUS

    2007-01-01

    Full Text Available Both complete and incomplete wetting were considered for the spreading of liquid drops on solid substrate. The liquid droplets were silicone oil, glycerine and hexadecane and the solid substrates are glass, polystyrene and polymethyl methacrylate (PMMA. Wetting was characterized by measuring the contact angle formed between the liquid drop and solid surface. Small droplets of constant volume were used for the measurements in order to minimize gravitational effects. The contact radius was obtained as a function of time by an image analysis system and used for the calculation of the contact area. The contact area was then used to determine the contact angle. The contact angles calculated from contact area are in good agreement with the experimental values.

  18. CONTACT ANGLE MEASUREMENT OF DENTAL RESTORATIVE MATERIALS BY DROP PROFILE IMAGE ANALYSIS

    OpenAIRE

    M. Rinastiti, H. D. K. Yulianto dan

    2014-01-01

    The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA)-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact ang...

  19. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  20. Contact angle hysteresis of liquid drops as means to measure ...

    Indian Academy of Sciences (India)

    A comparison of the two methods shows that the extent of contact angle hysteresis is indicative of both hydrophobicity of the surface as well as the force of adhesion. Mechanical properties and microstructure of zein films prepared by casting from solutions and using Langmuir-Blodgett film technique have been investigated.

  1. Evaluation of the Contact Angle from Molecular Simulations.

    Czech Academy of Sciences Publication Activity Database

    Škvára, J.; Škvor, J.; Nezbeda, Ivo

    2018-01-01

    Roč. 44, č. 3 (2018), s. 190-199 ISSN 0892-7022 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : contact angle * argon droplet * surface molecules Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.254, year: 2016

  2. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses.

    Science.gov (United States)

    Read, Michael L; Morgan, Philip B; Maldonado-Codina, Carole

    2009-11-01

    This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2 degrees , whereas intralens COR values (95% confidence intervals) ranged from 4.0 degrees (3.3 degrees , 4.7 degrees ) (lotrafilcon A, captive bubble) to 10.2 degrees (8.4 degrees , 12.1 degrees ) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5 degrees (3.7 degrees , 5.2 degrees ) (lotrafilcon A, captive bubble) to 16.5 degrees (13.6 degrees , 19.4 degrees ) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses.

  3. Simultaneous decay of contact-angle and surface-tension during the rehydration of air-dried root mucilage

    Science.gov (United States)

    Arye, Gilboa; Chen, Fengxian

    2016-04-01

    Plants can extract or exude water and solutes at their root surface. Among the root exudates, the mucilage exhibits a surfactant like properties - depressing the surface-tension (ST, mN/m) at the water-air interface. The amphipathic nature of some of the mucilage molecules (e.g. lipids) is thought to be the reason for its surfactant like behavior. As the rhizosphere dries out, re-orientation and/or re-configuration of amphipathic molecules at the solid-air interface, may impart hydrophobic nature to the rhizosphere. Our current knowledge on the ST of natural and/or model root mucilage is based on measurements of the equilibrium ST. However, adsorption of amphipathic molecules at the water-air interface is not reached instantaneously. The hydrophobic nature of the rhizosphere was deduced from the initial advancing CA, commonly calculated from the first few milliseconds up to few seconds (depending on the method employed). We hypothesized that during the rehydration of the root mucilage; both quantities are dynamic. Processes such as water absorbance and dissolution, may vary the interfacial tensions as a function of time. Consequently, simultaneous reduction of both CA and ST as a function of time can be expected. The main objective of this study was to characterize and quantify the extent, persistency and dynamic of the CA and ST during rehydration of air-dried root mucilage. The study was involved with measurements of dynamic and equilibrium ST using the pedant drop or Wilhelmy plate method, respectively. Glass slides were coated with naturally occurring or model root mucilage and the CA of a sessile drop was measured optically, as a function of time. The results were analyzed based on the Young-Dupré and Young-Laplace equations, from which the simultaneous decay of CA and ST was deduced. The implication for the wettability and water flow in the rhizosphere will be discussed.

  4. Determination of the solid surface critical exponent β1 from contact-angle variation on approach to a wetting transition: Cyclohexane/aniline/quartz

    Science.gov (United States)

    Pallas, Norman R.

    2016-03-01

    The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature Tc. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature Tw, 2.12 K below Tc. The contact angle vanishes at Tw, scaling as cos θ ˜ |T - Tc|β1-μ for T contact angle near the critical point for this system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.

  5. Automatic measurement of contact angle in pore-space images

    Science.gov (United States)

    AlRatrout, Ahmed; Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2017-11-01

    A new approach is presented to measure the in-situ contact angle (θ) between immiscible fluids, applied to segmented pore-scale X-ray images. We first identify and mesh the fluid/fluid and fluid/solid interfaces. A Gaussian smoothing is applied to this mesh to eliminate artifacts associated with the voxelized nature of the image, while preserving large-scale features of the rock surface. Then, for the fluid/fluid interface we apply an additional smoothing and adjustment of the mesh to impose a constant curvature. We then track the three-phase contact line, and the two vectors that have a direction perpendicular to both surfaces: the contact angle is found from the dot product of these vectors where they meet at the contact line. This calculation can be applied at every point on the mesh at the contact line. We automatically generate contact angle values representing each invaded pore-element in the image with high accuracy. To validate the approach, we first study synthetic three-dimensional images of a spherical droplet of oil residing on a tilted flat solid surface surrounded by brine and show that our results are accurate to within 3° if the sphere diameter is 2 or more voxels. We then apply this method to oil/brine systems imaged at ambient temperature and reservoir pressure (10MPa) using X-ray microtomography (Singh et al., 2016). We analyse an image volume of diameter approximately 4.6 mm and 10.7 mm long, obtaining hundreds of thousands of values from a dataset with around 700 million voxels. We show that in a system of altered wettability, contact angles both less than and greater than 90° can be observed. This work provides a rapid method to provide an accurate characterization of pore-scale wettability, which is important for the design and assessment of hydrocarbon recovery and carbon dioxide storage.

  6. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle.

    Science.gov (United States)

    Wang, Shuai; Li, Yapeng; Fei, Xiaoliang; Sun, Mingda; Zhang, Chaoqun; Li, Yaoxian; Yang, Qingbiao; Hong, Xia

    2011-07-15

    A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  8. Determination of the solid surface critical exponent β_1 from contact-angle variation on approach to a wetting transition: Cyclohexane/aniline/quartz

    International Nuclear Information System (INIS)

    Pallas, Norman R.

    2016-01-01

    The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature T_c. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature T_w, 2.12 K below T_c. The contact angle vanishes at T_w, scaling as cos θ ∼ |T − T_c|"β"_1"−"μ for T < T_w and cos θ = 1.0 for T_w < T < T_c. The experimental results give a value for β_1 = 0.74 ± 0.03, in agreement with theoretical calculations. The data clearly rule out higher order contributions to the change in the contact angle near the critical point for this system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.

  9. Determination of the solid surface critical exponent β{sub 1} from contact-angle variation on approach to a wetting transition: Cyclohexane/aniline/quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pallas, Norman R., E-mail: Sam-7-iam@hotmail.com [BP Research Centre Warrensville, 4440 Warrensville Center Road, Cleveland, Ohio 44128 (United States)

    2016-03-21

    The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature T{sub c}. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature T{sub w}, 2.12 K below T{sub c}. The contact angle vanishes at T{sub w}, scaling as cos θ ∼ |T − T{sub c}|{sup β{sub 1}−μ} for T < T{sub w} and cos θ = 1.0 for T{sub w} < T < T{sub c}. The experimental results give a value for β{sub 1} = 0.74 ± 0.03, in agreement with theoretical calculations. The data clearly rule out higher order contributions to the change in the contact angle near the critical point for this system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.

  10. Contact angle distribution of particles at fluid interfaces.

    Science.gov (United States)

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  11. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2017-01-01

    Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface...... fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops...

  12. XPS and contact angle study of cotton surface oxidation by catalytic bleaching, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296

    NARCIS (Netherlands)

    Topalovic, T.; Nierstrasz, Vincent; Bautista, J.; Bautista, Lorenzo; Jocic, Dragan; Jocic, D.; Navarro, Antonio; Warmoeskerken, Marinus

    2007-01-01

    Surface chemistry and wetting properties of cotton fibres as affected by catalytic bleaching have been investigated. Two types of cotton fabric have been analysed: the regular and a model cotton fabric. In the regular – double scoured cotton fabric, cellulose was contaminated with both non-removable

  13. Aerial wetting contact angle measurement using confocal microscopy

    OpenAIRE

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-01-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet wi...

  14. Contact angle hysteresis: a review of fundamentals and applications

    NARCIS (Netherlands)

    Eral, Burak; 't Mannetje, Dieter; Oh, J.M.

    2013-01-01

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To

  15. Measurement of contact angles of aqueous solutions on some rock forming minerals

    Science.gov (United States)

    Takakura, M.; Katsura, M.; Nakashima, S.

    2007-12-01

    Wetting properties of fluids on earth's materials are controlling fluid flows and dynamics of the geological systems. Although the wetting behavior of industrial materials have been widely examined often by contact angle measurements, contact angles of rock-forming materials have not been commonly measured. Therefore, we have been measuring contact angles of some representative rock-forming minerals. The surfaces of solid samples were polished successively by emery papers then by grinding powders (alumina: up to \\sharp3000: grain size about 5 micrometers). Water droplet from a micro-syringe needle are placed on solid surfaces by moving up the sample stage. Images of water drops on the solid surfaces are captured from the horizontal direction with a CCD camera. Contact angles can be determined from the height and the length of the images by assuming them to be parts of circles. Over 60 measurements of contact angles of pure water on (101) and (011) faces plates cut from a natural quartz single crystal were repeated. The average contact angles of pure water on (101) and (011) faces of quartz were 48 ± 5 degrees and 52 ± 3 degrees, respectively. Contact angles of pure water on a natural calcite single crystal was also measured in the same way to be 37 ± 8 degrees. Contact angles of various aqueous solutions such as NaCl and NaHCO3 on these minerals will also be measured in order to evaluate wetting properties of natural rock-water systems.

  16. Apparent and microscopic dynamic contact angles in confined flows

    Science.gov (United States)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore

  17. Simultaneous soft sensing of tissue contact angle and force for millimeter-scale medical robots

    OpenAIRE

    Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E

    2013-01-01

    A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by...

  18. Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves

    OpenAIRE

    Lacerda, Pedro

    2007-01-01

    We show that candidate contact binary asteroids can be efficiently identified from sparsely sampled photometry taken at phase angles >60deg. At high phase angle, close/contact binary systems produce distinctive lightcurves that spend most of the time at maximum or minimum (typically >1mag apart) brightness with relatively fast transitions between the two. This means that a few (~5) sparse observations will suffice to measure the large range of variation and identify candidate contact binary s...

  19. Contact angle hysteresis of non-flattened-top micro/nanostructures.

    Science.gov (United States)

    Moradi, Sona; Englezos, Peter; Hatzikiriakos, Savvas G

    2014-03-25

    A two-dimensional (2D) thermodynamic model is proposed to predict the contact angle (CA) and contact angle hysteresis (CAH) of different types of surface geometries, particularly those with asperities having nonflattened tops. The model is evaluated by micro/nano sinusoidal and parabolic patterns fabricated by laser ablation. These microstructures are analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle (CA) and contact angle hysteresis (CAH). The effects of the geometrical details of two types of microstructures on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics. The analysis of the various surfaces reveals the important geometrical parameters that may lead to the lotus effect (high CA > 150° and low CAH 150° and high CAH ≫ 10°).

  20. Modeling and simulation of water flow on containment walls with inhomogeneous contact angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Amend, Katharina; Klein, Markus [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. for Numerical Methods in Aerospace Engineering

    2017-07-15

    The paper presents a three-dimensional numerical simulation for water running down inclined surfaces using OpenFOAM. This research project aims at developing a CFD model to describe the run down behavior of liquids and the resulting wash down of fission products on surfaces in the reactor containment. An empirical contact angle model with wetted history is introduced as well as a filtered randomized initial contact angle field. Simulation results are in good agreement with the experiments. Experimental Investigation on Passive.

  1. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field.

    Science.gov (United States)

    Liu, Yong-Ming; Chen, Rui-Qing; Wu, Zi-Qing; Zhu, Jing; Shi, Jian-Yu; Lu, Hui-Meng; Shang, Peng; Yin, Da-Chuan

    2016-09-01

    The contact angle is an important parameter that is essential for studying interfacial phenomena. The contact angle can be measured using commercially available instruments. However, these well-developed instruments may not function or may be unsuitable for use in some special environments. A simulated microgravity generated by a large gradient magnetic field is such an environment in which the current measurement instruments cannot be installed. To measure the contact angle in this environment, new tools must be designed and manufactured to be compatible with the size and physical environment. In this study, we report the development and construction of a new setup that was specifically designed for use in a strong magnetic field to measure the contact angle between a levitated droplet and a solid surface. The application of the setup in a large gradient magnetic field was tested, and the contact angles were readily measured.

  2. Nanobubbles in confined solution: Generation, contact angle, and stability.

    Science.gov (United States)

    Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng

    2018-02-14

    The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.

  3. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    Energy Technology Data Exchange (ETDEWEB)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    2017-09-01

    We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal function and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.

  4. Contact angle of ethanol–water solutions on crystalline and mesoporous silicon

    International Nuclear Information System (INIS)

    Spencer, S J; Andrews, G T; Deacon, C G

    2013-01-01

    Measurements of contact angle of ethanol–water solutions were performed on crystalline silicon and on mesoporous silicon films with porosities up to ∼72%. Water contact angles of 44° and 76° were measured for untreated and HF-dipped crystalline silicon, respectively, consistent with previous studies. The contact angle for ethanol–water mixtures was found to decrease with increasing ethanol concentration for both untreated crystalline silicon and also for HF-dipped crystalline silicon up to an ethanol concentration of ∼80%; at higher concentrations the contact angle approached zero. Similar behaviour was observed on mesoporous silicon surfaces for ethanol concentrations ≲ 40%, above which the contact angle dropped abruptly to an immeasurably small value. This behaviour is attributed to a decrease in surface tension with increasing ethanol concentration. For all ethanol–water solutions, a minimum value of contact angle was observed at a porosity of ∼40%, above which it remained approximately constant. The behaviour of contact angle with porosity can be explained by a change in the Wenzel roughness parameter due to changes in the specific surface area of the film. (paper)

  5. Measuring contact angle and meniscus shape with a reflected laser beam

    International Nuclear Information System (INIS)

    Eibach, T. F.; Nguyen, H.; Butt, H. J.; Auernhammer, G. K.; Fell, D.

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface

  6. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    Science.gov (United States)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  7. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.

    Science.gov (United States)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  8. Contact angle control of sessile drops on a tensioned web

    Science.gov (United States)

    Park, Janghoon; Kim, Dongguk; Lee, Changwoo

    2018-04-01

    In this study, the influence of the change of tension applied to flexible and thin web substrate on the contact angle of sessile drop in roll-to-roll system was investigated. Graphene oxide and deionized water solutions were used in the experiments. Tension was changed to 29, 49, and 69 N, and the casting distance of the micropipette and the material was set to 10, 20, and 40 mm, and the droplet volume was set to 10, 20, and 30 μL, respectively. Statistical analysis of three variables and analysis of the variance methodology showed that the casting distance was most significant for the contact angle change, and the most interesting tension variable was also affected. The change in tension caused the maximum contact angle to change by 5.5°. The tension was not uniform in the width direction. When the droplet was applied in the same direction in the width direction, it was confirmed that the tension unevenness had great influence on the contact angle up to 11°. Finally, the casting distance, which has a large effect on the contact angle, was calibrated in the width direction to reduce the width direction contact angle deviation to 1%. This study can be applied to fine patterning research using continuous inkjet printing and aerosol jet printing, which are roll-to-roll processes based on droplet handling.

  9. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  10. Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots.

    Science.gov (United States)

    Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J; Dupont, Pierre E

    2013-01-01

    A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g.

  11. Contact angles on a soft solid: from Young's law to Neumann's law.

    Science.gov (United States)

    Marchand, Antonin; Das, Siddhartha; Snoeijer, Jacco H; Andreotti, Bruno

    2012-12-07

    The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles differently from those predicted by Neumann's law, which applies when the drop is floating on another liquid. Here, we derive an elastocapillary model for contact angles on a soft solid by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of a vanishing elastic modulus yields Neumann's law or a variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit to the soft limit appears when the length scale defined by the ratio of surface tension to elastic modulus γ/E reaches the range of molecular interactions.

  12. Contact angle of water droplets in a high temperature, high pressure environment

    International Nuclear Information System (INIS)

    Hayashi, T.; Hazuku, T.; Takamasa, T.; Takamori, K.

    2004-01-01

    This paper presents an experimental study of surface wettability on a stainless plate in a high-temperature, high-pressure environment. Using a pressure vessel, we measured contact angles of water droplets at temperatures from 20 to 300 C. deg. and a constant pressure of 15 MPa, as an indicator of macroscopic surface wettability. Measured contact angles decreased with temperature below 250 C. deg., clustering around a straight line at temperatures below 120 C. deg. and around another line in the range from 120 to 250 C. deg.. At temperatures above 250 C. deg., on the other hand, the contact angles remained constant, independent of temperature, and contrary to the existing theoretical model, no highly hydrophilic condition or null contact angle condition was achieved. This result will enable more accurate assessment of heat transfer not only in steam pipes of a boiler but also in subchannel of a BWR-type reactor. (authors)

  13. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  14. Contact angle of 63Sn-37Pb and Pb-free solder on Cu plating

    International Nuclear Information System (INIS)

    Lin, C.-T.; Lin, K.-L.

    2003-01-01

    This study investigated the wetting behavior of 63Sn-37Pb and Pb-free solder on different surface roughness Cu plating. The Cu plating roughness was controlled by current density and deposition time. The contact angles were measured to investigate the wetting behavior. The contact angles of DI (de-ionized) water obey Wenzel's equation and decrease with the increase of surface roughness. Daubing the flux on solder balls as well as on the Cu plating lowers the magnitude of contact angle by 2-23 deg. and the deviation of measured values by 4-6 deg. . The contact angles decrease with the increase of Cu substrate surface roughness in the temperature range of 250-280 deg. C. The cleaning effect of flux was analyzed by Auger electron spectroscopy. The oxide on the Cu substrate surface was well removed by flux. The carbon residue left behind on the substrate surface after reflow raises both the magnitude and the scattering of contact angle

  15. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method

    International Nuclear Information System (INIS)

    Andersen, Nis Korsgaard; Taboryski, Rafael

    2017-01-01

    Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops with very high accuracy even with blurry or noisy images. We do this by splitting the trace of a drop into a left and right part at the apex and then fit each side to an ellipse. (technical note)

  16. Contact Angle Measurements Using a Simplified Experimental Setup

    Science.gov (United States)

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  17. Control of polyaniline conductivity and contact angles by partial protonation

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 66-69 ISSN 0959-8103 R&D Projects: GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * conductivity * contact angle Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.029, year: 2008

  18. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  19. A new method for measuring the contact angles from digital images of liquid drops.

    Science.gov (United States)

    Mirzaei, M

    2017-11-01

    The drop hitting a solid surface may be symmetric or asymmetric, which depends on the surface texture and external force orientations. The accurate measurement of the contact angle is of fundamental importance for the purpose of scientific research, while having a substantial role in a wide range of practical applications. This paper presents a new image processing based method, as a computational scheme to measure the inclination angle of apparent edge curves in digital images. The main concept of the scheme is the emulation of a moving goniometer mask coupled with a Gaussian weighted function, which does not require edge fitting with analytic curves for the angle calculation. The algorithm produces as follow: allocating the exact position of the contact points by Harris corner detector function, selecting a series of points on the drop boundary near the contact points, setting goniometric mask on each given point and calculating the angles, applying the Gaussian weighted average function on the calculated angles and measure the objective contact angle. The scheme is tested on several images from recent studies in the available literature. The comparison between analytical and calculated angles shows less than 1° difference. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State.

    Science.gov (United States)

    Liu, Tingyi Leo; Kim, Chang-Jin Cj

    2017-04-07

    The difficulty of measuring very large contact angles (>150 degrees) has become more relevant with the increased popularity of super-repellent surfaces. Measurement is more difficult for dynamic contact angles, for which theoretical profiles do not fit well, and small capillary length liquids, whose sessile droplets sag by gravity. Here, we expand the issue to the limit by investigating dynamic contact angles of liquids with an extremely small capillary length (contact angles can be measured with a consistent accuracy despite their vastly different capillary lengths if one keeps the lens magnification inversely proportional to the capillary length. Verifying the droplet equator height is a key parameter, we propose a new Bond number defined by the equator height and optical resolution to represent the measurement accuracy of large contact angles. Despite negligible improvement for most liquids today, the proposed approach teaches how to measure very large contact angles with consistent accuracy when any of the liquids in consideration has a capillary length below 1.0 mm.

  1. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Directory of Open Access Journals (Sweden)

    Yunhong Liang

    2017-03-01

    Full Text Available Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing, an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L, interval (S, and height (H of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  2. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  3. CONTACT ANGLE MEASUREMENT OF DENTAL RESTORATIVE MATERIALS BY DROP PROFILE IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    H. D. K. Yulianto dan M. Rinastiti

    2014-06-01

    Full Text Available The capability of initial microbial adhesion to dental restorative composites surface is influenced by the surface wettability of the materials. The common method to evaluate surface wettability of materials is contact angle measurement. The existing conventional method to measure contact angle is by means of a contact angle (CA-Goniometer device, which is less practically applicable in clinical circumstances. Therefore, a more practical and applicable method is needed to measure contact angle in clinical circumstances. This research was performed to compare between contact angles measured by means of a CA-Goniometer device and a new practical method of drop profile image analysis. In addition, since there were two different formulas that can be used to calculate contact angle value from a drop profile image, then we also need to evaluate which formula is more reliable to be used. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc. sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop profile image, namely the “linier gradient equation” and the “tangential line”. The contact angle values obtained from the two different formulas were compared with the value obtained from the conventional method descriptively. Tests were carried out using three composite discs (Clearfill-Kuraray Medical, Inc. sample and deionised water for different measurement procedures. One drop of 3µl liquid was dropped onto the surface of the composite discs, and the drop profile image was captured by means of a customized home-made device connected to a digital camera. Two different formulas were used to calculate the contact angle value from the drop

  4. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  5. Effect of interface shape on advancing and receding fluid-contact angles around spherical particles.

    Science.gov (United States)

    Şenbil, Nesrin; He, Wei; Démery, Vincent; Dinsmore, Anthony D

    2015-07-07

    The angle of contact between a solid surface and a fluid interface plays a key role in wetting and is therefore a focus in studies of a wide range of natural phenomena and fluidic technologies. The contact angle ranges between two values, a maximum (advancing) angle and a minimum (receding) angle. These limiting angles are thought to be properties of the fluids and of the chemistry or topography of the solid. By contrast, we find that the value of the receding angle can be significantly reduced by altering the interface shape. Using millimeter-sized spheres coated with polydimethylsiloxane and pulled through an air-water interface, we observe that the receding angle decreases from 101 ± 1° at a planar interface to as low as 80 ± 1° at saddle- or cylinder-shaped interfaces. The angle decreases smoothly with the deviatoric curvature of the interface (a measure of the shape anisotropy) and is linked to a non-circular contact line.

  6. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  7. Size dependence of the contact angle of a nanodrop in a nanocavity: Density functional theory considerations

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2011-02-01

    The dependence of the contact angles of nanodrops of Lennard-Jones type fluids in nanocavities on their sizes are calculated using a nonlocal density functional theory in a canonical ensemble. Cavities of various radii and depths, various temperatures, as well as various values of the energy parameter of the fluid-solid interactions were considered. It is argued that this dependence might affect strongly, for instance, the rate of heterogeneous nucleation on rough surfaces, which is usually calculated under the assumption of constant contact angle.

  8. Contact angle goniometry on single micron-scale fibers for composites

    DEFF Research Database (Denmark)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial...... resolution of 4 um followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring...

  9. Molecular Dynamics Analyses on Microscopic Contact Angle - Effect of Wall Atom Configuration

    International Nuclear Information System (INIS)

    Takahiro Ito; Yosuke Hirata; Yutaka Kukita

    2006-01-01

    Boiling or condensing phenomena of liquid on the solid surface is greatly affected by the wetting condition of the liquid to the solid. Although the contact angle is one of the most important parameter to represent the wetting condition, the behavior of the contact angle is not understood well, especially in the dynamic condition. In this study we made molecular dynamics simulations to investigate the microscopic contact angle behavior under several conditions on the numerical density of the wall atoms. In the analyses, when the number density of the wall is lower, the changing rate of the dynamics contact angles for the variation of ΔV was higher than those for the case where the wall density is higher. This is mainly due to the crystallization of the fluid near the wall and subsequent decrease in the slip between the fluid and the wall. The analyses also show that the static contact angle decreases with increase in the number density of the wall. This was mainly induced by the increase in the number density of the wall itself. (authors)

  10. Investigation of porous silicon obtained under different conditions by the contact angle method

    Science.gov (United States)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  11. Measurement of contact angles of microscopic droplets by focal length method.

    Science.gov (United States)

    Geiger, Daniel; Geiger, Kirsten; Neckernuss, Tobias; Marti, Othmar; Amirkhani, Masoud

    2017-08-01

    We present a method to measure contact angles of microscopic droplets with a conventional microscope that possesses a precision focus adjustment stage. The droplets are modeled as spherical caps that act as lenses. Their focal length is determined by measuring the distance from the substrate surface to the level where a sharp image of the aperture stop is observed. The lens diameter is found by edge detection of a microscope image of the microdroplets. The spherical cap model relates the focal length and diameter of such lenses to the contact angle of the used liquid with known refractive index. The measurement procedure was applied to condensed water droplets on a silicon substrate covered by its native oxide layer. The results are found to be in good agreement with conventional, goniometric sessile drop measurements of the advancing contact angle.

  12. Étude de la réactivité de surface par mesure d'angle de contact : influence de la fonctionnalisation et de la structure. Applications aux films d'oxyde de zinc électrodéposés

    OpenAIRE

    Badre, Chantal

    2007-01-01

    In this work, we studied the surface reactivity by contact angle measurements. Wettability phenomenon is based on the nature of the interactions between a liquid and a surface. In our case, we were particularly interested in preparing textured surfaces with different roughness scales. Roughness is a key parameter to increase surface wettability. Firstly, we have prepared smooth polyvinylchloride polymers acidified with lauric acid. Then, aerosil balls are added to create some roughness on the...

  13. Statistical mechanics of fluids adsorbed in planar wedges: finite contact angle.

    Science.gov (United States)

    Henderson, J R

    2004-06-01

    I consider the statistical mechanics of inhomogeneous fluids applied to fluids adsorbed in planar wedges. Exact results are described that belong to an infinite subset of models defined as the intersection of any two identical semi-infinite planar wall-fluid potentials. This geometry is interesting as a generic example of adsorption onto structured interfaces and of interfacial phase transitions controlled by the substrate geometry. Previously described virial theorems are extended to the case of a general wall-fluid model. This enables the consideration of wedge filling when Young's contact angle far from the wedge apex is finite. The virial theorems generate two important relations: the wedge sum rules. The first sum rule links the interfacial free energy far from the wedge apex to the structure induced at the apex. The second sum rule links the free energy of the apex region to the structure induced by the apex. When Young's contact angle at the wedge walls is finite these relations further yield an exact result for the macroscopic contact angle in terms of the nanoscopic structure at the three-phase contact line (the intersection of the liquid-vapor surface with a wedge wall): the contact angle sum rule. These exact results are of direct relevance to computer simulation studies of adsorbed films. In addition, they take on special significance in the vicinity of continuous interfacial phase transitions: an approach to complete filling and the filling transition at bulk liquid-vapor coexistence.

  14. New Method Developed to Measure Contact Angles of a Sessile Drop

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  15. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  16. Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil

    Science.gov (United States)

    Lee, Sangmin; Hwang, Woonbong

    2009-03-01

    Superhydrophobic surfaces designed to improve hydrophobicity have high advancing contact angles corresponding to the Cassie state, but these surfaces also exhibit high contact angle hysteresis. We report here a simple and inexpensive method for fabricating superhydrophobic tangled nanofiber structures with ultralow contact angle hysteresis and no-aging degradation, based on a widening process. The resulting nanostructures are suitable for diverse applications including microfluidic devices for biological studies and industrial self-cleaning products for automobiles, ships and houses.

  17. Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data

    Directory of Open Access Journals (Sweden)

    J.-P. Chen

    2008-12-01

    Full Text Available The rate of ice nucleation in clouds is not easily determined and large discrepancies exist between model predictions and actual ice crystal concentration measured in clouds. In an effort to improve the parameterization of ice nucleating in cloud models, we investigate the rate of heterogeneous ice nucleation under specific ambient conditions by knowing the sizes as well as two thermodynamic parameters of the ice nuclei – contact angle and activation energy. Laboratory data of freezing and deposition nucleation modes were analyzed to derive inversely the two thermodynamic parameters for a variety of ice nuclei, including mineral dusts, bacteria, pollens, and soot particles. The analysis considered the Zeldovich factor for the adjustment of ice germ formation, as well as the solute and curvature effects on surface tension; the latter effects have strong influence on the contact angle. Contact angle turns out to be a more important factor than the activation energy in discriminating the nucleation capabilities of various ice nuclei species. By extracting these thermodynamic parameters, laboratory results can be converted into a formulation that follows classical nucleation theory, which then has the flexibility of incorporating factors such as the solute effect and curvature effect that were not considered in the experiments. Due to various uncertainties, contact angle and activation energy derived in this study should be regarded as "apparent" thermodynamics parameters.

  18. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    OpenAIRE

    Mohammad Jafari; Jongwon Jung

    2017-01-01

    The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a r...

  19. Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method

    OpenAIRE

    Schuster, Jonathan M.; Schvezov, Carlos E.; Rosenberger, Mario R.

    2015-01-01

    The sessile drop method is an easy and fast method used to measure the contact angle between solids and liquids. The value of the contact angle is used in surface characterization, in particular the wettability of solid surfaces by the liquid and to calculate the surface free energy. In this work, we study the effects of the volume of the drop placed on the surface, the elapsed time between drop placing and measurement and the cleaning of the substrate (not cleaning, washed with ethanol or...

  20. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  1. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  2. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running.

    Science.gov (United States)

    Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G

    2014-09-01

    Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderatemedian) and once based on rearfoot contact inversion angle (moderatemedian). The forefoot and rearfoot extrinsic clinical angles predicted, respectively, the forefoot and rearfoot angles at ground contact. Large forefoot contact angles were associated with greater amplitudes (but not durations) of forefoot and rearfoot eversion during stance. Rearfoot contact angles, however, were associated with neither amplitudes nor durations of forefoot and rearfoot eversion. Possible mechanisms for the increased risk of running injuries associated with large forefoot angles are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Contact angle analysis of low-temperature cyclonic atmospheric pressure plasma modified polyethylene terephthalate

    International Nuclear Information System (INIS)

    Huang, Chun; Chang, Ya-Chi; Wu, Shin-Yi

    2010-01-01

    Polyethylene terephthalate (PET) films are modified by cyclonic atmospheric pressure plasma. The experimentally measured gas phase temperature was around 30 o C to 90 o C, indicating that this cyclonic atmospheric pressure plasma can treat polymers without unfavorable thermal effects. The surface properties of cyclonic atmospheric pressure plasma-treated PET films were examined by the static contact angle measurements. The influences of plasma conditions such as treatment time, plasma power, nozzle distance, and gas flow rate on the PET surface properties were studied. It was found that such cyclonic atmospheric pressure plasma is very effective in PET surface modification, the reduced water contact angle was observed from 74 o to less than 37 o with only 10 s plasma treatment. The chemical composition of the PET films was analyzed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was used to study the changes in PET surface feature of the polymer surfaces due to plasma treatment. The photoemission plasma species in the continuous cyclone atmospheric pressure plasma was identified by optical emission spectroscopy (OES). From OES analysis, the plasma modification efficiency can be attributed to the interaction of oxygen-based plasma species in the plasma with PET surface. In this study, it shows a novel way for large scale polymeric surface modification by continuous cyclone atmospheric pressure plasma processing.

  4. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  5. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of

  6. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  7. Self-similarity of contact line depinning from textured surfaces.

    Science.gov (United States)

    Paxson, Adam T; Varanasi, Kripa K

    2013-01-01

    The mobility of drops on surfaces is important in many biological and industrial processes, but the phenomena governing their adhesion, which is dictated by the morphology of the three-phase contact line, remain unclear. Here we describe a technique for measuring the dynamic behaviour of the three-phase contact line at micron length scales using environmental scanning electron microscopy. We examine a superhydrophobic surface on which a drop's adhesion is governed by capillary bridges at the receding contact line. We measure the microscale receding contact angle of each bridge and show that the Gibbs criterion is satisfied at the microscale. We reveal a hitherto unknown self-similar depinning mechanism that shows how some hierarchical textures such as lotus leaves lead to reduced pinning, and counter-intuitively, how some lead to increased pinning. We develop a model to predict adhesion force and experimentally verify the model's broad applicability on both synthetic and natural textured surfaces.

  8. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  9. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  10. Influence of spin creepage and contact angle on curve squeal: A numerical approach

    Science.gov (United States)

    Zenzerovic, I.; Kropp, W.; Pieringer, A.

    2018-04-01

    Curve squeal is a loud tonal sound that may arise when a railway vehicle negotiates a tight curve. Due to the nonlinear nature of squeal, time-domain models provide a higher degree of accuracy in comparison to frequency-domain models and also enable the determination of squeal amplitudes. In the present paper, a previously developed engineering time-domain model for curve squeal is extended to include the effects of the contact angle and spin creepage. The extensions enable the evaluation of more realistic squeal cases with the computationally efficient model. The model validation against Kalker's variational contact model shows good agreement between the models. Results of studies on the influence of spin creepage and contact angle show that the contact angle has a significant influence on the vertical-lateral dynamics coupling and, therefore, influences both squeal amplitude and frequency. Spin creepage mainly influences processes in the contact, therefore influencing the tangential contact force amplitude. In the combined spin-contact angle study the spin creepage value is kinematically related to the contact angle value. Results indicate that the influence of the contact angle is dominant over the influence of spin creepage. In general, results indicate that the most crucial factors in squeal are those that influence the dynamics coupling: the contact angle, wheel/rail contact positions and friction.

  11. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica

    Science.gov (United States)

    Syakur, Abdul; Hermawan; Sutanto, Heri

    2017-04-01

    Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.

  12. Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis

    Science.gov (United States)

    Bradshaw, J.; Billingham, J.

    2016-01-01

    Recent experiments [P. Brunet, J. Eggers, and R. D. Deegan, Phys. Rev. Lett. 99, 144501 (2007), 10.1103/PhysRevLett.99.144501] have shown that a liquid droplet on an inclined plane can be made to move uphill by sufficiently strong, vertical oscillations. In order to investigate this counterintuitive phenomenon we use a model in which liquid inertia and viscosity are assumed negligible so that the motion of the droplet is dominated by the applied acceleration due to the oscillation of the plate, gravity, and surface tension. We explain how the leading order motion of the droplet can be separated into a spreading mode and a swaying mode. For a linear contact line law, the maximum rise velocity occurs when these modes are in phase. We show that, both with and without contact angle hysteresis, the droplet can climb uphill and also that, for certain contact line laws, the motion of the droplet can produce footprints similar to experimental results. We show that if the two modes are out of phase when there is no contact angle hysteresis, the inclusion of hysteresis can force them into phase. This in turn increases the rise velocity of the droplet and can, in some cases, cause a sliding droplet to climb.

  13. Tensão superficial dinâmica e ângulo de contato de soluções aquosas com surfatantes em superfícies artificiais e naturais Dynamic surface tension and contact angle of water solutions with spray surfactants in artificial and natural surfaces

    Directory of Open Access Journals (Sweden)

    Cristina A. R. Iost

    2010-08-01

    Full Text Available O trabalho objetivou avaliar o efeito de surfatantes em soluções aquosas sobre a tensão superficial dinâmica e ângulo de contato das gotas em diferentes superfícies: artificiais (lâmina de vidro e de óxido de alumínio e naturais (superfícies adaxiais de folhas de Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea. Seis formulações de surfatantes (Antideriva®; Uno®; Pronto 3®; Li-700®; Supersil® e Silwet L-77®, respectivamente nas doses recomendadas do produto comercial (0,050; 0,025; 0,100; 0,250; 0,100 e 0,100 % v v-1 e o dobro delas, foram avaliadas em soluções aquosas. A tensão superficial dinâmica e o ângulo de contato formado sobre as superfícies naturais foram medidos por tensiômetro. Os ângulos de contato formados pelas gotas nas superfícies artificiais foram obtidos por análise de imagens capturadas por uma câmera digital. Os surfatantes influenciam nas propriedades físico-químicas de soluções aquosas. As soluções contendo os surfatantes Silwet L-77® e Supersil®; nas doses de 0,100 e 0,200% v v-1; proporcionaram maiores reduções na tensão superficial dinâmica e menores ângulos de contato das gotas sobre as superfícies artificiais e naturais. Os surfatantes organossiliconados em solução aquosa foram mais eficientes na redução da tensão superficial e proporcionaram maior molhamento de superfícies natural e artificial. Em alvos naturais, essas propriedades obtidas com organossiliconados são dependentes das características de superfície das espécies vegetais.The aim of the work was to evaluate the effect of surfactants in water solutions on dynamic surface tension and contact angle formed by the spray droplets in different surfaces: artificial (glass and aluminum oxide slides and natural (leaves surface of three species of weeds: Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea. Were studied six surfactants formulations (AntiderivaTM; UnoTM; Pronto 3TM

  14. Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene

    Science.gov (United States)

    Barnat-Hunek, Danuta; Łagód, Grzegorz; Klimek, Beata

    2017-07-01

    The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparation based on organosilicon compounds for surface protection on the heat-insulating mortars modified with polystyrene. The work discusses issues related to wettability, absorptivity and frost resistance of the surface layer of mortars. The experimental part pertains to the physical and mechanical properties of polystyrene-modified mortars and the influence of hydrophobic preparation on the contact angle and frost resistance. The frost resistance of mortars was examined following 25 cycles of freezing and thawing. The contact angle of light mortars (θw) was determined before and after the tests of frost resistance, in the function of time using a single measurement liquid. This provided a basis for calculating the surface free energy with Neumann method, characterizing the wettability and adhesion of mortars under normal conditions and with damages resulting from frost weathering. The structure of mortars and the adhesion of lightweight aggregate to cement paste were presented by means of scanning electron microscopy. The studies enabled to determine the hydrophobisation efficiency of heat-insulating mortars with polystyrene. The obtained results confirmed the possibility of producing heat-insulating mortars modified with polystyrene along with proper surface protection against moisture and frost.

  15. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.

    Science.gov (United States)

    Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal

    2016-11-15

    A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.

  16. Comparison of different methods to measure contact angles of soil colloids.

    Science.gov (United States)

    Shang, Jianying; Flury, Markus; Harsh, James B; Zollars, Richard L

    2008-12-15

    We compared five different methods, static sessile drop, dynamic sessile drop, Wilhelmy plate, thin-layer wicking, and column wicking, to determine the contact angle of colloids typical for soils and sediments. The colloids (smectite, kaolinite, illite, goethite, hematite) were chosen to represent 1:1 and 2:1 layered aluminosilicate clays and sesquioxides, and were either obtained in pure form or synthesized in our laboratory. Colloids were deposited as thin films on glass slides, and then used for contact angle measurements using three different test liquids (water, formamide, diiodomethane). The colloidal films could be categorized into three types: (1) films without pores and with polar-liquid interactions (smectite), (2) films with pores and with polar-liquid interactions (kaolinite, illite, goethite), and (3) films without pores and no polar-liquid interactions (hematite). The static and dynamic sessile drop methods yielded the most consistent contact angles. For porous films, the contact angles decreased with time, and we consider the initial contact angle to be the most accurate. The differences in contact angles among the different methods were large and varied considerably: the most consistent contact angles were obtained for kaolinite with water, and illite with diiodomethane (contact angles were within 3 degrees); but mostly the differences ranged from 10 degrees to 40 degrees among the different methods. The thin-layer and column wicking methods were the least consistent methods.

  17. Steel surface modifications in magnetised sliding contact

    Energy Technology Data Exchange (ETDEWEB)

    Paulmier, D. [CNRS, 54 - Vandoeuvre les Nancy (France). Lab. de Physique et Mecanique des Materiaux; Zaidi, H. [CNRS, 54 - Vandoeuvre les Nancy (France). Lab. de Physique et Mecanique des Materiaux; Bedri, R. [CNRS, 54 - Vandoeuvre les Nancy (France). Lab. de Physique et Mecanique des Materiaux; Kadiri, E.K. [CNRS, 54 - Vandoeuvre les Nancy (France). Lab. de Physique et Mecanique des Materiaux; Pan, L. [Beijing Metall. Management Inst. (China); Jiang, Q. [Beijing Metall. Management Inst. (China)

    1995-12-01

    Modifications in the mechanical properties of a ferromagnetic steel surface in sliding contact under the influence of a d.c. magnetic field were investigated. A magnetic field was applied to the steel pin, remaining constant during each test. Experiments were conducted at ambient temperature under different applied normal loads, sliding velocities and magnetic field ensities. Experimental results show that at ambient temperature the application of a magnetic field decreases the fluctuations in the friction coefficient and wear rate and increases the microhardness of the sliding surfaces. The dislocation density increases in the thin coating of the magnetised sliding contact erface. A simple model for the agglomeration of dislocations on the sliding contact is proposed. The results were erpreted by observation and analysis of the surface. Optical microscopy shows that when a magnetic field was applied the sliding surface was covered with thin black particles. The magnetic field promoted the oxidation of the surface. (orig.)

  18. Heterogeneous drying and nonmonotonic contact angle dynamics in concentrated film-forming latex drops

    Science.gov (United States)

    Kumar, Subhalakshmi; Katz, Joshua S.; Schroeder, Charles M.

    2017-11-01

    The dynamic drying process is studied in spatially heterogeneous film-forming latex suspensions across a wide range of dispersion concentrations using optical imaging techniques. Systematic changes in latex suspension concentration are found to affect lateral drying heterogeneity and surface topology. A nonmonotonic decay in contact angle is observed at the edges of drying droplets by continuously monitoring evaporation dynamics, which is quantitatively characterized by the peak strain and peak formation time. An analytical model is developed to explain the nonmonotonic contact-angle decay by considering a transient dilational stress imposed on a viscoelastic solid model for the particle network. Importantly, the latex concentration dependence of this phenomenon provides evidence for a smooth transition from fluid-line pinning to fluid-line recession behavior during drying, leading to ringlike to volcanolike deposition patterns, respectively. Using experimental data for drying heterogeneity, we quantitatively explore the influence of Marangoni flow and capillary pressure on drying behavior. Moreover, our results show that latex concentration and particle packing can also be strategically used to reduce contact-line friction, thereby affecting fluid-line recession. Taken together, these results show that studying latex suspensions in seemingly simple droplet geometries provides insight into the emergent spatially heterogeneous viscoelastic properties during film formation.

  19. Simple expression for the dependence of the nanodrop contact angle on liquid-solid interactions and temperature

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2009-01-01

    The density distributions and contact angles of nanodrops on smooth solid surfaces are calculated on the basis of a nonlocal density functional theory in wide ranges of temperature and parameters of the Lennard-Jones potentials representing the fluid-fluid and fluid-solid interactions. A simple linear dependence of the contact angle on the fluid-solid energy parameter ɛfs was found for various temperatures, hard core fluid-solid parameters σfs, and average fluid density of the system. A simple expression is suggested which represents all the above results in a unified form that relates the contact angle θ to the parameters of the interaction potentials and temperature. The most intriguing feature was that for each considered σfs there is a value ɛfs0 of ɛfs for which the contact angle θ=θ0 can be considered independent of temperature and of σfs. It is shown that ɛfs=ɛfs0 divides the materials for which θ increases from those for which θ decreases with increasing temperature. The results obtained for the dependence of the contact angle on the parameters of the model are in qualitative agreement with known molecular dynamics results.

  20. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  1. Measure Advancing, Receding and Dynamic Contact Angles of granular materials in a close column

    Science.gov (United States)

    Callegari, Gerardo; Li, Minglu; Moghtadernejad, Sara; Drazer, German

    2017-11-01

    Wetting properties of granular materials are usually obtained by the Washburn column technique. One problem is that the effective contact angle measured is dynamic and variable. The open column technique also allows to measure static advancing contact angle when the interface stops because the driving capillary pressure is balanced by the hydrostatic pressure. However, when particle diameters are in the range of tens of microns the static condition cannot be achieved at practical heights. Also, the open column device cannot be used to measure receding contact angles or contact angles of non-wetting liquids. Dynamics of a close column filled with granular material of different particle sizes where the liquid mass, the enclosed air pressure and the front position are monitored as a function of time is studied. Contact angle is calculated in dynamic and advancing static conditions. Then, a Syringe pump is used to increase the pressure inside the column so that the receding contact angle can also be studied. Supplementary experiments with a reference liquid that completely wets the powder are performed. Using a second liquid decouples the properties of the bed from the result and allows to measure the contact angles without making assumptions on the pore size or geometry.

  2. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids

    Science.gov (United States)

    Zanini, Michele; Isa, Lucio

    2016-08-01

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  3. Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles

    Science.gov (United States)

    Eastwood, Michael L.; Cremel, Sebastien; Gehrke, Clemens; Girard, Eric; Bertram, Allan K.

    2008-11-01

    An optical microscope coupled to a flow cell was used to investigate the onset conditions for ice nucleation on five atmospherically relevant minerals at temperatures ranging from 233 to 246 K. Here we define the onset conditions as the humidity and temperature at which the first ice nucleation event was observed. Kaolinite and muscovite were found to be efficient ice nuclei in the deposition mode, requiring relative humidities with respect to ice (RHi) below 112% in order to initiate ice crystal formation. Quartz and calcite, by contrast, were poor ice nuclei, requiring relative humidities close to water saturation before ice crystals would form. Montmorillonite particles were efficient ice nuclei at temperatures below 241 K but were poor ice nuclei at higher temperatures. In several cases, there was a lack of quantitative agreement between our data and previously published work. This can be explained by several factors including the mineral source, the particle sizes, the surface area available for nucleation, and observation time. Heterogeneous nucleation rates (Jhet) were calculated from the measurements of the onset conditions (temperature and RHi) required from ice nucleation. The Jhet values were then used to calculate contact angles (θ) between the mineral substrates and an ice embryo using classical nucleation theory. The contact angles measured for kaolinite and muscovite ranged from 6° to 12°, whereas for quartz and calcite, the contact angles ranged from 25° to 27°. The reported Jhet and θ values may allow for a more direct comparison between laboratory studies and can be used when modeling ice cloud formation in the atmosphere.

  4. Adhesive contact of randomly rough surfaces

    Science.gov (United States)

    Pastewka, Lars; Robbins, Mark

    2012-02-01

    The contact area, stiffness and adhesion between rigid, randomly rough surfaces and elastic substrates is studied using molecular statics and continuum simulations. The surfaces are self-affine with Hurst exponent 0.3 to 0.8 and different short λs and long λL wavelength cutoffs. The rms surface slope and the range and strength of the adhesive potential are also varied. For parameters typical of most solids, the effect of adhesion decreases as the ratio λL/λs increases. In particular, the pull-off force decreases to zero and the area of contact Ac becomes linear in the applied load L. A simple scaling argument is developed that describes the increase in the ratio Ac/L with increasing adhesion and a corresponding increase in the contact stiffness [1]. The argument also predicts a crossover to finite contact area at zero load when surfaces are exceptionally smooth or the ratio of surface tension to bulk modulus is unusually large, as for elastomers. Results that test this prediction will be presented and related to the Maugis-Dugdale [2] theories for individual asperities and the more recent scaling theory of Persson [3]. [1] Akarapu, Sharp, Robbins, Phys. Rev. Lett. 106, 204301 (2011) [2] Maugis, J. Colloid Interface Sci. 150, 243 (1992) [3] Persson, Phys. Rev. Lett. 74, 75420 (2006)

  5. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    Science.gov (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  6. Plasticity under rough surface contact and friction

    NARCIS (Netherlands)

    Sun, F.

    2016-01-01

    The ultimate objective of this work is to gain a better understanding of the plastic behavior of rough metal surfaces under contact loading. Attention in this thesis focuses on the study of single and multiple asperities with micrometer scale dimensions, a scale at which plasticity is known to be

  7. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    International Nuclear Information System (INIS)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values

  8. Contact angle hysteresis of liquid drops as means to measure ...

    Indian Academy of Sciences (India)

    Abstract. Adhesion of zein to solid substrates has been studied using surface energy profiles as indices and by adhesion mapping using atomic force microscopy (AFM). Dif- ferent plasticizers like glycerol and sorbitol have been used to form mixed films with zein and properties of these films are studied using surface energy ...

  9. Prediction of static contact angles on the basis of molecular forces and adsorption data.

    Science.gov (United States)

    Diaz, M Elena; Savage, Michael D; Cerro, Ramon L

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.

  10. Characterization of spreadability of nonaqueous ethylcellulose gel matrices using dynamic contact angle.

    Science.gov (United States)

    Chow, Keat Theng; Chan, Lai Wah; Heng, Paul W S

    2008-08-01

    This study reports the characterization of spreadability of nonaqueous ethylcellulose (EC) gel matrices intended for topical drug delivery using a newly developed method based on dynamic contact angle. EC solutions were prepared using three grades of EC and propylene glycol dicaprylate/dicaprate. Dynamic contact angles of sessile drops of EC solutions on silicone elastomer were measured using a dynamic contact angle analyzer equipped with axisymmetric drop shape analysis-profile. Roughness of silicone elastomer, viscosity of EC solutions and compressibility of semisolid EC gels were determined by the atomic force microscope, cone-and-plate rheometer and tensile tester, respectively. The silicone elastomer employed as a substrate was demonstrated to have similar hydrophilic/lipophilic properties as the human skin. Spreadability of EC solutions was dependent on EC concentration, polymeric chain length and polydispersity. EC gel spreadability was governed by viscosity and the extent of gel-substrate interaction. From the apparent contact angle values, most EC gel formulations tested were found to be moderately spreadable. Linear correlation observed between spreading parameter and compressibility of EC gel verified the applicability of dynamic contact angle to characterize EC gel spreadability. Thus, the feasibility of employing dynamic contact angle as an alternative technique to measure gel spreadability was demonstrated. The spreadability demonstrated by EC gel would facilitate application on the skin indicating its potential usefulness as a topical dosage form.

  11. Determination of wood wettability properties of oil palm trunk, Shorea sp. and Paraserianthes falcataria by contact angle method

    Science.gov (United States)

    Sucipto, T.; Hartono, R.; Dwianto, W.

    2018-02-01

    The aim of this study was to determine the wettability of the inner part of oil palm trunk (OPT), the outer part of OPT, OPT that densified 50%, Shorea sp. and Paraserianthes falcataria wood, as raw material for laminated beams. The wettability of the wood was measured by using cosine-contact angle (CCA) method, which is measuring the angle between dripped resin liquid and the wood surface. The resins that used in this study is phenol formaldehyde (PF) and urea formaldehyde (UF). The results showed that the Shorea sp. and P. falcataria woods have the smallest contact angle or the best wettability properties than OPT. Shorea sp. has the best wettability on PF resin (83.00°), while P. falcataria on UF resin (90.89°), this is due to the levels of starch and extractive substances in Shorea sp. and P. falcataria wood are smaller than OPT. Furthermore, Shorea sp. and P. falcataria wood surfaces are flatter and smoother than OPT, so that the resin will flow easier and wetting the wood surface. In this condition, the liquid resin will flow easier and formed a smaller contact angle. The good wettability of wood will enhance the adhesion properties of laminated beams.

  12. Finite element analysis of thrust angle contact ball slewing bearing

    Science.gov (United States)

    Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin

    2017-12-01

    In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.

  13. Contact stiffness of randomly rough surfaces.

    Science.gov (United States)

    Pohrt, Roman; Popov, Valentin L

    2013-11-21

    We investigate the contact stiffness of an elastic half-space and a rigid indenter with randomly rough surface having a power spectrum C2D(q)proportional q(-2H-2), where q is the wave vector. The range of H[symbol: see text] is studied covering a wide range of roughness types from white noise to smooth single asperities. At low forces, the contact stiffness is in all cases a power law function of the normal force with an exponent α. For H > 2, the simple Hertzian behavior is observed . In the range of 0 dimensional contact mechanics and the method of dimensionality reduction (MDR). The influence of the long wavelength roll-off is investigated and discussed.

  14. The contact angle of wetting of the solid phase of soil before and after chemical modification

    Directory of Open Access Journals (Sweden)

    Tyugai Zemfira

    2015-07-01

    Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of

  15. The constancy of the contact angle in viscous liquid motions with ...

    Indian Academy of Sciences (India)

    Abstract. Consider motion initiated in a viscous liquid in a smooth walled container. The liquid is initially at rest under uniform pressure from an inert gas of negligible inertia. We show that if the contact line is pinned and the interface is single valued, the contact angle has to remain constant throughout the motion. This is true ...

  16. The constancy of the contact angle in viscous liquid motions with ...

    Indian Academy of Sciences (India)

    Consider motion initiated in a viscous liquid in a smooth walled container. The liquid is initially at rest under uniform pressure from an inert gas of negligible inertia. We show that if the contact line is pinned and the interface is single valued, the contact angle has to remain constant throughout the motion. This is true even for ...

  17. Measurement of contact angles at room temperature in high magnetic field

    Science.gov (United States)

    Li, Chuanjun; Cao, Yang; Guo, Rui; He, Shengya; Xuan, Weidong; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2017-11-01

    The contact angle (CA) goniometer adaptable to a superconducting magnet was developed based on the sessile drop method. The goniometer mainly consisted of the sampling system, the supporting system, and the image acquisition system. Some improvements were taken to avoid the effects of the magnetic field (MF) on the CA measurement. As an example, the CAs of water on two substrates of silica and polymethyl methacrylate (PMMA) were measured using the goniometer. The results with and without a MF showed a good repeatability and reliability. Additionally, the MF was found to reduce the CA of water, which probably stemmed from the change of the surface tension in the MF. The CA goniometer will become an important tool which is used to study the wettability of liquids on a solid in the MF.

  18. The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals

    Directory of Open Access Journals (Sweden)

    Matlakowska Renata

    1999-01-01

    Full Text Available In this paper, we present our method for the measurement of contact angles on the surface of minerals during the bioleaching process because the standard deviation obtained in our measurements achieved unexpectedly low error. Construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times over a short time course, yielding excellent results. After defining points on the outline of the image of a drop and its baseline as well of the first approximation of the outline of the drop, an iterative process is initiated that is aimed at fitting the model of the drop and baseline. In turn, after defining the medium for which measurements were made, the work of adhesion is determined according to Young-Dupré equation. Calculations were made with the use of two methods named the L-M and L-Q methods.

  19. Fabrication of a silica aerogel and examination of its hydrophobic properties via contact angle and 3M water repellency tests

    Science.gov (United States)

    Mazrouei-Sebdani, Z.; Javazmi, L.; Khoddami, A.; Shams-Ghahfarokhi, F.; Low, T.

    2017-05-01

    Aerogels are dry gels with a very high specific pore volume. Aerogels with increased hydrophobicity have significant potential to expand their use as lightweight materials. Considering its special nanostructure and exceptional properties, this paper focuses on the synthesis and hydrophobic evaluation of a silica aerogel. The structural properties were investigated by measuring density, SEM micrographs, and BET analyses. Also, the hydrophobic evaluation was carried out by measuring 3M water repellency and water/alcohol contact angle. The BET analysis showed successful synthesis of the nanoporous silica aerogel with a pore size of 24 nm and porosity of 89%. The synthesized aerogel showed 3M water repellency of 3 and water contact angle of 129.6°. Also, it is worth-mentioning that as the alcohol content of the drops in 3M water repellency test is increased, the drop contact angle is decreased due to its lower surface tension. Thus, the contact angle reaches the zero at 3M water repellency test number of 4 (water/alcohol 60/40).

  20. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  1. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  2. Spontaneous imbibition of water and determination of effective contact angles in the Eagle Ford Shale Formation using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, Victoria H.; Cheshire, Michael C.; McFarlane, Joanna; Kolbus, Lindsay M.; Hale, Richard E.; Perfect, Edmund; Bilheux, Hassina Z.; Santodonato, Louis J.; Hussey, Daniel S.; Jacobson, David L.; LaManna, Jacob M.; Bingham, Philip R.; Starchenko, Vitaliy; Anovitz, Lawrence M.

    2017-10-01

    Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although, the modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron imaging to measure the spontaneous imbibition of water into fractures of Eagle Ford Shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order differential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective contact angles were slightly higher than static contact angles due to effects of in-situ changes in velocity, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that average fracture widths are not satisfactory for modeling imbibition in natural systems.

  3. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  4. Application of the critical angle method to refractive index measurement of human skin in vivo under partial contact.

    Science.gov (United States)

    Yoshida, Kenichiro; Ohkubo, Kohji; Ojima, Nobutoshi; Iwata, Kayoko

    2013-03-01

    We adapted the critical angle method for measuring rough surfaces under partial contact to acquire an in vivo skin refractive index (RI). Assuming that the total reflection is the simple sum of reflection from areas that are in contact and reflection from those that are not in contact, the RI can be estimated even for partial contact with a rough surface. We found that cheek skin is sufficiently soft that a sufficiently large area can be in contact and that the critical angle was detectable. The RIs of the cheeks of adult females were measured. The RI range was about 1.51 to 1.53, at a wavelength of 550 nm, without considering systematic errors. The RIs of cheeks are significantly correlated with their conductance, which corresponds to their water content. We determined the relationship between the RI and conductance within the variation of skin under normal conditions; this relationship was theoretically obtained in previous studies. In the present study, a direct in vivo measurement method was developed that enabled us to measure the RI in daily life, although this method contains errors for several reasons, including disregarding absorption.

  5. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.

    Science.gov (United States)

    Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis

    2014-10-01

    In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as

  6. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    International Nuclear Information System (INIS)

    Yin Shiheng; Wang Yingjun; Ren Li; Zhao Lianna; Kuang Tongchun; Chen Hao; Qu Jia

    2008-01-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching

  7. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  8. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels

    DEFF Research Database (Denmark)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present...... study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We...... also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all...

  9. Surface contact fatigue failures in gears

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available Engineering Failure Ana(vsis, Vol. 4, No. 2, pp. 99 107, 1997 (~ 1997 Elsevier Science Ltd. All rights reserved Primed in Great Britain 1350 6307,'97 $17.00 + 0.00 PII: S 1350-6307(97)00006-X SURFACE CONTACT FATIGUE FAILURES... of the matching tooth, and sliding speeds, both in approach and recess, are at a maximum. The negative sliding conditions in these regions, together with the high stresses and high sliding speeds, lead to rapid initiation...

  10. Apparent Contact Angle and Triple-Line Tension of a Soap Bubble on a Substrate.

    Science.gov (United States)

    Rodrigues, João Filipe; Saramago, Benilde; Fortes, Manuel Amaral

    2001-07-15

    The contact angle, θ, of a small bubble on a flat solid substrate was measured as a function of bubble radius, R. The observed deviation of the contact angle from 90 degrees can be accounted for in terms of a negative line tension, tau. The measured values of |tau|/gamma(f), where gamma(f) is the film tension, ranged between 0.15 and 0.6 mm and are proportional to the height, h, of the Plateau border, with |tau| congruent with1.7gamma(f)h. Copyright 2001 Academic Press.

  11. In vitro contact angle analysis and physical properties of blister pack solutions of daily disposable contact lenses.

    Science.gov (United States)

    Menzies, Kara L; Rogers, Ronan; Jones, Lyndon

    2010-01-01

    The purpose of this study was to measure the advancing and receding contact angles (CAs) of five daily disposable (DD) lenses and the osmolality, surface tension (ST), and pH of each blister pack solution. The advancing and receding CAs were measured directly out of the blister pack for five DD lenses: omafilcon A (CooperVision), nelfilcon A (CIBA Vision), modified nelfilcon A (CIBA Vision), etafilcon A (Johnson & Johnson), and narafilcon A (Johnson & Johnson). Advancing CAs were measured using sessile drop and Wilhelmy balance methods. Receding CAs were measured using the Wilhelmy balance method. ST, pH, and osmolality were measured for each blister pack solution from all the DD lenses. The advancing CAs for the nelfilcon A lenses were statistically lower (P<0.05) than the advancing CAs of the other three lenses. The receding CAs for etafilcon A were statistically lower (P<0.05) than the receding CAs for the other four lenses. The pH of all the blister pack solutions was relatively neutral (7.01-7.43). The ST of the blister pack solution for the modified nelfilcon A was significantly lower (P<0.05) than the ST of all other blister pack solutions. The osmolality of the blister pack solutions for the etafilcon A and narafilcon A lenses were significantly higher (P<0.05) than the other blister pack solutions. The modified nelfilcon A lens had low advancing CAs and low receding CAs showing minimal hysteresis. The blister pack solution for the modified nelfilcon A lens had the lowest ST, a low osmolality, and a neutral pH.

  12. Influence of temperature and glass composition on aluminum nitride contact angle

    OpenAIRE

    Tarnovskiy, R.; Ditts, Aleksander Andreevich

    2016-01-01

    Results of research of different glass compositions for possibility of their application in metallization pastes intended for ceramics based on aluminum nitride are presented in this article. It includes research of contact angle of aluminum nitride with glasses of different compositions at different temperatures and different roughness of ceramics.

  13. Edge contact angle and modified Kelvin equation for condensation in open pores.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.

  14. The constancy of the contact angle in viscous liquid motions with ...

    Indian Academy of Sciences (India)

    account of symmetry, associate the motion with one between vertical plates spaced a wavelength apart, with the ... bounded by vertical walls, we find that in the classical theory the contact angle is always π/2. This is in fact ..... A similar, perhaps simpler, situation is one where fluid drains out of a tube. Consider a tube or ...

  15. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Verification of aspheric contact lens back surfaces.

    Science.gov (United States)

    Dietze, Holger H; Cox, Michael J; Douthwaite, William A

    2003-08-01

    To suggest a tolerance level for the degree of asphericity of aspheric rigid gas-permeable contact lenses and to find a simple method for its verification. Using existing tolerances for the vertex radius, tolerance limits for eccentricity and p values and were calculated. A keratometer-based method and a method based on sag measurements were used to measure the vertex radius and eccentricity of eight concave progressively aspheric surfaces and six concave ellipsoidal surfaces. The results were compared with a gold standard measurement made using a high-precision mechanical instrument (Form Talysurf). The suggested tolerance for eccentricity and p value and is +/-0.05. The keratometer method was very accurate and precise at measuring the vertex radius (mean deviation +/- SD from Talysurf results, -0.002 +/- 0.008 mm). The keratometer was more precise than and similar in accuracy to the sag method for measurement of asphericity (mean deviation of keratometer method results from Talysurf results, 0.017 +/- 0.018; mean deviation of sag method results from Talysurf results using five semichords, -0.016 +/- 0.032). Neither method was precise enough to verify the asphericity within the suggested tolerance. The keratometer can be efficiently used to verify the back vertex radius within its International Organization for Standardization tolerance and the back surface asphericity within an eccentricity/p value tolerance of +/-0.1. The method is poor for progressive aspheres with large edge blending zones. Deriving the eccentricity from sag measurements is a potential alternative if the mathematical description of the surface is known. The limiting factor of this method is the accuracy and precision of individual sag measurements.

  17. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  18. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.

    Science.gov (United States)

    Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric

    2015-07-14

    The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.

  19. Help from a Hindrance: Using Astigmatism in Round Capillaries To Study Contact Angles and Wetting Layers.

    Science.gov (United States)

    Hobeika, Nelly; Bouriat, Patrick; Touil, Abdelhafid; Broseta, Daniel; Brown, Ross; Dubessy, Jean

    2017-05-30

    Round glass capillaries are a basic tool in soft-matter science, but often are shunned due to the astigmatism they introduce in micrographs. Here, we show how refraction in a capillary can be a help instead of a hindrance to obtain precise and sensitive information on two important interfacial properties: the contact angle of two immiscible fluids and the presence of thin films on the capillary wall. Understanding optical cusps due to refraction allows direct mesurement of the inner diameter of a capillary at the meniscus, which, with the height of the meniscus cap, determines the contact angle. The meniscus can thus be measured without intrusive additives to enhance visibility, such as dyes or calibrated particles, in uniform, curved, or even tapered capillaries or under demanding conditions not accessible by conventional methods, such as small volumes (μL), high temperatures, or high pressures. We further elicit the conditions for strong internal reflection on the inner capillary wall, involving the wall and fluid refractive indices and the wall thickness, and show how to choose the capillary section to detect thin (submicron) layers on the wall, by the contribution of total internal reflection to the cusps. As examples, we report the following: (i) CO 2 -water or -brine contact angles at glass interfaces, measured at temperatures and pressures up to 200 °C and 600 bar, revealing an effect apparently so far unreported-the decrease in the water-wet character of glass, due to dissolved salts in brine, is strongly reduced at high temperatures, where contact angles converge toward the values in pure water; (ii) A tenuous gas hydrate layer growing from the water-guest contact line on glass, invisible in transmission microscopy but prominent in the cusps due to total internal reflection.

  20. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    International Nuclear Information System (INIS)

    Zhang Song; Tan Yi-Dong; Zhang Shu-Lian

    2014-01-01

    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

    Science.gov (United States)

    Arias, S.; Montlaur, A.

    2018-03-01

    In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

  2. Modified Contact Line Dynamics about a Surface-Piercing Hydrofoil

    Science.gov (United States)

    Grivel, Morgane; Jeon, David; Gharib, Morteza

    2016-11-01

    The contact line around a surface-piercing hydrofoil is modified by introducing alternating hydrophobic and hydrophilic bands along one side of the body. These bands are either aligned perpendicular or parallel to the flow direction. The other side of the hydrofoil is un-patterned and retains its original, uniformly hydrophilic properties. The hydrofoil is mounted onto air bearings, such that it can freely move side-to-side in the water tunnel. A force sensor is attached to the setup via a universal joint in order to measure the forces acting on the body for several Reynolds numbers (ranging from 104 to 105) and angles of attack (ranging from -10o to 10o) . Cameras are also used to record the resulting flow structures and free surface elevation. The generation of wave trains and an altered free-surface elevation (also associated with the generation of surface waves) are observed over a wide range flow conditions. Force measurements elucidate how introducing these flow features impacts the forces acting on the hydrofoil, specifically with regards to the generation of lateral forces due to the asymmetric wetting conditions on either side of the hydrofoil. Work is funded by ONR Grant N00014-11-1-0031 and NSF GRFP Grant DGE-1144469.

  3. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  4. Research wetting and Leidenfrost effects on structured surfaces in contact with water

    Science.gov (United States)

    Khaziev, I. A.; Dedov, A. V.; Fedorovich, S. D.

    2017-11-01

    The influence of micro- and nanostructured surfaces on the boiling characteristics is introduced. The working surfaces were obtained by processing the samples with a laser, plasma, electron, or ion beam. Some of the samples were preliminarily coated with nanocarbonic materials. The morphology and the contact angle of wetting during interaction with water were studied for surfaces. A description of the apparatus for investigating the Leidenfrost temperature is introduced.

  5. Experimental investigation of evaporation from low-contact-angle sessile droplets.

    Science.gov (United States)

    Dhavaleswarapu, Hemanth K; Migliaccio, Christopher P; Garimella, Suresh V; Murthy, Jayathi Y

    2010-01-19

    Evaporating sessile drops remain pinned at the contact line during much of the evaporation process, and leave a ring of residue on the surface upon dryout. The intensive mass loss near the contact line causes solute particles to flow to the edge of the droplet and deposit at the contact line. The high vapor diffusion gradient and the low thermal resistance of the film near the contact line are responsible for very efficient mass transfer in this region. Although heat and mass transfer at the contact line have been extensively studied, well-characterized experiments remain scarce. The local mass transport in a 100-400 microm region near the contact line of a water droplet of radius 1810 microm on a glass substrate is experimentally quantified in the present work. Microparticle image velocimetry measurements of the three-dimensional flow field near the contact line are conducted to map the velocity field. Combined with high-resolution transient liquid profile shapes, the measured velocity field yields transient local evaporative mass fluxes near the contact line. The spatial and temporal distribution of the local evaporative flux is also documented. The temperature distribution in the droplet near the contact line is deduced from the local evaporative fluxes and interface mass transport theory.

  6. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  7. Wide steering angle microscanner based on curved surface

    Science.gov (United States)

    Sabry, Yasser; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik

    2013-03-01

    Intensive industrial and academic research is oriented towards the design and fabrication of optical beam steering systems based on MEMS technology. In most of these systems, the scanning is achieved by rotating a flat micromirror around a central axis in which the main challenge is achieving a wide mirror rotation angle. In this work, a novel method of optical beam scanning based on reflection from a curved surface is presented. The scanning occurs when the optical axis of the curved surface is displaced with respect to the optical axis of the incident beam. To overcome the possible deformation of the spot with the scanning angle, the curved surface is designed with a specific aspherical profile. Moreover, the scanning exhibits a more linearized scanning angle-displacement relation than the conventional spherical profile. The presented scanner is fabricated using DRIE technology on an SOI wafer. The curved surface (reflector) is metalized and attached to a comb-drive actuator fabricated in the same lithography step. A single-mode fiber, behaving as a Gaussian beam source, is positioned on the substrate facing the mirror. The reflected optical beam angle and spotsize in the far field is recorded versus the relative shift between the fiber and the curved mirror. The spot size is plotted versus the scanning angle and a scanning spot size uniformity of about +/-10% is obtained for optical deflection angles up to 100 degrees. As the optical beam is propagating parallel to the wafer substrate, a completely integrated laser scanner can be achieved with filters and actuators self-aligned on the same chip that allows low cost and mass production of this important product.

  8. Alternative methods to model frictional contact surfaces using NASTRAN

    Science.gov (United States)

    Hoang, Joseph

    1992-01-01

    Elongated (slotted) holes have been used extensively for the integration of equipment into Spacelab racks. In the past, this type of interface has been modeled assuming that there is not slippage between contact surfaces, or that there is no load transfer in the direction of the slot. Since the contact surfaces are bolted together, the contact friction provides a load path determined by the normal applied force (bolt preload) and the coefficient of friction. Three alternate methods that utilize spring elements, externally applied couples, and stress dependent elements are examined to model the contacted surfaces. Results of these methods are compared with results obtained from methods that use GAP elements and rigid elements.

  9. Shape of red blood cells in contact with artificial surfaces.

    Science.gov (United States)

    Grzhibovskis, Richards; Krämer, Elisabeth; Bernhardt, Ingolf; Kemper, Björn; Zanden, Carl; Repin, Nikolay V; Tkachuk, Bogdan V; Voinova, Marina V

    2017-03-01

    The phenomenon of physical contact between red blood cells and artificial surfaces is considered. A fully three-dimensional mathematical model of a bilayer membrane in contact with an artificial surface is presented. Numerical results for the different geometries and adhesion intensities are found to be in agreement with experimentally observed geometries obtained by means of digital holographic microscopy.

  10. Microbiological Assay Of Ingredients, Contact Surfaces And Stages ...

    African Journals Online (AJOL)

    Sample at various stages and contact surfaces were obtained during akara processing from three locations in Maiduguri metropolis. The locations were Hausari, Mairi and Wulari. Samples of the ingredients and swabs of contact surfaces were taken. Total aerobic plate count, coliform count, taphylococcal count and ...

  11. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    Science.gov (United States)

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  12. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    Science.gov (United States)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures. PMID:26892169

  13. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    DEFF Research Database (Denmark)

    Sun, Ling; Laustsen, Milan; Mandsberg, Nikolaj

    2016-01-01

    -off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic......We discuss the influence of surface structure, namely the height and opening angles of nano-and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll...... to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures....

  14. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning

    Science.gov (United States)

    Raya, J.; Hirschinger, J.

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.

  15. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  17. Asperity interaction in adhesive contact of metallic rough surfaces

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    The analysis of adhesive contact of metallic rough surfaces considering the effect of asperity interaction is the subject of this investigation. The micro-contact model of asperity interactions developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64) is combined with the elastic plastic adhesive contact model developed by Chang et al (1988 Trans. ASME: J. Tribol. 110 50-6) to consider the asperity interaction and elastic-plastic deformation in the presence of surface forces simultaneously. The well-established elastic adhesion index and plasticity index are used to consider the different contact conditions. Results show that asperity interaction influences the load-separation behaviour in elastic-plastic adhesive contact of metallic rough surfaces significantly and, in general, adhesion is reduced due to asperity interactions

  18. On ruled surface in 3-dimensional almost contact metric manifold

    Science.gov (United States)

    Karacan, Murat Kemal; Yuksel, Nural; Ikiz, Hasibe

    In this paper, we study ruled surface in 3-dimensional almost contact metric manifolds by using surface theory defined by Gök [Surfaces theory in contact geometry, PhD thesis (2010)]. We also studied the theory of curves using cross product defined by Camcı. In this study, we obtain the distribution parameters of the ruled surface and then some results and theorems are presented with special cases. Moreover, some relationships among asymptotic curve and striction line of the base curve of the ruled surface have been found.

  19. Solid-solid contacts due to surface roughness and their effects on suspension behaviour.

    Science.gov (United States)

    Davis, Robert H; Zhao, Yu; Galvin, Kevin P; Wilson, Helen J

    2003-05-15

    Solid-solid contacts due to microscopic surface roughness in viscous fluids were examined by observing the translational and rotational behaviours of a suspended sphere falling past a lighter sphere or down an inclined surface. In both cases, a roll-slip behaviour was observed, with the gravitational forces balanced by not only hydrodynamic forces but also normal and tangential solid-solid contact forces. Moreover, the nominal separation between the surfaces due to microscopic surface roughness elements is not constant but instead varies due to multiple roughness scales. By inverting the system, so that the heavy sphere fell away from the lighter sphere or the plane, it was found that the average nominal separation increases with increasing angle of inclination of the plane or the surface of the lighter sphere from horizontal; the larger asperities lift the sphere up from the opposing surface and then gravity at large angles of inclination is too weak to pull the sphere back down to the opposing surface before another large asperity is encountered. The existence of microscopic surface roughness and solid-solid contacts is shown to modify the rheological properties of suspensions. For example, the presence of compressive, but not tensile, contact forces removes the reversibility of sphere-sphere interactions and breaks the symmetry of the particle trajectories. As a result, suspensions of rough spheres exhibit normal stress differences that are absent for smooth spheres. For the conditions studied, surface roughness reduces the effective viscosity of a suspension by limiting the lubrication resistance during near-contact motion, and it also modifies the suspension microstructure and hydrodynamic diffusivity.

  20. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  1. Soil-water contact angle of some soils of the Russian Plane

    Science.gov (United States)

    Bykova, Galina; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2016-04-01

    INTRODUCTION Soil wettability affects the aggregate water resistance, the movement of moisture and dissolved substances, preferential flows, etc. There are many factors affecting the soil's wettability (the content of organic matter (OM), soil's mineralogical composition, particle size distribution), so it can reflect changes in the soil, including results of human impact. The quantitative characteristic of soil wettability is a contact angle (CA), its measurement is a new and difficult problem because of the complexity, heterogeneity and polydispersity of the object of investigation. The aim of this work is to study soil-water CA of some soils of the Russian Plane. MATERIALS AND METHODS The objects of study were sod-podzolic (Umbric Albeluvisols Abruptic, Eutric Podzoluvisols), grey forest non-podzolised (Greyic Phaeozems Albic, Haplic Greyzems), typical Chernozems (Voronic Chernozems pachic, Haplic Chernozems) - profiles under the forest and the arable land, and the chestnut (Haplic Kastanozems Chromic, Haplic Kastanozems) soils. The CA's determination was performed by a Drop Shape Analyzer DSA100 by the static sessile drop method. For all samples was determined the content of total and organic carbon (OC and TC) by dry combustion in oxygen flow. RESULTS AND DISCUSSION There is CA increasing from 85,1° (5 cm) to 40-45° (deeper, than 45 cm) in the sod-podzolic soil; OC content is changed at the same depths from 1,44 to 0.22%. We can see the similar picture in profiles of chernozems. In the forest profile the highest OC content and CA value are achieved on the surface of profile (6,41% and 78,1°), and by 90 cm these values are 1.9% and 50.2°. In the chernozem under the arable land the OC content is almost two times less and the profile is more wettable (from 50° to 19° at 5 and 100 cm). Corresponding with the OC content, the curve describing changes of CA in the profile of grey forest soil is S-shaped with peaks at 20 and 150 cm (81,3° and 70° respectively

  2. Multipoint contact modeling of nanoparticle manipulation on rough surface

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M., E-mail: m.zakeri@tabrizu.ac.ir; Faraji, J.; Kharazmi, M. [University of Tabriz, School of Engineering Emerging Technologies (Iran, Islamic Republic of)

    2016-12-15

    In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.

  3. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics.

    Science.gov (United States)

    Korogiannaki, Myrto; Zhang, Jianfeng; Sheardown, Heather

    2017-10-01

    Discontinuation of contact lens wear as a result of ocular dryness and discomfort is extremely common; as many as 26% of contact lens wearers discontinue use within the first year. While patients are generally satisfied with conventional hydrogel lenses, improving on-eye comfort continues to remain a goal. Surface modification with a biomimetic, ocular friendly hydrophilic layer of a wetting agent is hypothesized to improve the interfacial interactions of the contact lens with the ocular surface. In this work, the synthesis and characterization of poly(2-hydroxyethyl methacrylate) surfaces grafted with a hydrophilic layer of hyaluronic acid are described. The immobilization reaction involved the covalent attachment of thiolated hyaluronic acid (20 kDa) on acrylated poly(2-hydroxyethyl methacrylate) via nucleophile-initiated Michael addition thiol-ene "click" chemistry. The surface chemistry of the modified surfaces was analyzed by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy. The appearance of N (1s) and S (2p) peaks on the low resolution X-ray photoelectron spectroscopy spectra confirmed successful immobilization of hyaluronic acid. Grafting hyaluronic acid to the poly(2-hydroxyethyl methacrylate) surfaces decreased the contact angle, the dehydration rate, and the amount of nonspecific sorption of lysozyme and albumin in comparison to pristine hydrogel materials, suggesting the development of more wettable surfaces with improved water-retentive and antifouling properties, while maintaining optical transparency (>92%). In vitro testing also showed excellent viability of human corneal epithelial cells with the hyaluronic acid-grafted poly(2-hydroxyethyl methacrylate) surfaces. Hence, surface modification with hyaluronic acid via thiol-ene "click" chemistry could be useful in improving contact lens surface properties, potentially alleviating symptoms of contact lens related dryness and discomfort during

  4. Study of the number of occlusal contacts in maximum intercuspation before orthodontic treatment in subjects with Angle Class I and Class II Division 1 malocclusion

    Directory of Open Access Journals (Sweden)

    Gustavo Adolfo Watanabe-Kanno

    2012-02-01

    Full Text Available OBJECTIVE: Define and compare numbers and types of occlusal contacts in maximum intercuspation. METHODS: The study consisted of clinical and photographic analysis of occlusal contacts in maximum intercuspation. Twenty-six Caucasian Brazilian subjects were selected before orthodontic treatment, 20 males and 6 females, with ages ranging between 12 and 18 years. The subjects were diagnosed and grouped as follows: 13 with Angle Class I malocclusion and 13 with Angle Class II Division 1 malocclusion. After analysis, the occlusal contacts were classified according to the established criteria as: tripodism, bipodism, monopodism (respectively, three, two or one contact point with the slope of the fossa; cuspid to a marginal ridge; cuspid to two marginal ridges; cuspid tip to opposite inclined plane; surface to surface; and edge to edge. RESULTS: The mean number of occlusal contacts per subject in Class I malocclusion was 43.38 and for Class II Division 1 malocclusion it was 44.38, this difference was not statistically significant (p>0.05. CONCLUSIONS: There is a variety of factors that influence the number of occlusal contacts between a Class I and a Class II, Division 1 malocclusion. There is no standardization of occlusal contact type according to the studied malocclusions. A proper selection of occlusal contact types such as cuspid to fossa or cuspid to marginal ridge and its location in the teeth should be individually defined according to the demands of each case. The existence of an adequate occlusal contact leads to a correct distribution of forces, promoting periodontal health.

  5. Effect of Salicylic Acid and 5-Sulfosalicylic Acid on UV-Vis Spectroscopic Characteristics, Morphology, and Contact Angles of Spin Coated Polyaniline and Poly(4-aminodiphenylaniline Thin Films

    Directory of Open Access Journals (Sweden)

    A. Sironi

    2015-01-01

    Full Text Available Polyaniline and poly(4-aminodiphenylaniline have been prepared following two different synthetic protocols (a traditional method and a “green” method. Both the polymers have been spin coated with salicylic acid and 5-sulfosalicylic acid as the dopants, in order to obtain them in form of thin films. These materials have been characterized, thereof achieving important information on their water contact angles and surface morphology.

  6. Interferometry of a reflective axicon surface with a small cone angle using an optical inner surface

    Science.gov (United States)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-09-01

    Reflective axicons, widely used in optical alignment and Bessel-Gauss beam generation, require a highly accurate cone angle and surface metrology. However, current methods focus on the cone angle measurement and it is still difficult to measure the surface of a reflective axicon with a small cone angle. An interferometer measurement method using an optical inner surface is proposed to obtain the surface and cone angle simultaneously. The optical axis of the axicon and the optical inner surface should align together and be parallel to the beam light from the interferometer. The interference fringe would be obtained by the optical system consisting of the axicon and the optical inner surface. The theoretical model is established and analyzed through ray tracing theory, and is verified by optical simulation software. Fabrication errors in the axicon and the inner surface, and misalignment of the measurement setup are investigated systematically and separated in the measurement process. In the experiments, the reflective axicon with a cone angle of about 90° was measured by the proposed method, the results of which show good agreement with a stylus profiler (Taylor-Hobson PGI 3D) in cone angle trend and generatrix error. Experimental results prove the feasibility of the proposed method. This economical and effective method can be widely used with all types of reflective axicons, and it can obtain the surface error map of the axicon as well as the inner cylinder at the same time. The uncertainty and resolution of the proposed method is based on the performance of the interferometer. The uncertainty of alignment angle errors is less than 10-10 rad; the lateral resolution is 53.8 µm.

  7. Interferometry of a reflective axicon surface with a small cone angle using an optical inner surface

    International Nuclear Information System (INIS)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-01-01

    Reflective axicons, widely used in optical alignment and Bessel–Gauss beam generation, require a highly accurate cone angle and surface metrology. However, current methods focus on the cone angle measurement and it is still difficult to measure the surface of a reflective axicon with a small cone angle. An interferometer measurement method using an optical inner surface is proposed to obtain the surface and cone angle simultaneously. The optical axis of the axicon and the optical inner surface should align together and be parallel to the beam light from the interferometer. The interference fringe would be obtained by the optical system consisting of the axicon and the optical inner surface. The theoretical model is established and analyzed through ray tracing theory, and is verified by optical simulation software. Fabrication errors in the axicon and the inner surface, and misalignment of the measurement setup are investigated systematically and separated in the measurement process. In the experiments, the reflective axicon with a cone angle of about 90° was measured by the proposed method, the results of which show good agreement with a stylus profiler (Taylor-Hobson PGI 3D) in cone angle trend and generatrix error. Experimental results prove the feasibility of the proposed method. This economical and effective method can be widely used with all types of reflective axicons, and it can obtain the surface error map of the axicon as well as the inner cylinder at the same time. The uncertainty and resolution of the proposed method is based on the performance of the interferometer. The uncertainty of alignment angle errors is less than 10 −10 rad; the lateral resolution is 53.8 µ m. (paper)

  8. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  9. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  10. Effect of siloxane quantity and ph of silane coupling agents and contact angle of resin bonding agent on bond durability of resin cements to machinable ceramic.

    Science.gov (United States)

    Meng, Xiangfeng; Yoshida, Keiichi; Taira, Yohsuke; Kamada, Kohji; Luo, Xiaoping

    2011-02-01

    The aim of this study was to measure siloxane quantity, pH value, and resin wettability on ceramics silanized by five silane coupling agents, and to test the correlation of these parameters of silane coupling agents with bond durability between a machinable glass ceramic and resin cements. 1.5-mm-thick ceramic plates (ProCAD, Ivoclar Vivadent) were polished, cleaned, and bonded with ten combinations of five silane coupling agents (Monobond S [Ivoclar Vivadent], Rely X Ceramic Primer [3M], Clearfil Ceramic Primer [Kuraray], GC Ceramic Primer [GC], Porcelain Liner M [Sun Medical]) and two dual-curing resin cements (VariolinkII [VLII, Ivoclar Vivadent], Linkmax HV [LMHV, GC]). Their microshear bond strength was measured after 0, 10,000, and 30,000 thermal cycles. Siloxane quantity, pH value of silane coupling agents and contact angle of Heliobond (Ivoclar Vivadent) to silanized ceramic were measured using a FTIR spectrophotometer, pH-indicator strips, and a contact-angle meter, respectively. Bond strength data were analyzed by three-way ANOVA. For each cement, Pearson's correlation coefficient was calculated to analyze possible correlation between bond strength under different thermocycling conditions and absorbance peak of siloxane, pH value of silane coupling agents, and contact angle of resin to the silanized ceramic surface. The bond strength of ceramic was significantly influenced by the silane coupling agent and thermal cycles, not by resin cement. For both cements, only a negative correlation was found to be significant between the contact angle of resin to silanized ceramic surfaces and bond strength after 30,000 thermal cycles. The better the wettability of resin on different silanized ceramic surfaces could improve their bond durability.

  11. VASCo: computation and visualization of annotated protein surface contacts

    Directory of Open Access Journals (Sweden)

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  12. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    International Nuclear Information System (INIS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-01-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  13. Contact Angles of Water-repellent Porous Media Inferred by Tensiometer- TDR Probe Measurement Under Controlled Wetting and Drying Cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Komatsu, Ken; Komatsu, Toshiko

    2013-01-01

    The time dependency of water repellency (WR) in hydrophobic porous media plays a crucial role for water infiltration processes after rainfall and for the long-term performance of capillary barrier systems. The contact angle (CA) of hydrophobic media normally decreases with continuous contact...... with water, eventually allowing water imbibition. However, the effect of the reduction in CA with soil-water contact time on the water retention function of hydrophobic media is not yet fully understood. In this study, water retention characteristics were measured using a hanging water column apparatus...... equipped with a mini-time domain reflectometry (TDR) coil probe under controlled wetting and drying in a water-repellent volcanic ash soil (VAS) and in sands coated with different hydrophobic agents. The contact angle (CA–SWRC) under imbibition was evaluated based on the inflection points on the water...

  14. Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipid-based membranes.

    Science.gov (United States)

    Pawlak, Zenon; Petelska, Aneta D; Urbaniak, Wieslaw; Yusuf, Kehinde Q; Oloyede, Adekunle

    2013-04-01

    The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid-base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.

  15. Effective macroscopic adhesive contact behavior induced by small surface roughness

    Science.gov (United States)

    Kesari, Haneesh; Lew, Adrian J.

    2011-12-01

    In this paper we study a model contact problem involving adhesive elastic frictionless contact between rough surfaces. The problem's most notable feature is that it captures the phenomenon of depth-dependent-hysteresis (DDH) (e.g., see Kesari et al., 2010), which refers to the observation of different contact forces during the loading and unloading stages of a contact experiment. We specifically study contact between a rigid axi-symmetric punch and an elastic half-space. The roughness is represented as arbitrary periodic undulations in the punch's radial profile. These undulations induce multiple equilibrium contact regions between the bodies at each indentation-depth. Assuming that the system evolves so as to minimize its potential energy, we show that different equilibrium contact regions are selected during the loading and unloading stages at each indentation-depth, giving rise to DDH. When the period and amplitude of our model's roughness is reduced, we show that the evolution of the contact force and radius with the indentation-depth can be approximated with simpler curves, the effective macroscopic behavior, which we compute. Remarkably, the effective behavior depends solely on the amplitude and period of the model's roughness. The effective behavior is useful for estimating material properties from contact experiments displaying DDH. We show one such example here. Using the effective behavior for a particular roughness model (sinusoidal) we analyze the energy loss during a loading/unloading cycle, finding that roughness can toughen the interface. We also estimate the energy barriers between the different equilibrium contact regions at a fixed indentation-depth, which can be used to assess the importance of ambient energy fluctuations on DDH.

  16. Numerical simulation of directivity for angle probe and surface defect

    International Nuclear Information System (INIS)

    Nam, Young Hyun

    1995-01-01

    An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and i ts sound pressure. This paper studied the directivity of shear waves emitted from angle probes and scattered from surface defects by using visualization method. These experimental results were compared with the theory which was based on the continuous wave. The applicability of continuous wave theory was discussed in terms of the parameter d/λ where d is transducer or defect size and λ is the wavelength. In the case of angle probes, the experimental results show good agreement with theoretical directivity on the principal lobe. When defect size was smaller than the wavelengths, clear directivity in the reflected wave was observed. In the case of the same ratio of defect size to wavelength, the directivity of reflected waves from the defect show almost the same directivity in spite of frequency differences. When the d/λ is greater than 1.5, measured directivities almost agreed with the theoretical one.

  17. Dynamic Contact Angle Analysis of Protein Adsorption on Polysaccharide Multilayer’s Films for Biomaterial Reendothelialization

    Directory of Open Access Journals (Sweden)

    Safiya Benni

    2014-01-01

    Full Text Available Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte’s multilayer (PEM films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE as polycation and dextran sulphate (DS as polyanion. One film was composed with 4 bilayers of (DEAE-DS4 and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS4-DEAE (labeled D+. The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA and atomic force microscopy (AFM. Human endothelial cell (HUVEC adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA. Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS4 films. (DEAE-DS4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.

  18. Stability analysis of rough surfaces in adhesive normal contact

    Science.gov (United States)

    Rey, Valentine; Bleyer, Jeremy

    2018-03-01

    This paper deals with adhesive frictionless normal contact between one elastic flat solid and one stiff solid with rough surface. After computation of the equilibrium solution of the energy minimization principle and respecting the contact constraints, we aim at studying the stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables qualifying the solution as stable or unstable and that gives the instability modes. This method has a low computational cost since no linear system inversion is required and is also suitable for parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.

  19. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses.

    Science.gov (United States)

    Style, Robert W; Boltyanskiy, Rostislav; Che, Yonglu; Wettlaufer, J S; Wilen, Larry A; Dufresne, Eric R

    2013-02-08

    Droplets deform soft substrates near their contact lines. Using confocal microscopy, we measure the deformation of silicone gel substrates due to glycerol and fluorinated-oil droplets for a range of droplet radii and substrate thicknesses. For all droplets, the substrate deformation takes a universal shape close to the contact line that depends on liquid composition, but is independent of droplet size and substrate thickness. This shape is determined by a balance of interfacial tensions at the contact line and provides a novel method for direct determination of the surface stresses of soft substrates. Moreover, we measure the change in contact angle with droplet radius and show that Young's law fails for small droplets when their radii approach an elastocapillary length scale. For larger droplets the macroscopic contact angle is constant, consistent with Young's law.

  20. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems : the Critical Role of Divalent Cations

    NARCIS (Netherlands)

    Haagh, Martinus Everardus Johannes; Sîretanu, Igor; Duits, Michel; Mugele, Friedrich Gunther

    2017-01-01

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting

  1. A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles

    Science.gov (United States)

    Jettestuen, Espen; Helland, Johan O.; Prodanović, Maša.

    2013-08-01

    We present a level set method for simulating capillary-controlled displacements with nonzero contact angles in porous media. The main feature of the method is a level set evolution velocity which is different in the pore space and solid phase. This augments the standard level set equation with an extra term such that, at steady state, the contact angle is enforced in the solid phase, whereas capillary and interfacial forces are balanced in the pore space. We employ the method to simulate quasistatic drainage and imbibition processes for different contact angles in several pore geometries, and to compute capillary pressure and fluid/fluid specific interfacial area curves in each case. We validate the method by comparing stable fluid configurations computed in idealized two-dimensional geometries and three-dimensional (3-D) straight tubes with known analytical solutions. Simulations performed in a subset of a 3-D sandstone image show that the developed method accounts for well-known pore-scale mechanisms such as piston-like invasion, Haines jump, interface coalescence, and retraction, swelling of wetting films and snap-off. The contact angle is formed by an intersection of the fluid/fluid interface and the void/solid boundary. Therefore, the solid matrix surrounding the pore space is discretized with at least an equal number of grid points as the size of the numerical stencil used to approximate the level set derivatives.

  2. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.

    Science.gov (United States)

    Pichot, R; Spyropoulos, F; Norton, I T

    2012-07-01

    The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Electrokinetics of polar liquids in contact with nonpolar surfaces.

    Science.gov (United States)

    Lin, Chih-Hsiu; Ferguson, Gregory S; Chaudhury, Manoj K

    2013-06-25

    Zeta potentials of several polar protic (water, ethylene glycol, and formamide) as well as polar aprotic (dimethyl sulfoxide) liquids were measured in contact with three nonpolar surfaces using closed-cell electroosmosis. The test surfaces were chemisorbed monolayers of alkyl siloxanes, fluoroalkyl siloxanes, and polydimethylsiloxanes (PDMS) grafted on glass slides. All these liquids exhibited substantial electrokinetics in contact with the nonpolar surfaces with these observations: the electrokinetic effect on the fluorocarbon-coated surface is the strongest and on a PDMS grafted surface, the effect is the weakest. Even though these hygroscopic liquids contain small amounts of water, the current models of charging based on the adsorption of hydroxide ions at the interface or the dissociation of pre-existing functionalities (e.g., silanol groups) appear to be insufficient to account for the various facets of the experimental observations. The results illustrate how ubiquitous the phenomenon of electrokinetics is with polar liquids contacting such apparently passive nonpolar surfaces. We hope that these results will inspire further experimental and theoretical studies in this important area of research that has potential practical implications.

  4. Experimental Investigations on Microshock Waves and Contact Surfaces

    Science.gov (United States)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  5. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings.

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-08-07

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr₂N, (CrAl)₂N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr₂N and (CrAl)₂N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  6. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  7. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Directory of Open Access Journals (Sweden)

    Yu-Sen Yang

    2013-08-01

    Full Text Available Various PVD (physical vapor deposition hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN, Cr2N, (CrAl2N and Me-DLC (Si-DLC and Cr-DLC coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA measurements. The as-deposited hcp-AlN, Cr2N and (CrAl2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  8. Exploration on Kerf-angle and Surface Roughness in Abrasive Waterjet Machining using Response Surface Method

    Science.gov (United States)

    Babu, Munuswamy Naresh; Muthukrishnan, Nambi

    2017-05-01

    Abrasive waterjet machining is a mechanical based unconventional cutting process which uses a mixture of abrasives and pressurized water as an intermediate to cut the material. The present paper focuses in analyzing the effect process parameters like feed rate, water pressure, standoff distance and abrasive flow rate on the surface roughness and kerf-angle of AISI 1018 mild steel experimentally. The experiments were performed under Taguchi's L27 orthogonal array. Moreover, the optimal parameter that significantly reduces the surface roughness and kerf-angle were calculated through response surface method. The most dominating process parameter that affects the responses was calculated by the Analysis of variance. In addition, machined surfaces are further subjected to scanning electron microscope (SEM) and atomic force microscope (AFM) for detailed study on the texture developed.

  9. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    Science.gov (United States)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented

  10. Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography.

    Science.gov (United States)

    Baskaran, Mani; Ho, Sue-Wei; Tun, Tin A; How, Alicia C; Perera, Shamira A; Friedman, David S; Aung, Tin

    2013-11-01

    To evaluate the diagnostic performance of the iris-trabecular contact (ITC) index, a measure of the degree of angle-closure, using swept-source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan) in comparison with gonioscopy. Prospective observational study. A total of 108 normal subjects and 32 subjects with angle-closure. The SSOCT 3-dimensional angle scans, which obtain radial scans for the entire circumference of the angle, were performed under dark conditions and analyzed using customized software by a single examiner masked to the subjects' clinical details. The ITC index was calculated as a percentage of the angle that was closed on SSOCT images. First-order agreement coefficient (AC1) statistics and area under the receiver operating characteristic curve (AUC) analyses were performed for angle-closure on the basis of the ITC index in comparison with gonioscopy. Angle-closure on gonioscopy was defined as nonvisibility of posterior trabecular meshwork for at least 2 quadrants. Agreement of the ITC index with gonioscopically defined angle-closure was assessed using the AC1 statistic. Study subjects were predominantly Chinese (95.7%) and female (70.7%), with a mean age of 59.2 (standard deviation, 8.9) years. The median ITC index was 15.24% for gonioscopically open-angle eyes (n = 108) and 48.5% for closed-angle eyes (n = 32) (P = 0.0001). The agreement for angle-closure based on ITC index cutoffs (>35% and ≥50%) and gonioscopic angle-closure was 0.699 and 0.718, respectively. The AUC for angle-closure detection using the ITC index was 0.83 (95% confidence interval, 0.76-0.89), with an ITC index >35% having a sensitivity of 71.9% and specificity of 84.3%. The ITC index is a summary measure of the circumferential extent of angle-closure as imaged with SSOCT. The index had moderate agreement and good diagnostic performance for angle-closure with gonioscopy as the reference standard. Copyright © 2013 American Academy of

  11. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  12. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  13. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    Science.gov (United States)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  14. Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry—Part III: Surface characteristics and bone implant contact formation

    Science.gov (United States)

    Strnad, Jakub; Strnad, Zdeněk; Šesták, Jaroslav; Urban, Karel; Povýšil, Ctibor

    2007-05-01

    This study was carried out to quantify the effect of an alkali-modified surface on the bone implant interface formation during healing using an animal model. A total of 24 screw-shaped, self-tapping, (c.p.) titanium dental implants, divided into test group B—implants with alkali-modified surface (Bio surface) and control group M—implants with turned, machined surface, were inserted without pre-tapping in the tibiae of three beagle dogs. The animals were sacrificed after 2, 5 and 12 weeks and the bone implant contact (BIC%) was evaluated histometrically. The surface characteristics that differed between the implant surfaces, i.e. specific surface area, contact angle, may represent factors that influence the rate of osseointegration and the secondary implant stability. The alkali-treated surface enhances the BIC formation during the first 2 5 weeks of healing compared to the turned, machined surface.

  15. Nucleation at the Contact Line Observed on Nanotextured Surfaces

    Science.gov (United States)

    Kostinski, A. B.; Gurganus, C.; Charnawskas, J. C.; Shaw, R. A.

    2015-12-01

    Surface nucleation, and contact nucleation in particular, are important for many physical processes, including pharmaceutical drug synthesis, metallurgy, and heterogeneous ice nucleation. It has been conjectured that roughness plays a role in surface nucleation, the tendency for freezing to begin preferentially at the liquid-gas interface. Using high speed imaging, we sought evidence for freezing at the contact line on catalyst substrates with imposed characteristic length scales (texture). It is found that nano-scale texture causes a shift in the nucleation of ice in super-cooled water to the three-phase contact line, while micro-scale texture does not. The reduction in the Gibbs barrier for nucleation at the droplet triple line suggests that a line tension, inversely proportional to the surface feature length scale, may be the relevant physical mechanism. A survey of line tension values in literature supports this hypothesis. This work suggests that the physical morphology of a particle, and not just its chemical composition, is important for characterizing a nucleation catalyst.

  16. Morphomechanics of the humero-ulnar joint: I. Joint space width and contact areas as a function of load and flexion angle.

    Science.gov (United States)

    Eckstein, F; Löhe, F; Hillebrand, S; Bergmann, M; Schulte, E; Milz, S; Putz, R

    1995-11-01

    Previous studies have shown that the trochlear notch is deeper than necessary for an exact fit with the humerus. However, humero-ulnar joint space width and contact areas have so far not been quantified for variations in the load and angle of flexion. Six fresh cadaveric specimens were investigated at 30 degrees, 60 degrees, 90 degrees, and 120 degrees of flexion and at loads of 25 and 500 N, simulating resisted elbow extension. The joint space width and contact were determined, using polyether casting material. At 25 N all joints made contact in the ventral and dorsal aspects of the articular surfaces, whereas in the depth of the trochlear notch the joint space was on average between 0.3 and 2.8 mm wide, with some variation between individuals. At 500 N the joint space width was considerably reduced and the contract areas expanded towards the depth of the notch. The size of the dorsal contact areas was significantly smaller at 30 degrees and that of the ventral ones at 120 degrees, their ventro-dorsal ratio decreasing considerably from 30 degrees to 120 degrees (p < 0.01). These results indicate that the size of the contact areas depends to a slight extent on the joint position, but that at all loads and flexion angles a bicentric contact and an important central joint space width emerge because of the concave incongruity of the joint. These data may be used for numerical calculations, analysing the effects of incongruity on the joint stress and on the functional adaptation of the subarticular tissues.

  17. Surface charging, discharging and chemical modification at a sliding contact

    International Nuclear Information System (INIS)

    Singh, S. V.; Kusano, Y.; Morgen, P.; Michelsen, P. K.

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

  18. Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release.

    Science.gov (United States)

    Saini, Seema; Belgacem, Naceur; Mendes, Joana; Elegir, Graziano; Bras, Julien

    2015-08-19

    Contact active surfaces are an innovative tool for developing antibacterial products. Here, the microfibrillated cellulose (MFC) surface was modified with the β-lactam antibiotic benzyl penicillin in aqueous medium to prepare antimicrobial films. Penicillin was grafted on the MFC surface using a suspension of these nanofilaments or directly on films. Films prepared from the penicillin-modified MFC were characterized by Fourier transform infrared spectroscopy, contact angle measurements, elemental analysis, and X-ray photoelectron spectroscopy and tested for antibacterial activity against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Penicillin-grafted MFC films exhibited successful killing effect on Gram-positive bacteria with 3.5-log reduction whereas bacteriostatic efficiency was found in penicillin-grafted MFC suspension. The zone of inhibition test and leaching dynamic assay demonstrated that penicillin was not diffused into the surrounding media, thus proving that the films were indeed contact active. Thus, penicillin can be chemically bound to the modified substrate surface to produce promising nonleaching antimicrobial systems.

  19. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    Science.gov (United States)

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  20. Study on fuel channel behavior following various PT/CT contact angles under late-heatup condition with SBLOCA/LOECC

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Kyung; Moon, Bok Jan; Kim, Seoung Rae [Nuclear Engineering Service and Solution Co, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, a sensitivity study according to PT/CT contact angle is presented when pressure tube experience sagging contact. The loss of coolant from broken loop results in core voiding, and low steam flows in the channel which are caused by ECC water leakage assumed are to add the heat from zircaloy-water reaction. At the low steam flow rates, fuel and pressure tube heat up and the pressure tube may balloon or sag into contact with its calandria tube. LOCA with loss of emergency core cooling injection occurs in CANDU, moderator takes a role of an ultimate heat sink. Decay heat is removed to moderator through PT/CT contact. Therefore, behavior of PT/CT contact must account for LOCA/LOECC. The sensitivity of PT/CT sagging contact angle has been studied. The results of sagging contact angle could explain in different ways. In the case of wide sagging contact angle, the result is quite conservative in the aspect of containment as the heat is well-transferred to moderator. it causes the moderator to heat up. On the other hand, the narrow sagging contact angle results fuel heatup and give limiting condition for fuel integrity. As a result of estimation, a proper application of sagging contact angle is required to provide limiting condition for subsequent analysis.

  1. Full Characterization of CO2-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle.

    Science.gov (United States)

    Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David

    2018-02-20

    Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.

  2. The Effect of Clear Paints, Nanozycofil and Nanozycosil on Water Absorption and Contact Angle of Poplar Wood

    Directory of Open Access Journals (Sweden)

    Hadi Gholamian

    2012-01-01

    Full Text Available In this research, the effect of nano-zycosil, nano-zycofil, acid catalyzed lacquer and nitrocellulose lacquer and polyester on improving the water absorption and contact angle of wood was investigated. Some boards were prepared from the sapwood of poplar (P.nigra. They were dried based  on T6E3 schedule and some specimens were cut according to EN 927-5 standard (20 × 70 × 150 mm.  They were coated and immersed with the nano particles and clear paints.  The clear paint- and nanoparticles-coated samples were dried in laboratory environment and in an oven at the temperatures of 1032°c, respectively. After drying process, the water absorption of the samples was measured after 2, 24, 72, 168 h immersion. The contact angle of samples was measured after 1 and 10 seconds. The results revealed that the pattern of water absorption for the paints and nanoparticles is different. The samples coated with combined acid catalyzed lacquers and nitrocellulose lacquers and those coated with nanozycosil had the highest resistance to water absorption. The greatest contact angle was observed for the samples coated by nanozycosil.

  3. Comparison of the effect of three different irrigants on the contact angle of an epoxy resin sealer with intraradicular dentin

    Directory of Open Access Journals (Sweden)

    Mamta Kaushik

    2015-01-01

    Materials and Methods: Seventy human mandibularfirst premolars were used and 140 longitudinal dentin slices were obtained from them. Each sample was irrigated with of 3% sodium hypochlorite (NaOCl, simulating the irrigation used during the chemomechanical preparation and then washed with 10ml of distilled water (DW. The samples were then divided into seven groups of 20 samples each. Group 1:NaOCl + DW, Group 2: QMix + DW, Group 3: 0.1% octenidine hydrochloride + DW, Group 4:Ethylenediaminetetraacetic acid (EDTA + DW + NaOCl + DW, Group 5: EDTA + DW + QMix + DW, Group 6: EDTA + DW + 0.1% Octenidine Hydrochloride + DW, and Group 7(control: DW. The contact angle between AH Plus and the samples was measured using Rame Hart Goniometer followed by statistical analysis of data. Results: Values of contact angle was least when samples were treated with QMix followed by treatment with 0.1% Octenidine Hydrochloride followed by 3% NaOCl. Removal of smear layer reduced contact angles in all cases except when samples were treated with 3% NaOCl. Results were statistically significant when 3% NaOCl was compared to 0.1% Octenidine Hydrochloride and QMix (P = 0.034. Statistically significant difference was seen before and after removal of smear layer for 3% NaOCl and 0.1% Octenidine Hydrochloride. (P = 0.003. Conclusion: Qmix is the irrigant of choice, but 0.1% octenidine hydrochloride may be recommended as a useful irrigant after further research.

  4. Peripheral iris thickness and association with iridotrabecular contact after laser peripheral iridotomy in patients with primary angle-closure and primary angle-closure glaucoma

    Directory of Open Access Journals (Sweden)

    Mizoguchi T

    2014-03-01

    Full Text Available Takanori Mizoguchi,1 Mineo Ozaki,2,3 Harumi Wakiyama,1,4 Nobuchika Ogino1,5 1Mizoguchi Eye Clinic, Sasebo, Japan; 2Ozaki Eye Clinic, Miyazaki, Japan; 3Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; 4Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan; 5Nishigaki Eye Clinic, Nagoya, Japan Purpose: To investigate the relation between the quantitative iris parameters and iridotrabecular contact (ITC in patients with primary angle-closure (PAC and PAC glaucoma (PACG. Materials and methods: PAC and PACG with laser peripheral iridotomy were recruited prospectively. Anterior-segment optical coherence tomography (ASOCT was performed under light and dark conditions, and scans were taken along the vertical and horizontal axes. Iris thickness at 500 µm (IT500 and 750 µm (IT750 from the scleral spur, maximal iris thickness (MIT, and cross sections of the iris area (I-Area were measured by using software. ITC was defined by the ASOCT as the contact between the peripheral iris and angle wall anterior to the scleral spur. The ITC+ and ITC- groups were defined as eyes that had ITC in two or more quadrants and in no or one quadrant, respectively. Results: A total of 79 eyes of 60 patients (consisting of 48 PAC and 31 PACG were recruited. The prevalence of superior, inferior, temporal, and nasal ITC was 44 eyes (55.7%, 48 eyes (60.8%, 18 eyes (22.8%, and 16 eyes (20.2%, respectively. These iris parameters of the inferior quadrant, which had the highest prevalence of all the quadrants, were used for the analysis. After adjusting for age, sex, pupil size, and central anterior chamber depth, mean values of IT500 and IT750 were significantly greater in the ITC+ group than the ITC- group (P<0.05. Multivariate-adjusted odds ratios of parameters for the ITC+ group compared with the ITC- group were: IT500, 1.9 (P=0.029; IT750, 2.0 (P=0.011, MIT, 1.4 (P=0.244, and I-Area, 0.97 (P=0.406, respectively, per 0.1-unit

  5. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  6. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  7. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    Science.gov (United States)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  8. The Effects of Approach Angle and Rake Angle Due to Chatter Vibrations on Surface Roughness in Turning

    OpenAIRE

    NEŞELİ, Süleyman; YALDIZ, Süleyman

    2007-01-01

    In this study, the effect of the chatter vibrations depend on tool geometry on surface roughness in turning has been investigated. Machining process in universal lathe is carried out on AISI 1040 steel in dry cutting condition using various approaching/entering angles (60°, 75°, 90°) and rake angles (-3°,-6°,-9°) at depth of cut of 0.5 mm. During cutting processes, tool nose radius and tool overhang (tool noise of kept point distance) and cutting speed, feed rate and spindle speed as cutting ...

  9. Estimation of Upper Limb Joint Angle Using Surface EMG Signal

    Directory of Open Access Journals (Sweden)

    Yee Mon Aung

    2013-10-01

    Full Text Available In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be extracted via estimation of joint torque, force or angle. Therefore, this estimation becomes one of the most important factors to achieve accurate user intended motion. In this paper, an upper limb joint angle estimation methodology is proposed. A back propagation neural network (BPNN is developed to estimate the shoulder and elbow joint angles from the recorded EMG signals. A Virtual Human Model (VHM is also developed and integrated with BPNN to perform the simulation of the estimated angle. The relationships between sEMG signals and upper limb movements are observed in this paper. The effectiveness of our developments is evaluated with four healthy subjects and a VHM simulation. The results show that the methodology can be used in the estimation of joint angles based on EMG.

  10. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2015-03-01

    Full Text Available Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF is first extended to the thermal infrared (TIR domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  11. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  12. Contact studies of weak adhesive interactions in water with membrane enhanced surface acoustic wave analysis

    Science.gov (United States)

    Brass, David Alan

    The measurement of weak adhesive energies has previously been difficult to obtain. To measure these energies, I designed a technique that uses the combined sensitivities of both a quartz crystal resonator and the inflation of an elastomeric polymer membrane. The surfaces of the quartz crystal and/or the membrane are modified with water swollen polymer brushes, which are used to eliminate nonspecific adhesion. These brushes are then end-modified with adhesive functional groups. An analysis is developed for the frequency response of a quartz crystal resonator as the membrane layer is placed in contact with the surface of these swollen brushes. The shear wave generated at the resonator surface couples into the membrane layer with an efficiency that is strongly dependent on the thickness of the swollen brush layer. The calculated shift decreases substantially for increases in the brush thickness of ten to twenty nanometers, giving a net frequency response that is extremely sensitive to the degree of swelling of the brush. An optimum capping layer thickness is determined by balancing the resonant frequency shift against dissipative effects that weaken the crystal resonance. Detailed calculations are presented for the specific case of poly(ethylene glycol) (PEG) brushes swollen by water and capped by a poly(styrene-ethylene/butene-styrene) (SEBS) elastomeric, water-permeable membrane. These calculations show that the method is sensitive to the properties of the brush layer. This surface acoustic wave technique was coupled with an inflation method that enabled quantification of the adhesion between the membrane and the brush coated surface. This adhesive interaction is obtained from the contact angle made between the quartz and membrane surfaces and the tension on the membrane. An analysis of the membrane profile based on the numerical solution of the axisymmetric Laplace equation is developed and used to investigate both adhesive and non-adhesive situations with both an

  13. Small angle neutron scattering in surface-active agents mixtures

    Science.gov (United States)

    Bulavin, L. A.; Garamus, V. M.; Ostanevich, Yu. M.

    The method of study of micelle structure by small angle neutron scattering is studied. The determination of maximum size, radius of gyration, average scattering density of micelles is presented. The way of study of distribution of scattering density in micelle is described. The problem of micelles interaction is discussed.

  14. Swept source optical coherence tomography measurement of the iris-trabecular contact (ITC) index: a new parameter for angle closure.

    Science.gov (United States)

    Ho, Sue-Wei; Baskaran, Mani; Zheng, Ce; Tun, Tin A; Perera, Shamira A; Narayanaswamy, Arun K; Friedman, David S; Aung, Tin

    2013-04-01

    To evaluate the inter- and intra-observer agreement of measurement of the iris-trabecular contact (ITC) index, a measure of the degree of angle closure, using swept source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan). One randomly selected eye of 60 subjects was imaged under dark room conditions. The SSOCT 3-dimensional angle scan simultaneously obtains 128 radial scans of the anterior chamber for the entire circumference of the angle. Post-imaging analysis estimated the ITC index using in-built software. For intra-observer agreement for image grading, one examiner performed the grading twice in a masked fashion and random order after a 1-week interval. A second examiner graded images to assess inter-observer agreement for image grading. For intra-observer agreement for image acquisition, a single operator imaged patients twice. For inter-observer agreement for image acquisition, a single observer graded two sets of images acquired by two different operators on the same patient. Bland-Altman plots and 95 % limits of agreement (LOA) were reported. Study subjects were predominantly Chinese (54/60, 90 %) and female (42/60, 70 %), with a mean age of 65.5 years. The median ITC index for eyes with open angles (31/60) and closed angles was 20 % (95 % confidence interval [CI] - 13.6, 27.8) and 49 % (95%CI - 35.5, 69.2) respectively. The mean difference (95 % LOA) for intra-observer agreement for image grading and image acquisition were -0.8 % (-8.2, 6.5) and 0.6 % (-10.9, 9.7); corresponding inter- observer agreement were 0.1 % (-10, 10.1) and -0.3 % (-11.1, 10.5) respectively. The inter- and intra-observer agreement of the ITC index, as a measure of extent of angle closure using SSOCT, was good.

  15. Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling.

    Science.gov (United States)

    Jaikumar, Arvind; Kandlikar, Satish G

    2017-11-16

    We demonstrate that the contact line (CL) motion on energetically heterogeneous solid surfaces occurs in a coupled fashion as against the traditional staggered stick-slip motion. Introducing chemical inhomogeneities at nanoscale induces a local change in dynamic contact angles which manifests as a smooth and continuous motion of the CL. Nanoscale chemically inhomogeneous surfaces comprising of gold, palladium and nickel were generated on copper substrates to demonstrate the underlying CL dynamics. The spatial variations of chemical constituents were mapped using elemental display scanning electron microscope images. Further, the coupled and stick-slip motion was confirmed for a sliding water droplet on these surfaces, and then used in studying the pool boiling bubble dynamics of a single bubble from nucleation to departure. The coupled motion was seen to increase the CL velocity thereby increasing the contribution from transient conduction heat transfer. Consequently, a ~2X increase in the boiling critical heat flux (CHF) was observed. Enhancing the pool boiling performance by introducing nanoscale surface features is an attractive approach in many applications and this work provides a framework and understanding of the CL motion induced through the chemical inhomogeneity effects.

  16. Impact of Cosmetics on the Surface Properties of Silicone Hydrogel Contact Lenses.

    Science.gov (United States)

    Srinivasan, Sruthi; Otchere, Heinz; Yu, Mili; Yang, Jeffery; Luensmann, Doerte; Jones, Lyndon

    2015-07-01

    This study evaluated the impact of various cosmetics on the surface properties of silicone hydrogel (SiHy) contact lens materials. In this in vitro experiment, 7 SiHy contact lens materials were coated with 1 of 9 cosmetics, including common hand creams (3), eye makeup removers (3), and mascaras (3). Dark-field microscopy images were taken to determine pixel brightness (PB) after cosmetic exposure, which describes the visible surface deposition (n=6 for each lens type), with a higher PB indicating increased deposition. The sessile drop technique was used to determine the advancing contact angle (CA). Measurements were repeated for both methods after a single peroxide-based cleaning cycle. Pixel brightness was significantly higher for mascara-coated lenses compared with the other cosmetic products (P0.05). Hand creams and makeup remover had minimal impact on PB. Changes in CA measurements after cosmetic application were highly lens dependent. Hand creams caused primarily a decrease in CA for 5 of the 7 lens types, whereas 1 of the waterproof mascaras caused a significant increase of 30 to 50° for 3 lens types. Some mascara-lens combinations resulted in increased CA and PB, which could have an impact on in vivo lens performance. Nonwaterproof mascara was mostly removed after a cleaning cycle. Further research is needed to understand the clinical implications for SiHy lens wearers using cosmetics.

  17. Contact angle measurement - a reliable supportive method for screening water-resistance of ultraviolet-protecting products in vivo.

    Science.gov (United States)

    Hagens, R; Mann, T; Schreiner, V; Barlag, H G; Wenck, H; Wittern, K-P; Mei, W

    2007-08-01

    Substantivity of sunscreen formulations is affected by the wash-out rate of ultraviolet-absorber and -reflector compounds in water. Water-resistance of sunscreen formulations is currently determined according to a standardized European Cosmetic Toiletry and Perfumery Association (COLIPA) protocol, encompassing the determination of a minimal erythemal dose before and after a defined immersion step in water. It can be supposed that the higher the wettability of a treated skin area, the higher is the wash-out rate of sunscreen compounds. This present report addresses the validity of determining the wettability of treated skin alone as a measure for the water-resistance of sunscreen products. The report addresses the robustness, accuracy and congruence of a recently developed wettability test, based on the measurement of the contact angle (CA) of a sessile water drop on treated skin areas. Contact angle data of 66 sunscreen formulations are compared with the corresponding results of 81 water-resistance tests, using the sun protection factor (SPF)/immersion/SPF method. Sunscreen products tested by the CA method were applied to the skin of the volar forearm of test subjects at a defined dose and drying-time, using a standardized application and recording device. Contact angles between a sessile water drop and skin were recorded by a Charge-Coupled Device (CCD) camera and subjected to automatic contour analysis. Taking the SPF/immersion/SPF method as gold standard, accuracy parameters of the CA method were determined. By using an appropriate cut-off level of CAs, the CA method has a specificity and positive-predictive value of 100%, and turns out to be a reliable screening method to identify water-resistant formulations. Based on our findings, those formulations that give CAs above 30 degrees may be categorized water-proof without further testing by the COLIPA water-resistance method.

  18. Fractal Features and Surface Micromorphology of Unworn Surfaces of Rigid Gas Permeable Contact Lenses.

    Science.gov (United States)

    Ţălu, Ştefan; Bramowicz, Miroslaw; Kulesza, Slawomir; Fiorillo, Ilenia; Giovanzana, Stefano

    2017-08-01

    The aim of this exploratory study was to investigate the micromorphology of surfaces of rigid gas permeable (RGP) contact lenses (CLs) using atomic force microscopy (AFM) followed by fractal analysis. In order to characterize in a quantitative manner the micromorphology of surfaces of new and unworn RGP CLs made of twelve different materials, AFM was taken and then analyzed using fractal methods. Surface topography was sampled in an intermittent-contact mode in air, on square areas of 5 × 5 µm 2 (MultiMode with Nanoscope V (Bruker). Spatial characteristics of 3-D surface texture were obtained using parameters defined in ISO 25178-2: 2012 norm. The surface texture turned out to have complex 3-D nanoscale geometry. For quantitative characterization of the properties of surface geometry at nanometer level of CL on the global scale, a series of fractal parameters was used. Statistical and fractal parameters of 3-D surfaces can be used by manufacturers to assess the micromorphology of CLs in order to improve their 3-D surface texture characteristics. These parameters can also be used in an elastic-plastic finite element model with contact elements to simulate the friction, wear and micro-elastohydrodynamic lubrication at a nanometer scale between the CL with the corneal surface.

  19. Scleral Buckling Using a Non-contact Wide-Angle Viewing System with a 25-Gauge Chandelier Endoilluminator.

    Science.gov (United States)

    Jo, Jaehyuck; Moon, Byung Gil; Lee, Joo Yong

    2017-12-01

    To report the outcome of scleral buckling using a non-contact wide-angle viewing system with a 25-gauge chandelier endoilluminator. Retrospective analyses of medical records were performed for 17 eyes of 16 patients with primary rhegmatogenous retinal detachment (RRD) without proliferative vitreoretinopathy who had undergone conventional scleral buckling with cryoretinopexy using the combination of a non-contact wide-angle viewing system and chandelier endoillumination. The patients were eight males and five females with a mean age of 26.8 ± 10.2 (range, 11 to 47) years. The mean follow-up period was 7.3 ± 3.1 months. Baseline best-corrected visual acuity was 0.23 ± 0.28 logarithm of the minimum angle of resolution units. Best-corrected visual acuity at the final visit showed improvement (0.20 ± 0.25 logarithm of the minimum angle of resolution units), but the improvement was not statistically significant (p = 0.722). As a surgery-related complication, there was vitreous loss at the end of surgery in one eye. As a postoperative complication, increased intraocular pressure (four cases) and herpes simplex epithelial keratitis (one case) were controlled postoperatively with eye drops. One case of persistent RRD after primary surgery needed additional vitrectomy, and the retina was postoperatively attached. Scleral buckling with chandelier illumination as a surgical technique for RRD has the advantages of relieving the surgeon's neck pain from prolonged use of the indirect ophthalmoscope and sharing the surgical procedure with another surgical team member. In addition, fine retinal breaks that are hard to identify using an indirect ophthalmoscope can be easily found under the microscope by direct endoillumination. © 2017 The Korean Ophthalmological Society

  20. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  1. Bioinspired Surface Treatments for Improved Decontamination: Icephobic Surfaces

    Science.gov (United States)

    2017-06-26

    superhydrophobic water contact angles (>150°) that were previously reported. Heptane wetted all surfaces, producing contact angles below the measurable threshold...5 TABLES Table 1 — Contact angles ...fluorosilane to produce both texture and hydrophobic properties. [1, 2] The coating technology is reported to produce a water contact angle of greater than

  2. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  3. Low Angle Contact Between the Oaxaca and Juárez Terranes Deduced From Magnetotelluric Data

    Science.gov (United States)

    Arzate-Flores, Jorge A.; Molina-Garza, Roberto; Corbo-Camargo, Fernando; Márquez-Ramírez, Víctor

    2016-10-01

    We present the electrical resistivity model along a profile perpendicular to the Middle America trench in southern Mexico that reveals previously unrecognized tectonic features at upper to mid-crustal depths. Our results support the hypotheses that the upper crust of the Oaxaca terrane is a residual ~20 km thick crust composed by an ~10 km thick faulted crustal upper layer and an ~10 km thick hydrated and/or mineralized layer. Oaxaca basement overthrust the younger Juárez (or Cuicateco) terrane. The electrical resistivity model supports the interpretation of a slab subducting at a low angle below Oaxaca. Uplift in the Oaxaca region appears to be related to fault reactivation induced by low angle subduction. In the Juárez terrane, isostatic forces may contribute to uplift because it is largely uncompensated. In the Sierra Madre del Sur, closer to the coast, uplift is facilitated by slab-dehydration driven buoyancy. Both gravity and resistivity models are consistent with a thinned upper crust in the northeast end of the profile.

  4. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups

    OpenAIRE

    Crisp, John; Wiest, Bert

    2003-01-01

    We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic -1 surface group (given by the relation x^2y^2=z^2) nev...

  5. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    Science.gov (United States)

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions.

  6. The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water

    International Nuclear Information System (INIS)

    Bargir, Sameer; Dunn, Steve; Jefferson, Bruce; Macadam, Jitka; Parsons, Simon

    2009-01-01

    We have studied a series of solids using contact angle measurements; stainless steel, gold, aluminium, titanium nitride and PTFE that are frequently used in domestic water environments. It was found the influence of electron-donor (γ - ) and electron-acceptor (γ + ) free energies on material scaling rate was dominated by water wetting angles, providing materials exhibit an average roughness below 100 nm. The γ - component had the greatest influence on theoretical adhesion, while γ LW , (Lifshitz-van der Waals) γ + and γ AB (acid-base) had little effect. From the materials analysed, amorphous carbon coatings were least adhesive, while 'kettle coating' and highly roughened steel the most adhesive. The size and distribution of asperities also influenced the polar free energies and subsequent adhesion due to fluctuations in the wetting angle. The results obtained indicate works of adhesion can be used as a complementary technique with Lewis acid-base theory to deliver useful information about the propensity of scale to deposit on solids.

  7. Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk

    2015-01-01

    In this work angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. The simulation and experimental measurement data show the same trend. Experimentally a total reflectance below 1% for incident angles below 30o and specular...

  8. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  9. Microbiological Analysis of Food Contact Surfaces in Child Care Centers ▿

    OpenAIRE

    Cosby, Catherine M.; Costello, C. A.; Morris, W. C.; Haughton, B.; Devereaux, M. J.; Harte, F.; Davidson, P. M.

    2008-01-01

    A study of six child care centers was conducted to assess the microbiological quality of three food contact surfaces (one food serving surface and two food preparation surfaces) and one non-food contact surface (diaper changing surface) to determine the effectiveness of cleaning and sanitization procedures within the facilities. Aerobic plate counts (APCs) and Escherichia coli/coliform counts of 50-cm2 areas on all surfaces were determined using standard microbiological swabbing methods. Samp...

  10. Surface roughness effects on plasma near a divertor plate and local impact angle

    Directory of Open Access Journals (Sweden)

    Wanpeng Hu

    2017-08-01

    Full Text Available The impact of rough surface topography on the electric potential and electric field is generally neglected due to the small scale of surface roughness compared to the width of the plasma sheath. However, the distributions of the electric potential and field on rough surfaces are expected to influence the characteristics of edge plasma and the local impact angle. The distributions of plasma sheath and local impact angle on rough surfaces are investigated by a two dimension-in-space and three dimension-in-velocity (2d3v Particle-In-Cell (PIC code. The influences of the plasma temperature andsurface morphology on the plasma sheath, local impact angle and resulting physical sputtering yield on rough surfaces are investigated.

  11. Pool boiling from downward-facing curved surfaces: Effects of radius of curvature and edge angle

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Gao, C.

    1996-01-01

    Transient pool boiling from downward-facing curved surfaces in water is of interest for assessing the coolability of the lower head of an advanced light water reactor (ALWR) pressure vessel following a core meltdown accident. Here, quenching experiments were performed to investigate the effects of radius of curvature and edge angle on pool boiling from downwards-facing surfaces in saturated power. The experiments employed two, 20-mm-thick copper test sections that had the same diameter (75 mm) but different surface radii (148 and 218.5 mm) and vapor release (or edge) angles (14.68 and 9.88 deg). The effect of surface area on pool boiling was determined by comparing the present results with the results for a copper section that was of the same thickness but had a surface radius of 148 mm and was less than one-half the surface area. The maximum heat flux (q MHF ) was highest at the lowermost position and decreased with increased local inclination on the surface. Both local and surface average q MHF were representative of quasi-steady-state critical heat flux. The high edge angle reduced vapor accumulation, which enhanced surface coolability and shortened its quenching time. For an edge angle of 9.88 deg, increasing the surface area (or surface radius) insignificantly affected the local q MHF near the edge of the copper section but lowered it everywhere else by ∼10%. For the same surface area, the larger edge angle (or smaller surface radius) increased q MHF by as much as 40%

  12. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  13. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  14. General contact mechanics theory for randomly rough surfaces with application to rubber friction

    OpenAIRE

    Scaraggi, Michele; Persson, Bo N. J.

    2015-01-01

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic or viscoelastic, and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interfacial separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for a rubber block sliding on a road surface....

  15. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1993-05-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  16. Effect of Shot Peening in Different Shot Distance and Shot Angle on Surface Morphology, Surface Roughness and Surface Hardness of 316L Biomaterial

    Science.gov (United States)

    Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri

    2018-01-01

    Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.

  17. Relationship between iris surface features and angle width in Asian eyes.

    Science.gov (United States)

    Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu

    2014-10-23

    To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  18. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate?

    Directory of Open Access Journals (Sweden)

    Paternot Goedele

    2012-09-01

    Full Text Available Abstract Background Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. Methods Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. Results In total, 115 (24% transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80% and high negative predicting value (83% but with a low positive predictive value (27%, a low specificity (31% and low area under the ROC curve (0.56. The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003. Conclusions Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.

  19. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

    Directory of Open Access Journals (Sweden)

    W.J.vdM. Steyn

    2015-03-01

    Full Text Available Tire rolling resistance has a major impact on vehicle fuel consumption. Rolling resistance is the loss of energy due to the interaction between the tire and the pavement surface. This interaction is a complicated combination of stresses and strains which depend on both tire and pavement related factors. These include vehicle speed, vehicle weight, tire material and type, road camber, tire inflation pressure, pavement surfacing texture etc. In this paper the relationship between pavement surface texture depth and tire/surfacing contact stress and area is investigated. Texture depth and tire/surfacing contact stress were measured for a range of tire inflation pressures on five different pavement surfaces. In the analysis the relationship between texture and the generated contact stresses as well as the contact stress between the surfacing and base layer are presented and discussed, and the anticipated effect of these relationships on the rolling resistance of vehicles on the surfacings, and subsequent vehicle fuel economy discussed.

  20. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  1. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  2. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  3. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  4. Effects of surface material, ventilation, and human behavior on indirect contact transmission risk of respiratory infection.

    Science.gov (United States)

    Sze-To, Gin Nam; Yang, Yang; Kwan, Joseph K C; Yu, Samuel C T; Chao, Christopher Y H

    2014-05-01

    Infectious particles can be deposited on surfaces. Susceptible persons who contacted these contaminated surfaces may transfer the pathogens to their mucous membranes via hands, leading to a risk of respiratory infection. The exposure and infection risk contributed by this transmission route depend on indoor surface material, ventilation, and human behavior. In this study, quantitative infection risk assessments were used to compare the significances of these factors. The risks of three pathogens, influenza A virus, respiratory syncytial virus (RSV), and rhinovirus, in an aircraft cabin and in a hospital ward were assessed. Results showed that reducing the contact rate is relatively more effective than increasing the ventilation rate to lower the infection risk. Nonfabric surface materials were found to be much more favorable in the indirect contact transmission for RSV and rhinovirus than fabric surface materials. In the cases considered in this study, halving the ventilation rate and doubling the hand contact rate to surfaces and the hand contact rate to mucous membranes would increase the risk by 3.7-16.2%, 34.4-94.2%, and 24.1-117.7%, respectively. Contacting contaminated nonfabric surfaces may pose an indirect contact risk up to three orders of magnitude higher than that of contacting contaminated fabric surfaces. These findings provide more consideration for infection control and building environmental design. © 2013 Society for Risk Analysis.

  5. Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; Hooymans, Johanna M. M.; van der Mei, Henny C.

    2011-01-01

    Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis

  6. Effet de la rugosité de surface sur les performances du contact ...

    African Journals Online (AJOL)

    Effet de la rugosité de surface sur les performances du contact segment- chemise dans un moteur à combustion interne. The effect of surface roughness on the performances of liner-piston ring contact in internal combustion engine. Amar Ayad. *. , Amar Skendraoui & Ammar Haiahem. Laboratoire de Mécanique Industrielle ...

  7. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  8. Finite element based contact analysis of radio frequency MEMs switch membrane surfaces

    Science.gov (United States)

    Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen

    2017-10-01

    Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.

  9. Microbial contamination of contact surfaces at eating houses in ...

    African Journals Online (AJOL)

    A study of five highly patronized eating houses in a university community was conducted to assess the microbiological quality of some food contact and ... The predominant bacterial contaminants were isolated, characterized and identified as E. coli, S. aureus, Pseudomonas aeruginosa, Proteus spp., Salmonella spp. and ...

  10. Theoretical research of some parameters of contact area of wheel cutting surface and workpiece at flat face grinding with preliminary inclination of spindle axis

    OpenAIRE

    I. N. Pyzhov; V. G. Klimenko

    2016-01-01

    Theoretical researches that have made it possible to obtain the analytical dependences connecting the parameters of contact area of wheel cutting surface such as length, width, arc length, form deviation of flat surface and workpiece under conditions of flat face grinding with preliminary inclination of spindle axis have been carried out. The paper shows the role of the angle of preliminary inclination of spindle axis, grinding depth and the wheel diameter in the grinding process. It allows c...

  11. A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

    Directory of Open Access Journals (Sweden)

    Diptasree Maitra Ghosh

    Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.

  12. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    Science.gov (United States)

    Kaplan, A. F. H.

    2012-10-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO2-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  13. Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting

    International Nuclear Information System (INIS)

    Lorenz, B; Persson, B N J; Krick, B A; Sawyer, W G; Rodriguez, N; Mangiagalli, P

    2013-01-01

    We present experimental data for the static or breakloose friction for lubricated elastomer contacts, as a function of the time of stationary contact. Due to fluid squeeze-out from the asperity contact regions, the breakloose friction force increases continuously with the time of stationary contact. We consider three different cases: (a) PDMS rubber balls against flat smooth glass surfaces, (b) PDMS cylinder ribs against different substrates (glass, smooth and rough PMMA and an inert polymer) and (c) application to syringes. Due to differences in the surface roughness and contact pressures the three systems exhibit very different time dependences of the breakloose friction. In case (a) for rough surfaces the dry contact area A is a small fraction of the nominal contact area A 0 , and the fluid squeeze-out is fast. In case (b) the dry contact area is close to the nominal contact area, A/A 0 ≈ 1, and fluid squeeze-out is very slow due to percolation of the contact area. In this case, remarkably, different fluids with very different viscosities, ranging from 0.005 Pa s (water–glycerol mixture) to 1.48 Pa s (glycerol), give very similar breakloose friction forces as a function of the time of stationary contact. In case (c) the contact pressure and the surface roughness are larger than in case (b), and the squeeze-out is very slow so that even after a very long time the area of real contact is below the percolation threshold. For all cases (a)–(c), the increase in the breakloose friction is mainly due to the increase in the area of real contact with increasing time, because of the fluid squeeze-out and dewetting. (paper)

  14. Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting.

    Science.gov (United States)

    Lorenz, B; Krick, B A; Rodriguez, N; Sawyer, W G; Mangiagalli, P; Persson, B N J

    2013-11-06

    We present experimental data for the static or breakloose friction for lubricated elastomer contacts, as a function of the time of stationary contact. Due to fluid squeeze-out from the asperity contact regions, the breakloose friction force increases continuously with the time of stationary contact. We consider three different cases: (a) PDMS rubber balls against flat smooth glass surfaces, (b) PDMS cylinder ribs against different substrates (glass, smooth and rough PMMA and an inert polymer) and (c) application to syringes. Due to differences in the surface roughness and contact pressures the three systems exhibit very different time dependences of the breakloose friction. In case (a) for rough surfaces the dry contact area A is a small fraction of the nominal contact area A0, and the fluid squeeze-out is fast. In case (b) the dry contact area is close to the nominal contact area, A/A0 ≈ 1, and fluid squeeze-out is very slow due to percolation of the contact area. In this case, remarkably, different fluids with very different viscosities, ranging from 0.005 Pa s (water–glycerol mixture) to 1.48 Pa s (glycerol), give very similar breakloose friction forces as a function of the time of stationary contact. In case (c) the contact pressure and the surface roughness are larger than in case (b), and the squeeze-out is very slow so that even after a very long time the area of real contact is below the percolation threshold. For all cases (a)–(c), the increase in the breakloose friction is mainly due to the increase in the area of real contact with increasing time, because of the fluid squeeze-out and dewetting.

  15. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  16. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  17. Electrokinetics of Polar Liquids in Contact with Non-Polar Surfaces

    OpenAIRE

    Lin, Chih-Hsiu; Ferguson, Gregory S.; Chaudhury, Manoj K.

    2014-01-01

    Zeta potentials of several polar protic (water, ethylene glycol, formamide) as well as polar aprotic (dimethyl sulfoxide) liquids were measured in contact with three non-polar surfaces using closed-cell electro-osmosis. The test surfaces were chemisorbed monolayers of alkyl siloxanes, fluoroalkyl siloxanes and polydimethylsiloxanes (PDMS) grafted on glass slides. All these liquids exhibited substantial electrokinetics in contact with the non-polar surfaces with these observations: the electro...

  18. Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Soyoun Son

    2016-02-01

    Full Text Available In porous media, pore geometry and wettability are determinant factors for capillary flow in drainage or imbibition. Pores are often considered as cylindrical tubes in analytical or computational studies. Such simplification prevents the capture of phenomena occurring in pore corners. Considering the corners of pores is crucial to realistically study capillary flow and to accurately estimate liquid distribution, degree of saturation and dynamic liquid behavior in pores and in porous media. In this study, capillary flow in polygonal tubes is studied with the Shan-Chen pseudopotential multiphase lattice Boltzmann model (LBM. The LB model is first validated through a contact angle test and a capillary intrusion test. Then capillary rise in square and triangular tubes is simulated and the pore meniscus height is investigated as a function of contact angle θ. Also, the occurrence of fluid in the tube corners, referred to as corner arc menisci, is studied in terms of curvature versus degree of saturation. In polygonal capillary tubes, the number of sides leads to a critical contact angle θc which is known as a key parameter for the existence of the two configurations. LBM succeeds in simulating the formation of a pore meniscus at θ > θc or the occurrence of corner arc menisci at θ < θc. The curvature of corner arc menisci is known to decrease with increasing saturation and decreasing contact angle as described by the Mayer and Stoewe-Princen (MS-P theory. We obtain simulation results that are in good qualitative and quantitative agreement with the analytical solutions in terms of height of pore meniscus versus contact angle and curvature of corner arc menisci versus saturation degree. LBM is a suitable and promising tool for a better understanding of the complicated phenomena of multiphase flow in porous media.

  19. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Science.gov (United States)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  20. Microbial contaminants on some fish contact surfaces in Sokoto ...

    African Journals Online (AJOL)

    Sokoto central market and two privately owned fish cold room and distribution outlets were visited between August and September, 2005 to collect surface swabs. The sampled surfaces included a concrete table and two basins from the market, weighing pans, floor and walls of cold rooms from the two distribution outlets.

  1. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  2. A new optical method for measuring surface temperature at large incident probe angles

    Science.gov (United States)

    Lee, A. S.; Norris, P. M.

    1997-02-01

    A novel thermoreflectance technique has been developed for noncontact temperature measurements using laser light incident at large angles on solid materials and devices. The method involves measuring the differential reflectance from a polarization modulated laser beam. The polarization differential reflectance technique is demonstrated on single-crystal Si wafers and on a polycrystalline carbon thin film over a temperature range of 20-60 °C. The method is shown to be an extremely sensitive temperature probe for near grazing angle measurements, which could be useful for monitoring the surface temperature of closely stacked silicon wafers used in batch processing in the microelectronics industry.

  3. Contact lens surface changes after exposure to surfactant and abrasive cleaning procedures.

    Science.gov (United States)

    Doell, G B; Palombi, D L; Egan, D J; Huff, J W

    1986-06-01

    Proper lens maintenance is required if contact lens wear is to be successful. Poor compliance or inadequate cleaning may lead to contact lens failures and potentially damage to the eye. With phase contrast microscopy, we addressed the effect of cleaning systems on the physical integrity of a surface-modified lens--the Silcon contact lens. Several cleaners were evaluated for their ability to clean Silcon lenses with minimal damage to the lens surface. The data demonstrated that: all cleaning techniques alter the surface appearance; scratches develop more readily on lenses received with surface irregularities; wettability does not correlate with the extent of surface scratching; recommended cleaning procedures do not directly alter the wettability of the contact lens material; and phase contrast microscopy may be a useful addition to laboratory quality control.

  4. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    CERN Document Server

    Bürger, A; Chattopadhyay, K; Shi, D; Morgan, S H; Collins, W E; James, R B

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd sub x Zn sub 1 sub - sub x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of...

  5. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts.

    Science.gov (United States)

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-03-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions.

  6. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Melilli, G.; Madon, B.; Wegrowe, J.-E., E-mail: jean-eric.wegrowe@polytechnique.edu; Clochard, M.-C., E-mail: clochard@cea.fr

    2015-12-15

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α{sub irrad}) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  7. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  8. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    International Nuclear Information System (INIS)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-01-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α irrad ) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  9. Finite Element Modelling of Elastic-Plastic Contact of Rough Surfaces

    OpenAIRE

    Abdo, Jamil; Haneef, Danish; Al-Shabibi, Abdullah

    2010-01-01

    The contact area and contact load of an elastic-plastic micro-contact was calculated. The ultimate stress asperity is embedded at a critical depth within the actual surface asperities. The finite element solution is used to define the limit at which failure is to occur. The present model is more accurate than the previous models since it accounts for the net elasticplastic by subtracting the plastic portion that reached the ultimate-stress asperity limit. Comparisons of the present model with...

  10. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  11. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  12. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  13. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Science.gov (United States)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  14. Reflection of X-rays from a rough surface at extremely small grazing angles.

    Science.gov (United States)

    Wen, Mingwu; Kozhevnikov, Igor V; Wang, Zhanshan

    2015-09-21

    Peculiarities of X-ray diffraction from a rough surface at an extremely small grazing angle of an incident beam are theoretically studied. The interrelation of four diffraction channels (coherent reflectance, coherent transmittance, diffuse scattering in vacuum, and scattering into the matter depth) is analyzed for different limiting cases (large and small correlation length of roughness and large and extremely small grazing angle of incident radiation). Both the Debye-Waller and the Nevot-Croce factors are demonstrated to describe improperly the features of X-ray diffraction at extremely small grazing angles. More appropriate simple analytic expressions for the specular reflectivity and total integrated scattering in vacuum are obtained instead. Transformation of one limiting diffraction regime into another one with variation in the correlation length of roughness is discussed.

  15. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    Science.gov (United States)

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    -ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe...... is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly...... indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect. © 2012 American Institute of Physics...

  17. Surface Roughness Attenuation in EHL Line and Point Contacts under Conditions of Starved Lubrication

    NARCIS (Netherlands)

    Venner, C.H.; Hooke, C.J.; Snidle, R.W.; Evans, H.P.

    2006-01-01

    The authors have previously examined the effect of surface roughness in line and point EHL contacts and have shown that it is the ratio of the wavelength to the inlet pressure sweep that determines the degree of roughness attenuation under the contact. Because of this a single curve can be used to

  18. Normal Contacts of Lubricated Fractal Rough Surfaces at the Atomic Scale

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    The friction of contacting interfaces is a function of surface roughness and applied normal load. Under boundary lubrication, this frictional behavior changes as a function of lubricant wettability, viscosity, and density, by practically decreasing the possibility of dry contact. Many studies on

  19. Elastic–plastic adhesive contact of non-Gaussian rough surfaces

    Indian Academy of Sciences (India)

    Abstract. The paper describes an analysis of adhesion at the contact between non-. Gaussian rough surfaces using the Weibull distribution with skewness as the key parameter to characterize asymmetry. The analysis uses an improved elastic–plastic model of contact deformation that is based on accurate Finite Element ...

  20. The role of the roughness spectral breadth in elastic contact of rough surfaces

    Science.gov (United States)

    Yastrebov, Vladislav A.; Anciaux, Guillaume; Molinari, Jean-François

    2017-10-01

    We study frictionless and non-adhesive contact between elastic half-spaces with self-affine surfaces. Using a recently suggested corrective technique, we ensure an unprecedented accuracy in computation of the true contact area evolution under increasing pressure. This accuracy enables us to draw conclusions on the role of the surface's spectrum breadth (Nayak parameter) in the contact area evolution. We show that for a given normalized pressure, the contact area decreases logarithmically with the Nayak parameter. By linking the Nayak parameter with the Hurst exponent (or fractal dimension), we show the effect of the latter on the true contact area. This effect, undetectable for surfaces with poor spectral content, is quite strong for surfaces with rich spectra. Numerical results are compared with analytical models and other available numerical results. A phenomenological equation for the contact area growth is suggested with coefficients depending on the Nayak parameter. Using this equation, the pressure-dependent friction coefficient is deduced based on the adhesive theory of friction. Some observations on Persson's model of rough contact, whose prediction does not depend on Nayak parameter, are reported. Overall, the paper provides a unifying picture of rough elastic contact and clarifies discrepancies between preceding results.

  1. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms

    Science.gov (United States)

    Cross-contamination of fresh produce and other foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its abili...

  2. Surface morphology of contact lenses probed with microscopy techniques

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Hobzová, Radka; Přádný, Martin; Širc, Jakub; Michálek, Jiří

    2007-01-01

    Roč. 30, č. 4 (2007), s. 215-222 ISSN 1367-0484 R&D Projects: GA AV ČR 1QS400500558 Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * scanning electron microscopy * surface roughness Subject RIV: CD - Macromolecular Chemistry

  3. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces

  4. Asperity Interaction and Substrate Deformation in Statistical Summation Models of Contact Between Rough Surfaces

    NARCIS (Netherlands)

    Vakis, Antonis I.

    A method is proposed to account for asperity interaction and bulk substrate deformation in models that utilize statistical summation of asperity forces to characterize contact between rough surfaces. Interaction deformations of noncontacting asperities are calculated based on the probability that

  5. Utilization of Sanitizing Wipes on Selected Coated Nonstick Food Contact Surfaces

    National Research Council Canada - National Science Library

    Powers, Edmund

    2002-01-01

    ... of field sanitation. The cleaning and bactericidal efficacy of commercial-off-the-shelf (COTS) sanitizing wipes was tested on specially coated non-stick food contact surfaces, also under investigation by the Army...

  6. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  7. Finite Element Modeling of RMS Roughness Effect on the Contact Stiffness of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    M.B. Amor

    2016-09-01

    Full Text Available The present study considers finite element analysis of an elastic and elastic-plastic contact between a rigid flat and a real rough surface taking into account the asperities interaction. Numerical modeling and measurement of the normal interfacial stiffness were conducted. Surfaces with different rms roughness values were investigated in the elastic and power-law hardening models to highlight the combined effect of the topography and the strain hardening on the contact characteristics. The influence of the surface roughness on the interaction between neighboring micro-contacts, the residual stress and deformation for the power-law hardening material was analyzed. The obtained results have shown the importance of considering the strain hardening in the modeling of a rough contact especially for rougher surface.

  8. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Science.gov (United States)

    Jensen, Katharine E.; Style, Robert W.; Xu, Qin; Dufresne, Eric R.

    2017-10-01

    Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ /E . Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  9. Influence of surface roughness skewness on rolling contact fatigue life

    Science.gov (United States)

    Akamatsu, Yoshinobu; Tsushima, Noriyuki; Goto, Toshihide; Hibi, Kenji

    1992-10-01

    This paper evaluates the effects of randomly distributed small indentations, or pits, on the lubricating properties when operating under these mixed or boundary lubrication conditions. Rings and needle rollers were textured with randomly distributed small indentations, or pits, for evaluation. Skewness (Sk) was used as a measure of surface finish to characterize the degree to which the material of these modified parts was above the mean line, a positive value, or below the mean line, a negative value. Fatigue life tests were conducted on these rolling elements, whose skewness ranged from -1.2 to -2.0, under mixed or boundary lubrication conditions. Test results showed rolling bearing fatigue life to increase with a decrease in skewness as related to the depth, width, and distribution of the surface indentations, or pits, on the parts.

  10. Optimal routing of coordinated aircraft to Identify moving surface contacts

    Science.gov (United States)

    2017-06-01

    53  ix LIST OF FIGURES Figure 1.  Hypothetical Example of the Surface...900 nodes and 64,000 arcs, this simplifying approach enables quick solution time. In other applications related to ORCA, Sposato (1995) plans...we need a quick solution, we recommend using ORCA TI. This formulation defines routes to visit up to 61 COIs in less than 1 minute by using just the

  11. Combinatorial Methods for Detecting Surface Subgroups in Right-Angled Artin Groups

    OpenAIRE

    Bell, Robert W.

    2010-01-01

    We give a short proof of the following theorem of Sang-hyun Kim: if $A(\\Gamma)$ is a right-angled Artin group with defining graph $\\Gamma$, then $A(\\Gamma)$ contains a hyperbolic surface subgroup if $\\Gamma$ contains an induced subgraph $\\bar{C}_n$ for some $n \\geq 5$, where $\\bar{C}_n$ denotes the complement graph of an $n$-cycle. Furthermore, we give a new proof of Kim's co-contraction theorem.

  12. Influence and modelling of view angles and microrelief on surface temperature measurements of bare agricultural soils

    Science.gov (United States)

    Verbrugghe, Michel; Cierniewski, Jerzy

    The exploitation of remote sensing instruments with large fields of view necessarily implies the analysis of instruments acquired over a wide variety of viewing geometries. The purpose of this study is to underline the effects of view angles and microrelief on the directional surface temperature measurements of cultivated bare soils. A campaign of measurements was carried out at Poznan (Poland) in April 1995. The directional temperatures were measured on a furrowed sandy soil. The measurements were acquired at ground level with a radiothermometer in the 8-14 μm band. The radiothermometer was fixed on a special goniometric support 2.1 m above the soil surface and was directed at the soil with view zenith angles varying from -60° to +60° by steps of 10°. The data were collected for solar zenith angles ranging from 40.2° to 62.3°. In the experiment, for a given sun position, the difference between oblique and nadir measurements could reach 6°C. A model aimed at explaining the variations of the surface temperature measurements of furrowed soil in relation to its viewing conditions is presented. This model requires the precise soil microrelief geometry configuration, the illumination and viewing conditions of the surface and the radiative temperatures of the shaded and sunlit soil facets. The results show a good correlation between the predicted and the measured data. This type of modelling can be used to correct radiative temperature measurements of soils from view angles and soil microrelief geometry effects.

  13. Contact splitting and the effect of dimple depth on static friction of textured surfaces.

    Science.gov (United States)

    Greiner, Christian; Schäfer, Michael; Popp, Uwe; Gumbsch, Peter

    2014-06-11

    The morphological texturing of surfaces has demonstrated its high potential to maximize adhesion as well as to reduce friction and wear. A key to understanding such phenomena is a principle known as contact splitting. Here, we extend this concept to the static friction behavior of dimpled surfaces. Our results indicate that contact splitting does exist for such structures and that with certain dimple sizes and depths static friction values significantly exceeding those of untextured surfaces can be obtained. These results can be applied to all surfaces where friction forces are to be tuned, from nanoelectromechanical systems up to combustion engines.

  14. Structures of simple liquids in contact with nanosculptured surfaces.

    Science.gov (United States)

    Singh, Swarn Lata; Schimmele, Lothar; Dietrich, S

    2015-03-01

    We present a density functional study of Lennard-Jones liquids in contact with a nanocorrugated wall. The corresponding substrate potential is taken to exhibit a repulsive hard core and a Van der Waals attraction. The corrugation is modeled by a periodic array of square nanopits. We have used the modified Rosenfeld density functional in order to study the interfacial structure of these liquids which with respect to their thermodynamic bulk state are considered to be deep inside their liquid phase. We find that already considerably below the packing fraction of bulk freezing of these liquids, inside the nanopits a three-dimensional-like density localization sets in. If the sizes of the pits are commensurate with the packing requirements, we observe high-density spots separated from each other in all spatial directions by liquid of comparatively very low density. The number, shape, size, and density of these high-density spots depend sensitively on the depth and width of the pits. Outside the pits, only layering is observed; above the pit openings these layers are distorted with the distortion reaching up to a few molecular diameters. We discuss quantitatively how this density localization is affected by the geometrical features of the pits and how it evolves upon increasing the bulk packing fraction. Our results are transferable to colloidal systems and pit dimensions corresponding to several diameters of the colloidal particles. For such systems the predicted unfolding of these structural changes can be studied experimentally on much larger length scales and more directly (e.g., optically) than for molecular fluids which typically call for sophisticated x-ray scattering.

  15. Micro-lubrication of Directionally Oriented Contact Surfaces

    Directory of Open Access Journals (Sweden)

    O. Maršálek

    2014-12-01

    Full Text Available A description of the set of software tools for detailed computational modelling of thin lubrication layers behaviour is presented in this paper. Individual chapters outline reasons for realization of its each part, explain the functionality of each software tool and the given mathematical definition or digital implementation of all important equations or formulae. The following are examples of partial results of the analysis carried out and the resulting flow factors databases for some kinds of rough surfaces, together with an example of the analysis result of the connecting rod sliding bearing of supercharged internal combustion engine.

  16. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    International Nuclear Information System (INIS)

    Persson, B N J; Albohr, O; Tartaglino, U; Volokitin, A I; Tosatti, E

    2005-01-01

    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the atomic force microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input. (topical review)

  17. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    International Nuclear Information System (INIS)

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  18. Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance

    Science.gov (United States)

    Balabajew, Marco; van Engers, Christian D.; Perkin, Susan

    2017-12-01

    The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.

  19. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2007-01-01

    Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of...

  20. Three-dimensional contact analysis of coupled surfaces by a novel contact transformation method based on localized Lagrange multipliers

    Directory of Open Access Journals (Sweden)

    Yi-Tsung Lin

    2016-04-01

    Full Text Available Instead of obsessively emphasizing to reduce the number of time increments and reshape the models, a novel surface contact transformation to increase efficiency is presented in this study. Wear on the bearing surfaces was investigated following the coupled regions from the pressure distribution, computed by means of three-dimensional finite element method models; an approximate analytical model and formulation in three-dimensional frictional contact problems based on modified localized Lagrange multiplier method have also been developed and discussed. Understanding wear behavior patterns in mechanical components is a significant task in engineering design. The proposed approach provides a complete and effective solution to the wear problem in a quasi-dynamic manner. However, expensive computing time is needed in the incremental procedures. In this article, an alternative and efficient finite element approach is introduced to reduce the computation costs of wear prediction. Through the successful verification of wear depth and volume loss of the pin-on-plate, block-on-ring, and metal-on-plastic artificial hip joint wear behaviors, the numerical calculations are shown to be both valid and feasible. Furthermore, the results also show that the central processing unit time required by the proposed method is nearly half that of the previous methods without loss of accuracy.

  1. Cylindrical articles surfacing with a strip electrode at an angle to the generatrix

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Іванов

    2017-07-01

    Full Text Available The use of the strip electrode when surfacing is made along a variable path leads to a change in the melting process and the formation of a weld bead, due to the absence, in contrast to the wire electrode, of the axial symmetry of the strip cross section. In the layered surfacing of mill rolls with the rollers being at an angle to the generatrix, there may be such defects as undercuts and slagging along the edges of the seam, that worsen the quality and performance of the wear resistant layer. According to the results of the metallographic analysis of the sections, it has been established that these defects in the seam at the cross-over of the rolls during the layer-by-layer surfacing are not remelted by the arc and it leads to slag inclusions in the zone. There is an asymmetry in the formation of the weld pool, which is associated with the peculiarities of the liquid metal flow during its melting. Thus, a decrease in the minimum deviation angle of the strip electrode location with respect to the deposition rate vector leads to a decrease in the crack resistance of the working surface. Investigations of the weld bead formation during deposition by a strip electrode as a function of the angle of the strip rotation with respect to the deposition rate vector have been performed. The influence of the change in the angle of rotation of the strip electrode on the uniformity of the fusion line with the parent metal formation was studied. The allowable range of strip angle values has been determined, which ensures the quality and operability of the wear-resistant layer, as well as the absence of formation defects. Analysis of the wear characteristics and fracture toughness of the deposited layer showed that a change in the location of the strip electrode makes it possible to increase the fracture toughness of the welded layer with high quality of its formation and practically unchanged wear resistance

  2. Elastic–plastic adhesive contact of non-Gaussian rough surfaces

    Indian Academy of Sciences (India)

    on friction and wear of contacting surfaces. A great deal of progress has been made in this aspect both experimentally and analytically. Some of the pioneering work includes that of. Bowden & Rowe (1956), which shows the importance of surface film and released elastic stresses in reducing adhesion. When the smooth ...

  3. Control of contact resistance by strand surface coating in 36-strands NbTi CICC's

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.; Duchateau, Jean-Luc; Decool, Patrick

    2001-01-01

    The stability and AC loss of NbTi cable-in-conduit conductors (CICCs) is largely determined by the interstrand contact resistance (Rc). Rc is predominantly established by the strand surface properties. Five 36-strand CICCs, fully identical except for the plating of the strand surface or the presence

  4. The effects of viewing angle, camera angle, and sign of surface curvature on the perception of three-dimensional shape from texture

    NARCIS (Netherlands)

    Todd, J.T.; Thaler, L.; Dijkstra, T.M.H.; Kappers, A.M.L.

    2007-01-01

    Computational models for determining three-dimensional shape from texture based on local foreshortening or gradients of scaling are able to achieve accurate estimates of surface relief from an image when it is observed from the same visual angle with which it was photographed or rendered. These

  5. Applicability of magic angle for angle-resolved X-ray photoelectron spectroscopy of corrugated SiO.sub.2./sub./Si surfaces: Monte Carlo calculations

    Czech Academy of Sciences Publication Activity Database

    Olejník, Kamil; Zemek, Josef

    2008-01-01

    Roč. 602, - (2008), s. 2581-2586 ISSN 0039-6028 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : photoelectron spectroscopy * surface roughness * Monte Carlo calculations * magic angle * overlayer thickness Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.731, year: 2008

  6. Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties.

    Science.gov (United States)

    Carbone, G; Lorenz, B; Persson, B N J; Wohlers, A

    2009-07-01

    In this paper we extend the theory of contact mechanics and rubber friction developed by one of us (B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)) to the case of surfaces with anisotropic surface roughness. As an application we calculate the viscoelastic contribution to the rubber friction. We show that the friction coefficient may depend significantly on the sliding direction, while the area of contact depends weakly on the sliding direction. We have carried out experiments for rubber blocks sliding on unidirectionally polished steel surfaces. The experimental data are in a good qualitative agreement with the theory.

  7. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  8. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  9. Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method

    International Nuclear Information System (INIS)

    Zhan, Shuyue; Wang, Xiaoping; Liu, Yuling

    2011-01-01

    To simplify the algorithm for determining the surface plasmon resonance (SPR) angle for special applications and development trends, a fast method for determining an SPR angle, called the fixed-boundary centroid algorithm, has been proposed. Two experiments were conducted to compare three centroid algorithms from the aspects of the operation time, sensitivity to shot noise, signal-to-noise ratio (SNR), resolution, and measurement range. Although the measurement range of this method was narrower, the other performance indices were all better than the other two centroid methods. This method has outstanding performance, high speed, good conformity, low error and a high SNR and resolution. It thus has the potential to be widely adopted

  10. Randomised controlled study comparing comfort-related outcomes between two rigid gas permeable (RGP) lenses with different sessile drop contact angles.

    Science.gov (United States)

    Fortuin, Marten F; Schilperoort, John; Evans, Bruce Jw; Edgar, David F; Manon, Hector M Tello; Kiers, Henri

    2011-03-01

    To compare comfort-related outcomes when wearing rigid gas permeable (RGP) contact lenses made of two different materials and using two cleaning regimes. In a double-masked lens material cross-over study, subjects (n = 28 who completed the study) were refitted with new lenses made from (A) Boston XO material in one eye and made from (B) ONSI-56 material in the other eye. The lenses made from materials A and B were worn on the right eye and the left eye following the pattern AB-BA-AB (or vice versa) during the first, second, and third 5 week trial periods respectively. Miraflow cleaner (1st and 2nd period) was replaced by Boston Advance cleaner in the 3rd period. Comfort-related outcomes were assessed by a numerical rating scale (NRS) after each period. Subjects rated six comfort-related factors: satisfaction, sharpness of vision, end of day comfort, maximum comfortable wearing time, maximum wearing time and foreign body feeling. Additionally we obtained subjects' preferences for type of lens and lens cleaner during an exit interview. The sessile drop method was used to measure static contact angles. The mean of the contact angle measured for the Boston XO material was 93.3° and for the ONSI-56 material was 75.8 °. Mean 'end of the day comfort', 'satisfaction' and 'lens feeling' scores reached statistical significance (anova periods 1, 2 and 3, p's: 0.005, 0.028, 0.046, n = 23) with marginal differences in favour of those eyes that had worn lenses made of the ONSI-56 material (differences in mean scores on a 1-10 NRS never exceeded 0.7, 0.5 and 0.2 points in periods 1, 2, 3 respectively). At the exit interview 60% of the subjects (n = 17) were not able to express a preference for wearing either of the lenses, while 29% reported some preference for lenses made of the ONSI-56 material (n = 8) and 11% for wearing lenses made of the Boston XO material (n = 3) within one or more periods. The differences in comfort-related outcomes between contact lenses made from two

  11. Relationships between the root-crown ratio and the loss of occlusal contact and high mandibular plane angle in patients with open bite.

    Science.gov (United States)

    Uehara, Sawako; Maeda, Aya; Tomonari, Hiroshi; Miyawaki, Shouichi

    2013-01-01

    To determine the root-crown (R/C) ratio and dental root length of teeth in patients with open bite and seek any relationships with occlusal contact (OC) and the mandibular plane (Mp) angle. Thirty-one patients with open bite with negative overbite of at least four anterior teeth and 31 control patients with clinically normal overjet and overbite were enrolled. R/C ratios, dental root length, OC, and Mp angle were measured using panoramic radiographs, dental casts, and cephalograms, respectively. Mean differences between the groups, and variations between the R/C ratio or root length and Mp angle in patients with open bite were statistically analyzed. R/C and OC ratios from the incisors to premolars were significantly lower for patients with open bite than for controls, and some teeth had short dental roots. Relationships between low R/C ratio or root length and high Mp angle were significant in patients with open bite. Patients with open bite, especially those with a high Mp angle, have an unfavorable R/C ratio and short dental roots in some teeth, which may be related to the loss of OC.

  12. Effects of contact time and concentration on bactericidal efficacy of 3 disinfectants on hard nonporous surfaces.

    Science.gov (United States)

    Hong, Yingying; Teska, Peter J; Oliver, Haley F

    2017-11-01

    This study investigated the influence of contact time and concentration on bactericidal efficacy of 3 types of disinfectants (accelerated hydrogen peroxide [AHP], quaternary ammonium compounds [Quats], and sodium hypochlorite) on stainless steel surfaces using Environmental Protection Agency procedure MB-25-02. We found that bactericidal efficacy was not reduced at contact times or concentrations immediate lower than label use values, but all 3 disinfectants were significantly less bactericidal at significantly lower than label use contact times and concentrations. Overall, the bactericidal efficacy of the sodium hypochlorite disinfectant was most tolerant to the decreases of contact times and concentrations, followed closely by AHP disinfectant, and Quat disinfectant was most affected by contact time and concentration. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  14. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    International Nuclear Information System (INIS)

    Burger, A.; Chen, H.; Chattopadhyay, K.; Shi, D.; Morgan, S.H.; Collins, W.E.; James, R.B.

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd x Zn 1-x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of different surface treatments on the surface recombination

  15. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    Science.gov (United States)

    Burger, A.; Chen, H.; Chattopadhyay, K.; Shi, D.; Morgan, S. H.; Collins, W. E.; James, R. B.

    1999-06-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd xZn 1- xTe (CZT) ( x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of different surface treatments on the surface recombination.

  16. Numerical simulation of near surface rail cracks subject to thermal contact stress

    OpenAIRE

    Fletcher, D.I.

    2014-01-01

    Boundary element modelling was conducted to investigate rail cracks subject to combined thermal and contact loading such as occurs in 'stud' or 'squat type' defects in which white etching layer lies above shallow cracks formed without evidence of plastic flow. An embedded crack at 0.5. mm below the rail surface was modelled, revealing a thermal mechanism of crack opening. Stress intensity values for a range of contact temperatures were calculated. © 2013 Elsevier B.V.

  17. Tyre-road contact using a particle-envelope surface model

    Science.gov (United States)

    Pinnington, Roger J.

    2013-12-01

    Determination of the contact forces is the central problem in all aspects of road-tyre interaction: i.e. noise, energy loss and friction. A procedure to find the contact forces under a rolling tyre is presented in four stages. First, the contact stiffness of a uniform peak array from indentations in the rubber tread, and also tyre carcass deflection, is described by some new simplified expressions. Second, a routine divides a single surface profile into equal search intervals, in which the highest peaks are identified. These are used to obtain the parameters for the interval, i.e. the mean envelope and the mean interval. The process is repeated at geometrically decreasing search intervals until the level of the data resolution, thereby describing the profile by a set of envelopes. The ‘strip profile’ ultimately used to describe the surface, is obtained by selecting the highest points across the profiles of one stone's width. The third stage is to combine the strip profile envelopes with the contact stiffness expressions, yielding the nonlinear stiffness-displacement, and force-displacement relationships for the chosen road-tyre combination. Finally the contact pressure distribution from a steady-state rolling tyre model is applied to the strip profile, via the force-displacement relationship, giving the local tyre displacements on the road texture. This displacement pattern is shown to be proportional to the time and space varying contact pressure, which then is incorporated into a wave equation for rolling contact.

  18. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  19. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  20. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    International Nuclear Information System (INIS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF 4 ) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF 4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF 4 (f H ) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO x nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF 2 bonding, and SiO x were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can

  1. General contact mechanics theory for randomly rough surfaces with application to rubber friction

    Science.gov (United States)

    Scaraggi, M.; Persson, B. N. J.

    2015-12-01

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic, or viscoelastic and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interface separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for the classical case of a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases to the extent that only the roughness of the stiff counter face needs to be considered.

  2. Characterization on Contacting Surfaces of MEMS Electrostatic Switches by SEM, EDXA, and XPS

    Directory of Open Access Journals (Sweden)

    I. A. Afinogenov

    2015-01-01

    Full Text Available We focus on the origin and sources of surface contamination and defects causing the failure of MEMS electrostatic switches. The morphology, and elemental and chemical compositions of the contacting surfaces, conducting paths, and other parts of switches have been characterized by means of SEM, EDXA, and XPS in order to understand the difference between the data collected for the devices that had passed the electrical conductivity test and those found to be defective. C, O, Al, Ca, Ti, Cu, and some other impurities were detected on the details of defective switches. Contrariwise, the working switches were found to be clean, at least on the level of EDXA and XPS sensitivity. The main sources of surface contamination and defects were incompletely deleted sacrificial layers, substrate materials, and electrolytes employed for Rh plating of the contacts. The negative influence of foreign microparticles, especially alumina and copper oxides, on the conductivity and porosity of contacts was highlighted.

  3. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    A non-contact technique using a 3D optical system was used to measure the surface roughness of two selected standard surface roughness comparators used in the foundry industry. Profile and areal analyses were performed using scanning probe image processor (SPIP) software. The results show that th...... and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series....

  4. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    International Nuclear Information System (INIS)

    Hodaei, M; Farhang, K; Maani, N

    2014-01-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load–unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient. (paper)

  5. Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718

    Science.gov (United States)

    Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.

    2017-11-01

    This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.

  6. A Small Angle Neutron Scattering Study of Cylindrical nanoparticle with Controlled Surface Charge Density

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    Surfactant molecules in aqueous solution self assemble into various micellar structures such as sphere, rod, vesicle, and lamellar, above critical micelle concentration (CMC). Self-assembled surfactants systems, therefore, have been very popular as templates for preparing various nanostructured materials. Due to their dynamic nature, however, micellar structures are very susceptible to solution conditions such as temperature, concentration, pH and pressure, limiting their applications. In this study, we have developed rigid rod-like nanoparticles with controlled surface charge density by the free radical polymerization of cationic surfactants with polymerizable counterions, cetyltrimethylammonium 4- vinylbenzoate (CTVB), with varying concentration of sodium styrenesulfonate (NaSS). The structure and surface charge density of the nanoparticles were characterized by small angle neutron scattering (SANS) and zeta potential measurements

  7. Pixel cells with an arbitrary vertex angle for moire pattern reduction in contact-type multiview three-dimensional imaging systems

    Science.gov (United States)

    Son, Jung-Young; Saveljev, Vladmir V.; Kim, Dae-Sik; Kim, Kyung-Tae

    2005-02-01

    Moire patterns originated from overlapping display panel with the viewing zone forming optics are one of major factors of deteriorating the visual image quality of contact-type 3 dimensional imaging systems. An analysis showed that the visual effects of the patterns can be minimized at a specific overlapping angle between the panel and the plate. This angle is implemented by approximating each side of a pixel cell as a discrete line which is drawn along the boundaries of each pixel which lies along the side of the cell. The slope of the line is presented by as the ratio of pixel numbers in vertical and horizontal directions and equals to the tangential value of 1/2 of the angle. This method allows creating pixel cells with shapes of parallelograms and rhombs with a desired vertex angle for minimizing the moire pattern, especially in full-parallax imaging systems. The image generated reveals almost invisible moire pattern at the predefined viewing distance range.

  8. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    Science.gov (United States)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  9. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    Science.gov (United States)

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  10. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  11. ZnO nanowire photodetectors based on Schottky contact with surface passivation

    Science.gov (United States)

    Zhang, Dakuan; Sheng, Yun; Wang, Jianyu; Gao, Fan; Yan, Shancheng; Wang, Junzhuan; Pan, Lijia; Wan, Qing; Shi, Yi

    2017-07-01

    Performance characteristics, such as dark current and response time, of ZnO nanowire (NW) photodetectors are usually degraded by H2O/O2 adsorption on the NW surfaces. In this work, ZnO NW photodetectors based on Au Schottky contact through passivating surface states were investigated. ZnO NW photodetectors were fabricated with a lateral electrode structure, in which Au served as Au/ZnO Schottky contact and semi-transparent top electrode. Specifically, passivation of the surface states of ZnO NWs by using highly intensive UV irradiation effectively improved the photoresponse. A physical model based on surface band theory was developed to understand the origin of the performance improvement of the photodetector. The present device architecture prevents ZnO NWs photodetector from H2O/O2 adsorption in air and efficiently extracts photogenerated carriers across a diametrical direction.

  12. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Directory of Open Access Journals (Sweden)

    Kowalik Marek

    2016-10-01

    Full Text Available Measuring errors caused by deformation (flattening of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  13. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Science.gov (United States)

    Kowalik, Marek; Rucki, Mirosław; Paszta, Piotr; Gołębski, Rafał

    2016-10-01

    Measuring errors caused by deformation (flattening) of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  14. Insertion torque, pull-out strength and cortical bone thickness in contact with orthodontic mini-implants at different insertion angles.

    Science.gov (United States)

    Meira, Thiago Martins; Tanaka, Orlando Motohiro; Ronsani, Maiara Medeiros; Maruo, Ivan Toshio; Guariza-Filho, Odilon; Camargo, Elisa Souza; Maruo, Hiroshi

    2013-12-01

    This study aimed to evaluate biomechanical behaviour of inclined orthodontic mini-implants by analyzing its insertion torque (IT), axial pull-out strength (APS), and cortical bone thickness in contact with mini-implant (CBTC). A total of 102 mini-implants were inserted at 90 degree, 60 degree, and 45 degree to the surface of synthetic bone. Peak IT was measured, and the mini-implants were aligned with the mechanical testing machine to record the APS. The cortical bone thickness in contact with each mini-implant was measured after the pull-out test and the data were subjected to statistical analyses. The 45 degree group had a significantly higher IT compared with the 90 degree group (P Mini-implants that are inserted more inclined to the surface of the bone provide greater IT and an increased contact with the cortical bone. The greater the CBTC, the greater is the APS.

  15. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2......) of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect....

  16. Process for Non-Contact Removal of Organic Coatings from the Surface of Paintings

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.

  17. Observation of contact area of bubbles with heating surface in pool boiling of water under microgravity

    International Nuclear Information System (INIS)

    Suzuki, K.; Kawamura, H.; Suzuki, M.; Takahashi, S.; Abe, Y.

    2003-01-01

    Burnout heat flux was measured in subcooled pool boiling of water under attached boiling bubbles on heating surface with bubble holding plate in ground experiment. A thin stainless flat plate was employed for heating surface. The experimental setup and the heating procedures were same as used in reduced gravity experiment performed by a parabolic flight of jet aircraft. Same burnout heat flux as in the reduced gravity was obtained by adjusting the clearance between the bubble holder and the heating surface. They were 100 ∝ 400 percent higher than the widely accepted existing theories. As extending heating time longer than the reduced gravity duration until burnout occurred, burnout heat flux decreased gradually and became a constant value calculated from the existing theories. In a result of observing contact area of boiling bubbles with transparent heating surface, the contact area was smaller in quick heating time than that in long time heating at same heat flux. The experimental results suggest in microgravity that liquid layer is remained between rapidly expanded bubbles and heating surface. In microgravity experiment by a drop shaft facility, contact area of bubbles with heating surface increased considerably at starting of microgravity. (orig.)

  18. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Directory of Open Access Journals (Sweden)

    Katharine E. Jensen

    2017-11-01

    Full Text Available Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ/E. Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  19. Microbial counts of food contact surfaces at schools depending on a feeding scheme

    Directory of Open Access Journals (Sweden)

    Nthabiseng Nhlapo

    2014-11-01

    Full Text Available The prominence of disease transmission between individuals in confined environments is a concern, particularly in the educational environment. With respect to school feeding schemes, food contact surfaces have been shown to be potential vehicles of foodborne pathogens. The aim of this study was to assess the cleanliness of the surfaces that come into contact with food that is provided to children through the National School Nutrition Programme in central South Africa. In each school under study, microbiological samples were collected from the preparation surface and the dominant hand and apron of the food handler. The samples were analysed for total viable counts, coliforms, Escherichia coli, Staphylococcus aureus and yeasts and moulds. The criteria specified in the British Columbia Guide for Environmental Health Officers were used to evaluate the results. Total viable counts were high for all surfaces, with the majority of colonies being too numerous to count (over 100 colonies per plate. Counts of organisms were relatively low, with 20% of the surfaces producing unsatisfactory enumeration of S. aureus and E. coli and 30% unsatisfactory for coliforms. Yeast and mould produced 50% and 60% unsatisfactory counts from preparation surfaces and aprons, respectively. Statistically significant differences could not be established amongst microbial counts of the surfaces, which suggests cross-contamination may have occurred. Contamination may be attributed to foodstuffs and animals in the vicinity of the preparation area rather than to the food handlers, because hands had the lowest counts of enumerated organisms amongst the analysed surfaces.

  20. Bioinspired Surface Treatments for Improved Decontamination: Silicon and Latex Polymer SLIPS Treatments

    Science.gov (United States)

    2017-06-27

    including measurement of sessile, sliding, and shedding contact angles , target spreading, and quantification of retention for the simulant compounds...METHODS Sessile contact angles for samples evaluated under this effort used three 3 µL droplets per surface with each droplet measured ...150°). Heptane wetted all surfaces, producing contact angles below the measurable threshold. Geometric surface energy was reduced by the SLIPS

  1. Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices

    Directory of Open Access Journals (Sweden)

    Muthu Vignesh Vellayappan

    2016-01-01

    Full Text Available Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE and nitric acid (HNO3 treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface of mPE and HNO3 treated mPE investigated with FTIR revealed no major changes in its functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased porosity and surface roughness. Blood coagulation assays prothrombin time (PT and activated partial thromboplastin time (APTT were delayed significantly (P < 0.05 for HNO3 treated mPE. Hemolysis assay and platelet adhesion of the treated surface resulted in the lysis of red blood cells and platelet adherence, respectively indicating improved hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNO3 treated mPE was compared and the result shows no significant difference. Hence, the overall observation suggests that the novel HNO3 treated mPE may hold great promises to be exploited for blood contacting devices like grafts, catheters, and etc.

  2. Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices.

    Science.gov (United States)

    Vellayappan, Muthu Vignesh; Jaganathan, Saravana Kumar; Muhamad, Ida Idayu

    2016-01-01

    Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface of mPE and HNO3 treated mPE investigated with FTIR revealed no major changes in its functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased porosity and surface roughness. Blood coagulation assays prothrombin time (PT) and activated partial thromboplastin time (APTT) were delayed significantly (P < 0.05) for HNO3 treated mPE. Hemolysis assay and platelet adhesion of the treated surface resulted in the lysis of red blood cells and platelet adherence, respectively indicating improved hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNO3 treated mPE was compared and the result shows no significant difference. Hence, the overall observation suggests that the novel HNO3 treated mPE may hold great promises to be exploited for blood contacting devices like grafts, catheters, and etc.

  3. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.

    Science.gov (United States)

    Owen, John R; Wayne, Jennifer S

    2011-07-01

    The superficial tangential zone (STZ) plays a significant role in normal articular cartilage's ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. This finite element study examined the STZ's role in normal and repaired articular surfaces under different contact conditions. Contact area and pressure distributions were allowed to change with time, tension-compression nonlinearity modeled collagen behavior in the STZ, and nonlinear geometry was incorporated to accommodate finite deformation. Responses to loading via impermeable and permeable rigid surfaces were compared to loading via normal cartilage, a more physiologic condition, anticipating the two rigid loading surfaces would bracket that of normal. For models loaded by normal cartilage, an STZ placed over the inferior repair region reduced the short-term axial compression of the articular surface by 15%, when compared to a repair without an STZ. Covering the repair with a normal STZ shifted the flow patterns and strain levels back toward that of normal cartilage. Additionally, reductions in von Mises stress (21%) and an increase in fluid pressure (13%) occurred in repair tissue under the STZ. This continues to show that STZ properties of sufficient quality are likely critical for the survival of transplanted constructs in vivo. However, response to loading via normal cartilage did not always fall within ranges predicted by the rigid surfaces. Use of more physiologic contact models is recommended for more accurate investigations into properties critical to the success of repair tissues.

  4. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  5. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  6. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  7. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Woo [Stainless Steel Research Group, Technical Research Laboratories, POSCO, Pohang 790-300 (Korea, Republic of); Ramesh Bapu, G.N.K. [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Kang Yong, E-mail: kyl2813@yonsei.ac.kr [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2009-02-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at {+-}25 {mu}m displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 {+-} 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  8. Energy Consumption Analysis of Particle Crushing on Structural Contact Surface under High Pressure Shear

    Science.gov (United States)

    Tan, Junkun; Guo, Jiaqi

    2017-12-01

    The experimental study on the energy relationship between the coarse sand with different water content and the concrete interface with different hardness and roughness is carried out, through the high stress direct shear apparatus. Experimental results show that the growth rate of shear energy dissipation of sand - structure contact surface is slowing down with the increase of roughness, even negative; The shear energy dissipation of concrete with different hardness decreases first and then increases with the increase of water content, The crushing energy consumption is the lowest when water content is 16%; The shear energy dissipation at different moisture content increases with the increase of the contact strength of concrete structure.

  9. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  10. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    these coatings are not mechanically stable, they do not tolerate high enough temperatures (above 260⁰ C) to give the right product quality, and the surfaces wear easily calling for regular service of the equipment. The present project concerns an investigation of the possibilities of replacing the widely used......Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because...

  11. THE DYNAMIC INTERACTION OF THE MOVING CONTACTING SURFACES AT THE EXAMPLE OF THE ELECTRIC ROLLING STOCK CURRENT COLLECTOR

    Directory of Open Access Journals (Sweden)

    M. O. Babiak

    2009-07-01

    Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.

  12. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  13. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  14. Assessing a novel contact heater as a new method of recovering explosives traces from porous surfaces.

    Science.gov (United States)

    Yu, Holly A; Lewis, Simon W; Beardah, Matthew S; NicDaeid, Niamh

    2016-02-01

    It can be very challenging to recover explosives traces from porous surfaces, such as clothing and car seats, compared to non-porous surfaces. The contact heater has been developed as a novel instrument designed to recover explosives traces from porous surfaces. Samples are taken by heating and drawing air across a surface, with the air flowing through a sampling cartridge containing adsorbent polymer beads, which act to trap any recovered explosive material. Any collected explosive can then be eluted from this cartridge using a solvent, prior to analysis. This paper outlines work performed to evaluate the usefulness of the contact heater with regards to the recovery of explosives traces from porous materials. Ethylene glycol dinitrate (EGDN) and triacetone triperoxide (TATP) were chosen as two representative explosives for this study. Quantification was performed using GC-MS for EGDN and LC-MS/MS for TATP. Different sampling temperatures, sampling times and elution solvents were investigated. Recovery was trialled from leather, carpet and denim. Recoveries of up to 71% were obtained following optimisation. It was also possible to recover TATP from fabrics exposed to TATP vapour in a vapour-laden jar up to two hours after exposure. The contact heater therefore appears to be a very useful tool for the recovery of explosives traces from porous materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Snakes and labyrinths: contact fingering instability of a soft elastic film between two rigid surfaces

    Science.gov (United States)

    Davis-Purcell, Ben; Dalnoki-Veress, Kari

    Intricate patterns are abundant in nature, from the stripes of a zebra, to the formation of snowflakes, to the wavy peaks and valleys on a beach. One such instability occurs when a soft elastomeric film bonded to a rigid substrate deforms to adhere to another rigid surface brought into contact with the film. If there is a gap between the film and the surface, then a contact fingering instability results as the film deforms to adhere to the surface. The reduction in the interfacial surface energy upon adhering is balanced by the elastic strain as the soft film deforms to span the gap and leads to distinct labyrinth patterns. We study the formation of this adhesion-induced instability and observe the fingering labyrinth pattern both statically, to measure wavelength as a function of film thickness, as well as dynamically where we see patterns similar to snakes meandering along the ground. We also investigate this contact fingering instability in the presence of an anisotropic tension in the soft elastic film.

  16. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered......The electrical properties of semiconductor surfaces have played a decisive role in one of the most important discoveries of the last century, transistors. In the 1940s, the concept of surface states-new electron energy levels characteristic of the surface atoms-was instrumental in the fabrication...... of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through...

  17. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities.

    Science.gov (United States)

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-04-06

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating 'really nano-' structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns.

  18. Measuring order in contact-poled organic electrooptic materials with variable-angle polarization-referenced absorption spectroscopy (VAPRAS).

    Science.gov (United States)

    Olbricht, Benjamin C; Sullivan, Philip A; Dennis, Peter C; Hurst, Jeffrey T; Johnson, Lewis E; Benight, Stephanie J; Davies, Joshua A; Chen, Antao; Eichinger, Bruce E; Reid, Philip J; Dalton, Larry R; Robinson, Bruce H

    2011-01-20

    Organic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, , where β is the major Euler angle between the main axis of the chromophore and the poling field which imposes the acentric order. The acentric order parameter, which is difficult to measure directly, is related to the centrosymmetric order parameter, defined as = ½(3-1), through the underlying statistical distribution. We have developed a method to determine centrosymmetric order of the ONLO chromophores when the order is low (i.e., < 0.1). We have extended the method (begun by Graf et al. J. Appl. Phys. 1994, 75, 3335.) based on the absorption of light to determine the centrosymmetric order parameter induced by a poling field on a thin film sample of ONLO material. We find that the order parameters, analyzed by two different methods, are similar and also consistent with theoretical estimates from modeling of the system using coarse-grained Monte Carlo statistical mechanical methods.

  19. Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems

    Directory of Open Access Journals (Sweden)

    Taehyung Park

    2017-07-01

    Full Text Available Injecting and storing of carbon dioxide (CO2 in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The question as to the extent of microbial CO2 wettability alteration under reservoir conditions still warrants further investigation. This study investigated the effect of a lipopeptide biosurfactant—surfactin, on interfacial tension (IFT reduction and contact angle alteration in CO2/water/quartz systems under a laboratory setup simulating in situ reservoir conditions. The temporal shifts in the IFT and the contact angle among CO2, brine, and quartz were monitored for different CO2 phases (3 MPa, 30°C for gaseous CO2; 10 MPa, 28°C for liquid CO2; 10 MPa, 37°C for supercritical CO2 upon cultivation of Bacillus subtilis strain ATCC6633 with induced surfactin secretion activity. Due to the secreted surfactin, the IFT between CO2 and brine decreased: from 49.5 to 30 mN/m, by ∼39% for gaseous CO2; from 28.5 to 13 mN/m, by 54% for liquid CO2; and from 32.5 to 18.5 mN/m, by ∼43% for supercritical CO2, respectively. The contact angle of a CO2 droplet on a quartz disk in brine increased: from 20.5° to 23.2°, by 1.16 times for gaseous CO2; from 18.4° to 61.8°, by 3.36 times for liquid CO2; and from 35.5° to 47.7°, by 1.34 times for supercritical CO2, respectively. With the microbially altered CO2 wettability, improvement in sweep efficiency of injected and displaced CO2 was evaluated using 2-D pore network model simulations; again the increment in sweep efficiency was the greatest in liquid CO2 phase due to the largest reduction in capillary factor. This result provides novel insights as to the role of naturally occurring biosurfactants in CO2 storage and

  20. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  1. Susceptibility of Opportunistic Burkholderia glumae to Copper Surfaces Following Wet or Dry Surface Contact

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2014-07-01

    Full Text Available Burkholderia glumae has been proposed to have a potential risk to vulnerable communities. In this work, we investigated the antibacterial activity and mechanism of copper surfaces against multi-drug resistant B. glumae from both patients and rice plants. The susceptibility of B. glumae to copper surfaces was noted by a significant decline in viable bacterial counts, relative to the slight reduction of stainless steel and polyvinylchloride, both of which were used as control surfaces. The mode of action of bacterial killing was determined by examing the mutagenicity, DNA damage, copper ions accumulation, and membrane damage in bacterial cells. The results indicated that the cells exposed to copper surfaces did not cause severe DNA lesions or increase the mutation frequencies, but resulted in a loss of cell membrane integrity within minutes. Furthermore, bacterial cells exposed to copper surfaces accumulated significantly higher amounts of copper compared to control surfaces. Overall, this study showed that metallic copper had strong antibacterial effect against B. glumae by causing DNA and membrane damage, cellular accumulation of copper, and cell death following DNA degradation, which could be utilized to reduce the risk of bacterial contamination and infection.

  2. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...... of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through...

  3. Atomic Oxygen Treatment for Non-Contact Removal of Organic Protective Coatings from Painting Surfaces

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    Current techniques for removal of varnish (lacquer) and other organic protective coatings from paintings involve contact with the surface. This contact can remove pigment, or alter the shape and location of paint on the canvas surface. A thermal energy atomic oxygen plasma, developed to simulate the space environment in low Earth orbit, easily removes these organic materials. Uniform removal of organic protective coatings from the surfaces of paintings is accomplished through chemical reaction. Atomic oxygen will not react with oxides so that most paint pigments will not be affected by the reaction. For paintings containing organic pigments, the exposure can be carefully timed so that the removal stops just short of the pigment. Color samples of Alizarin Crimson, Sap Green, and Zinc White coated with Damar lacquer were exposed to atomic oxygen. The lacquer was easily removed from all of the samples. Additionally, no noticeable change in appearance was observed after the lacquer was reapplied. The same observations were made on a painted canvas test sample obtained from the Cleveland Museum of Art. Scanning electron microscope photographs showed a slight microscopic texturing of the vehicle after exposure. However, there was no removal or disturbance of the paint pigment on the surface. It appears that noncontact cleaning using atomic oxygen may provide a viable alternative to other cleaning techniques. It is especially attractive in cases where the organic protective surface cannot be acceptably or safely removed by conventional techniques.

  4. Adhesion of Pathogenic Bacteria to Food Contact Surfaces: Influence of pH of Culture

    Directory of Open Access Journals (Sweden)

    Akier Assanta Mafu

    2011-01-01

    Full Text Available The adhesion of Aeromonas hydrophila, Escherichia coli O157:H7, Salmonella Enteritidis, and Staphylococcus aureus to hydrophobic and hydrophilic surfaces in cultures with different pHs (6, 7, and 8 was studied. The results indicated that the type of material had no effect on the attachment capacity of microorganisms, while environmental pH influenced the adhesion of A. hydrophila, E. coli, and S. aureus to both solid substrates. The attachment of S. Enteritidis (P>.05 was not affected by the type of substrate or the culture pH, whereas E. coli displayed the weakest affinity for both polystyrene and glass surfaces. No correlation was established between the physicochemical properties of the materials, or the bacterial and the rate of bacterial adhesion, except for S. aureus. Photomicrographs have shown that surfaces were contaminated by small clusters of S. Enteritidis while S. aureus invaded the food contact surfaces in the form of small chains or cell aggregates.

  5. Understanding the Acute Skin Injury Mechanism Caused by Player-Surface Contact During Soccer

    Science.gov (United States)

    van den Eijnde, Wilbert A.J.; Peppelman, Malou; Lamers, Edwin A.D.; van de Kerkhof, Peter C.M.; van Erp, Piet E.J.

    2014-01-01

    Background: Superficial skin injuries are considered minor, and their incidence is probably underestimated. Insight into the incidence and mechanism of acute skin injury can be helpful in developing suitable preventive measures and safer playing surfaces for soccer and other field sports. Purpose: To gain insight into the incidence and severity of skin injuries related to soccer and to describe the skin injury mechanism due to player-surface contact. Study Design: Systematic review; Level of evidence, 4. Methods: The prevention model by van Mechelen et al (1992) combined with the injury causation model of Bahr and Krosshaug (2005) were used as a framework for the survey to describe the skin injury incidence and mechanism caused by player-surface contact. Results: The reviewed literature showed that common injury reporting methods are mainly based on time lost from participation or the need for medical attention. Because skin abrasions seldom lead to absence or medical attention, they are often not reported. When reported, the incidence of abrasion/laceration injuries varies from 0.8 to 6.1 injuries per 1000 player-hours. Wound assessment techniques such as the Skin Damage Area and Severity Index can be a valuable tool to obtain a more accurate estimation of the incidence and severity of acute skin injuries. Conclusion: The use of protective equipment, a skin lubricant, or wet surface conditions has a positive effect on preventing abrasion-type injuries from artificial turf surfaces. The literature also shows that essential biomechanical information of the sliding event is lacking, such as how energy is transferred to the area of contact. From a clinical and histological perspective, there are strong indications that a sliding-induced skin lesion is caused by mechanical rather than thermal injury to the skin. PMID:26535330

  6. The equivalent incidence angle for porous absorbers backed by a hard surface

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Brunskog, Jonas

    2013-01-01

    experiment using a free-field absorption measurement technique with a source at the equivalent angle. This study investigates the equivalent angle for locally and extendedly reacting porous media mainly by a numerical approach: Numerical minimizations of a cost function that is the difference between...... coefficients by free-field techniques, a broad incidence angle range can be suggested: 20 hi65 for extended reaction and hi65 for locally reacting porous absorbers, if an average difference of 0.05 is allowed.......An equivalent incidence angle is defined as the incidence angle at which the oblique incidence absorption coefficient best approximates the random incidence absorption coefficient. Once the equivalent angle is known, the random incidence absorption coefficient can be estimated by a single...

  7. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  8. Piercing the water surface with a blade: Singularities of the contact line

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Mars M. [Kazan Federal University, Kazan 420008 (Russian Federation); Kornev, Konstantin G. [Department of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634 (United States)

    2016-01-15

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.

  9. Piercing the water surface with a blade: Singularities of the contact line

    International Nuclear Information System (INIS)

    Alimov, Mars M.; Kornev, Konstantin G.

    2016-01-01

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade

  10. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  11. An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Directory of Open Access Journals (Sweden)

    Mao-long Lv

    2016-01-01

    Full Text Available In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.

  12. Field-angle-resolved anisotropy in superconducting CeCoIn5 using realistic Fermi surfaces

    Science.gov (United States)

    Das, Tanmoy; Vorontsov, A. B.; Vekhter, I.; Graf, Matthias J.

    2013-05-01

    We compute the field-angle-resolved specific heat and thermal conductivity using realistic model band structures for the heavy-fermion superconductor CeCoIn5 to identify the gap structure and location of nodes. We use a two-band tight-binding parametrization of the band dispersion as input for the self-consistent calculations in the quasiclassical formulation of the superconductivity. Systematic analysis shows that modest in-plane anisotropy in the density of states and Fermi velocity in tetragonal crystals significantly affects the fourfold oscillations in thermal quantities, when the magnetic field is rotated in the basal plane. The Fermi-surface anisotropy substantially shifts the location of the lines in the H-T plane, where the oscillations change sign compared to quasicylindrical model calculations. In particular, at high fields, the anisotropy and sign reversal are found even for isotropic gaps. Our findings imply that a simultaneous analysis of the specific heat and thermal conductivity, with an emphasis on the low-energy sector, is needed to restrict potential pairing scenarios in multiband superconductors. We discuss the impact of our results on recent measurements of the Ce-115 family, namely, CeTIn5 with T= Co, Rh, Ir.

  13. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    Directory of Open Access Journals (Sweden)

    Andrea Osimani

    2014-10-01

    Full Text Available ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs, including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99 between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  14. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    Directory of Open Access Journals (Sweden)

    Silvia ede Candia

    2015-07-01

    Full Text Available This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria spp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays.The addition of naturally microbiologically contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria spp. strains, led to its complete inactivation after four days of treatment.To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly-used material in food packaging. These results could be useful for reducing pathogen cross-contamination phenomena during cold food storage.

  15. Microbiological Quality of Food Contact Surfaces in A Hospital Kitchen in Shiraz, Iran, 2014

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2015-10-01

    Full Text Available Background: The consumption of healthy food is considered as an essential need to devoid the physical, chemical, and biological hazards. The importance of this issue is more conspicuous in places such as hospitals where people with somehow compromised immune systems are under treatment. Therefore, this research aimed to evaluate the microbiological quality of food contact surfaces in a kitchen in one of the hospitals of Shiraz University of Medical Sciences. Methods: In the present study, samples were taken from 48 food contact surfaces according to ISO 18593:2004(E and placed into the bags containing diluting solution; they were then transferred to the laboratory for microbial analysis in the cold chain. The microbial analysis was carried out according to ISO 4833-1:2013 and BS ISO 4832:2006 for enumeration of total bacterial count and coliform. Results: Based on the results presented here, 39.6% and 85.7% of the samples showed acceptable contamination with regard to the enumeration of total bacterial and coliform count. Besides, 18.2% and 72.7 % of work surfaces groups (cutting board, table, and hand showed acceptable contamination with regard to the enumeration of total bacterial count and coliform in comparison to the standards. Furthermore, 45.9% and 89.2% of other surfaces showed acceptable total bacterial and coliform count, respectively. Conclusion: The results showed that safe management of the kitchen, education of the staff and also improvement of the equipment used are necessary.

  16. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  17. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  18. The effectiveness of soft contact lens disinfection systems against Acanthamoeba on the lens surface.

    Science.gov (United States)

    Liedel, K K; Begley, C G

    1996-03-01

    This investigation compared the efficacy of three widely used contact lens disinfection systems against an ocular isolate of Acanthamoeba polyphaga. Twenty-seven worn Ciba NewVues lenses were quartered, heat sterilized and inoculated with Acanthamoeba. Lens quarters were then randomly assigned to three experimental groups, with Group A lenses exposed to cleaner and saline rinse only, Group B to disinfection only, and Group C to both cleaner and disinfection. One quarter of each lens served as a control and the other three quarters were experimental. Quantification of viable Acanthamoeba remaining on the lens was performed after each step of the disinfection process. Group A lenses showed no significant difference between the treatments, or the treatments and the control. Group B lenses demonstrated a significant difference (p = 0.0001) between the treatments and the control. In Group C (cleaning and disinfection), the control lens quarters were significantly different (p = 0.037) from the experimental group, but there was no significant difference between the treatments. All three disinfection regimens were very effective in reducing the number of viable Acanthamoeba on the contact lens surface. In the absence of proper cleaning (Group B), AOSept was the most effective of the three. These results also show the importance of thoroughly rubbing the contact lens surface to decrease the number of Acanthamoeba.

  19. Modeling and experimental validation of a linear ultrasonic motor considering rough surface contact

    Science.gov (United States)

    Lv, Qibao; Yao, Zhiyuan; Li, Xiang

    2017-04-01

    Linear ultrasonic motor is driven by the interface friction between the stator and the slider. The performance of the motor is significantly affected by the contact state between the stator and slider which depends considerably on the morphology of the contact interface. A novel fiction model is developed to evaluate the output characteristics of a linear ultrasonic motor. The proposed model, where the roughness and plastic deformation of contact surfaces are considered, differs from the previous spring model. Based on the developed model, the effects of surface roughness parameters on motor performance are investigated. The behavior of the force transmission between the stator and the slider is studied to understand the driving mechanism. Furthermore, a comparison between the proposed model and the spring model is made. An experiment is designed to verify the feasibility and effectiveness of this proposed model by comparing the simulation results with the measured one. The results show that the proposed model is more accurate than the spring model. These discussions will be very useful for the improvement of control and the optimal design of linear ultrasonic motor.

  20. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  1. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  2. Effect of surface diffusion on morphology and scaling properties during glancing angle deposition

    Science.gov (United States)

    Mukherjee, Srijit

    The objective of this research work is to study the effect of surface diffusion on the morphology of porous thin films grown by Glancing Angle Deposition (GLAD) wherein atomic shadowing is the dominant physical phenomenon responsible for growth of isolated nano-rod structures. The morphology has been analyzed in terms of change in the width of the nanorods w at a given height h as well as changes in scaling relations as a function of diffusion length scale. Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. GLAD experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for metallic systems when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20 +/- 0.03) x Tm and an activation energy for diffusion on curved surfaces of (2.46 +/- 0.02) x kTm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. Metallic nanorods grown by GLAD at Ts = 300--1123 K exhibit self-affine scaling, where the average rod width w increases with height h according to w ∝ h p. The growth exponent p for the investigated metals (Ta, Nb, Cr and Al) varies with temperature and material but collapses onto a single curve when plotted against the homologous temperature theta = Ts/Tm. It decreases from p = 0.5 at theta = 0 to 0.39 at theta = 0.22, consistent with reported theoretical predictions, but exhibits a transition to an anomalous value of p = 0.7 at theta = 0.26, followed by a decrease to 0.33 at theta = 0.41. The change in the scaling relations has been related to changes in the surface roughness of the

  3. Tailoring Macromolecular Structure of Cationic Polymers towards Efficient Contact Active Antimicrobial Surfaces

    Directory of Open Access Journals (Sweden)

    Rubén Tejero

    2018-02-01

    Full Text Available The aim of this work is the preparation of contact active antimicrobial films by blending copolymers with quaternary ammonium salts and polyacrylonitrile as matrix material. A series of copolymers based on acrylonitrile and methacrylic monomers with quaternizable groups were designed with the purpose of investigating the influence of their chemical and structural characteristics on the antimicrobial activity of these surfaces. The biocide activity of these systems was studied against different microorganisms, such as the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Pseudomona aeruginosa and the yeast Candida parapsilosis. The results confirmed that parameters such as flexibility and polarity of the antimicrobial polymers immobilized on the surfaces strongly affect the efficiency against microorganisms. In contrast to the behavior of copolymers in water solution, when they are tethered to the surface, the active cationic groups are less accessible and then, the mobility of the side chain is critical for a good contact with the microorganism. Blend films composed of copolymers with high positive charge density and chain mobility present up to a more than 99.999% killing efficiency against the studied microorganisms.

  4. Minimization of contact resistance between metal and polymer by surface doping

    International Nuclear Information System (INIS)

    Mukherjee, A K; Thakur, A K; Takashima, W; Kaneto, K

    2007-01-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude

  5. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  6. Adaptive local surface refinement based on LR NURBS and its application to contact

    Science.gov (United States)

    Zimmermann, Christopher; Sauer, Roger A.

    2017-12-01

    A novel adaptive local surface refinement technique based on Locally Refined Non-Uniform Rational B-Splines (LR NURBS) is presented. LR NURBS can model complex geometries exactly and are the rational extension of LR B-splines. The local representation of the parameter space overcomes the drawback of non-existent local refinement in standard NURBS-based isogeometric analysis. For a convenient embedding into general finite element codes, the Bézier extraction operator for LR NURBS is formulated. An automatic remeshing technique is presented that allows adaptive local refinement and coarsening of LR NURBS. In this work, LR NURBS are applied to contact computations of 3D solids and membranes. For solids, LR NURBS-enriched finite elements are used to discretize the contact surfaces with LR NURBS finite elements, while the rest of the body is discretized by linear Lagrange finite elements. For membranes, the entire surface is discretized by LR NURBS. Various numerical examples are shown, and they demonstrate the benefit of using LR NURBS: Compared to uniform refinement, LR NURBS can achieve high accuracy at lower computational cost.

  7. Minimization of contact resistance between metal and polymer by surface doping

    Science.gov (United States)

    Mukherjee, A. K.; Thakur, A. K.; Takashima, W.; Kaneto, K.

    2007-03-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude.

  8. Simple surface sulfonation retards plasticiser migration and impacts upon blood/material contact activation processes.

    Science.gov (United States)

    Gourlay, Terence; Shedden, Laurie; Horne, David; Stefanou, Demetrios M

    2010-01-01

    The use of Di-2-ethylhexyl phthalate (DEHP) plasticised polyvinyl chloride (DEHPPPVC) in medical devices persists despite evidence suggesting that DEHP migration can be harmful. Researchers have shown that a simple surface sulfonation process can retard the migration of DEHP, which may reduce the associated inflammatory response. The present study is designed to investigate the effects of surface sulfonation on DEHP migration and blood contact activation using in vitro and rodent models. The study was carried out in two phases: phase 1, in which the migration rate of DEHP from DEHPPPVC and sulfonated DEHP plasticised PVC (SDEHPPPVC) was measured; phase 2 of the study, in which the materials were incorporated into a rat recirculation biomaterial test model and blood samples taken to assess CD11b expression on neutrophils, IL-6 and Factor XIIa. The initial DEHP concentration washed from the surface after storage was 37.19 +/- 1.17 mg/l in the PPVC group and 5.89 +/- 0.81 mg/l in the SPPVC group (psulfonation process significantly retards the migration of DEHP and is associated with the moderation of contact activation processes.

  9. Insights into the interactions among Surfactin, betaines, and PAM: surface tension, small-angle neutron scattering, and small-angle X-ray scattering study.

    Science.gov (United States)

    Xiao, Jingwen; Liu, Fang; Garamus, Vasil M; Almásy, László; Handge, Ulrich A; Willumeit, Regine; Mu, Bozhong; Zou, Aihua

    2014-04-01

    The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.

  10. Non-contact metrology of aspheric surfaces based on MWLI technology

    Science.gov (United States)

    Berger, G.; Petter, J.

    2013-09-01

    A non-contact optical scanning metrology solution measuring aspheric surfaces is presented, which is based on multi wavelength interferometry (MWLI). The technology yields high density 3D data in short measurement times (including set up time) and provides high, reproducible form measurement accuracy. It measures any asphere without restrictions in terms of spherical departures. In addition, measurement of a large variety of special optics is enabled, such as annular lenses, segmented optics, optics with diffractive steps, ground optics, optics made of opaque and transparent materials, and small and thin optics (e.g. smart phone lenses). The measurement instrument can be used under production conditions.

  11. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  12. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  13. Theoretical research of some parameters of contact area of wheel cutting surface and workpiece at flat face grinding with preliminary inclination of spindle axis

    Directory of Open Access Journals (Sweden)

    I. N. Pyzhov

    2016-12-01

    Full Text Available Theoretical researches that have made it possible to obtain the analytical dependences connecting the parameters of contact area of wheel cutting surface such as length, width, arc length, form deviation of flat surface and workpiece under conditions of flat face grinding with preliminary inclination of spindle axis have been carried out. The paper shows the role of the angle of preliminary inclination of spindle axis, grinding depth and the wheel diameter in the grinding process. It allows correctly determining the value of the transverse feed (in multiple-pass processing which, as it is known, should be conformed to the value of the contact width of the wheel cutting surface and workpiece. It guarantees that on the machined surface there will be no areas unaffected by the wheel. In case of through grinding the obtained theoretical dependences help to determine the processing conditions, taking into account the allowable values of form deviation of flat surface. All this makes it possible to improve the process of flat face grinding and thereby expand its technological capabilities.

  14. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    Science.gov (United States)

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  15. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella and Escherichia coli 0157:H7

    Science.gov (United States)

    Cross-contamination of fresh produce from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its ability to remove biofilms f...

  16. Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations.

    Science.gov (United States)

    Craft, David; Monz, Michael

    2010-02-01

    To introduce a method to simultaneously explore a collection of Pareto surfaces. The method will allow radiotherapy treatment planners to interactively explore treatment plans for different beam angle configurations as well as different treatment modalities. The authors assume a convex optimization setting and represent the Pareto surface for each modality or given beam set by a set of discrete points on the surface. Weighted averages of these discrete points produce a continuous representation of each Pareto surface. The authors calculate a set of Pareto surfaces and use linear programming to navigate across the individual surfaces, allowing switches between surfaces. The switches are organized such that the plan profits in the requested way, while trying to keep the change in dose as small as possible. The system is demonstrated on a phantom pancreas IMRT case using 100 different five beam configurations and a multicriteria formulation with six objectives. The system has intuitive behavior and is easy to control. Also, because the underlying linear programs are small, the system is fast enough to offer real-time exploration for the Pareto surfaces of the given beam configurations. The system presented offers a sound starting point for building clinical systems for multicriteria exploration of different modalities and offers a controllable way to explore hundreds of beam angle configurations in IMRT planning, allowing the users to focus their attention on the dose distribution and treatment planning objectives instead of spending excessive time on the technicalities of delivery.

  17. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator.

    Science.gov (United States)

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W

    2017-03-15

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  18. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  19. Non-invasive objective and contemporary methods for measuring ocular surface inflammation in soft contact lens wearers - A review.

    Science.gov (United States)

    Chao, Cecilia; Richdale, Kathryn; Jalbert, Isabelle; Doung, Kim; Gokhale, Moneisha

    2017-10-01

    Contact lens wear is one of the primary risk factors for the development of ocular surface inflammatory events. The purpose of this review is to examine and summarize existing knowledge on the mechanisms of contact lens related ocular surface inflammation and the evidence for the effectiveness of current objective methods to measure ocular surface inflammation. Contact lens wear is postulated to trigger an inflammatory response on the ocular surface due to mechanical, chemical, hypoxic stress, or by the introduction of microbes and their toxins. Apart from the traditional signs of inflammation, such as swelling, oedema, redness and heat, on the ocular surface, other methods to measure ocular surface inflammation in sub-clinical levels include tear inflammatory mediator concentrations, conjunctival cell morphology, and corneal epithelial dendritic cell density and morphology. Tear inflammatory mediator concentrations are up- or down-regulated during contact lens wear, with or without the presence of associated inflammatory events. There is higher conjunctival cell metaplasia observed with contact lens wear, but changes in goblet cell density are inconclusive. Dendritic cell density is seen to increase soon after initiating soft contact lens wear. The long term effects of contact lens wear on dendritic cell migration in the cornea and conjunctiva, including the lid wiper area, require further investigation. Currently patient factors, such as age, smoking, systemic diseases and genetic profile are being studied. A better understanding of these mechanisms may facilitate the development of new management options and strategies to minimize ocular surface inflammation related to contact lens wear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  1. Analysis of tightening process of bolted joint with tensioner. Effects of incorrect geometry at contact surface

    International Nuclear Information System (INIS)

    Fukuoka, Toshimichi

    1996-01-01

    In tightening critical structural members such as pressure vessels of nuclear reactors and chemical plants and important parts of diesel engines, a hydraulic tensioner is widely used because of its high accuracy in controlling clamping force. The ratio of the desired clamping force to initial tension, which is termed the effective tensile coefficient, is the most important factor to be predicted in the actual operation of given joint configurations. It is reported, however, that a certain amount of scatter in clamping force cannot be avoided. In this paper, an elementary approach to analyze the tightening process is proposed using spring elements, where the effects of incorrect geometry at contact surface on the coefficient are taken into account. The influences of pitch error and flatness deviation at the nut-loaded surface are discussed. Finally, a simple equation for estimating the coefficient is presented, where the major factors influencing scatter in clamping force are considered. (author)

  2. Electronic states localized at surface defects on Cu(755) studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Ogawa, K; Namba, H

    2003-01-01

    'Regularly stepped' and 'defective' surfaces of Cu(755) were prepared by low- and high-temperature annealing, respectively, of a clean specimen. Electronic states on both surfaces were studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation. On the defective Cu(755), we found a new photoelectron peak due to surface defects just below the Fermi level. The dispersion profile of the defect state is derived to be almost flat, which demonstrates the localized nature of the defects. High activity to oxygen adsorption of the defect state was revealed. (author)

  3. Study on initial stage of hetero-epitaxial growth by glancing angle scattering of fast ions from surfaces

    International Nuclear Information System (INIS)

    Fujii, Yoshikazu; Toba, Kazuaki; Narumi, Kazumasa; Kimura, Kenji; Mannami, Michihiko

    1993-01-01

    Initial stages of epitaxial growth of lead chalcogenides on the (100) surface of SnTe under UHV conditions are studied from the angular distribution of scattered ions at glancing angle incidence of 0.7 MeV He ions on the growing surfaces. Real time measurement of the angular distribution is performed during the growth. Anomalous broadening of the angular distribution is observed at the initial stage of the growth. The broadening is attributed to the surface wrinkles induced by a square network of misfit edge dislocations. (author)

  4. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  5. Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria

    Directory of Open Access Journals (Sweden)

    Olufemi Oludayo Faleke

    2017-03-01

    Full Text Available This study was carried out to determine Salmonella contamination of food contact surfaces and processing water in meat, fish and poultry processing units in Sokoto State, Nigeria. A total of 200 swab (100 from abattoir and 100 from poultry and fish markets and 60 processing water samples (30 from abattoir and 30 from poultry and fish markets were collected between May to August 2015. Cultural isolation, bio-typing and sero-grouping using Salmonella Sero-Quick Group Kit was conducted to analyse the samples. Seventy-five (75/260, 28.8 % of the total samples were positive to Salmonella by cultural isolation and bio-typing. Thirty (30/130; 23.1 % of samples collected in abattoir and 45 (45/130; 34.6 % of those collected from poultry and fish markets were positive for Salmonella respectively. Sero-groups D+Vi (Salmonella Typhi, B (Salmonella Paratyphi B, Salmonella Typhimurium and C (Salmonella Paratyphi C, Salmonella Cholerae suis were identified as the prevailing sero-groups in this study. Sero-group D+Vi has the highest prevalence (73.3 %; 55/75 from the positive bio-typing isolates. This study revealed the presence of contaminating and pathogenic Salmonella on food contact surfaces and processing water in the meat retail markets, indicating there is an urgent need to improve on the hygienic status of retail meat, poultry and fish markets.

  6. Microbial survival on food contact surfaces in the context of food hygiene regulation

    International Nuclear Information System (INIS)

    Stuart-Moonlight, Belinda Isobel

    2001-01-01

    Bacterial food poisoning causes substantial suffering and financial loss worldwide. One way organisms enter foods is via cross contamination directly or indirectly from structural and food contact surfaces. An 'in situ' method was developed for the detection of surviving bacteria on surfaces. Samples of test surfaces were overlaid with agar and after incubation, colonies were visualised by reaction with nitroblue tetrazolium, which was reduced to a purple insoluble dye. It was shown that the death of bacteria applied as liquid films to surfaces, occurred largely at the point of drying. For impervious surfaces (ceramic, stainless steel, glass and polystyrene), surface type had little effect on survival. In contrast, survival was markedly affected by the nature of the suspension fluid in which cells were dried. In deionised water, survival was low and for Gram negative organisms was strongly influenced by cell density. Where cells were dried in simulated food films (containing brain heart infusion, NaCI, serum or sucrose), survival values increased with increasing concentrations and approached 100% for Staphylococcus aureus cells suspended in 10% w/v sucrose. The survival of Gram positive organisms on impervious surfaces was generally greater than for Gram negative organisms and consistent with this observation, scanning electron microscopy indicated that Gram negative cells collapsed during drying. On wood surfaces, survival was generally similar to or higher than on impervious surfaces. However, neither of the Gram positive organisms tested (Staphylococcus aureus and Listeria monocytogenes) could be recovered following inoculation onto the surface of the African hard-wood, iroko, although Gram negative organisms survived well. Scanning electron microscopy confirmed that cells had not been adsorbed below the wood surface and an ethanol-soluble toxic factor was extracted from iroko, which killed Staphylococcus aureus cells, but had no effect on the viability of

  7. Study on the surface of fluorosilicone acrylate RGP contact lens treated by low-temperature nitrogen plasma

    International Nuclear Information System (INIS)

    Ren Li; Yin Shiheng; Zhao Lianna; Wang Yingjun; Chen Hao; Qu Jia

    2008-01-01

    In order to improve the surface hydrophilicity of fluorosilicone acrylate rigid gas permeable (RGP) contact lens, low temperature nitrogen plasma was used to modify the lens surface. Effects of plasma conditions on the surface structures and properties were investigated. Results indicated that the surface hydrophilicity of RGP contact lens was significantly improved after treatment. X-ray photoelectron spectroscopy (XPS) results showed that the nitrogen element was successfully incorporated into the surface. Furthermore, some new bonds such as N-C=O, F - and silicate were formed on the lens surface after nitrogen plasma treatment, which could result in the improvement of the surface hydrophilicity. Scanning electronic microscope (SEM) results indicated that nitrogen plasma with moderate power could make the surface smoother in some degree, while plasma with higher power could etch the surface

  8. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  9. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Gustavo, E-mail: gustavo_mendonca@dentistry.unc.edu [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Universidade Catolica de Brasilia, Curso de Odontologia, Taguatinga/DF (Brazil); Baccelli Silveira Mendonca, Daniela [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil) and Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto [Departmento de Quimica, Universidade Federal de Sao Carlos-UFSCAR, Rod. Washington Luiz, 13565-905 Sao Carlos, SP (Brazil); Golin, Alexsander Luiz [Departmento de Engenharia Mecanica, Faculdade de Engenharia Mecanica, Pontificia Universidade Catolica de Curitiba, Curitiba, PR (Brazil); Aragao, Francisco J.L. [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Introducao e Expressao de Genes, PqEB W5 Norte, 70770-900, Brasilia, DF (Brazil); Cooper, Lyndon F., E-mail: lyndon_cooper@dentistry.unc.edu [Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States)

    2011-12-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p {<=} 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 {+-} 2.5, 11.3 {+-} 2.4, 11.1 {+-} 3.5, 9.7 {+-} 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p < 0.05). Nanostructured topographic features composed of TiO{sub 2} or ZrO{sub 2} applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: {yields} Nanostructured surfaces using a sol-gel technique coated cpTi with TiO{sub 2} or ZrO{sub 2}. {yields} Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. {yields} Nanofeatures improved the differentiation of rat MSCs into osteoblasts. {yields} Nanofeatures improved increased bone-to-implant contact and

  10. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    International Nuclear Information System (INIS)

    Mendonca, Gustavo; Baccelli Silveira Mendonca, Daniela; Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto; Golin, Alexsander Luiz; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p ≤ 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 ± 2.5, 11.3 ± 2.4, 11.1 ± 3.5, 9.7 ± 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p 2 or ZrO 2 applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: → Nanostructured surfaces using a sol-gel technique coated cpTi with TiO 2 or ZrO 2 . → Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. → Nanofeatures improved the differentiation of rat MSCs into osteoblasts. → Nanofeatures improved increased bone-to-implant contact and removal torque values. → TiO 2 or ZrO 2 nanofeatures improved the biological response of machined titanium.

  11. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.

    Science.gov (United States)

    Semchyschyn, Darlene J; Macdonald, Peter M

    2004-02-01

    The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a

  12. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    Science.gov (United States)

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    Science.gov (United States)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  14. Coupled resonances allow studying the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles.

    Science.gov (United States)

    Peschel, Astrid; Langhoff, Arne; Johannsmann, Diethelm

    2015-12-04

    Interparticle contacts and contacts between particles and surfaces are known to change over time. The contact area, the contact stiffness, and the contact strength usually increase as the contact ages. Contact aging is mostly driven by capillary forces, but also by plastic deformation. Making use of acoustic resonators, we have studied the stiffness of contacts between the surface of a quartz crystal microbalance (QCM) and individual, micrometer-sized particles adsorbed to the resonator surface. Studying single particles avoids ensemble-averaging. Central to the analysis is the coupled resonance, occurring when a surface-attached particle together with the link forms a resonator of its own. If the frequency of this second resonator comes close to one of the crystal's overtones, plots of shifts in resonance bandwidth versus overtone order display a resonance curve. This secondary resonance is caused by the coupling between the particle's resonance and the main resonance. One can read the frequency of the coupled resonance from this plot. Similarly, resonance curves are observed in plots of frequency and bandwidth versus time, if the contact stiffness varies smoothly with time. Because the coupled resonance is a characteristic feature, it is easily identified even in cases where frequency shifts of some other origin are superimposed onto the data. For the cases studied here, the links stiffened while they dried. Interestingly, the efficiency of coupling between the particle resonance and the main resonance decreased at the same time. This can be explained with an increase in the link's bending stiffness. The analysis highlights that a QCM experiment amounts to vibrational spectroscopy on surface-attached particles. Among the application examples is the adsorption and drying of a lycopodium spore. Clearly, the technique is also applicable to problems of bioadhesion.

  15. Constraining MODIS snow albedo at large solar zenith angles: Implications for the surface energy budget in Greenland

    OpenAIRE

    Wang, Xianwei; Zender, Charles S

    2010-01-01

    An understanding of the surface albedo of high latitudes is crucial for climate change studies. MODIS albedo retrievals flagged as high-quality compare well with in situ Greenland Climate Network (GC-Net) measurements but cover too small an area to fully characterize Greenland's albedo in nonsummer months. In contrast, poor quality MODIS retrievals provide adequate spatiotemporal coverage, but are not recommended for use at large solar zenith angles (SZAs) where they have a systematic low bia...

  16. An Investigation Into Time Domain Features of Surface Electromyography to Estimate the Elbow Joint Angle

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available In literature, it is well established that feature extraction and pattern classification algorithms play essential roles in accurate estimation of the elbow joint angle. The problem with these algorithms, however, is that they require a learning stage to recognize the pattern as well as capture the variability associated with every subject when estimating the elbow joint angle. As EMG signals can be used to represent motion, we developed a non-pattern recognition method to estimate the elbow joint angle based on twelve time-domain features extracted from EMG signals recorded from bicep muscles alone. The extracted features were smoothed using a second order Butterworth low pass filter to produce the estimation. The accuracy of the estimated angles was evaluated by using the Pearson’s Correlation Coefficient (PCC and Root Mean Square Error (RMSE.The regression parameters (Euclidean distance, R^2 and slope were calculated to observe the response of the features to the elbow-joint angle. From the investigation, we found, in the period of motion 10s, MYOP features have the best accuracy: 0.97±0.02 (Mean±SD and 11.37±3.04˚ (Mean±SD for correlation coefficient and RMSE respectively. MYOP features also showed the highest R^2 and slope value 0.986±0.0083 (Mean±SD and 0.746±0.17 (Mean±SD respectively for flexion and extension motion and all periods of motion.

  17. Electrostatic characterisation of inhaled powders: effect of contact surface and relative humidity.

    Science.gov (United States)

    Elajnaf, Abdulmagid; Carter, Paul; Rowley, Geoff

    2006-12-01

    Electrostatic charge accumulation on drug and excipient powders arising from interparticulate collisions or contacts between particles and other solid surfaces often leads to agglomeration and adhesion problems during the manufacture and use of dry powder inhaler (DPI) formulations. The aim of this work was to investigate the role of triboelectrification in particle interactions between micronised drug (salbutamol sulphate or ipratropium bromide monohydrate) and excipient (alpha-lactose monohydrate, 63-90 microm) during mixing in cylindrical vessels constructed from stainless steel, polypropylene and acetal under selected relative humidity (rh) conditions (0-86%). The charge was found to depend on both the nature of the powders and the mixing vessel surface. In addition, coating the vessels with drug or excipient removed the influence of the vessel material on charge generation, thus providing a technique to investigate interactions between the drug and excipient substances. A triboelectric series of all materials used, placed ipratropium at the positive end and polypropylene at the negative end. Micronised drug profoundly altered the charging properties of lactose in drug (1.46%, w/w)/lactose DPI formulations. An increase in rh in the range 0-86% produced a corresponding decrease in charge and adhesion values for each drug, lactose and DPI formulation during triboelectrification with each mixing vessel surface. The results provide increased knowledge of the role of electrostatics in DPI technology.

  18. Contact mechanics and elastohydrodynamic lubrication in a novel metal-on-metal hip implant with an aspherical bearing surface.

    Science.gov (United States)

    Meng, Qingen; Gao, Leiming; Liu, Feng; Yang, Peiran; Fisher, John; Jin, Zhongmin

    2010-03-22

    Diameter and diametral clearance of the bearing surfaces of metal-on-metal hip implants and structural supports have been recognised as key factors to reduce the dry contact and hydrodynamic pressures and improve lubrication performance. On the other hand, application of aspherical bearing surfaces can also significantly affect the contact mechanics and lubrication performance by changing the radius of the curvature of a bearing surface and consequently improving the conformity between the head and the cup. In this study, a novel metal-on-metal hip implant employing a specific aspherical bearing surface, Alpharabola, as the acetabular surface was investigated for both contact mechanics and elastohydrodynamic lubrication under steady-state conditions. When compared with conventional spherical bearing surfaces, a more uniform pressure distribution and a thicker lubricant film thickness within the loaded conjunction were predicted for this novel Alpharabola hip implant. The effects of the geometric parameters of this novel acetabular surface on the pressure distribution and lubricant thickness were investigated. A significant increase in the predicted lubricant film thickness and a significant decrease in the dry contact and hydrodynamic pressures were found with appropriate combinations of these geometric parameters, compared with the spherical bearing surface. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  20. Crystalline misfit-angle implications for solid sliding

    International Nuclear Information System (INIS)

    Manini, Nicola; Braun, O.M.

    2011-01-01

    For the contact of two finite portions of interacting rigid crystalline surfaces, we compute the pinning energy barrier dependency on the misfit angle and contact area. This simple model allows us to investigate a broad contact-size and angular range, thus obtaining the statistical properties of the energy barriers opposing sliding for a single asperity. These data are used to generate the distribution of static frictional thresholds for the contact of polycrystals, as in dry or even lubricated friction. This distribution is used as the input of a master equation to predict the sliding properties of macroscopic contacts. -- Highlights: → The pinning energy barrier depends on the misfit angle and contact area. → We compute this dependence for a idealized rigid model. → We obtain a distribution of static frictional thresholds. → It is used as input of a master-equation model for macroscopic surfaces in contact. → Overall we predict a transition from stick-slip to smooth sliding.

  1. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  2. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.