WorldWideScience

Sample records for surface-tilt stimuli consisted

  1. Impaired perception of surface tilt in progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Marian L Dale

    Full Text Available Progressive supranuclear palsy (PSP is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality.We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson's Disease (PD and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance.Perception of toes up (but not toes down surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated and subjects with PD (p≤0.03 standing, p≤0.04 seated. Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts.Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP.

  2. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  3. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  4. Transient cardio-respiratory responses to visually induced tilt illusions

    Science.gov (United States)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  5. Research on calculation of the IOL tilt and decentration based on surface fitting.

    Science.gov (United States)

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration) and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6-12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL's location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  6. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-01-01

    Full Text Available The tilt and decentration of intraocular lens (IOL result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentration and the scanned angle, at which a piece of AS-OCT image was taken by the instrument, the IOL tilt and decentration were calculated. IOL tilt angle and decentration of each subject were given. Moreover, the horizontal and vertical tilt was also obtained. Accordingly, the possible errors of IOL tilt and decentration existed in the method employed by AS-OCT instrument. Based on 6–12 pieces of AS-OCT images at different directions, the tilt angle and decentration values were shown, respectively. The method of the surface fitting to the IOL surface can accurately analyze the IOL’s location, and six pieces of AS-OCT images at three pairs symmetrical directions are enough to get tilt angle and decentration value of IOL more precisely.

  7. Monitoring of Cyclic Steam Stimulation by Inversion of Surface Tilt Measurements

    Science.gov (United States)

    Maharramov, M.; Zoback, M. D.

    2014-12-01

    Temperature and pressure changes associated with the cyclic steam simulation (CSS) used in heavy oil production from sands are accompanied by significant deformation. Inversion of geomechanical data may provide a potentially powerful reservoir monitoring tool where geomechanical effects are significant. Induced pore pressure changes can be inverted from measurable surface deformations by solving an inverse problem of poroelasticity. In this work, we apply this approach to estimating pore pressure changes from surface tilt measurements at a heavy oil reservoir undergoing cyclic steam simulation. Steam was injected from November 2007 through January 2008. Surface tilt measurements were collected from 25 surface tilt stations during this period. The injection ran in two overlapping phases: Phase 1 ran from the beginning of the injection though mid-December, and Phase 2 overlapped with Phase 1 and ran through the beginning of January. During Phase 1 steam was injected in the western part of the reservoir, followed by injection in the eastern part in Phase 2. The pore pressure evolution was inverted from daily tilt measurements using regularized constrained least squares fitting, the results are shown on the plot. Estimated induced pore pressure change (color scale), observed daily incremental tilts (green arrows) and modeled daily incremental tilts (red arrows) are shown in three panels corresponding to two and five weeks of injection, and the end of injection period. DGPS measurements available for a single location were used as an additional inversion constraint. The results indicate that the pore pressure increase in the reservoir follows the same pattern as the steam injection, from west to east. This qualitative behaviour is independent of the amount of regularization, indirectly validating our inversion approach. Patches of lower pressure appear to be stable with regard to regularization and may provide valuable insight into the efficiency of steam injection

  8. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.

    Science.gov (United States)

    Yang, Tong; Cheng, Dewen; Wang, Yongtian

    2018-03-19

    Aberration theory helps designers to better understand the nature of imaging systems. However, the existing aberration theory of freeform surfaces has many limitations. For example, it only works in the special case when the central area of the freeform surface is used. In addition, the light footprint is limited to a circle, which does not match the case of an elliptical footprint for general systems. In this paper, aberrations generated by freeform surface term overlay on general decentered and tilted optical surfaces are analyzed. For the case when the off-axis section of a freeform surface is used, the aberration equation for using stop and nonstop surfaces is discussed, and the aberrations generated by Zernike terms up to Z 17/18 are analyzed in detail. To solve the problem of the elliptical light footprint for tilted freeform surfaces, the scaled pupil vector is used in the aberration analysis. The mechanism of aberration transformation is discovered, and the aberrations generated by different Zernike terms in this case are calculated. Finally we proposed aberration equations for freeform terms on general decentered and tilted freeform surfaces. The research result given in this paper offers an important reference for optical designers and engineers, and it is of great importance in developing analytical methods for general freeform system design, tolerance analysis, and system assembly.

  9. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    Science.gov (United States)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  10. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  11. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  12. Research on Calculation of the IOL Tilt and Decentration Based on Surface Fitting

    OpenAIRE

    Li, Lin; Wang, Ke; Yan, Yan; Song, Xudong; Liu, Zhicheng

    2013-01-01

    The tilt and decentration of intraocular lens (IOL) result in defocussing, astigmatism, and wavefront aberration after operation. The objective is to give a method to estimate the tilt and decentration of IOL more accurately. Based on AS-OCT images of twelve eyes from eight cases with subluxation lens after operation, we fitted spherical equation to the data obtained from the images of the anterior and posterior surfaces of the IOL. By the established relationship between IOL tilt (decentrati...

  13. Effective wave tilt and surface impedance over a laterally inhomogeneous two-layer earth

    International Nuclear Information System (INIS)

    Hughes, W.J.; Wait, J.R.

    1975-01-01

    Using a perturbation method, the effect of a simple two-dimensional model on the electromagnetic fields at the surface of the Earth is considered for a postulated downcoming plane wave. The calculated change in the surface impedance and wave tilt due to lateral inhomogeneities is examined. It is found that the magnetic wave tilt (H/sub z//H/sub x/) is most seriously affected by such anomalies. This may have important consequences on electromagnetic probing of nonuniform portions of the Earth's crust

  14. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  15. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  16. Contribution of diffuser surfaces to efficiency of tilted T shape parallel highway noise barriers

    Directory of Open Access Journals (Sweden)

    N. Javid Rouzi

    2009-04-01

    Full Text Available Background and aimsThe paper presents the results of an investigation on the acoustic  performance of tilted profile parallel barriers with quadratic residue diffuser tops and faces.MethodsA2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to  improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined  receiver positions.Results Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier  improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is  found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in  parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of thequadratic residue diffuser is reduced significantly. In this case all the designed barriers have better  performance with 10 degrees tilting in parallel set up.ConclusionThe most economic traffic noise parallel barrier, which produces significantly  high performance, is achieved by covering the top surface of the barrier closed to the receiver by  just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average Aweighted  insertion loss in this barrier is predicted to be 16.3 dB (A.

  17. More Falls in Cerebellar Ataxia When Standing on a Slow Up-Moving Tilt of the Support Surface.

    Science.gov (United States)

    Paquette, Caroline; Franzén, Erika; Horak, Fay B

    2016-06-01

    We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 min after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 min after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derive from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface.

  18. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  19. Optimum Tilt Angle at Tropical Region

    Directory of Open Access Journals (Sweden)

    S Soulayman

    2015-02-01

    Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.

  20. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  1. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  2. Human cutaneous vascular responses to whole-body tilting, Gz centrifugation, and LBNP

    Science.gov (United States)

    Watenpaugh, Donald E.; Breit, Gregory A.; Buckley, Theresa M.; Ballard, Richard E.; Murthy, Gita; Hargens, Alan R.

    2004-01-01

    We hypothesized that gravitational stimuli elicit cardiovascular responses in the following order with gravitational stress equalized at the level of the feet, from lowest to highest response: short-(SAC) and long-arm centrifugation (LAC), tilt, and lower body negative pressure (LBNP). Up to 15 healthy subjects underwent graded application of the four stimuli. Laser-Doppler flowmetry measured regional skin blood flow. At 0.6 G(z) (60 mmHg LBNP), tilt and LBNP similarly reduced leg skin blood flow to approximately 36% of supine baseline levels. Flow increased back toward baseline levels at 80-100 mmHg LBNP yet remained stable during 0.8-1.0 G(z) tilt. Centrifugation usually produced less leg vasoconstriction than tilt or LBNP. Surprisingly, SAC and LAC did not differ significantly. Thigh responses were less definitive than leg responses. No gravitational vasoconstriction occurred in the neck. All conditions except SAC increased heart rate, according to our hypothesized order. LBNP may be a more effective and practical means of simulating cardiovascular effects of gravity than centrifugation.

  3. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  4. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  5. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  6. Evaluation of the performance of three diffuse hourly irradiation models on tilted surfaces according to the utilizability concept

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.

  7. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations

    OpenAIRE

    Tymko, Michael M.; Rickards, Caroline A.; Skow, Rachel J.; Ingram?Cotton, Nathan C.; Howatt, Michael K.; Day, Trevor A.

    2016-01-01

    Abstract Steady?state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end?tidal carbon dioxide (PETCO 2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head?up tilt (HUT; decreased central blood volume and intracranial pressure) and head?down tilt (HDT; increased ce...

  8. Optimum tilt angle and orientation for solar collectors in Syria

    International Nuclear Information System (INIS)

    Skeiker, Kamal

    2009-01-01

    One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

  9. Main Lobe Control of a Beam Tilting Antenna Array Laid on a Deformable Surface

    Directory of Open Access Journals (Sweden)

    Giulia Mansutti

    2018-01-01

    Full Text Available The projection method (PM is a simple and low-cost pattern recovery technique that already proved its effectiveness in retrieving the radiation properties of different types of arrays that change shape in time. However, when dealing with deformable beam-tilting arrays, this method requires to compute new compensating phase shifts every time that the main lobe is steered, since these shifts depend on both the deformation geometry and the steering angle. This tight requirement causes additional signal processing and complicates the prediction of the array behavior, especially if the deformation geometry is not a priori known: this can be an issue since the PM is mainly used for simple and low-cost systems. In this letter, we propose a simplification of this technique for beam-tilting arrays that requires only basic signal processing. In fact the phase shifts that we use are the sum of two components: one can be directly extracted from strain sensor data that measure surface deformation and the other one can be precomputed according to basic antenna theory. The effectiveness of our approach has been tested on two antennas: a 4 × 4 array (trough full-wave simulations and measurements and on an 8 × 8 array (trough full-wave simulations placed on a doubly wedge-shaped surface with a beam tilt up to 40 degrees.

  10. Simulations of Micropumps Based on Tilted Flexible Fibers

    Science.gov (United States)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  11. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  12. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  13. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  14. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  15. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    Science.gov (United States)

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  17. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    Science.gov (United States)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P heat-stressed humans.

  18. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    Science.gov (United States)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  19. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels

    International Nuclear Information System (INIS)

    Lubitz, William David

    2011-01-01

    Hourly typical meteorological year (TMY3) data was utilized with the Perez radiation model to simulate solar radiation on fixed, azimuth tracking and two axis tracking surfaces at 217 geographically diverse temperate latitude sites across the contiguous United States of America. The optimum tilt angle for maximizing annual irradiation on a fixed south-facing panel varied from being equal to the latitude at low-latitude, high clearness sites, to up to 14 o less than the latitude at a north-western coastal site with very low clearness index. Across the United States, the optimum tilt angle for an azimuth tracking panel was found to be on average 19 o closer to vertical than the optimum tilt angle for a fixed, south-facing panel at the same site. Azimuth tracking increased annual solar irradiation incident on a surface by an average of 29% relative to a fixed south-facing surface at optimum tilt angle. Two axis tracking resulted in an average irradiation increase of 34% relative to the fixed surface. Introduction of manual surface tilt changes during the year produced a greater impact for non-tracking surfaces than it did for azimuth tracking surfaces. Even monthly tilt changes only resulted in an average annual irradiation increase of 5% for fixed panels and 1% for azimuth tracked surfaces, relative to using a single optimized tilt angle in each case. In practice, the decision whether to manually tilt panels requires balancing the added cost in labor and the panel support versus the extra energy generation and the cost value of that energy. A spreadsheet file is available that gives individual results for each of the 217 simulated sites.

  20. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    Science.gov (United States)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with

  1. Documentation of programs that compute 1) static tilts for a spatially variable slip distribution, and 2) quasi-static tilts produced by an expanding dislocation loop with a spatially variable slip distribution

    Science.gov (United States)

    McHugh, Stuart

    1976-01-01

    The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.

  2. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    NARCIS (Netherlands)

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  3. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    Science.gov (United States)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  4. Optimal tilt-angles for solar collectors used in China

    International Nuclear Information System (INIS)

    Tang Runsheng; Wu Tong

    2004-01-01

    A reasonable estimation of the optimal tilt angle of a fixed collector for maximizing its energy collection must be done based on the monthly global and diffuse radiation on a horizontal surface. However, the monthly diffuse radiation is not always available in many places. In this paper, a simple mathematical procedure for the estimation of the optimal tilt angle of a collector is presented based on the monthly horizontal radiation. A comparison of the optimal tilt angles of collectors obtained from expected monthly diffuse radiation and that from the actual monthly diffuse radiation showed that this method gives a good estimation of the optimal tilt angle, except for places with a considerably lower clearness index. A contour map of the optimal tilt angle of the south-facing collectors used for the entire year in China is also outlined, based on monthly horizontal radiation of 152 places around the country, combing the optimal tilt angle of another 30 cities based on the actual monthly diffuse radiation

  5. Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels

    International Nuclear Information System (INIS)

    Despotovic, Milan; Nedic, Vladimir

    2015-01-01

    Highlights: • Optimum yearly, biannual, seasonal, monthly, and daily tilt angles were found. • Energy collected per square meter is compared for ten different scenarios. • Four seasonal scenarios and two biannual scenarios were considered. • It is sufficient to adjust tilt angles only twice per year. - Abstract: The amount of energy that is transformed in solar collector depends on its tilt angle with respect to horizontal plane and orientation of the collector. In this article the optimum tilt angle of solar collectors for Belgrade, which is located at the latitude of 44°47′N is determined. The optimum tilt angle was found by searching for the values for which the solar radiation on the collector surface is maximum for a particular day or a specific period. In that manner the yearly, biannual, seasonal, monthly, fortnightly, and daily optimum tilt angles are determined. Annually collected energy per square meter of tilted surface is compared for ten different scenarios. In addition, these optimum tilt angles are used to calculate the amount of energy on the surface of PV panels that could be installed at the roof of the building. The results show that for observed case study placing the panels at yearly, seasonal and monthly optimum tilt angles, would yield increasing yearly amount of collected energy by factor of 5.98%, 13.55%, and 15.42% respectively compared to energy that could be collected by putting the panels at current roofs’ surface angles

  6. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  8. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  9. Dynamic of charged planar geometry in tilted and non-tilted frames

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk [University of the Punjab, Department of Mathematics (Pakistan)

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  10. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures.

    Science.gov (United States)

    Schargott, M

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  11. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Energy Technology Data Exchange (ETDEWEB)

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  12. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    International Nuclear Information System (INIS)

    Schargott, M

    2009-01-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface

  13. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Mirza Toluei, F.; Afshar, A.; Salarilak, S.; Sina, A.

    2005-01-01

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  14. Tilt testing results are influenced by tilt protocol.

    Science.gov (United States)

    Zyśko, Dorota; Fedorowski, Artur; Nilsson, David; Rudnicki, Jerzy; Gajek, Jacek; Melander, Olle; Sutton, Richard

    2016-07-01

    It is unknown how the return to supine position influences duration of loss of consciousness (LOC) and cardioinhibition during tilt test. Retrospective analysis of two datasets containing records of patients who underwent tilt testing for unexplained syncope in two centres was performed. Patients, totalling 1232, were included in the study: 262 in a Swedish centre and 970 patients in a Polish centre. In Sweden, tilt table with tilt-down time (TDT) of 18 s was used (Group II). In Poland, two different tilt tables were used, one of them with TDT of 10 s (Group I, n = 325), and the other with TDT of 47 s (Group III, n = 645). Cardioinhibitory reflex occurred most frequently in Group III, whereas number of pauses >3 s, frequency of very long asystole ≥30 s, and the total duration of pauses >3 s demonstrated a trend to increase from Group I to III. Duration of LOC in Groups II and III was significantly longer compared with Group I (32.0 and 33.7 s vs. 16.4 s). In the multivariate-adjusted regression model, cardioinhibitory reflex was predicted by tilt-table model (odds ratio per model with increasing TDT: 1.40; 95% confidence interval, 1.19-1.64; P < 0.0001), whereas LOC duration was longer with increasing TDT (P < 0.0001) and age (P < 0.0001). Longer TDT during induced vasovagal syncope increases the prevalence of cardioinhibitory reflex and prolongs the duration of LOC. Tilt-down time does not affect asystolic pause duration but delay may lead to occurrence of multiple pauses, higher frequency of very long asystole, and longer total asystole duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Efficacy of tilt training in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Mazurek, Walentyna

    2006-06-01

    Besides pharmacological therapy and pacemaker implantation, tilt training is a promising method of treatment in patients with vasovagal syncope (VVS). Tilt training is usually offered to patients with malignant or recurrent VVS which impairs their quality of life and carries a risk of injury. To assess the efficacy of tilt training in patients with VVS. The study group consisted of 40 patients (29 females, 11 males, aged 36.6+/-14 years, range 18-57 years) who underwent tilt training using tilt table testing according to the Westminster protocol. The mean number of syncopal episodes prior to the initiation of tilt training was 6.5+/-4.9 (range 0-20); 3 patients had a history of very frequent faints. According to the VASIS classification, type I VVS (mixed) was diagnosed in 17 patients, type II (cardioinhibitory) in 22 subjects, and type III (vasodepressive) in one patient. Mean follow-up duration was 35.1+/-13.5 months. The control group, which did not undergo the tilt testing programme, consisted of 29 patients with VVS (25 females, 4 males, mean age 44.2+/-15.0 years) who had a mean of 3.3+/-3.2 (range 0-12) syncopal episodes in the past (p <0.05 vs study group); 6 of these patients had only pre-syncopal episodes. Type I VVS was diagnosed in 23 controls and type II VVS in 6 control subjects (syncope occurred during the passive phase of tilt testing in 7 subjects, whereas the remaining 22 fainted during NTG infusion). Of the patients from the study group, 3 underwent pacemaker implantation at the time of the initiation of tilt training. At the end of follow-up, 31 (77.5%) patients remained free from syncope recurrences, 5 had syncopal episodes during the initial phase of tilt training, whereas the remaining 4 continued to suffer from syncopal episodes. Out of 3 patients with presyncope, 2 had no syncope recurrences whereas 1 patient continued to have presyncopal attacks. Out of 3 patients with pacemakers, 1 reported activation of pacing in the interventional mode

  16. Gravity influences the visual representation of object tilt in parietal cortex.

    Science.gov (United States)

    Rosenberg, Ari; Angelaki, Dora E

    2014-10-22

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction. Copyright © 2014 the authors 0270-6474/14/3414170-11$15.00/0.

  17. Crustal-scale tilting of the central Salton block, southern California

    Science.gov (United States)

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  18. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  19. Properties of HTS YBCO thin films deposited on tilted NdGaO3 substrates

    International Nuclear Information System (INIS)

    Nurgaliev, T.; Donchev, T.; Mateev, E.; Miteva, S.; Mozhaev, P.B.; Mozhaeva, J.E.

    2005-01-01

    Thin YBa 2 Cu 3 O 7 films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO 3 substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and ∼8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles (θ ∼ 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces

  20. Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study

    International Nuclear Information System (INIS)

    Ramli, Makbul A.M.; Twaha, Ssennoga; Al-Turki, Yusuf A.

    2015-01-01

    Highlights: • The performance of SVM and ANN in predicting solar radiation was investigated. • Optimum result was obtained with 16° and 37.5° tilt angles for Jeddah and Qassim. • RMSE, CC, and MRE statistical measures have been used to evaluate the performance. • SVM has significantly higher accuracy, is faster and robust during computation. - Abstract: In this paper, investigation of the performance of a support vector machine (SVM) and artificial neural networks (ANN) in predicting solar radiation on PV panel surfaces with particular tilt angles was carried out on two sites in Saudi Arabia. The diffuse, direct, and global solar radiation data on a horizontal surface were used as the basis for predicting the radiation on a tilted surface. The amount of data used is equivalent to 360 days, averaged from the 5-min basis data. By solving the tilt angle equation, an optimum value of solar radiation was obtained using a tilt angle of 16° and 37.5° for Jeddah and Qassim locations, respectively. The evaluation of performance and comparison of results of ANN as well as SVM and the measured/calculated data are made on the basis of statistical measures including the root mean square error (RMSE), coefficient of correlation (CC), and magnitude of relative error (MRE). The speed of computation of the algorithms is also considered for comparison. Results indicate that for Jeddah, the CC for SVM is between 0.918 and 0.967 for training and in the range of 0.91981–0.97641 for testing while that of ANN is in the range of 0.517–0.9692 for training and 0.0361–0.0961 for testing. For Qassim, the results are even better with CC of 0.999 for training and 0.987 for testing ANN showed higher values of MRE ranging between 0.19 and 1.16 and SVM is between 0.33 and 0.51 for training and testing respectively. In terms of speed of computation, it is observed that SVM is faster than ANN in predicting solar radiation data with a lower speed of 2.15 s compared to 4.56 s for ANN

  1. Mathematical Formalism for Designing Wide-Field X-Ray Telescopes: Mirror Nodal Positions and Detector Tilts

    Science.gov (United States)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.

  2. Quaternary Tectonic Tilting Governed by Rupture Segments Controls Surface Morphology and Drainage Evolution along the South-Central Coast of Chile

    Science.gov (United States)

    Echtler, H. P.; Bookhagen, B.; Melnick, D.; Strecker, M.

    2004-12-01

    The Chilean coast represents one of the most active convergent margins in the Pacific rim, where major earthquakes (M>8) have repeatedly ruptured the surface, involving vertical offsets of several meters. Deformation along this coast takes place in large-scale, semi-independent seismotectonic segments with partially overlapping transient boundaries. They are possibly related to reactivated inherited crustal anisotropies; internal seismogenic deformation may be accommodated by structures that have developed during accretionary wedge evolution. Seismotectonic segmentation and the identification of large-scale rupture zones, however, are based on limited seismologic und geodetic observations over short timespans. In order to better define the long-term behavior and deformation rates of these segments and to survey the tectonic impact on the landscape on various temporal and spatial scales, we investigated the south-central coast of Chile (37-38S). There, two highly active, competing seismotectonic compartments influence the coastal and fluvial morphology. A rigorous analysis of the geomorphic features is a key for an assessment of the tectonic evolution during the Quaternary and beyond. We studied the N-S oriented Santa María Island (SMI), 20 km off the coast and only ~70km off the trench, in the transition between the two major Valdivia (46-37S) and Concepción (38-35S) rupture segments. The SMI has been tectonically deformed throughout the Quaternary and comprises two tilt domains with two topographic highs in the north and south that are being tilted eastward. The low-lying and flat eastern part of the island is characterized by a set of emergent Holocene strandlines related to coseismic uplift. We measured detailed surface morphology of these strandlines and E-W traversing ephemeral stream channels with a laser-total station and used these data to calibrate and validate high-resolution, digital imagery. In addition, crucial geomorphic markers were dated by the

  3. Properties of HTS YBCO thin films deposited on tilted NdGaO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria)]. E-mail: timur@ie.bas.bg; Donchev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Miteva, S. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mozhaev, P.B. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation); Mozhaeva, J.E. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation)

    2005-03-15

    Thin YBa{sub 2}Cu{sub 3}O{sub 7} films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO{sub 3} substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and {approx}8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles ({theta} {approx} 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces.

  4. Robust tilt and lock mechanism for hopping actuator

    Energy Technology Data Exchange (ETDEWEB)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.; Marron, Lisa C.; Salisbury, Curt Michael; Spletzer, Barry Louis

    2017-02-07

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of the grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.

  5. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  6. Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Riyad Mubarak

    2017-10-01

    Full Text Available This work assesses the performance of five transposition models that estimate the global and diffuse solar irradiance on tilted planes based on the global horizontal irradiance. The modelled tilted irradiance values are compared to measured one-minute values from pyranometers and silicon sensors tilted at different angles at Hannover (Germany and NREL (Golden, CO, USA. It can be recognized that the deviations of the model of Liu and Jordan, Klucher and Perez from the measurements increases as the tilt angle increases and as the sensors are oriented away from the south direction, where they receive lower direct radiation than south-oriented surfaces. Accordingly, the vertical E, W and N planes show the highest deviation. Best results are found by the models from Hay and Davies and Reindl, when horizontal pyranometer measurements and a constant albedo value of 0.2 are used. The relative root mean squared difference (rRMSD of the anisotropic models does not exceed 11% for south orientation and low inclination angles (β = 10–60°, but reaches up to 28.9% at vertical planes. For sunny locations such as Golden, the Perez model provides the best estimates of global tilted irradiance for south-facing surfaces. The relative mean absolute difference (rMAD of the Perez model at NREL ranges from 4.2% for 40° tilt to 8.7% for 90° tilt angle, when horizontal pyranometer measurements and a measured albedo value are used; the use of measured albedo values instead of a constant value of 0.2 leads to a reduction of the deviation to 3.9% and 6.0%, respectively. The use of higher albedo values leads to a significant increase of rMAD. We also investigated the uncertainty resulting from using horizontal pyranometer measurements, in combination with constant albedo values, to estimate the incident irradiance on tilted photovoltaic (PV modules. We found that these uncertainties are small or negligible.

  7. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    Science.gov (United States)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  8. On the Design of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels

    2007-01-01

    Pockets are often machined in the surfaces of tilting-pad thrust bearings to allow for hydrostatic jacking in the start-up phase. Pockets and other recesses in the surfaces of bearing pads influence the pressure distribution and thereby the position of the pivot resulting in the most advantageous...... based on the Reynolds equation are used. They include the effects of variations of viscosity with temperature and the deformation of the bearing pads due to pressure and thermal gradients. The models are validated using measurements. Tilting-pad bearings of standard design are studied and the influences...... of the friction loss. Both this bearing and the bearing design with enclosed recesses in the high-pressure regions of the pads suffer from a higher sensitivity to the position of the pivot. The design of such bearing is therefore no trivial task....

  9. Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.

    Science.gov (United States)

    Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, ptest (ptest for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.

  10. CONTRIBUTION OF QUADRATIC RESIDUE DIFFUSERS TO EFFICIENCY OF TILTED PROFILE PARALLEL HIGHWAY NOISE BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam ، P. Nassiri

    2009-10-01

    Full Text Available This paper presents the results of an investigation on the acoustic performance of tilted profile parallel barriers with quadratic residue diffuser (QRD tops and faces. A 2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined receiver positions. Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase in the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of the quadratic residue diffuser is reduced significantly. In this case all the designed barriers have better performance with 10 degrees tilting in parallel set up. The most economic traffic noise parallel barrier which produces significantly high performance, is achieved by covering the top surface of the barrier closed to the receiver by just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average A-weighted insertion loss in this barrier is predicted to be 16.3 dB (A.

  11. Tilted dipole model for bias-dependent photoluminescence pattern

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, Ichiro, E-mail: fujieda@se.ritsumei.ac.jp; Suzuki, Daisuke; Masuda, Taishi [Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu 525-8577 (Japan)

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  12. Method to fabricate a tilted logpile photonic crystal

    Science.gov (United States)

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  13. Consistent pattern in positional instability of polyfocal full-optics accommodative IOL.

    Science.gov (United States)

    Kim, Yu Cheol; Kang, Kyung Tae; Yeo, Youngdo; Kim, Ki-San; Siringo, Frank S

    2017-12-01

    We describe cases of dislocation or subluxation of the WIOL-CF ® polyfocal full-optics intraocular lens (IOL) and suggest a consistent pattern and possible mechanism for the IOL instability. This is a retrospective case series of five consecutive eyes in three patients with WIOL-CF ® IOL instability at Keimyung University Dongsan Medical Center and Kimkisan Eye Center from 2012 to 2014. The medical records and ocular exam data for these patients were analyzed. A 50-year-old male had uneventful phacoemulsification in both eyes with WIOL-CF ® IOL implantation. At 27 months after surgery, the patient was referred to our clinic with a dislocated IOL in the left eye. The IOL in the right eye was dislocated in the same pattern 38 months after cataract surgery. Another 50-year-old male, who had phacoemulsification and WIOL-CF ® IOL implantation in both eyes, was referred to our clinic following diagnosis of a subluxated IOL. Both IOLs were well centered; however, the infranasal aspect of the IOLs tilted posteriorly, and the supratemporal portion the IOLs tilted anteriorly, with overlying iris atrophy in a symmetric pattern. The inferonasal continuous curvilinear capsulorrhexis (CCC) edge was dragged superotemporally, and the supratemporal CCC edge was identified on the posterior surface of the IOL. A 16-year-old female had uneventful phacoemulsification and WIOL-CF ® IOL implantation to treat a cataract in the right eye, and 3 years later, the IOL tilted with the same pattern as the previous case. Years after uncomplicated phacoemulsification, an implanted WIOL-CF ® IOL may tilt and dislocate in the absence of trauma, in a consistent and characteristic pattern.

  14. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  16. On the Design of Tilting-Pad Thrust Bearings

    OpenAIRE

    Heinrichson, Niels; Santos, Ilmar

    2007-01-01

    Pockets are often machined in the surfaces of tilting-pad thrust bearings to allow for hydrostatic jacking in the start-up phase. Pockets and other recesses in the surfaces of bearing pads influence the pressure distribution and thereby the position of the pivot resulting in the most advantageous pad convergence ratio. In this thesis, a theoretical approach is applied in the attempt to quantify the influence of recesses in the pad surfaces. The recesses may be relatively deep and enclosed as ...

  17. Estimating 3D tilt from local image cues in natural scenes

    OpenAIRE

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then ana...

  18. Analysis of slippery droplet on tilted plate by development of optical correction method

    Science.gov (United States)

    Ko, Han Seo; Gim, Yeonghyeon; Choi, Sung Ho; Jang, Dong Kyu; Sohn, Dong Kee

    2017-11-01

    Because of distortion effects on a surface of a sessile droplet, the inner flow field of the droplet is measured by a PIV (particle image velocimetry) method with low reliability. In order to solve this problem, many researchers have studied and developed the optical correction method. However, the method cannot be applied for various cases such as the tilted droplet or other asymmetric shaped droplets since most methods were considered only for the axisymmetric shaped droplets. For the optical correction of the asymmetric shaped droplet, the surface function was calculated by the three-dimensional reconstruction using the ellipse curve fitting method. Also, the optical correction using the surface function was verified by the numerical simulation. Then, the developed method was applied to reconstruct the inner flow field of the droplet on the tilted plate. The colloidal droplet of water on the tilted surface was used, and the distorted effect on the surface of the droplet was calculated. Using the obtained results and the PIV method, the corrected flow field for the inner and interface parts of the droplet was reconstructed. Consequently, the error caused by the distortion effect of the velocity vector located on the apex of the droplet was removed. National Research Foundation (NRF) of Korea, (2016R1A2B4011087).

  19. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  20. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  1. Substorm onset location and dipole tilt angle

    Directory of Open Access Journals (Sweden)

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  2. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  3. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  4. Runoff velocity behaviour on smooth pavement and paving blocks surfaces measured by a tilted plot

    Directory of Open Access Journals (Sweden)

    Sedyowati Laksni

    2017-06-01

    Full Text Available Paving blocks have been widely known as an alternative technology for reducing runoff discharge due to their infiltration performance and capability of retarding the flow. Surface configuration of the different paving blocks types and the openings area play important role in decreasing the runoff velocity. In this study, we investigated the surface runoff velocity on two types of paving blocks layers, and a smooth pavement as comparison. The paving blocks type were rectangular blocks, which have 3.2% openings ratio and hexagonal blocks, which have 6.5% openings ratio. We used a tilted plot covering area of 2 × 6 m, equipped by a rainfall simulator to accommodate the variation of surface slope and rainfall intensity. We measured the velocity by using modification of dye tracer and buoyancy method. The data were then tabulated and graphed based on the paving types and the surface slopes. Generally, the velocity-slope relationship has demonstrated that the increase in surface slope leads to the increase in velocity. In this study, the result showed that slope and rainfall intensity simultaneously influenced the velocity (F = 19.91 > Ftable = 5.14; P < 0.05. However, the findings of this study showed a weak relationship between the changes of surface slope and the changes of runoff velocity on the rectangular blocks (R2 = 0.38. The greater slope did not always invariably lead to the greater runoff velocity. It was likely that there was other predictor variable that was not identified before, and need to be further investigated.

  5. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  6. Emotion attribution to basic parametric static and dynamic stimuli

    NARCIS (Netherlands)

    Visch, V.; Goudbeek, M.B.; Cohn, J.; Nijholt, A.; Pantic, P.

    2009-01-01

    The following research investigates the effect of basic visual stimuli on the attribution of basic emotions by the viewer. In an empirical study (N = 33) we used two groups of visually minimal expressive stimuli: dynamic and static. The dynamic stimuli consisted of an animated circle moving

  7. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz.

    Science.gov (United States)

    Rosowski, John J; Cheng, Jeffrey Tao; Ravicz, Michael E; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-07-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f>4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined.

  8. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    International Nuclear Information System (INIS)

    Kumar, Rahul; Bag, Ankush; Mukhopadhyay, Partha; Das, Subhashis; Biswas, Dhrubes

    2015-01-01

    Highlights: • InGaAs graded MBs with different grading scheme has been grown by MBE on GaAs. • Continuously graded MB exhibits smoother surface morphology. • Grading scheme has been found to have little impact on lattice relaxation. • Grading schemeaffects the lattice tilt significantly. • Cross-hatch surface irregularities affect the crystallographic tilt. - Abstract: InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  9. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: rkp203@gmail.com [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bag, Ankush [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Mukhopadhyay, Partha [Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology, Kharagpur 721302 (India); Das, Subhashis [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Biswas, Dhrubes [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2015-12-01

    Highlights: • InGaAs graded MBs with different grading scheme has been grown by MBE on GaAs. • Continuously graded MB exhibits smoother surface morphology. • Grading scheme has been found to have little impact on lattice relaxation. • Grading schemeaffects the lattice tilt significantly. • Cross-hatch surface irregularities affect the crystallographic tilt. - Abstract: InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  10. Fluid observers and tilting cosmology

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Lim, W C

    2006-01-01

    We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

  11. Evaluating Tilt for Wind Farms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew; Fleming, Paul

    2017-06-29

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array, the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.

  12. Consistent and robust determination of border ownership based on asymmetric surrounding contrast.

    Science.gov (United States)

    Sakai, Ko; Nishimura, Haruka; Shimizu, Ryohei; Kondo, Keiichi

    2012-09-01

    Determination of the figure region in an image is a fundamental step toward surface construction, shape coding, and object representation. Localized, asymmetric surround modulation, reported neurophysiologically in early-to-intermediate-level visual areas, has been proposed as a mechanism for figure-ground segregation. We investigated, computationally, whether such surround modulation is capable of yielding consistent and robust determination of figure side for various stimuli. Our surround modulation model showed a surprisingly high consistency among pseudorandom block stimuli, with greater consistency for stimuli that yielded higher accuracy of, and shorter reaction times in, human perception. Our analyses revealed that the localized, asymmetric organization of surrounds is crucial in the detection of the contrast imbalance that leads to the determination of the direction of figure with respect to the border. The model also exhibited robustness for gray-scaled natural images, with a mean correct rate of 67%, which was similar to that of figure-side determination in human perception through a small window and of machine-vision algorithms based on local processing. These results suggest a crucial role of surround modulation in the local processing of figure-ground segregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  14. ``Smart'' Surfaces of Polymer Brushes

    Science.gov (United States)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  15. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 4; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 4

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.

  16. Tilted cranking classification of multibandspectra

    Energy Technology Data Exchange (ETDEWEB)

    Frauendorf, S [IHK F2-Rossendorf, Dresden (Germany); [Lawrence Berkeley Lab., CA (United States); May, F R [Niels Bohr Inst., Copenhagen (Denmark); [Lund Univ. (Sweden). Dept. of Mathematical Physics

    1992-08-01

    The tilted cranking theory of multi-band spectra of deformed nuclei is discussed. The existence of TDHF (time-dependent Hartree Fock) solutions rotating uniformly about a non-principal axis of the deformed axial potential is demonstrated. The solutions represent {Delta}I=1 bands. Self-consistency and symmetry are discussed. The transfer of experimental spectra to the rotating field of reference is introduced. Excitation spectra at high spin are calculated, and found to agree well with recent data on {sup 163}Er and {sup 174}Hf. 7 refs., 5 figs.

  17. Estimativa da radiação global incidente em superfícies inclinadas por modelos isotrópicos e índice de claridade Estimation of the incident global radiation on tilted surfaces using isotropic models and clearness index

    Directory of Open Access Journals (Sweden)

    Adilson Pacheco de Souza

    2010-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o desempenho de modelos isotrópicos de estimativa do total de radiação incidente em superfícies inclinadas e propor estimativas com base nas correlações entre os índices de claridade horizontais e inclinados, em diferentes condições de cobertura de céu, em Botucatu, SP. Foram avaliadas superfícies com inclinação de 12,85º, 22,85º e 32,85º, pelos modelos isotrópicos propostos por Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, a teoria Circunsolar, e a correlação entre os índices de claridade horizontais e inclinados, para diferentes condições de cobertura de céu. O banco de dados de radiação global utilizado corresponde ao período de 1998 a 2007, com intervalos de 4/1998 a 8/2001 para a inclinação de 22,85º, de 9/2001 a 2/2003 para 12,85º e de 1/2004 a 12/2007 para 32,85º. O desempenho dos modelos foi avaliado pelos indicadores estatísticos erro absoluto médio, raiz quadrada do quadrado médio do erro e índice "d" de Wilmott. Os modelos de Liu & Jordan, Koronakis e de Revfeim apresentaram os melhores desempenhos em dias nublados, em todas as inclinações. As coberturas de céu parcialmente difuso e parcialmente aberto, nos maiores ângulos de inclinação, apresentaram as maiores dispersões entre valores estimados e medidos, independentemente do modelo. As equações estatísticas apresentaram bons resultados em aplicações com agrupamentos de dados mensais.The objective of this work was to evaluate the performance of isotropic models estimative of the global radiation on tilted surfaces and to propose estimations based on correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions, in Botucatu, SP, Brazil. The isotropic model proposed by Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, the Circunsolar theory and the correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions

  18. Unilateral otolith centrifugation by head tilt.

    Science.gov (United States)

    Winters, Stephanie M; Bos, Jelte E; Klis, Sjaak F L

    2014-01-01

    To test for otolith asymmetries, several studies described horizontal translation of the body and head en bloc during fast vertical axis rotation. This stimulus causes one otolithic organ to rotate on-axis, and the other to experience centripetal acceleration. To test a new, more simple method of unilateral stimulation with head tilt and the body remaining on axis. During stationary and during 360 deg/s rotation, 12 healthy blindfolded subjects had their heads tilted 30 degrees sideways, positioning one otolithic organ on the axis of rotation after the other. The haptic subjective vertical (SV) was recorded several times by means of a manually adjustable rod. It was found that during stationary the SV tilted about 4 degrees on average in the direction of the head. During rotation, the SV tilted about 9 degrees on average. We therefore estimate the effect of eccentric otolith rotation to be 5 degrees on average. Tilt of the subjective vertical induced by head tilt during on-axis body rotation can provide a relatively uncomplicated alternative to test unilateral otolithic function as compared to body and head translation during rotation. Moreover, unlike eccentric rotation of the entire body, somatosensory cues are minimized by keeping the body fixed on axis and by subtracting the effect of head tilt per se.

  19. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    Science.gov (United States)

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

  20. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses

    Directory of Open Access Journals (Sweden)

    Panoraia I. Siafaka

    2016-08-01

    Full Text Available Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined.

  1. Analysis of a ferrofluid core differential transformer tilt measurement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.

    2017-04-15

    In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range. - Highlights: • A ferrofluid core differential transformer can be used to measure tilt. • The theoretical description of two different type of the sensor is introduced. • The measuring range, and the sensitivity depends on the dimensions of the sensor.

  2. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-08-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  3. An iterative fast sweeping based eikonal solver for tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2014-01-01

    Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for first-arrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

  4. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  5. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  6. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  7. Realization of Tip Tilting By 8-Step Line Tilting

    International Nuclear Information System (INIS)

    Chen Yingtian; Zhang Yang; Lim, Boon Ham; Lim, Chen Sin; Hu Sen; Ho, Tso-Hsiu

    2009-01-01

    By direct calculation of rotation matrices of SO(3), we show how certain specific sequence of eight consecutive rotations of digital angles can yield a tilting of a facet mirror. We also design a detailed program specifically to tilt an array of mirrors from planar orientation to the required focusing orientation. We describe how to use the 8-step to realize the focusing of the mirror array. We have found, in our designed program, an important feature of row-sharing during the rotations for the columns and similarly the column-sharing during the rotations for the row. This feature can save a lot of operating time during the actual realization of the mechanical movements.

  8. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  9. Instability of nuclear wobbling motion and tilted axis rotation

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Ohtsubo, Shin-Ichi

    2004-01-01

    We study a possible correspondence between the softening of the wobbling mode and the 'phase transition' of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface for the observed wobbling mode excited on the triaxial superdeformed states in 163 Lu is also analyzed

  10. Tilt measurements at Vulcano Island

    Directory of Open Access Journals (Sweden)

    B. Saraceno

    2007-06-01

    Full Text Available A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years trends in the signals. We suggest a relationship between tilt changes correlated to the strongest regional seismic events and site acceleration; long-term tilt variations analyzed in combination with other ground deformation data seem to represent the evidence of a contraction of the La Fossa cone. We also analyzed how the tilt device has the capability to detect possible magma migrations; we considered previous studies that have imaged spatially well-defined levels of magma accumulation beneath La Fossa, and Vulcanello; we concluded that the Vulcano tilt network should be capable of detecting the upward migration of small magma volumes. Finally, we show that no evidence of changes are visible on tilt signals during anomalous degassing episodes (linked to a building up input of magmatic fluids at the La Fossa thereby evidencing that no magma migration occurred during such events.

  11. Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements

    Science.gov (United States)

    Meng, Xiangning; Suzuki, Ryosuke O.

    2015-06-01

    The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.

  12. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    International Nuclear Information System (INIS)

    Chwalla, M; Fitzsimons, E; Danzmann, K; Fernández Barranco, G; Gerberding, O; Heinzel, G; Lieser, M; Schuster, S; Schwarze, T S; Tröbs, M; Zwetz, M; Killow, C J; Perreur-Lloyd, M; Robertson, D I; Ward, H

    2016-01-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. (paper)

  13. Influence of tilt training on activation of the autonomic nervous system in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna

    2006-04-01

    Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.

  14. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  15. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  16. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  17. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    Science.gov (United States)

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    OpenAIRE

    Sandra dePedro; Xavier Munoz-Berbel; Rosalia Rodríguez-Rodríguez; Jordi Sort; Jose Antonio Plaza; Juergen Brugger; Andreu Llobera; Victor J Cadarso

    2016-01-01

    Stimuli-responsive materials undergo physicochemical and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of polydimethylsiloxane (PDMS)-based stimuli-responsive elastomers (SRE) has seldomly been presented. Here, we present the structural, biological, optical, magnetic, and mechanical properties of several magnetic SRE (M-SRE) obtained...

  19. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  20. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    Science.gov (United States)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  1. Variability in perceived tilt during a roll plane canal-otolith conflict in a gondola centrifuge.

    Science.gov (United States)

    Tribukait, Arne; Bergsten, Eddie; Eiken, Ola

    2013-11-01

    During a simulated coordinated turn in a gondola centrifuge, the perceived roll-tilt, quantified as the subjective visual horizontal (SVH), may differ tenfold between individuals. One aim of this study was to discern whether this variability reflects real individual characteristics or is due to noise or day-to-day variation. We also wanted to establish whether there are any habituation or learning effects of the centrifuge test. In nine nonpilots (NP) and nine student pilots (SP), with a flight experience of 150 h, the SVH was measured using an adjustable luminous line in darkness. At two test occasions (T1, T2) (interval 5-14 d) subjects underwent two runs (R1, R2; acceleration to 2 G in 10 s, gondola inclination 60 degrees, 5 min at 2 G, deceleration to 1 g in 10 s, interval between runs 5 min) in a centrifuge (r = 9.1 m). Initial and final SVH was determined for each individual run. Acceleration of the centrifuge induced a tilt of the SVH. At T1 R1, this SVH tilt was, in NP, initially 24 +/- 18 degrees and finally 8 +/- 10 degrees. The corresponding values for SP were 28 +/- 18 degrees and 31 +/- 33 degrees. The SVH tilt was slightly larger at R2 than at R1. There was no difference between T1 and T2. Reliability coefficients ranged between 0.86 and 0.98 for NP and between 0.78 and 0.99 for SP. The large interindividual variability combined with a very high reproducibility suggests the existence of persistent individual characteristics in the perception of complex vestibular stimuli. Habituation or learning effects of gondola centrifugation appears to be small.

  2. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  3. Why is it so difficult to tilt Uranus?

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-04-01

    The leading hypothesis for the origin of Uranus' large obliquity (98°) is a polar strike from an Earth sized object, but to tilt Saturn similarly would require an impactor roughly 10x as massive. A more likely cause for Saturn's tilt (27°) is a spin-orbit resonance with Neptune (Ward & Hamilton, 2004; Hamilton & Ward, 2004); might the same process work for Uranus? It initially seems unlikely, as at its current location Uranus' axial precession period is too long to resonate with any of the giant planets' orbital precession frequencies. If we place Uranus between Jupiter and Saturn, however, then Uranus' spin axis would precess much more quickly. Thommes et al. (1999, 2002, 2003) first postulated that Uranus and Neptune were formed between Jupiter and Saturn because the conditions there allow the ice giants to be built rapidly. A resonance for our closer Uranus still requires a distant planet, nevertheless, a condition that can be satisfied if Neptune is ejected from Jupiter and Saturn first with Uranus following significantly later. This scenario, while contrived, is consistent with at least some versions of the Nice model and allows us to fully test the resonance hypothesis. We discovered that even with these optimistic assumptions, i) a resonance capture requires a migration timescale on the order of 100 Myr, and ii) it is impossible to tilt Uranus past 90°. Increasing Neptune's migration speed precludes resonant capture, and instead results in a resonance kick. In the most favorable cases, a resonance kick could raise Uranus' obliquity by 40° on a time span of about 50 Myr. We conclude that even in our best scenario, a resonance cannot fully account for Uranus' tilt. We have investigated some scenarios that include both resonances and collisions, and will report on our findings.

  4. Control of Pan-tilt Mechanism Angle using Position Matrix Method

    Directory of Open Access Journals (Sweden)

    Hendri Maja Saputra

    2013-12-01

    Full Text Available Control of a Pan-Tilt Mechanism (PTM angle for the bomb disposal robot Morolipi-V2 using inertial sensor measurement unit, x-IMU, has been done. The PTM has to be able to be actively controlled both manually and automatically in order to correct the orientation of the moving Morolipi-V2 platform. The x-IMU detects the platform orientation and sends the result in order to automatically control the PTM. The orientation is calculated using the quaternion combined with Madwick and Mahony filter methods. The orientation data that consists of angles of roll (α, pitch (β, and yaw (γ from the x-IMU are then being sent to the camera for controlling the PTM motion (pan & tilt angles after calculating the reverse angle using position matrix method. Experiment results using Madwick and Mahony methods show that the x-IMU can be used to find the robot platform orientation. Acceleration data from accelerometer and flux from magnetometer produce noise with standard deviation of 0.015 g and 0.006 G, respectively. Maximum absolute errors caused by Madgwick and Mahony method with respect to Xaxis are 48.45º and 33.91º, respectively. The x-IMU implementation as inertia sensor to control the Pan-Tilt Mechanism shows a good result, which the probability of pan angle tends to be the same with yaw and tilt angle equal to the pitch angle, except a very small angle shift due to the influence of roll angle..

  5. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    Science.gov (United States)

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  6. Tilting-induced decrease in systolic blood pressure in bedridden hypertensive elderly inpatients: effects of azelnidipine.

    Science.gov (United States)

    Morimoto, Shigeto; Takahashi, Takashi; Okaishi, Kohya; Nakahashi, Takeshi; Nomura, Kohji; Kanda, Tsugiyasu; Okuro, Masashi; Murai, Hiroshi; Nishino, Tomoichi; Matsumoto, Masayuki

    2006-12-01

    The object of this study was to examine blood pressure (BP) variability due to postural change in elderly hypertensive patients. The subjects studied were 154 elderly inpatients in a hospital for the elderly (48 male and 106 female; median age: 82 years), consisting of age- and sex-matched bedridden (n=39) and non-bedridden (n=39) normotensive controls and bedridden (n=38) and non-bedridden (n=38) hypertensive patients. BP and pulse rate (PR) were measured in the supine position, then again after a 2-min, 45 deg head-up tilt with the legs horizontal. The decrease in systolic BP (SBP) on tilting in the bedridden hypertensive group (median: -10 mmHg; range: -32 to 9 mmHg) was significantly (pbedridden hypertensive group. Our findings indicate that tilt-induced decrease in SBP is a rather common phenomenon in bedridden elderly hypertensive patients, and that treatment with azelnidipine attenuates tilt-induced decrease in SBP, probably through an improvement of baroreceptor sensitivity.

  7. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  8. Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults.

    Science.gov (United States)

    Wall, Conrad; Wrisley, Diane M; Statler, Kennyn D

    2009-07-01

    The purpose of this study was to determine the effectiveness of vibrotactile feedback of body tilt in improving dynamic gait index (DGI) a fall risk indicator in community dwelling older adults. Twelve healthy elderly subjects (three males and nine females, age 79.7+/-5.4 yrs) were tested in an institutional balance rehabilitation laboratory to investigate changes between the feedback off and on conditions. Subjects were acutely exposed to a vibrotactile display that indicated the magnitude and direction of their body tilt from the vertical. DGI and mediolateral (ML) sway were determined during locomotion with, and without, vibrotactile tilt feedback (VTTF). All subjects were at risk for falls based on their initial DGI Score (range: 15-19, mean 17.4+/-1.56), which was taken with the vibratory stimulus turned off. Subjects learned to use the trunk tilt information from the vibrotactile feedback vest through 20-30 min of gait and balance training consisting of activities that challenged their balance. Subjects were then retested on the DGI. Statistically significant changes were demonstrated for the DGI total score while using the vibrotactile tilt feedback. DGI total scores improved from 17.1+/-0.4 to 20.8+/-0.3 (pfall risk indicators for this population.

  9. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  10. Group behavioural responses of Atlantic salmon (Salmo salar L. to light, infrasound and sound stimuli.

    Directory of Open Access Journals (Sweden)

    Samantha Bui

    Full Text Available Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low or no light (control. Sound experiments included exposure to infrasound (12 Hz, a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.

  11. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  12. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations.

    Science.gov (United States)

    Tymko, Michael M; Rickards, Caroline A; Skow, Rachel J; Ingram-Cotton, Nathan C; Howatt, Michael K; Day, Trevor A

    2016-09-01

    Steady-state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end-tidal carbon dioxide (PETCO2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head-up tilt (HUT; decreased central blood volume and intracranial pressure) and head-down tilt (HDT; increased central blood volume and intracranial pressure), and LBNP on cerebral blood flow (CBF) responses. We hypothesized that (a) cerebral blood velocity (CBV; an index of CBF) responses during LBNP would not change with HUT and HDT, and (b) CBV in the anterior cerebral circulation would decrease to a greater extent compared to posterior CBV during LBNP when controlling PETCO2 In 13 male participants, we measured CBV in the anterior (middle cerebral artery, MCAv) and posterior (posterior cerebral artery, PCAv) cerebral circulations using transcranial Doppler ultrasound during LBNP stress (-50 mmHg) in three body positions (45°HUT, supine, 45°HDT). PETCO2 was measured continuously and maintained at constant levels during LBNP through coached breathing. Our main findings were that (a) steady-state tilt had no effect on CBV responses during LBNP in both the MCA (P = 0.077) and PCA (P = 0.583), and (b) despite controlling for PETCO2, both the MCAv and PCAv decreased by the same magnitude during LBNP in HUT (P = 0.348), supine (P = 0.694), and HDT (P = 0.407). Here, we demonstrate that there are no differences in anterior and posterior circulations in response to LBNP in different body positions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.

    2008-01-01

    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  14. Spheromak tilting and its stability control

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.

    1983-01-01

    Spheromak tilting instability was studied. A numerical technique to create a rather arbitrarily-shaped spheromak like the one with a flux hole was investigated. The dynamics governing the tilting instability, namely, the influence of the magnetic index, the toroidal current (q-profile) and the resistivity upon the tilting growth rate, and the roles of magnetc reconnection upon the nonlinear development were studied. The best way to control the tilting instability was invented. The stabilizing effects of the vertical wall, the isolated conducting cylindrical belt, and the horizontal wall were studied. Central pole stabilization was also investigated. The influence of the wall condition, namely, whether the wall acted as a flux conserver in the spheromak creation stage or not is discussed. The present study has shown that the three- dimensional simulation is indeed useful and practical in not only studying the underlying physics but also finding a stabilization technique of spheromaks. (Kato, T.)

  15. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2013-01-01

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  16. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  17. Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Qi, Yabing; Ratera, Imma; Park, Jeong Y.; Ashby, Paul D.; Quek, Su Ying; Neaton, J. B.; Salmeron, Miquel

    2007-11-12

    The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAM) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant {beta} = 0.57 {+-} 0.03 {angstrom}{sup -1} was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of {approx} 1 {angstrom}{sup -1} found when the separation is changed by changing the length of the alkanethiol molecules. Calculations indicate that for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

  18. 19 years of tilt data on Mt. Vesuvius: state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Ciro Ricco

    2013-11-01

    Full Text Available Mt. Vesuvius, located along the SW border of the Campania Plane graben, is one of the most studied volcanoes worldwide, from both the volcanological and the geophysical, geochemical and geodetic point of view. In order to better understand its dynamics, the deformation of the volcano has been already studied since the early ’70s by setting up levelling lines and, since a few years later, through trilateration networks, whereas ground tilt monitoring started in 1993. Tilt variations were recorded by an automatic surface station set up at the Osservatorio Vesuviano (O.V. bunker (OVO and data recorded were transmitted to the O.V. Surveillance Centre in Naples. Afterwards, in 1996 two more identical stations were set up close to Torre del Greco (CMD, and close to Trecase (TRC. In 2002 the data acquisition system was replaced, while at the end of 2011 a Lily borehole sensor was set up at 26 m depth, replacing the old TRC tilt station. The paper describes in details the tilt network of Mt. Vesuvius, its development over time and the data processing procedure; moreover, the ground deformation pattern is discussed, as inferred from the study of 19 years of data and its change during the seismic crises of 1995-1996 and 1999-2000. From the information obtained from the tiltmetric monitoring, a complex deformation pattern can be deduced, strongly dependent on the position of the sites in which the sensors were set up with respect to the morphology of the volcanic edifice and its structural outlines. If we consider the signals as they were recorded, although previously corrected for the influences of the thermo-elastic strain on the sensors, the tilting occurs mainly in the SW direction with rates of about 11 µradians/year on both the western and eastern flanks and of about 13 µradians/year on the southern one. Because tilt vectors point in the long term outward from the summit and towards the subsiding area, this supports the hypothesis of a southern

  19. System for the Automatic Estimation of the Tilt Angle of a Flat Solar Collector

    Directory of Open Access Journals (Sweden)

    Jorge Fonseca-Campos

    2017-08-01

    Full Text Available In this work, a compact system for the automatic estimation of the tilt angle at any location of the world is presented. The system components are one computer, one GPS receiver and one Python program. The tilt angle is calculated through the maximization of the flux of direct radiation incident upon a flat solar collector. An estimation of the adjustments of this angle at different time periods are obtained. This angle is calculated in steps of six minutes during a whole year. Daily, monthly, biannually and yearly averages of this value are obtained. A comparison of the energetic gain when the tilt angle changes at the different time periods is made as well. Because, the algorithm doesn’t receive as an input the solar radiation incident upon a surface at the location of the calculation, a comparison was made between the results obtained and the results reported for the monthly tilt angle of 22 different places. The root mean square error obtained with this comparison was between 1.5 and 9.5 degrees. The monthly tilt angle estimated deviated in average for less than 6.3° with respect to the values reported for the different locations. Finally, the application of a correction factor in the monthly estimated angles is proposed, which might increase the collected energy.

  20. Tilt stability and compression heating studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.

    1990-01-01

    The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs

  1. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  2. Perception of self-tilt in a true and illusory vertical plane

    Science.gov (United States)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  3. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin; Yarman, Can Evren; Flagg, Garret

    2015-01-01

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken's extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  4. An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media

    KAUST Repository

    Waheed, Umair bin

    2015-03-30

    Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.

  5. Anagrus breviphragma Soyka Short Distance Search Stimuli

    Directory of Open Access Journals (Sweden)

    Elisabetta Chiappini

    2015-01-01

    Full Text Available Anagrus breviphragma Soyka (Hymenoptera: Mymaridae successfully parasitises eggs of Cicadella viridis (L. (Homoptera: Cicadellidae, embedded in vegetal tissues, suggesting the idea of possible chemical and physical cues, revealing the eggs presence. In this research, three treatments were considered in order to establish which types of cue are involved: eggs extracted from leaf, used as a control, eggs extracted from leaf and cleaned in water and ethanol, used to evaluate the presence of chemicals soluble in polar solvents, and eggs extracted from leaf and covered with Parafilm (M, used to avoid physical stimuli due to the bump on the leaf surface. The results show that eggs covered with Parafilm present a higher number of parasitised eggs and a lower probing starting time with respect to eggs washed with polar solvents or eggs extracted and untreated, both when the treatments were singly tested or when offered in sequence, independently of the treatment position. These results suggest that the exploited stimuli are not physical due to the bump but chemicals that can spread in the Parafilm, circulating the signal on the whole surface, and that the stimuli that elicit probing and oviposition are not subjected to learning.

  6. Vortex trapping by tilted columnar defects

    International Nuclear Information System (INIS)

    Baladie, I.; Buzdin, A.

    2000-01-01

    The irradiation of high-T c superconductors by inclined heavy-ion beam can create columnar defects (CD's) practically at any angle towards the crystal c axis. We calculate the energy of a tilted vortex trapped on an inclined columnar defect within the framework of an electromagnetic model. Under a weak perpendicular magnetic field, and if the CD radius is larger than the superconducting coherence length, vortices always prefer to be on a tilted CD than to be aligned along the external field. We calculate also the interaction energy between two tilted vortices and find that large attractive regions appear. In particular, in the plane defined by c axis and the CD axis, tilted vortices attract each other at long distances, leading to the formation of vortex chains. The equilibrium distance between vortices in a chain is of the order of the magnitude of the in-plane London penetration depth. The existence of the inclined trapped vortices could be revealed by torque measurements, and could also lead to the anisotropy of the in-plane resistivity and the critical current

  7. Lake-tilting investigations in southern Sweden

    International Nuclear Information System (INIS)

    Paasse, T.

    1996-04-01

    The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs

  8. Transverse Seebeck and Peltier effect in tilted metal-semiconductor multilayer structures

    International Nuclear Information System (INIS)

    Reitmaier, Christina

    2012-01-01

    Whether in aerospace, automobile industry or in home appliances, thermoelectric effects find use in many areas of technology. This work deals with the investigation of a special form of these effects, the transversal Seebeck- and Peltier effect. Via modelling under variation of the sample parameters the cooling efficiencies, the attainable temperature differences and the Figures of merit are optimised and than suitable samples are produced according to these specifications. With these tilted metal semiconductor multilayer structures consisting of lead and bismuth telluride a transversal Peltier effect is observed. Moreover, the generation of electric power is examined via the transversal Seebeck effect. In tilted Pb-Bi2Te3 multilayers the efficiency is measured with the conversion by heat in electric power and is compared to model calculations. (orig.)

  9. On the simplifications for the thermal modeling of tilting-pad journal bearings under thermoelastohydrodynamic regime

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Fillon, Michel; Santos, Ilmar

    2012-01-01

    formulation for inclusion of the heat transfer effects between oil film and pad surface. Such simplified approach becomes necessary when modeling the behavior of tilting-pad journal bearings operating on controllable lubrication regime. Three different simplified heat transfer models are tested, by comparing...... are strongly dependent on the Reynolds number for the oil flow in the bearing. For bearings operating in laminar regime, the decoupling of the oil film energy equation solving procedure, with no heat transfer terms included, with the pad heat conduction problem, where the oil film temperature is applied......The relevance of calculating accurately the oil film temperature build up when modeling tilting-pad journal bearings is well established within the literature on the subject. This work studies the feasibility of using a thermal model for the tilting-pad journal bearing which includes a simplified...

  10. Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting

    Science.gov (United States)

    Yoshida, Hidehisa; Nagai, Masao

    This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.

  11. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  12. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  13. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  14. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium.

  15. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2015-01-01

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium

  16. Out-of-plane tilted Josephson junctions of bi-epitaxial YBa2Cu3O x thin films on tilted-axes NdGaO3 substrates with CeO2 seeding layer

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Kotelyanskii, Iosif M.; Luzanov, Valery A.; Zybtsev, Sergey G.; Hansen, Jorn Bindslev; Jacobsen, Claus S.

    2006-01-01

    Bi-epitaxial heterostructures YBa 2 Cu 3 O x (YBCO)/CeO 2 /NdGaO 3 were prepared on tilted-axes NdGaO 3 substrates using laser ablation technique. The heterostructures were patterned for electrical measurements using photolithography and ion-beam milling. Electrical anisotropy of the YBCO film was tested on the ion-beam etched surface. Bi-epitaxial junctions with four different orientations of the bi-epitaxial border were fabricated and studied. The measured I V curves showed flux-flow behavior with critical current density 2.5 x 10 4 A/cm 2 for the twist-type junctions and 1.5 x 10 3 A/cm 2 for [1 0 0]-tilt type junctions

  17. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  18. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  19. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  20. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core–shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells†

    NARCIS (Netherlands)

    Melle, A.; Balaceanu, A.; Kather, M.; Wu, Yaodong; Gau, E.; Sun, W.; Huang, Xiaobin; Shi, X; Karperien, Hermanus Bernardus Johannes; Pich, A.

    2016-01-01

    Herein we report the synthesis of biocompatible stimuli-responsive core–shell microgels consisting of a poly(N-vinylcaprolactam) (PVCL) core and a poly(2-methoxyethyl acrylate) (PMEA) corona via one-step surfactant-free precipitation copolymerization. The copolymerization process was investigated by

  1. Design, synthesis, and film formation of stimuli-responsive colloidal dispersions containing phospholipids

    Science.gov (United States)

    Lestage, David Jackson

    These studies were undertaken to further understand the design of colloidal dispersions containing bio-active phospholipids (PL) as stabilizing agents and their stimuli-responsive behaviors during film formation. Methyl methacrylate (MMA) and n-butyl acrylate (nBA) dispersions were synthesized using anionic surfactants and PL, and the surface-responsiveness of coalesced films was monitored at the film-air (F-A) and film-substrate (F-S) interfaces after exposure to temperature, UV, pH, ionic strength, and enzymatic stimuli. Using spectroscopic molecular-level probes such as attenuated total reflectance (ATR) and internal reflection IR imaging (IRIRI), these studies show that structural features of PL and surfactants significantly affect stimuli-responsiveness of polymeric films. MMA/nBA homopolymer, blend, copolymer, and core-shell particle coalescence studies indicated that controlled permeability is influenced by particle composition and sodium dioctyl sulfosuccinate (SDOSS) mobility to the F-A interface is enhanced in response to temperature. Utilization of hydrogenated soybean phosphocholine (HSPC) as a co-surfactant with SDOSS resulted in bimodal p-MMA/nBA colloidal particles, and experiments showed that ionic interactions with HSPC inhibit SDOSS mobility. However, the controlled release of individual species is detected in the presence of Ca2+ ionic strength stimuli. Utilizing 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DCPC), cocklebur-shape particle morphologies were obtained and using transmission electron microscopy (TEM), self-assembled tubules were detected at particle interfaces, but not in the presence of Ca 2+. At altered concentration levels of DCPC, surface localized ionic clusters (SLICs) composed of SDOSS and DCPC form at the F-A and F-S interfaces in response to temperature and ionic strength stimuli. Micelle formation of 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) stabilizes unimodal p-MMA/nBA colloidal particles

  2. Tibiotalar tilt - a new slant

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, H.; Wandtke, J.

    1981-05-01

    Classically tibiotalar tilt (TTT) is associated with four conditions: Fairbanks disease, hemophilia, sickle-cell anemia and juvenile rheumatoid arthritis. We have found it to be present in at least 20 other conditions including other dysplasias, developmental conditions such as fibrous dysplasia and a variety of other acquired disorders including various metabolic diseases and following previous trauma. The pathogenesis is controversial, but the most probable cause is related to stress and the blood supply of the distal tibial epiphysis. The differentiation of TTT from pseudotibiotalar tilt is also discussed.

  3. Quantization of band tilting in modulated phononic crystals

    Science.gov (United States)

    Nassar, H.; Chen, H.; Norris, A. N.; Huang, G. L.

    2018-01-01

    A general theory of the tilting of dispersion bands in phononic crystals whose properties are being slowly and periodically modulated in space and time is established. The ratio of tilt to modulation speed is calculated, for the first time, in terms of Berry's phase and curvature and is proven to be a robust integer-valued Chern number. Derivations are based on a version of the adiabatic theorem for elastic waves demonstrated thanks to WKB asymptotics. Findings are exemplified in the case of a 3-periodic discrete spring-mass lattice. Tilted dispersion diagrams plotted using fully numerical simulations and semianalytical calculations based on a numerically gauge invariant expression of Berry's phase show perfect agreement. One-way blocking of waves due to the tilt, and ultimately to the breaking of reciprocity, is illustrated numerically and shown to be highly significant across a limited number of unit cells, suggesting the feasibility of experimental demonstrations. Finally, a version of the bulk-edge correspondence principle relating the tilt of bulk bands to the number of one-way gapless edge states is demonstrated.

  4. Group theoretical analysis of octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Howard, C.J.; Stokes, H.T.

    1998-01-01

    Full text: Structures of the perovskite family, ABX 3 , have interested crystallographers over many years, and continue to attract attention on account of their fascinating electrical and magnetic properties, for example the giant magnetoresistive effects exhibited by certain perovskite materials. The ideal perovskite (cubic, space group Pm -/3 m) is a particularly simple structure, but also a demanding one, since aside from the lattice parameter there are no variable parameters in the structure. Consequently, the majority of perovskite structures are distorted perovskites (hettotypes), the most common distortion being the corner-linked tilting of the practically rigid BX 6 octahedral units. In this work, group theoretical methods have been applied to the study of octahedral tilting in perovskites. The only irreducible representations of the parent group (Pm -/3 m) which produce octahedral tilting subject to corner-linking constraints are M + / 3 and R 4 ' + . A six-dimensional order parameter in the reducible representation space of M + / 3 + R + / 4 describes the different possible tilting patterns. The space groups for the different perovskites are then simply the isotropy subgroups, comprising those operations which leave the order parameter invariant. The isotropy subgroups are obtained from a computer program or tabulations. The analysis yields a list of fifteen possible space groups for perovskites derived through octahedral tilting. A connection is made to the (twenty-three) tilt systems given previously by Glazer. The group-subgroup relationships have been derived and displayed. It is interesting to note that all known perovskites based on octahedral tilting conform with the fifteen space groups on our list, with the exception of one perovskite at high temperature, the structure of which seems poorly determined

  5. Perceptual multistability in figure-ground segregation using motion stimuli.

    Science.gov (United States)

    Gori, Simone; Giora, Enrico; Pedersini, Riccardo

    2008-11-01

    In a series of experiments using ambiguous stimuli, we investigate the effects of displaying ordered, discrete series of images on the dynamics of figure-ground segregation. For low frame presentation speeds, the series were perceived as a sequence of discontinuous, static images, while for high speeds they were perceived as continuous. We conclude that using stimuli varying continuously along one parameter results in stronger hysteresis and reduces spontaneous switching compared to matched static stimuli with discontinuous parameter changes. The additional evidence that the size of the hysteresis effects depended on trial duration is consistent with the stochastic nature of the dynamics governing figure-ground segregation. The results showed that for continuously changing stimuli, alternative figure-ground organizations are resolved via low-level, dynamical competition. A second series of experiments confirmed these results with an ambiguous stimulus based on Petter's effect.

  6. Lens decenter and tilt measurement by interferogram

    Science.gov (United States)

    Hung, Min-Wei; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-11-01

    For the recent years, the vigorous development of the electro-optic industry, particularly the digital camera and the cellular phone camera, has placed a larger and larger demand for the optical devices. Among the optical lens, the aspherical optical lens plays the key component because the aspherical lens may provide better imaging quality then the spherical lens does. For the manufacturing reason, the aspherical lens is prone to a decenter or tilt issue with respect to the optical axes of its two surfaces. To measure decenter and tile error specifically would help to obviate the deficient lens, but most of the present measuring method can't provide this function. This paper proposed a new method to specifically measure the decenter and tile of lens by observing the interferogram of each surface. And the corresponding measuring instrument, which contains interferometer and motion stages, was introduced as well.

  7. A new tilt on pelvic radiographs: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Richards, P.J. [North Staffordshire Royal Infirmary, Department of Radiology, Stoke-on-Trent, Staffordshire (United Kingdom); Pattison, J.M. [University Hospital of North Staffordshire, Department of Radiology, Stoke on Trent (United Kingdom); Belcher, J. [Keele University, Department of Mathematics, Keele, Staffordshire (United Kingdom); DeCann, R.W. [IMECS, Department of Radiology, Market Drayton, Shropshire (United Kingdom); Anderson, Suzanne [University of Melbourne, Department of Radiology, Melbourne (Australia); Wynn-Jones, C. [University Hospital of North Staffordshire, Department of Orthopaedic Surgery, Stoke on Trent (United Kingdom)

    2009-02-15

    The aim of this study was to evaluate pelvic tilt on commonly performed measurements on radiography in primary protrusio acetabuli and developmental dysplasia of the hip. A dry assembled pelvis and spine skeleton was positioned in an isocentric skull unit and films exposed with increasing degrees of angulation of pelvic tilt. The films were then read by two independent readers for seven different measurements used to evaluate the hips and acetabular: acetabular line to ilioischial line, teardrop appearance, intercristal/intertuberous ratio, co-ordinates of femoral head, centre edge angle, acetabular depth/width ratio and acetabular angle. There was so much variation in the protrusio results that no formal recommendation of any standard radiographic test can be given. Only the inter tuberous distance is not effected by pelvic tilt. The acetabular angles for developmental dysplasia of the hip showed the most potential with pelvic tilt below 15 . As pelvic tilt increases, measurements used in protusio become unreliable, and computed tomography/magnetic resonance imaging are probably going to be more accurate as one can directly visualise pelvic intrusion. We recommend a lateral view to assess the degree of pelvic tilt in patients with protrusion to ensure these measurements are valid. (orig.)

  8. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  10. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  11. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    Science.gov (United States)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  12. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  13. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  14. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    Science.gov (United States)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  15. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography

    International Nuclear Information System (INIS)

    Winkler, Hanspeter; Taylor, Kenneth A.

    2006-01-01

    An image alignment method for electron tomography is presented which is based on cross-correlation techniques and which includes a simultaneous refinement of the tilt geometry. A coarsely aligned tilt series is iteratively refined with a procedure consisting of two steps for each cycle: area matching and subsequent geometry correction. The first step, area matching, brings into register equivalent specimen regions in all images of the tilt series. It determines four parameters of a linear two-dimensional transformation, not just translation and rotation as is done during the preceding coarse alignment with conventional methods. The refinement procedure also differs from earlier methods in that the alignment references are now computed from already aligned images by reprojection of a backprojected volume. The second step, geometry correction, refines the initially inaccurate estimates of the geometrical parameters, including the direction of the tilt axis, a tilt angle offset, and the inclination of the specimen with respect to the support film or specimen holder. The correction values serve as an indicator for the progress of the refinement. For each new iteration, the correction values are used to compute an updated set of geometry parameters by a least squares fit. Model calculations show that it is essential to refine the geometrical parameters as well as the accurate alignment of the images to obtain a faithful map of the original structure

  16. Large optics inspection, tilting, and washing stand

    Science.gov (United States)

    Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  17. Adding stimuli-responsive extensions to antifouling hairy particles

    NARCIS (Netherlands)

    Munoz Bonilla, Sandra; Herk, van A.M.; Heuts, J.P.A.

    2010-01-01

    The use of living block copolymers as stabilisers in emulsion polymerisation allowed preparation of multilayer functional hairy particles via surface-initiated ATRP. Polymer films prepared from the obtained particles present antifouling properties along with stimuli-responsive behaviour.

  18. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  19. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  20. LOTTTTUCE: Layer Oriented Tip-Tilt Turbulence Tomography using Covariance and Elevation

    International Nuclear Information System (INIS)

    Lai, Olivier; Hayano, Yutaka; Oya, Shin; Chun, Mark; Lu, Jessica R; Toomey, Douglas

    2015-01-01

    LOTTTTUCE is based upon the fact that turbulence at the pupil produces correlated tip-tilt motion over the entire field (averaging the tip-tilt across the widest field possible gives the strength of the turbulence at the telescope), while the on-axis (any axis) image motion measures the integrated tip-tilt over the line of sight (single stars provide the variance of the tip-tilt, which allows to infer the integrated seeing). Between these two extremes, the amount of correlation across a given field size is the integral of the turbulence from the ground to the altitude where the tip-tilt decorrelates over the meta-pupil. Differentiating the altitude- integrated tip-tilt with respect to altitude generates an estimate of tip-tilt (hence turbulence, assuming Kolmogorov properties) at each altitude. Alternately, the 3D Fourier transform of a data cube containing the time evolution of the tip (or tilt) across the field allows to determine the amount of energy for “field” frequencies (in other words, the integrated seeing across each same size patches) and the temporal spectrum of each of these features. Differentiating the spectrum with respect to spatial frequency would provide the amount of energy, as well as speed and direction, of each layer. The LOTTTTUCE method is a novel method of measuring the vertical turbulence profile that uses wide field tip-tilt information such as that provided by Pan-STARRS. However, the method also has limitations due to tip-tilt decorrelation as a function of meta-pupil overlap, finite outer scale, and non-Kolmogorov power spectrum. (paper)

  1. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  2. A numerical model for design and optimization of surface textures for tilting pad thrust bearings

    OpenAIRE

    Gropper, Daniel; Harvey, Terence; Wang, Ling

    2018-01-01

    A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; specifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the discrete system. Multithreading is applied to improv...

  3. Age, splanchnic vasoconstriction, and heat stress during tilting

    Science.gov (United States)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  4. Current Measurements and Overwash Monitoring Using Tilt Current Meters in Three Coastal Environments

    Science.gov (United States)

    Lowell, N. S.; Sherwood, C. R.; Decarlo, T. M.; Grant, J. R.

    2014-12-01

    Tilt Current Meters (TCMs) provide accurate, cost effective measurements of near-bottom current velocities. Many studies in coastal environments require current measurements, which are frequently made with Acoustic Doppler Profilers (ADPs). ADPs are expensive, however, and may not be suitable for locations where there is significant risk of damage, loss, or theft or where a large spatial array of measurements is required. TCMs, by contrast, are smaller, less expensive, and easier to deploy. This study tested TCMs in three sites to determine their suitability for use in research applications. TCMs are based on the drag-tilt principle, where the instrument tilts in response to current. The meter consists of a buoyant float with an onboard accelerometer, three-axis tilt sensor, three-axis magnetometer (compass), and a data logger. Current measurements are derived by post processing the tilt and compass values and converting them to velocity using empirical calibration data. Large data-storage capacity (4 GB) and low power requirements allow long deployments (many months) at high sample rates (16 Hz). We demonstrate the utility of TCM current measurements on a reef at Dongsha Atoll in the South China Sea, and in Vineyard Sound off Cape Cod, where the TCM performance was evaluated against ADP measurements. We have also used the TCM to record waves during an overwash event on a Cape Cod barrier beach during a winter storm. The TCM recorded waves as they came through the overwash channel, and the data were in agreement with the water-level record used as a reference. These tests demonstrate that TCMs may be used in a variety of near shore environments and have the potential to significantly increase the density of meters in future studies were current measurements are required.

  5. Vortex bending in a tilted YBa2Cu3O7-δ crystal

    Science.gov (United States)

    Obaidat, I. M.; Park, S. J.; Safar, H.; Kouvel, J. S.

    1997-09-01

    Magnetization-vector measurements were made on a YBa2Cu3O7-δ crystal, initially cooled to 4.2 K in an external field He parallel to the c axis. With He fixed, the crystal was then tilted, such that the angle θ between the c axis and He was gradually raised to 90° and lowered back to zero. Our results reveal that all the vortex flux remains parallel to the c axis until the tilt angle θ reaches a threshold value (close to 15° for Hevalue, the vortex flux in the ab plane rises rapidly from zero, and it appears to derive solely from a bending of the vortices initially directed along c. This whole process is fairly consistent with theoretical predictions, and it is found to be essentially reversible with the cycling of θ at low He. The hysteresis that develops at higher He rises and approaches the conventional hysteresis measured along ab after zero-field cooling. Comparison is also made with a cross-flux experiment, which is seen to be only superficially equivalent to the crystal-tilt experiment.

  6. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  7. Correlation between length and tilt of lipid tails

    Science.gov (United States)

    Kopelevich, Dmitry I.; Nagle, John F.

    2015-10-01

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  8. Correlation between length and tilt of lipid tails

    Energy Technology Data Exchange (ETDEWEB)

    Kopelevich, Dmitry I., E-mail: dkopelevich@che.ufl.edu [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Nagle, John F., E-mail: nagle@cmu.edu [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-10-21

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κ{sub θ} to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  9. The impact of office chair features on lumbar lordosis, intervertebral joint and sacral tilt angles: a radiographic assessment.

    Science.gov (United States)

    De Carvalho, Diana; Grondin, Diane; Callaghan, Jack

    2017-10-01

    The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1-L3 in all conditions (p < 0.0001). No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture. Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.

  10. Evaluation of the Thermal Effects in Tilting Pad Bearing

    Directory of Open Access Journals (Sweden)

    G. B. Daniel

    2013-01-01

    Full Text Available The analysis of thermal effects is of expressive importance in the context of rotordynamics to evaluate the behavior of hydrodynamic bearings because these effects can influence their dynamic characteristics under specific operational conditions. For this reason, a thermohydrodynamic model is developed in this work, in which the pressure distribution in the oil film and the temperature distribution are calculated together. From the pressure distribution, the velocity distribution field is determined, as well as the viscous dissipation, and consequently, the temperature distribution. The finite volume method is applied to solve the Reynolds equation and the energy equation in the thermohydrodynamic model (THD. The results show that the temperature is higher as the rotational speed increases due to the shear rate of the oil film. The maximum temperature in the bearing occurs in the overloaded pad, near the outlet boundary. The experimental tests were performed in a tilting pad journal bearing operating in a steam turbine to validate the model. The comparison between the experimental and numerical results provides a good correlation. The thermohydrodynamic lubrication developed in this assignment is promising to consistently evaluate the behavior of the tilting pad journal bearing operating in relatively high rotational speeds.

  11. Radiographic cup anteversion measurement corrected from pelvic tilt.

    Science.gov (United States)

    Wang, Liao; Thoreson, Andrew R; Trousdale, Robert T; Morrey, Bernard F; Dai, Kerong; An, Kai-Nan

    2017-11-01

    The purpose of this study was to develop a novel technique to improve the accuracy of radiographic cup anteversion measurement by correcting the influence of pelvic tilt. Ninety virtual total hip arthroplasties were simulated from computed tomography data of 6 patients with 15 predetermined cup orientations. For each simulated implantation, anteroposterior (AP) virtual pelvic radiographs were generated for 11 predetermined pelvic tilts. A linear regression model was created to capture the relationship between radiographic cup anteversion angle error measured on AP pelvic radiographs and pelvic tilt. Overall, nine hundred and ninety virtual AP pelvic radiographs were measured, and 90 linear regression models were created. Pearson's correlation analyses confirmed a strong correlation between the errors of conventional radiographic cup anteversion angle measured on AP pelvic radiographs and the magnitude of pelvic tilt (P cup anteversion angle from the influence of pelvic tilt. The current method proposes to measure the pelvic tilt on a lateral radiograph, and to use it as a correction for the radiographic cup anteversion measurement on an AP pelvic radiograph. Thus, both AP and lateral pelvic radiographs are required for the measurement of pelvic posture-integrated cup anteversion. Compared with conventional radiographic cup anteversion, the errors of pelvic posture-integrated radiographic cup anteversion were reduced from 10.03 (SD = 5.13) degrees to 2.53 (SD = 1.33) degrees. Pelvic posture-integrated cup anteversion measurement improves the accuracy of radiographic cup anteversion measurement, which shows the potential of further clarifying the etiology of postoperative instability based on planar radiographs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Does osteoporosis reduce the primary tilting stability of cementless acetabular cups?

    Science.gov (United States)

    von Schulze Pellengahr, Christoph; von Engelhardt, Lars V; Wegener, Bernd; Müller, Peter E; Fottner, Andreas; Weber, Patrick; Ackermann, Ole; Lahner, Matthias; Teske, Wolfram

    2015-04-21

    Cementless hip cups need sufficient primary tilting stability to achieve osseointegration. The aim of the study was to assess differences of the primary implant stability in osteoporotic bone and in bone with normal bone density. To assess the influence of different cup designs, two types of threaded and two types of press-fit cups were tested. The maximum tilting moment for two different cementless threaded cups and two different cementless press-fit cups was determined in macerated human hip acetabuli with reduced (n=20) and normal bone density (n=20), determined using Q-CT. The tilting moments for each cup were determined five times in the group with reduced bone density and five times in the group with normal bone density, and the respective average values were calculated. The mean maximum extrusion force of the threaded cup Zintra was 5670.5 N (max. tilting moment 141.8 Nm) in bone with normal density and.5748.3 N (max. tilting moment 143.7 Nm) in osteoporotic bone. For the Hofer Imhof (HI) threaded cup it was 7681.5 N (192.0 Nm) in bone with normal density and 6828.9 N (max. tilting moment 170.7 Nm) in the group with osteoporotic bone. The mean maximum extrusion force of the macro-textured press-fit cup Metallsockel CL was 3824.6 N (max. tilting moment 95.6 Nm) in bone with normal and 2246.2 N (max. tilting moment 56.2 Nm) in osteoporotic bone. For the Monoblock it was 1303.8 N (max. tilting moment 32.6 Nm) in normal and 1317 N (max. tilting moment 32.9 Nm) in osteoporotic bone. There was no significance. A reduction of the maximum tilting moment in osteoporotic bone of the ESKA press-fit cup Metallsockel CL was noticed. Results on macerated bone specimens showed no statistically significant reduction of the maximum tilting moment in specimens with osteoporotic bone density compared to normal bone, neither for threaded nor for the press-fit cups. With the limitation that the results were obtained using macerated bone, we could not detect any restrictions for

  13. Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter

    Science.gov (United States)

    Kumar, Rumit

    The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the

  14. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    Science.gov (United States)

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  15. Tilted Lemaitre-Tolman-Bondi spacetimes: Hydrodynamic and thermodynamic properties

    International Nuclear Information System (INIS)

    Herrera, L.; Di Prisco, A.; Ibanez, J.

    2011-01-01

    We consider Lemaitre-Tolman-Bondi spacetimes from the point of view of a tilted observer, i.e. one with respect to which the fluid is radially moving. The imperfect fluid and the congruence described by its four-velocity, as seen by the tilted observer, is studied in detail. It is shown that from the point of view of such tilted observer, the fluid evolves nonreversibly (i.e. with nonvanishing rate of entropy production). The nongeodesic character of the tilted congruence is related to the nonvanishing of the divergence of the 4-vector entropy flow. We determine the factor related to the existence of energy-density inhomogeneities and describe its evolution; these results are compared with those obtained for the nontilted observer. Finally, we exhibit a peculiar situation where the nontilted congruence might be unstable.

  16. Flow tilt angles near forest edges – Part 1: Sonic anemometry

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2010-05-01

    Full Text Available An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges.

    Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b, sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended.

    Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site.

    Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection

  17. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    Science.gov (United States)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  18. Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China

    Directory of Open Access Journals (Sweden)

    Mian Guo

    2017-10-01

    Full Text Available Solar energy technologies play an important role in shaping a sustainable energy future, and generating clean, renewable, and widely distributed energy sources. This paper determines the optimum tilt angle and optimum azimuth angle of photovoltaic (PV panels, employing the harmony search (HS meta-heuristic algorithm. In this study, the ergodic method is first conducted to obtain the optimum tilt angle and the optimum azimuth angle in several cities of China based on the model of Julian dating. Next, the HS algorithm is applied to search for the optimum solution. The purpose of this research is to maximize the extraterrestrial radiation on the collector surface for a specific period. The sun’s position is predicted by the proposed model at different times, and then solar radiation is obtained on various inclined planes with different orientations in each city. The performance of the HS method is compared with that of the ergodic method and other optimization algorithms. The results demonstrate that the tilt angle should be changed once a month, and the best orientation is usually due south in the selected cities. In addition, the HS algorithm is a practical and reliable alternative for estimating the optimum tilt angle and optimum azimuth angle of PV panels.

  19. CFD Analysis of A Starved Four-Pad Tilting-Pad Journal Bearing with An Elastic Support of Pads

    Science.gov (United States)

    Parovay, E. F.; Falaleev, S. V.

    2018-01-01

    Tilting-pad journal bearings are widely used in technics. Oil starvation operation regime is not common for hydrodynamic bearings. However, correctly designed low-flow journal bearing have to operate efficiently and consistently on high rotor speeds. An elastic support of bearing pads is a set of elastic pins made of steel. Elastic support allows pads to self-align and achieve an optimal operational mode. The article presents the thermohydrodynamic performance of an axial journal bearing. The study deals with 60 mm diameter four-pad tilting-pad journal bearing, submitted to a static load varying from 1000 to 30000 N with a rotating speed varying from 1000 to 10000 rpm. The investigation focuses on numerical studying the characteristics of low-flow tilting-pad journal bearings under oil starvation conditions. Dependencies of the bearing performance on the load, rotational speed of the shaft, and the size of the radial clearance are presented.

  20. Tilted-ring modelling of disk galaxies : Anomalous gas

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Niemczyk, C.; Klein, U.; Oosterloo, T. A.

    We report our ongoing work on kinematical modelling of HI in disk galaxies. We employ our new software TiRiFiC (Tilted-Ring-Fitting-Code) in order to derive tilted-ring models by fitting artificial HI data cubes to observed ones in an automated process. With this technique we derive very reliable

  1. De novo formation of left-right asymmetry by posterior tilt of nodal cilia.

    Directory of Open Access Journals (Sweden)

    Shigenori Nonaka

    2005-08-01

    Full Text Available In the developing mouse embryo, leftward fluid flow on the ventral side of the node determines left-right (L-R asymmetry. However, the mechanism by which the rotational movement of node cilia can generate a unidirectional flow remains hypothetical. Here we have addressed this question by motion and morphological analyses of the node cilia and by fluid dynamic model experiments. We found that the cilia stand, not perpendicular to the node surface, but tilted posteriorly. We further confirmed that such posterior tilt can produce leftward flow in model experiments. These results strongly suggest that L-R asymmetry is not the descendant of pre-existing L-R asymmetry within each cell but is generated de novo by combining three sources of spatial information: antero-posterior and dorso-ventral axes, and the chirality of ciliary movement.

  2. High-speed-rail tilt-train technology: A state-of-the-art survey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boon, C.J.; Hayes, W.F.; Kesler, J.K.; Whitten, B.T.

    1992-05-01

    The report presents an assessment of the technical and operational features of existing and proposed tilt-body rail passenger vehicles. Basic concepts of railroad route selection, track geometry, and curve negotiation are reviewed, and the rationale, advantages and disadvantages associated with body tilting and the techniques used to achieve body tilt are discussed. An overview of the development status and selected key characteristics of tilt technologies are presented. Issues associated with deployment and operation of tilt-body technologies in the U..S are identified and analyzed, including a review of U.S. experience to date, areas of incompatibility of foreign tilt technology with existing U.S. equipment and infrastructure, special maintenance procedures and skill requirements, and compliance with FRA and other regulations. Appendices to the report present discussions on the physics of curve negotiation for conventional and tilting vehicles, the principles of tilting and tilt control strategies and mechanisms, and a description and technical characterization of the principal tilt technologies.

  3. NEuclid: a long-range tilt-immune homodyne interferometer

    Science.gov (United States)

    Bradshaw, M. J.; Speake, C. C.

    2017-11-01

    The new Easy to Use Compact Laser Interferometric Device (nEUCLID) is a polarisation-based homodyne interferometer with substantially unequal arms that is tolerant to target mirror tilt. The design has no active components, uses standard optical components of 25 mm diameter, has a working distance of 706 mm and a reference arm-length of 21 mm. nEUCLID optics have a footprint of 210 x 190 x 180 mm, and has a tolerance to target mirror tilt of +/- 0.5 degrees, made possible by a novel new retro-reflector design [1]. nEUCLID was built to a set of specifications laid down by Airbus Defence and Space, who required a lowmass, low-power device to measure displacement with nanometre accuracy for space applications. At the University of Birmingham we have previously built a smaller, more compact tilt-insensitive homodyne interferometer - the EUCLID [2, 3, 4] - which has a working distance of 6 mm, a working range of +/- 3 mm, and a tilt range of +/- 1° [2]. We created a new optical design to allow a much larger working distance to be achieved (as discussed in Section II) and used this in a new interferometer - the nEUCLID. Section II describes the interferometer in detail; how nEUCLID is tilt insensitive, and the optical configuration. Section III states the design specifications from Airbus Defence and Space and the components used in the final design. The output interference pattern from nEUCLID, and how it has been corrected with a meniscus lens, is also discussed. In Section IV we discuss the results demonstrating the tilt immunity range, and the sensitivity of the device. Section V describes several potential applications of nEUCLID, and Section VI draws together our conclusions.

  4. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M; Onishi, N; Tajima, N [Tokyo Univ. (Japan); Horibata, T

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  5. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    Science.gov (United States)

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Positive mood broadens visual attention to positive stimuli.

    Science.gov (United States)

    Wadlinger, Heather A; Isaacowitz, Derek M

    2006-03-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states.

  7. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  8. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Cox, Jennifer [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Eade, Thomas; Rinks, Marianne; Kneebone, Andrew [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  9. Glints from particulate media and wavy surfaces

    International Nuclear Information System (INIS)

    Borovoi, Anatoli; Konoshonkin, Alexander; Kolokolova, Ludmilla

    2012-01-01

    Glints are bright light spots created by particulate media like cirrus clouds, glaciers, and wavy water surfaces. They are seen around the specular reflection angle. In this paper, the glints from such scattering/reflecting media are described in a unified manner through the probability density for facet tilts. Various kinds of these probability densities for wavy surfaces are defined and classified. The concept of the differential scattering cross section (DSCS) for rough surfaces instead of the conventional bidirectional reflectance distribution function (BRDF) is introduced for characterization of the glints. The simple equations connecting the DSCS and the probability densities for facet tilts are derived. It is shown that the glints from particulate media and wavy surface are very similar at small incidence angles and they are significantly different at slant incidence. -- Highlights: ► Differential scattering cross section unifies particulate media and wavy surfaces. ► The glint pattern is a mapping of the probability density function for facet tilts. ► Shadowing is a crucial aspect of glint pattern formation. ► Glint patterns discriminate between the particulate media and wavy surfaces.

  10. The effect of seated pelvic tilt on posterior edge-loading in total hip arthroplasty: A finite element investigation.

    Science.gov (United States)

    Pierrepont, Jim; Yang, Long; Arulampalam, Jevan; Stambouzou, Catherine; Miles, Brad; Li, Qing

    2018-03-01

    Edge-loading of a ceramic-on-ceramic total hip replacement can lead to reproducible squeaking and revision. A patient's functional acetabular cup orientation, driven by their pelvic tilt, has been shown to be a significant factor in squeaking during hip flexion. The aim of this study was to investigate the effect of seated pelvic tilt on the contact mechanics at the ceramic bearing surface. A finite element model of a ceramic-on-ceramic total hip replacement was created. The cup was orientated at 40° inclination and 15° anteversion relative to the anterior pelvic plane. The stem was flexed 90° to replicate sitting in a chair. The model was loaded using data from in vivo measurements taken during a sit-to-stand activity. The pelvis was modelled in seven different sagittal positions, ranging from -30° to 30° of pelvic tilt, where a positive value denotes anterior pelvic tilt. Three different head sizes were investigated: 32, 36 and 40 mm. The maximum contact pressure and contact patch to rim distance were determined for each of the 21 simulations. Edge-loading (contact patch to rim distance Edge-loading initiated at seated pelvic tilts of 7°, 9° and 5° for the 32, 36 and 40 mm heads, respectively. Patients with anterior pelvic tilts in the seated position are susceptible to posterior edge-loading. As the position of the pelvis when seated is patient specific, cup orientation should be adjusted on an individual basis to minimise edge-loading.

  11. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    Science.gov (United States)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  12. Inner core tilt and polar motion

    Science.gov (United States)

    Dumberry, Mathieu; Bloxham, Jeremy

    2002-11-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.

  13. Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

    OpenAIRE

    Li, Danny H. W.; Lam, Tony N. T.

    2007-01-01

    A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces ...

  14. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER

    International Nuclear Information System (INIS)

    QIAN, S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-01-01

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately

  15. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    Science.gov (United States)

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in

  16. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  17. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  18. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system

    Science.gov (United States)

    Arnaud, Sara B.; Whalen, Robert T.; Fung, Paul; Sherrard, Donald J.; Maloney, Norma

    1992-01-01

    The -6-deg head-down tilt (HDT) is employed in the study of 8 subjects to determine early responses in human bone and calcium endocrines during spaceflight. The average rates of bone formation in the iliac crest are determined by means of a single-dose labeling schedule and are found to decrease in 6 of the subjects. The decrease varies directly with walking miles, and increased excretion of urinary Ca and Na are observed preceding increased levels of ionized serum calcium on a bed-rest day late in the week. Reduced phosphorous excretions are also followed by increased serum phosphorous on day six, and reductions are noted in parathyroid hormone and vitamin D by the end of the experiment. The data demonstrate the responsiveness of the skeletal system to biomechanical stimuli such as the HDT.

  19. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    Directory of Open Access Journals (Sweden)

    Alexander A Tarnutzer

    Full Text Available Perceived direction of gravity, as assessed by the subjective visual vertical (SVV, shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°, and immediately after returning to upright. Significant (p<0.05 drifts (median absolute drift-amplitude: 10°/5 min were found in 71% (± 45° and 78% (± 90° of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%, whereas significant increases (56% and decreases (44% were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec was noted in 47% of all runs (all subjects pooled. No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  20. Electroluminescence Analysis by Tilt Polish Technique of InP-Based Semiconductor Lasers

    Science.gov (United States)

    Ichikawa, Hiroyuki; Sasaki, Kouichi; Hamada, Kotaro; Yamaguchi, Akira

    2010-03-01

    We developed an effective electroluminescence (EL) analysis method to specify the degraded region of InP-based semiconductor lasers. The EL analysis method is one of the most important methods for failure analysis. However, EL observation was difficult because opaque electrodes surround an active layer. A portion of each electrode had to be left intact for wiring to inject the current. Thus, we developed a partial polish technique for the bottom electrode. Tilt polish equipment with a rotating table was introduced; a flat polished surface and a sufficiently wide remaining portion of the bottom electrode were obtained. As a result, clear EL from the back surface of the laser was observed.

  1. Effects of external feedback about body tilt: Influence on the Subjective Proprioceptive Horizon.

    Science.gov (United States)

    Bringoux, L; Bourdin, C; Nougier, V; Raphel, C

    2006-11-06

    The present study investigated a cognitive aspect upon spatial perception, namely the impact of a true or false verbal feedback (FB) about the magnitude of body tilt on Subjective Proprioceptive Horizon (SPH) estimates. Subjects were asked to set their extended arm normal to gravity for different pitch body tilts up to 9 degrees . True FB were provided at all body tilt angles, whereas false FB were provided only at 6 degrees backward and 6 degrees forward body tilts for half of the trials. Our data confirmed previous results about the egocentric influence of body tilt itself upon SPH: estimates were linearly lowered with forward tilts and elevated with backward tilts. In addition, results showed a significant effect of the nature of the external FB provided to the subjects. When subjects received a false FB inducing a 3 degrees forward bias relative to physical body tilt, they set their SPH consequently higher than when they received a false FB inducing a 3 degrees backward bias. These findings clearly indicated that false cognitive information about body tilt might significantly modify the judgement of a geocentric direction of space, such as the SPH. This may have deleterious repercussions in aeronautics when pilots have to localize external objects relative to earth-based directions in darkened environments.

  2. Magnetic domain-wall tilting due to domain-wall speed asymmetry

    Science.gov (United States)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong

    2018-04-01

    Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.

  3. Retinal Nerve Fiber Layer Protrusion Associated with Tilted Optic Discs.

    Science.gov (United States)

    Chiang, Jaclyn; Yapp, Michael; Ly, Angelica; Hennessy, Michael P; Kalloniatis, Michael; Zangerl, Barbara

    2018-03-01

    This study resulted in the identification of an optic nerve head (ONH) feature associated with tilted optic discs, which might potentially contribute to ONH pathologies. Knowledge of such findings will enhance clinical insights and drive future opportunities to understand disease processes related to tilted optic discs. The aim of this study was to identify novel retinal nerve fiber layer (RNFL) anomalies by evaluating tilted optic discs using optical coherence tomography. An observed retinal nerve fiber protrusion was further investigated for association with other morphological or functional parameters. A retrospective review of 400 randomly selected adult patients with ONH examinations was conducted in a referral-only, diagnostic imaging center. After excluding other ONH pathologies, 215 patients were enrolled and evaluated for optic disc tilt and/or torsion. Gross anatomical ONH features, including size and rim or parapapillary region elevation, were assessed with stereoscopic fundus photography. Optical coherence tomography provided detailed morphological information of individual retinal layers. Statistical analysis was applied to identify significant changes between individual patient cohorts. A dome-shaped hyperreflective RNFL bulge, protruding into the neurosensory retina at the optic disc margins, was identified in 17 eyes with tilted optic discs. Available follow-up data were inconclusive regarding natural changes with this ONH feature. This RNFL herniation was significantly correlated with smaller than average optic disc size (P = .005), congenital disc tilt (P optic discs, which has not previously been assessed as an independent ONH structure. The feature is predominantly related to congenital crowded, small optic discs and variable between patients. This study is an important first step to elucidate diagnostic capabilities of tilted disc morphological changes and understanding associated functional deficits.

  4. Mechanisms of Günther Tulip filter tilting during transfemoral placement.

    Science.gov (United States)

    Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K

    The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. Numerical modelling of the tilt casting processes of titanium alumindes

    OpenAIRE

    Wang, Hong

    2008-01-01

    This research has investigated the modelling and optimisation of the tilt casting process of Titanium Aluminides (TiAl). This study is carried out in parallel with the experimental research undertaken in IRC at the University of Birmingham. They propose to use tilt casting inside a vacuum chamber and attempt to combine this tilt casting process with Induction Skull Melting (ISM). A totally novel process is developing for investment casting, which is suitable for casting gamma TiAl.\\ud \\ud As ...

  6. Out-of-plane tilted Josephson junctions of bi-epitaxial YBa{sub 2}Cu{sub 3}O {sub x} thin films on tilted-axes NdGaO{sub 3} substrates with CeO{sub 2} seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, Peter B. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation) and Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark)]. E-mail: pbmozh@nm.ru; Mozhaeva, Julia E. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation); Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark); Bdikin, Igor K. [CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Kotelyanskii, Iosif M. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Luzanov, Valery A. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Zybtsev, Sergey G. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Hansen, Jorn Bindslev [Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark); Jacobsen, Claus S. [Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark)

    2006-03-15

    Bi-epitaxial heterostructures YBa{sub 2}Cu{sub 3}O {sub x}(YBCO)/CeO{sub 2}/NdGaO{sub 3} were prepared on tilted-axes NdGaO{sub 3} substrates using laser ablation technique. The heterostructures were patterned for electrical measurements using photolithography and ion-beam milling. Electrical anisotropy of the YBCO film was tested on the ion-beam etched surface. Bi-epitaxial junctions with four different orientations of the bi-epitaxial border were fabricated and studied. The measured I V curves showed flux-flow behavior with critical current density 2.5 x 10{sup 4} A/cm{sup 2} for the twist-type junctions and 1.5 x 10{sup 3} A/cm{sup 2} for [1 0 0]-tilt type junctions.

  7. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  8. Rigidity of tilting modules

    DEFF Research Database (Denmark)

    Haahr Andersen, Henning; Kaneda, Masaharu

    Let $U_q$ denote the quantum group associated with a finite dimensional semisimple Lie algebra. Assume that $q$ is a complex root of unity of odd order and that $U_q$ is %the quantum group version obtained via Lusztig's $q$-divided powers construction. We prove that all regular projective (tilting...

  9. Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.

    Science.gov (United States)

    Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A

    2016-12-07

    We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.

  10. Performance Trends During Sleep Deprivation on a Tilt-Based Control Task.

    Science.gov (United States)

    Bolkhovsky, Jeffrey B; Ritter, Frank E; Chon, Ki H; Qin, Michael

    2018-07-01

    Understanding human behavior under the effects of sleep deprivation allows for the mitigation of risk due to reduced performance. To further this goal, this study investigated the effects of short-term sleep deprivation using a tilt-based control device and examined whether existing user models accurately predict targeting performance. A task in which the user tilts a surface to roll a ball into a target was developed to examine motor performance. A model was built to predict human performance for this task under various levels of sleep deprivation. Every 2 h, 10 subjects completed the task until they reached 24 h of wakefulness. Performance measurements of this task, which were based on Fitts' law, included movement time, task throughput, and time intercept. The model predicted significant performance decrements over the 24-h period with an increase in movement time (R2 = 0.61), a decrease in throughput (R2 = 0.57), and an increase in time intercept (R2 = 0.60). However, it was found that in experimental trials there was no significant change in movement time (R2 = 0.11), throughput (R2 = 0.15), or time intercept (R2 = 0.27). The results found were unexpected as performance decrement is frequently reported during sleep deprivation. These findings suggest a reexamination of the initial thought of sleep loss leading to a decrement in all aspects of performance.Bolkovsky JB, Ritter FE, Chon KH, Qin M. Performance trends during sleep deprivation on a tilt-based control task. Aerosp Med Hum Perform. 2018; 89(7):626-633.

  11. Aspheric surface measurement using capacitive probes

    Science.gov (United States)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  12. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    Science.gov (United States)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  13. Head tilt produced by hemilabyrinthectomy does not depend on the direct vestibulospinal tracts.

    Science.gov (United States)

    Fukushima, K; Fukushima, J; Kato, M

    1988-01-01

    Head tilt is one of the most characteristic and enduring symptoms produced by hemilabyrinthectomy and is compensated by the central nervous system with time. In order to study the central mechanisms of compensation of the head tilt, it is first necessary to understand how it is produced. However, its mechanism remains unknown. Experiments were performed in cats to examine whether the direct vestibulocollic pathways are responsible for the head tilt, as suggested by some authors. Hemilabyrinthectomies produced a characteristic head tilt in cats in which the medial and/or one lateral vestibulospinal tracts (VSTs) had been interrupted. The lesions of the medial VST did not influence the preexisting head tilt produced by hemilabyrinthectomies. These results suggest that the head tilt produced by hemilabyrinthectomies does not depend on the activity of the VSTs.

  14. Modeling Flow Past a Tilted Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  15. Tilted wheel satellite attitude control with air-bearing table experimental results

    Science.gov (United States)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  16. Quantum well electronic states in a tilted magnetic field.

    Science.gov (United States)

    Trallero-Giner, C; Padilha, J X; Lopez-Richard, V; Marques, G E; Castelano, L K

    2017-08-16

    We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.

  17. Generalization of the disruptive effects of alternative stimuli when combined with target stimuli in extinction.

    Science.gov (United States)

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila; Jonas Chan, C K; Bland, Vikki J; Bai, John Y H

    2017-09-01

    Differential-reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior. © 2017 Society for the Experimental Analysis of Behavior.

  18. Construction and Deployment of Tilt Sensors along the Lateral Margins of Jarvis Glacier, Alaska to improve understanding of the Deformation Regime of Wet-Based Polythermal Glaciers

    Science.gov (United States)

    Lee, I. R.; Hawley, R. L.; Clemens-Sewall, D.; Campbell, S. W.; Waszkiewicz, M.; Bernsen, S.; Gerbi, C. C.; Kreutz, K. J.; Koons, P. O.

    2017-12-01

    Most studies of natural ice have been on bodies of ice with frozen beds which experience minimal lateral shear strain, to the exclusion of polythermal ice sheets & glaciers which due to their mixed basal thermal regime have wet-based beds. The deficiency in knowledge and understanding of the operative deformation mechanisms of wet-based bodies of ice results in uncertainty in the constitutive flow law of ice. Given that the flow law was derived experimentally under assumptions more conducive to bodies of ice with frozen-based beds, it is necessary to calibrate the flow law when applied to different bodies of ice such as wet-based polythermal glaciers. To this end, Dartmouth and the University of Maine have collaborated to carry out research on Jarvis Glacier in Alaska, a geometrically simple, wet-based glacier. Here, we constructed and deployed an array of 25 tilt sensors into 3 boreholes drilled along the glacier's shear margin. Our goal is to obtain 3D strain measurements to calculate the full velocity field & create deformation regime maps in the vicinity of the boreholes, as well as to support numerical modeling. The tilt sensors were developed in-lab: Each tilt sensor comes equipped with an LSM303C chip (embedded with a 3-axis accelerometer and magnetometer) and Arduino Pro-Mini mounted on a custom-made printed circuit board encased within a watertight aluminum tube. The design concept was to produce a sensor string, consisting of tilt sensors spaced apart at pre-calculated intervals, to be lowered into a borehole and frozen-in over months to collect strain data through a Campbell Scientific CR1000 datalogger. Three surface-to-bed boreholes were successfully installed with tilt sensor strings. Given the lack of prior in-situ borehole geophysics studies on polythermal glaciers, deliberate consideration on factors such as strain relief and waterproofing electrical components was necessary in the development of the sensor system. On-site challenges also arose due

  19. Happiness takes you right: the effect of emotional stimuli on line bisection.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Boehringer, Jana; Gallucci, Marcello; Girelli, Luisa; Carbon, Claus-Christian

    2014-01-01

    Emotion recognition is mediated by a complex network of cortical and subcortical areas, with the two hemispheres likely being differently involved in processing positive and negative emotions. As results on valence-dependent hemispheric specialisation are quite inconsistent, we carried out three experiments with emotional stimuli with a task being sensitive to measure specific hemispheric processing. Participants were required to bisect visual lines that were delimited by emotional face flankers, or to haptically bisect rods while concurrently listening to emotional vocal expressions. We found that prolonged (but not transient) exposition to concurrent happy stimuli significantly shifted the bisection bias to the right compared to both sad and neutral stimuli, indexing a greater involvement of the left hemisphere in processing of positively connoted stimuli. No differences between sad and neutral stimuli were observed across the experiments. In sum, our data provide consistent evidence in favour of a greater involvement of the left hemisphere in processing positive emotions and suggest that (prolonged) exposure to stimuli expressing happiness significantly affects allocation of (spatial) attentional resources, regardless of the sensory (visual/auditory) modality in which the emotion is perceived and space is explored (visual/haptic).

  20. Proto-CIRCUS tilted-coil tokamak–torsatron hybrid: Design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.W.; Doumet, M.; Hammond, K.C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Kornbluth, Y. [Yeshiva University, New York, NY 10033 (United States); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Sweeney, R. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Volpe, F.A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2014-11-15

    Highlights: • A tokamak-like device with tilted toroidal field (TF) coils needs less plasma current than a conventional tokamak. • Rotational transform is partly generated by external coils. Device can be considered a tokamak–torsatron hybrid. • We designed and constructed the first device of this type. • Tilted TF coils are interlinked to each other, which helps to reduce aspect ratio of plasma. • This is a six-coil generalization of CNT stellarator, also at Columbia University, which features two interlinked coils. - Abstract: We present the field-line modeling, design, and construction of a prototype circular-coil tokamak–torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a < 5 cm. The six “toroidal field” coils are planar as in a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping measurements. Such comparisons will reveal whether this relatively simple concept can generate the expected rotational transform.

  1. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    Science.gov (United States)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  2. Tilt sensor and servo control system for gravitational wave detection

    CERN Document Server

    Cheng, Y; Ju, L; Blair, D G

    2002-01-01

    This paper describes the design of a novel double-flexure two-axis tilt sensor with a tilt readout based on an optical walk-off sensor. The performance of the device has been investigated theoretically and experimentally. The walk-off sensor has demonstrated a sensitivity of 10 sup - sup 1 sup 1 rad Hz sup - sup 1 sup / sup 2 at 1 Hz. The tilt sensor has measured seismic noise approx 10 sup - sup 9 -10 sup - sup 1 sup 0 rad Hz sup - sup 1 sup / sup 2 for frequency in the 2-10 Hz range.

  3. Damage Evaluation of Critical Components of Tilted Support Spring Nonlinear System under a Rectangular Pulse

    Directory of Open Access Journals (Sweden)

    Ningning Duan

    2015-01-01

    Full Text Available Dimensionless nonlinear dynamical equations of a tilted support spring nonlinear packaging system with critical components were obtained under a rectangular pulse. To evaluate the damage characteristics of shocks to packaged products with critical components, a concept of the damage boundary surface was presented and applied to a titled support spring system, with the dimensionless critical acceleration of the system, the dimensionless critical velocity, and the frequency parameter ratio of the system taken as the three basic parameters. Based on the numerical results, the effects of the frequency parameter ratio, the mass ratio, the dimensionless peak pulse acceleration, the angle of the system, and the damping ratio on the damage boundary surface of critical components were discussed. It was demonstrated that with the increase of the frequency parameter ratio, the decrease of the angle, and/or the increase of the mass ratio, the safety zone of critical components can be broadened, and increasing the dimensionless peak pulse acceleration or the damping ratio may lead to a decrease of the damage zone for critical components. The results may lead to a thorough understanding of the design principles for the tilted support spring nonlinear system.

  4. Tensor products of quantized tilting modules

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1992-01-01

    Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)

  5. Attention bias towards personally relevant stimuli: the individual emotional Stroop task.

    Science.gov (United States)

    Wingenfeld, Katja; Bullig, Renate; Mensebach, Christoph; Hartje, Wolfgang; Driessen, Martin; Beblo, Thomas

    2006-12-01

    The emotional Stroop task is a widely used method for investigating attentional bias towards stimuli due to mood or affect. In general, standardized stimuli are used, which might not be appropriate when investigating individual contextual frameworks. It was investigated whether words chosen to be related to individuals' personal life events would produce more pronounced Stroop interference (as an indicator of attentional bias) than stimuli without any personal relevance. Twenty-six nonclinical subjects, 20 female and 6 male, participated in the study. Mean age was 36.1 yr. (SD = 18.1). All were recruited by means of local advertising. Stimulus material consisted of four word types: personal words related to negative life events with and without current personal relevance, and negative and neutral words without any personal relevance. Words were presented in three blocks. Analysis of variance showed main effects for word type and blocks, with slower reactions in the personally relevant conditions than in the negative, or neutral conditions, and in response to the first blocks as opposed to the last. These findings indicate that regardless of the word valence, personally relevant stimuli evoke more pronounced Stroop interference than do stimuli without personal relevance.

  6. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    Science.gov (United States)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  7. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  8. Rules and mechanisms governing octahedral tilts in perovskites under pressure

    Science.gov (United States)

    Xiang, H. J.; Guennou, Mael; Íñiguez, Jorge; Kreisel, Jens; Bellaiche, L.

    2017-08-01

    The rotation of octahedra (octahedral tilting) is common in A B O3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper, we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A -O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR /dP ) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A -O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in A B O3 perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR /dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites—the orthorhombic Pbnm state—the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the

  9. Perceiving, imaging, and preferring physiognomic stimuli.

    Science.gov (United States)

    Lindauer, M S

    1986-01-01

    Physiognomic color responses in perception, imagery, and affect were investigated. Maluma and taketa, nonsense stimuli defined by many investigators as physiognomic, were utilized as prototypical physiognomic stimuli, along with eight other stimuli of various sorts. In Experiment 1, 22 subjects matched the colors of the stimuli; in Experiment 2, 27 subjects reported their imagery to the stimuli; and in Experiment 3, 16 subjects gave their color preferences for the stimuli. The Munsell sets of colors were employed throughout. Significant differences between the physiognomic and other stimuli were found on the brightness and saturation of color matches, images, and preferences. Other differences (e.g., the latency of color images) were also present. Distinctions were also noted between the two physiognomic stimuli. These results support the priority of innate and perceptual processes in physiognomy over those of learning and memory, although some ambiguities still remain.

  10. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications

    Directory of Open Access Journals (Sweden)

    Jaime Plazas-Tuttle

    2015-06-01

    Full Text Available Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.

  11. A tip / tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    NARCIS (Netherlands)

    Rijnveld, N.; Henselmans, R.; Nijland, B.A.H.

    2011-01-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and

  12. Modelling and simulation of a compliant tilting pad air bearing

    NARCIS (Netherlands)

    Duijnhouwer, F.; Nijmeijer, H.

    The compliant tilting pad air bearing concept, a tilting pad bearing with the pivot of the pads placed on radial springs, is a promising aerodynamic bearing solution. Nevertheless, its non-linear dynamics make a time domain dynamic simulation model an essential tool for the design of rotor systems

  13. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  14. Do tilt-in-space wheelchairs increase occupational engagement: a critical literature review.

    Science.gov (United States)

    Harrand, Jenny; Bannigan, Katrina

    2016-01-01

    A wheelchair can enhance the quality of life of an individual with limited mobility, poor trunk control and stability, by enabling activity and participation and so occupational engagement. High specification wheelchairs which can tilt-in-space enable the position of users to be altered to suit activity and context. Despite tilt-in-space wheelchairs being expensive little is known about their therapeutic value. A critical literature review of the evidence was undertaken to evaluate whether the use of tilt-in-space increases occupational engagement. A wide ranging search strategy identified 170 articles which were screened using inclusion criteria. The eligible literature (n = 6) was analysed thematically using open coding. The majority of the participants used tilt-in-space but the data was too heterogeneous to combine. Measures of occupational engagement were not used so the therapeutic value could not be assessed. There is a lack of high quality evidence about the therapeutic benefits of tilt-in-space wheelchairs. Given the expense associated with providing these wheelchairs, and the increase in their provision, research is needed to justify provision of high specification wheelchairs to meet the occupational needs of users within the limited resources of health and social care. Implications for Rehabilitation Tilt-in-space wheelchairs. Wheelchairs are an important and essential assistive device for promoting independence and function. Suggests there are benefits for tilt-in-space wheelchairs. Identifies the need for additional large scale research.

  15. Development of a tilting system for electric multiple unit to speed up on conventional lines

    International Nuclear Information System (INIS)

    Seo, Sung Il; Kim, Nam Po; Lee, Soo Gil; Kim, Seok Won

    2008-01-01

    An advanced tilting system for KTT (Korean Tilting Train) was developed and a performance test of the system has been completed. KTT has been constructed to speed up and promise a significant enhancement in service quality on a conventional line. KTT is an electric multiple unit composed of 6 cars running at the design speed of 200 km/h. The tilting system is the core technology of KTT and combined with the conventional bogie system. It has a self-steering mechanism and a swing link. The self-steering mechanism of Z-bar type is free to rotate on the curve and stable to run on a straight line. The swing link mechanism of the bolster enables the carbody to tilt up to 8 .deg.. A tilting control system detects a curve with sensors and commands the electro-mechanical actuators to move the bolster through the computer network system. GPS collaborates with the tilting system to perceive the curve previously and enables gradual tilting so as not to violate passenger comfort. The performance of the tilting system has been verified by a trial test running of KTT on a commercial conventional line. The tilting system is ready for commercial use

  16. Interface characteristics at an organic/metal junction: pentacene on Cu stepped surfaces.

    Science.gov (United States)

    Matos, Jeronimo; Kara, Abdelkader

    2016-11-09

    The adsorption of pentacene on Cu (2 2 1), Cu (5 1 1) and Cu (9 1 1) is investigated using density functional theory (DFT) with the self-consistent inclusion of van der Waals (vdW) interactions. Cu (2 1 1) is a vicinal of Cu (1 1 1) while Cu (5 1 1) and (9 1 1) are vicinals of Cu (1 0 0). For all the three surfaces, we found pentacene to prefer to adsorb parallel to the surface and near the steps. The addition of vdW interactions resulted in an enhancement in adsorption energies, with reference to the PBE functional, of around 2 eV. With vdWs inclusion, the adsorption energies were found to be 2.98 eV, 3.20 eV and 3.49 eV for Cu (2 2 1), Cu (5 1 1) and Cu (9 1 1) respectively. These values reflect that pentacene adsorbs stronger on (1 0 0) terraces with a preference for larger terraces. The molecule tilts upon adsorption with a small tilt angle on the (1 0 0) vicinals (about a few degrees) as compared to a large one on Cu (2 2 1) where the tilt angle is found to be about 20°. We find that the adsorption results in a net charge transfer to the molecule of ~1 electron, for all surfaces.

  17. Surface relief of α doubleprime martensite in a Ti-Mo alloy

    International Nuclear Information System (INIS)

    Guo, H.; Okuda, K.; Enomoto, M.

    2000-01-01

    The surface relief of αdouble p rime martensite plates in a polycrystalline Ti-4.74 at. pct Mo alloy was studied by atomic force microscopy (AFM). The orientation of matrix grains was measured by electron backscatter diffraction (EBSD), and measured surface tilt angles were compared with calculation by the crystallographic theory of martensite transformation. The observed maximum tilt angle was close to the predicted value of 7.57 deg. The overall agreement between measured and calculated tilt angles was improved significantly by taking into account not only the inclination of habit plane to the specimen surface, but also the shear direction predicted from the theory. The tile angle may vary with the moving direction of the interface unless the habit plane is perpendicular to the specimen surface. However, this effect was small in this transformation

  18. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    International Nuclear Information System (INIS)

    Helander, Sara; Montecchio, Meri; Lemak, Alexander; Farès, Christophe; Almlöf, Jonas; Li, Yanjun; Yee, Adelinda; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano; Sunnerhagen, Maria

    2014-01-01

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25 1–73 , a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains

  19. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    Energy Technology Data Exchange (ETDEWEB)

    Helander, Sara; Montecchio, Meri [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Lemak, Alexander [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Farès, Christophe [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Almlöf, Jonas [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Li, Yanjun [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Yee, Adelinda [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Arrowsmith, Cheryl H. [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Dhe-Paganon, Sirano [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Sunnerhagen, Maria, E-mail: maria.sunnerhagen@liu.se [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden)

    2014-04-25

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.

  20. Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field

    International Nuclear Information System (INIS)

    Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

    1985-01-01

    In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted

  1. Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field

    International Nuclear Information System (INIS)

    Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

    1985-01-01

    In 1983 and 1984 Oak Ridge National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conassauga Shale. Each fracture was produced by the injection of approximately 500,000 liters of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted

  2. A Tilt, Soil Moisture, and Pore Water Pressure Sensor System for Slope Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Rosanno de Dios

    2009-06-01

    Full Text Available This paper describes the design, implementation and characterization of a sensor network intended for monitoring of slope deformation and potential failures. The sensor network system consists of a tilt and moisture sensor column, a pore water pressure sensor column and a personal computer for data storage and processing. The tilt sensor column consists of several pipe segments containing tri-axial accelerometers and signal processing electronics. Each segment is joined together by flexible joints to allow for the column to deform and subsequently track underground movement. Capacitive-type sensors for soil moisture measurement are also included in the sensor column, which are used to measure the soil moisture at different depths. The measurements at each segment are transferred via a Controller Area Network (CAN bus, where the CAN master node is located at the top of the column above ground. The CAN master node transmits the collected data from the slave nodes via a wireless connection to a personal computer that performs data storage, processing and display via a Python-based graphical user interface (GUI. The entire system was deployed and characterized on a small-scale slope model. Slope failure was induced via water seepage and the system was demonstrated to ably measure the inclination and soil moisture content throughout the landslide event.

  3. Design of a Piezoelectric-Driven Tilt Mirror for a Fast Laser Scanner

    Science.gov (United States)

    Park, Jung-Ho; Lee, Hu-Seung; Lee, Jae-Hoon; Yun, So-Nam; Ham, Young-Bog; Yun, Dong-Won

    2012-09-01

    Recently, laser scanners have been used for laser processing such as cutting, welding, and grooving, especially in the automotive industry. The laser scanners need a high-speed driving to minimize cracks caused by thermal shock of brittle materials. Therefore, a novel laser processing system that is composed of a laser source and a piezoelectric-driven tilt mirror to control the reflection angle of the laser beam, and a stage equipped with the tilt mirror has been investigated. In this study, a piezoelectric-driven tilt mirror is designed and analyzed for scanning performance to achieve a beam spot of 30 µm, a pattern width of 1 mm, an overlap ratio of 70% of the circle area, and a scanning speed of 1 m/s. Then, structural analysis of the tilt mirror with three piezoelectric actuators is performed to determine the maximum reflection angle and resonance frequency. Finally, a prototype tilt mirror is fabricated and its basic characteristics are experimentally investigated and discussed.

  4. Modulated electron bunch with amplitude front tilt in an undulator

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2015-12-01

    In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radiation behind the kick, because the deflection process involves the introduction of a tilt of the bunch profile. This tilt of the bunch profile leads to radiation pulse front tilt, which is equivalent to angular dispersion of the output radiation. We remark that our exact results can potentially be useful to developers of new generation XFEL codes for cross-checking their results.

  5. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  6. Valuation of Go Stimuli or Devaluation of No-Go Stimuli? Evidence of an Increased Preference for Attended Go Stimuli Following a Go/No-Go Task.

    Science.gov (United States)

    Inoue, Kazuya; Sato, Nobuya

    2017-01-01

    Attentional inhibition that occurs during discrimination tasks leads to the negative evaluation of distractor stimuli. This phenomenon, known as the distractor devaluation effect also occurs when go/no-go tasks require response inhibition. However, it remains unclear whether there are interactions between attention and response controls when the distractor devaluation effect occurs. The aims of this study were to investigate whether attention to stimuli in the go/no-go task plays a facilitative role in distractor devaluation through response inhibition, and to clarify whether this effect reflects a decreased preference for no-go stimuli. Participants evaluated the preference for pictures before and after a go/no-go task. In Experiments 1 and 2, they made a go or no-go response depending on the category of pictures displayed (gummy candies or rice crackers), whereas in Experiment 3 they did on the basis digit category, even or odd numbers, superimposed on such pictures. Experiments 1 and 2 demonstrated that the pictures presented as no-go stimuli in the preceding go/no-go task were evaluated as less positive than the pictures presented as go stimuli. This devaluation effect reflected an increased preference for the go stimuli but not a decreased preference for the no-go stimuli. Experiment 3 indicated that response inhibition did not affect the preference for the pictures that had not received attention in a preceding go/no-go task. These results suggest that although attention plays an important role in differential ratings for go and no-go stimuli, such differences, in fact, reflect the valuation of go stimuli.

  7. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  8. Annual evolution of global, direct and diffuse radiation and fractions in tilted surfaces Evolução anual das radiações e fraç��es global, direta e difusa em superfícies inclinadas

    Directory of Open Access Journals (Sweden)

    Adilson P. de Souza

    2012-04-01

    Full Text Available It was evaluated the annual evolution of global, direct and diffuse components of incident solar radiation on tilted surfaces to 12.85, 22.85 and 32.85º, facing north, in Botucatu, state of São Paulo, Brazil. The radiometric fractions were obtained for each component of the radiation in the aforementioned surfaces, through the ratio with the global and top of the atmosphere radiations. Seasonality was evaluated based on monthly averages of daily values. The measures occurred between 04/1998 and 07/2001 at 22.85º; 08/2001 and 02/2003 at 12.85º; and from 03/2003 to 12/2007 at 32.85º, with concomitant measures in the horizontal surface (reference. The levels of global and direct radiation on tilted surfaces were lower in summer and higher in the equinoxes when compared with the horizontal. The diffuse radiation on tilted surfaces was lower in most months, with losses of up to 65%. A trend of increasing differences occurred between horizontal and tilted surfaces with the increase of the angle in all the components and fractions of incident radiation. The annual evolution of rainfall and cloud cover ratio directly affected the atmospheric transmissivity of direct and diffuse components in the region.Avaliou-se a evolução anual das componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85; 22,85 e 32,85º, com face voltada ao Norte, em Botucatu-SP. Foram obtidas frações radiométricas para cada componente da radiação nas superfícies supracitadas, através de razões com a radiação global e a do topo da atmosfera. A sazonalidade foi avaliada através das médias mensais dos valores diários. As medidas ocorreram entre 04/1998 e 07/2001, em 22,85º; 08/2001 e 02/2003, em 12,85º; e de 03/2003 a 12/2007, em 32,85º, com medidas concomitantes no plano horizontal (referência. Os níveis das radiações global e direta nos planos inclinados foram inferiores no período de verão e superiores entre os

  9. Internal tilting and classical transport for field-reversed configurations based on the Maschke--Hernegger solution

    International Nuclear Information System (INIS)

    Clemente, R.A.; Grillo, C.E.

    1984-01-01

    It is shown that elongated field-reversed configurations based on the Maschke--Hernegger solution of the Grad--Shafranov equation are unstable to internal tilting. The particle transport properties across the flux surfaces of such a model are also considered in the limit of large elongation of the separatrix. An estimation of the time of confinement of particles in terms of classical conductivity, which is lower than previous estimates, is given

  10. Introducer Curving Technique for the Prevention of Tilting of Transfemoral Gunther Tulip Inferior Vena Cava Filter

    International Nuclear Information System (INIS)

    Xiao, Liang; Shen, Jing; Tong, Jia Jie; Huang, De Sheng

    2012-01-01

    To determine whether the introducer curving technique is useful in decreasing the degree of tilting of transfemoral Tulip filters. The study sample group consisted of 108 patients with deep vein thrombosis who were enrolled and planned to undergo thrombolysis, and who accepted transfemoral Tulip filter insertion procedure. The patients were randomly divided into Group C and Group T. The introducer curving technique was Adopted in Group T. The post-implantation filter tilting angle (ACF) was measured in an anteroposterior projection. The retrieval hook adhering to the vascular wall was measured via tangential cavogram during retrieval. The overall average ACF was 5.8 ± 4.14 degrees. In Group C, the average ACF was 7.1 ± 4.52 degrees. In Group T, the average ACF was 4.4 ± 3.20 degrees. The groups displayed a statistically significant difference (t = 3.573, p = 0.001) in ACF. Additionally, the difference of ACF between the left and right approaches turned out to be statistically significant (7.1 ± 4.59 vs. 5.1 ± 3.82, t = 2.301, p = 0.023). The proportion of severe tilt (ACF ≥ 10 degree) in Group T was significantly lower than that in Group C (9.3% vs. 24.1%, X 2 = 4.267, p = 0.039). Between the groups, the difference in the rate of the retrieval hook adhering to the vascular wall was also statistically significant (2.9% vs. 24.2%, X 2 = 5.030, p = 0.025). The introducer curving technique appears to minimize the incidence and extent of transfemoral Tulip filter tilting.

  11. Introducer Curving Technique for the Prevention of Tilting of Transfemoral Gunther Tulip Inferior Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liang; Shen, Jing; Tong, Jia Jie [The First Hospital of China Medical University, Shenyang (China); Huang, De Sheng [College of Basic Medical Science, China Medical University, Shenyang (China)

    2012-07-15

    To determine whether the introducer curving technique is useful in decreasing the degree of tilting of transfemoral Tulip filters. The study sample group consisted of 108 patients with deep vein thrombosis who were enrolled and planned to undergo thrombolysis, and who accepted transfemoral Tulip filter insertion procedure. The patients were randomly divided into Group C and Group T. The introducer curving technique was Adopted in Group T. The post-implantation filter tilting angle (ACF) was measured in an anteroposterior projection. The retrieval hook adhering to the vascular wall was measured via tangential cavogram during retrieval. The overall average ACF was 5.8 {+-} 4.14 degrees. In Group C, the average ACF was 7.1 {+-} 4.52 degrees. In Group T, the average ACF was 4.4 {+-} 3.20 degrees. The groups displayed a statistically significant difference (t = 3.573, p = 0.001) in ACF. Additionally, the difference of ACF between the left and right approaches turned out to be statistically significant (7.1 {+-} 4.59 vs. 5.1 {+-} 3.82, t = 2.301, p = 0.023). The proportion of severe tilt (ACF {>=} 10 degree) in Group T was significantly lower than that in Group C (9.3% vs. 24.1%, X{sup 2} = 4.267, p = 0.039). Between the groups, the difference in the rate of the retrieval hook adhering to the vascular wall was also statistically significant (2.9% vs. 24.2%, X{sup 2} = 5.030, p = 0.025). The introducer curving technique appears to minimize the incidence and extent of transfemoral Tulip filter tilting.

  12. Tilted Bianchi type I dust fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Tilted Bianchi type I dust fluid cosmological model in general relativity ... In this paper, we have investigated a tilted Bianchi type I cosmological model filled with dust of perfect fluid in general relativity. ... Pramana – Journal of Physics | News ...

  13. Electrostatic chuck consisting of polymeric electrostatic inductive fibers for handling of objects with rough surfaces

    International Nuclear Information System (INIS)

    Dhelika, Radon; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio; Takarada, Wataru; Kikutani, Takeshi

    2013-01-01

    An electrostatic chuck (ESC) is a type of reversible dry adhesive which clamps objects by means of electrostatic force. Currently an ESC is used only for objects having flat surfaces because the attractive force is reduced for rough surfaces. An ESC that can handle objects with rough surfaces will expand its applications to MEMS (micro electro mechanical system) or optical parts handling. An ESC consisting of compliant electrostatic inductive fibers which conform to the profile of the surface has been proposed for such use. This paper aims at furthering previous research by observing the attractive force/pressure generated, both theoretically and experimentally, through step-by-step fabrication and analysis. Additionally, how the proposed fiber ESC behaves toward rough surfaces is also observed. The attractive force/pressure of the fiber ESC is theoretically investigated using a robust mechano-electrostatic model. Subsequently, a prototype of the fiber ESC consisting of ten fibers arranged at an angle is employed to experimentally observe its attractive force/pressure for objects with rough surfaces. The attractive force of the surface which is modeled as a sinusoidal wave with various amplitudes is observed, through which the feasibility of a fiber ESC is justified. (paper)

  14. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    Science.gov (United States)

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  15. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    Science.gov (United States)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  16. Effect of Size Change and Brightness Change of Visual Stimuli on Loudness Perception and Pitch Perception of Auditory Stimuli

    Directory of Open Access Journals (Sweden)

    Syouya Tanabe

    2011-10-01

    Full Text Available People obtain a lot of information from visual and auditory sensation on daily life. Regarding the effect of visual stimuli on perception of auditory stimuli, studies of phonological perception and sound localization have been made in great numbers. This study examined the effect of visual stimuli on perception in loudness and pitch of auditory stimuli. We used the image of figures whose size or brightness was changed as visual stimuli, and the sound of pure tone whose loudness or pitch was changed as auditory stimuli. Those visual and auditory stimuli were combined independently to make four types of audio-visual multisensory stimuli for psychophysical experiments. In the experiments, participants judged change in loudness or pitch of auditory stimuli, while they judged the direction of size change or the kind of a presented figure in visual stimuli. Therefore they cannot neglect visual stimuli while they judged auditory stimuli. As a result, perception in loudness and pitch were promoted significantly around their difference limen, when the image was getting bigger or brighter, compared with the case in which the image had no changes. This indicates that perception in loudness and pitch were affected by change in size and brightness of visual stimuli.

  17. Twenty-degree-tilt radiography for evaluation of lateral humeral condylar fracture in children

    International Nuclear Information System (INIS)

    Imada, Hideaki; Tanaka, Ryuji; Itoh, Yohei; Kishi, Kazuhiko

    2010-01-01

    To investigate the efficacy of '20 -tilt anteroposterior (A-P) radiography' in the assessment of lateral condylar fractures of the distal humerus. Eighteen children with lateral humeral condylar fractures were studied. Every child underwent conventional A-P and lateral radiography, and six children underwent multi-detector computed tomography (MDCT). For the investigation of 20 -tilt radiography, ten children with lateral humeral condylar fractures had conventional and 20 -tilt A-P and lateral radiography both preoperatively and postoperatively. Fragment dislocation was measured at the lateral and medial margins of the fracture on both the conventional A-P and 20 -tilt A-P radiographs. The lateral condylar fragment was triangular and was most prominent posteriorly. The fracture line was typically tilted approximately 20 to a reference line perpendicular to the long axis of the humerus in the lateral view. The extent of dislocation at the lateral and medial margins of the fracture site by 20 -tilt A-P radiography (9.3 ± 3.6 mm and 5.6 ± 2.5 mm) was significantly wider than that measured by the conventional method (6.8 ± 4.1 mm and 2.0 ± 1.5 mm), which may influence treatment. Twenty-degree-tilt A-P radiography may more precisely demonstrate fragment dislocation than standard radiographs and may influence patient treatment. (orig.)

  18. Early Poststroke Rehabilitation Using a Robotic Tilt-Table Stepper and Functional Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Alexey N. Kuznetsov

    2013-01-01

    Full Text Available Background. Stroke frequently leaves survivors with hemiparesis. To prevent persistent deficits, rehabilitation may be more effective if started early. Early training is often limited because of orthostatic reactions. Tilt-table stepping robots and functional electrical stimulation (FES may prevent these reactions. Objective. This controlled convenience sample study compares safety and feasibility of robotic tilt-table training plus FES (ROBO-FES and robotic tilt-table training (ROBO against tilt-table training alone (control. A preliminary assessment of efficacy is performed. Methods. Hemiparetic ischemic stroke survivors (age years, days after stroke were assigned to 30 days of ROBO-FES (, ROBO (, or control ( in addition to conventional physical therapy. Impedance cardiography and transcranial doppler sonography were performed before, during, and after training. Hemiparesis was assessed using the British Medical Research Council (MRC strength scale. Results. No serious adverse events occurred; 8 patients in the tilt-table group prematurely quit the study because of orthostatic reactions. Blood pressure and CBFV dipped % during robot training. In 52% of controls mean arterial pressure decreased by %. ROBO-FES increased leg strength by points, ROBO by more than control (, . CBFV increased in both robotic groups more than in controls (. Conclusions. Robotic tilt-table exercise with or without FES is safe and may be more effective in improving leg strength and cerebral blood flow than tilt table alone.

  19. [Evaluation of psychological fear in children undergoing head-up tilt test].

    Science.gov (United States)

    Chu, Wei-Hong; Wu, Li-Jia; Wang, Cheng; Lin, Ping; Li, Fang; Zhu, Li-Ping; Ran, Jing; Zou, Run-Mei; Liu, De-Yu

    2014-03-01

    To investigate the effects of different tilt angles of head-up tilt test (HUTT) and different responses to HUTT on the psychological fear in children undergoing the test. HUTT was performed on children with unexplained syncope or pre-syncope (107 cases: 52 males and 55 females), aged 5.5-17.8 years (mean 12.0±2.8 years). All subjects were randomly assigned to undergo HUTT at an angle of 60°, 70° or 80°; the negative cases underwent sublingual nitroglycerin-provocation HUTT at the same tilt angle. The Wong-Baker Faces Pain Rating Scale was used for self-assessment of psychological fear in subjects during HUTT at the end point of the test. The positive rate, hemodynamic changes and distribution of response types showed no significant differences between children at tilt angles of 60°, 70° and 80° (P>0.05). The greater the tilt angle, the higher the degree of psychological fear in children undergoing the test, but there were no significant differences between them (P>0.05). The degree of psychological fear in children who showed a positive response to HUTT (n=76) was significantly higher than that in children who showed a negative response (n=31) (Pfear in children undergoing the test, and the degree of psychological fear increases in children tested at tilt angles from 60° to 80°, but the differences have no statistical significance. A positive response to HUTT can significantly increase the psychological fear in children.

  20. Coherent field propagation between tilted planes.

    Science.gov (United States)

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  1. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  2. Monitoring massive fracture growth at 2-km depths using surface tiltmeter arrays

    Science.gov (United States)

    Wood, M.D.

    1979-01-01

    Tilt due to massive hydraulic fractures induced in sedimentary rocks at depths of up to 2.2 km have been recorded by surface tiltmeters. Injection of fluid volumes up to 4 ?? 105 liters and masses of propping agent up to 5 ?? 105 kg is designed to produce fractures approximately 1 km long, 50-100 m high and about 1 cm wide. The surface tilt data adequately fit a dislocation model of a tensional fault in a half-space. Theoretical and observational results indicate that maximum tilt occurs at a distance off the strike of the fracture equivalent to 0.4 of the depth to the fracture. Azimuth and extent of the fracture deduced from the geometry of the tilt field agree with other kinds of geophysical measurements. Detailed correlation of the tilt signatures with pumping parameters (pressure, rate, volume, mass) have provided details on asymmetry in geometry and growth rate. Whereas amplitude variations in tilt vary inversely with the square of the depth, changes in flow rate or pressure gradient can produce a cubic change in width. These studies offer a large-scale experimental approach to the study of problems involving fracturing, mass transport, and dilatancy processes. ?? 1979.

  3. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Directory of Open Access Journals (Sweden)

    Daniel de Zilva

    Full Text Available Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  4. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Science.gov (United States)

    de Zilva, Daniel; Vu, Luke; Newell, Ben R; Pearson, Joel

    2013-01-01

    Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  5. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  6. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  7. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings - Part II: Comparison Between Theory and Experiment

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Fuerst, Axel; Santos, Ilmar

    2007-01-01

    This is Part II of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. The paper has two main objectives. One is an experimental investigation of the influence of an oil injection pocket on the pressure...... and without oil injection) on the pressure distribution and oil film thickness. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approx. 100 cm^2 surface area. Two pads are measured in a laboratory test rig at loads of approx. 1.5 MPa...... and approx. 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading-edge taper. The measurements are compared to theoretical values obtained using a three-dimensional thermoelastohydrodynamic (TEHD) numerical model...

  8. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes

    Science.gov (United States)

    Kim, Dong Hyun; Gratchev, Ivan; Hein, Maw; Balasubramaniam, Arumugam

    2016-08-01

    This paper focuses on the influence of the shapes of rock cores, which control the sliding or toppling behaviours in tilt tests for the estimation of rock joint roughness coefficients (JRC). When the JRC values are estimated by performing tilt tests, the values are directly proportional to the basic friction of the rock material and the applied normal stress on the sliding planes. Normal stress obviously varies with the shape of the sliding block, and the basic friction angle is also affected by the sample shapes in tilt tests. In this study, the shapes of core blocks are classified into three representative shapes and those are created using plaster. Using the various shaped artificial cores, a set of tilt tests is carried out to identify the shape influences on the normal stress and the basic friction angle in tilt tests. The test results propose a normal stress reduction function to estimate the normal stress for tilt tests according to the sample shapes based on Barton's empirical equation. The proposed normal stress reduction functions are verified by tilt tests using artificial plaster joints and real rock joint sets. The plaster joint sets are well matched and cast in detailed printed moulds using a 3D printing technique. With the application of the functions, the obtained JRC values from the tilt tests using the plaster samples and the natural rock samples are distributed within a reasonable JRC range when compared with the measured values.

  9. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    Science.gov (United States)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  10. Do episodic migraineurs selectively attend to headache-related visual stimuli?

    Science.gov (United States)

    McDermott, Michael J; Peck, Kelly R; Walters, A Brooke; Smitherman, Todd A

    2013-02-01

    To assess pain-related attentional biases among individuals with episodic migraine. Prior studies have examined whether chronic pain patients selectively attend to pain-related stimuli in the environment, but these studies have produced largely mixed findings and focused primarily on patients with chronic musculoskeletal pain. Limited research has implicated attentional biases among chronic headache patients, but no studies have been conducted among episodic migraineurs, who comprise the overwhelming majority of the migraine population. This was a case-control, experimental study. Three hundred and eight participants (mean age = 19.2 years [standard deviation = 3.3]; 69.5% female; 36.4% minority), consisting of 84 episodic migraineurs, diagnosed in accordance with International Classification of Headache Disorders (2(nd) edition) criteria using a structured diagnostic interview, and 224 non-migraine controls completed a computerized dot probe task to assess attentional bias toward headache-related pictorial stimuli. The task consisted of 192 trials and utilized 2 emotional-neutral stimulus pairing conditions (headache-neutral and happy-neutral). No within-group differences for reaction time latencies to headache vs happy conditions were found among those with episodic migraine or among the non-migraine controls. Migraine status was unrelated to attentional bias indices for both headache (F [1,306] = 0.56, P = .45) and happy facial stimuli (F [1,306] = 0.37, P = .54), indicating a lack of between-group differences. Lack of within- and between-group differences was confirmed with repeated measures analysis of variance. In light of the large sample size and prior pilot testing of presented images, results suggest that episodic migraineurs do not differentially attend to headache-related facial stimuli. Given modest evidence of attentional biases among chronic headache samples, these findings suggest potential differences in attentional

  11. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7

    Science.gov (United States)

    Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.

    2018-01-01

    We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.

  12. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    International Nuclear Information System (INIS)

    Atenco A, N.; Perez R, F.; Makarov, N.M.

    2005-01-01

    A theory for calculating the relaxation frequency ν and the shift δ ω of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R C for the well width fluctuations is much larger than the exciton radius a 0 (R C >> a 0 ). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al 0.3 Ga 0.7 As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of ν and δ ω be quite realistic. In particular, the relaxation frequency ν for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency ω 0 , while the surface-induced resonance shift δ ω vanishes near ω 0 , and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs

  13. Use of an Android application "clinometer" for measurement of head down tilt given during subarachnoid block.

    Science.gov (United States)

    Dixit, R B; Neema, M M

    2016-01-01

    Head down tilt is given to patients after sub arachnoid block for adjustment of height of block. However, the amount of tilt given is subjective and cannot be documented. We used an android application named "clinometer" to measure exact degree of tilt given by anesthesiologists as their routine practice. This observational study, at a medical college hospital, was done in 130 patients given sub arachnoid block for lower abdominal surgeries. We observed and documented vital data of patients and measured tilt given by application "clinometer." We observed that the application was easy to use and measured tilt each time. The result obtained can be documented, digitally saved and transferred. In 130 patients studied, we observed incidence of degree of tilt as follows: 6-8° tilt in 38 patients (29.23%), 8-10 in 36 patients (27.69%), 10-12 in 30 patients (23.08%), 12-14 in 12 patients (9.23%) and 14-16° tilt in 14 patients (10.77%). Use of application was received with enthusiasm by practicing anesthesiologists. Various possible uses of this application are discussed.

  14. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  15. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  16. Introducer curving technique for the prevention of tilting of transfemoral Günther Tulip inferior vena cava filter.

    Science.gov (United States)

    Xiao, Liang; Huang, De-sheng; Shen, Jing; Tong, Jia-jie

    2012-01-01

    To determine whether the introducer curving technique is useful in decreasing the degree of tilting of transfemoral Tulip filters. The study sample group consisted of 108 patients with deep vein thrombosis who were enrolled and planned to undergo thrombolysis, and who accepted transfemoral Tulip filter insertion procedure. The patients were randomly divided into Group C and Group T. The introducer curving technique was Adopted in Group T. The post-implantation filter tilting angle (ACF) was measured in an anteroposterior projection. The retrieval hook adhering to the vascular wall was measured via tangential cavogram during retrieval. The overall average ACF was 5.8 ± 4.14 degrees. In Group C, the average ACF was 7.1 ± 4.52 degrees. In Group T, the average ACF was 4.4 ± 3.20 degrees. The groups displayed a statistically significant difference (t = 3.573, p = 0.001) in ACF. Additionally, the difference of ACF between the left and right approaches turned out to be statistically significant (7.1 ± 4.59 vs. 5.1 ± 3.82, t = 2.301, p = 0.023). The proportion of severe tilt (ACF ≥ 10°) in Group T was significantly lower than that in Group C (9.3% vs. 24.1%, χ(2) = 4.267, p = 0.039). Between the groups, the difference in the rate of the retrieval hook adhering to the vascular wall was also statistically significant (2.9% vs. 24.2%, χ(2) = 5.030, p = 0.025). The introducer curving technique appears to minimize the incidence and extent of transfemoral Tulip filter tilting.

  17. Octahedral tilt transitions in the relaxor ferroelectric Na1/2Bi1/2TiO3

    International Nuclear Information System (INIS)

    Meyer, Kai-Christian; Gröting, Melanie; Albe, Karsten

    2015-01-01

    The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na 1/2 Bi 1/2 TiO 3 (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create local tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions

  18. Reducing friction in tilting-pad bearings by the use of enclosed recesses

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2008-01-01

    A three-dimensional thermoelastohydrodynamic model is applied to the analysis of tilting-pad bearings with spherical pivots and equipped with deep recesses in the high-pressure regions. A potential for a 10-20% reduction in the friction loss compared to conventional plain bearing pads is documented....... Design suggestions minimizing the power loss are given for various length-to-width ratios. The tilting angle in the sliding direction is more sensitive to correct positioning of the pivot point than conventional bearing pads. Improving the performance by equipping a tilting-pad bearing with a deep recess...... therefore requires accurate analysis and design of the bearing. Similarly, a high sensitivity perpendicular to the sliding direction suggests that this method of reducing friction is more feasible when using line pivots or spring beds than when using spherical pivots for controlling the tilting angle....

  19. Endogenous sequential cortical activity evoked by visual stimuli.

    Science.gov (United States)

    Carrillo-Reid, Luis; Miller, Jae-Eun Kang; Hamm, Jordan P; Jackson, Jesse; Yuste, Rafael

    2015-06-10

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. Copyright © 2015 Carrillo-Reid et al.

  20. Emotional stimuli and motor conversion disorder

    NARCIS (Netherlands)

    Voon, V.; Brezing, C.; Gallea, C.; Ameli, R.; Roelofs, K.; LaFrance, W.C.; Hallett, M.

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli,

  1. Tilt Precursors before Earthquakes on the San Andreas Fault, California.

    Science.gov (United States)

    Johnston, M J; Mortensen, C E

    1974-12-13

    An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  2. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  3. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  4. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  5. The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Thomas Hagemann

    2017-01-01

    Full Text Available This paper presents a combination of experimental data, CFD analyses, and bearing code predictions on emergence of convective inertia fluid forces within the lube oil flow of tilting-pad journal bearings. Concordantly, experimental data and CFD analyses show a significant rise of local pressure at the transition between inlet and leading edge of tilting-pad, especially for high-speed applications with surface speeds up to 100 m/s. This effect can be related to convective inertia forces within fluid flow as cross-sections and flow character rapidly change at the pad entrance. An energy-based approach is implemented in the bearing code in order to provide enhanced boundary conditions for Reynolds equation considering this effect. As a result, predictions of bearing code achieved significant improved correlation with measured pressure distributions and CFD-data. Further, beside the local influence, a nonnegligible impact on characteristic parameters of bearing operation such as maximum temperature and stiffness and damping coefficients is observed. Finally, the results are critically analyzed and requirements to gain more distinct and reliable data are specified.

  6. The anterior tilt of the acromion: radiographic evaluation and correlation with shoulder diseases

    International Nuclear Information System (INIS)

    Prato, N.; Peloso, D.; Franconeri, A.; Tegaldo, G.; Ravera, G.B.; Silvestri, E.; Derchi, L.E.

    1998-01-01

    The aim of this study was to test whether the anterior tilt of the acromion can be objectively evaluated on lateral radiographs, and whether there is a relation between this anatomical feature and the most common shoulder diseases. Lateral radiographs of 15 dried scapulas were performed in neutral position and with 5 of caudal, cranial, anterior and posterior angulations. Two hundred and forty-three shoulders, both asymptomatic and affected by chronic and post-traumatic impingement, calcific tendinitis and instability, were examined by conventional radiography. The presence of rotator-cuff tears was investigated by sonography. A method was elaborated to obtain reproducible lateral radiographs and to determine the acromial tilt angle. Inter- and intraobserver and inter- and intraoperator variations in measurements were evaluated. Variations in tube angulation produced changes in tilt-angle values on dried scapulas. The average tilt angle for the chronic impingement and the instability groups were significantly different from the post-traumatic, calcific tendinitis and control groups. Rotator-cuff tears were significantly more frequent in the chronic impingement group and related to a more acute tilt angle. The inter- and intraobserver variability coefficients were 0.95 and 0.98, whereas the inter- and intraoperator variability coefficients were 0.94 and 0.96, respectively. Conventional radiography using fluoroscopy for positioning is a well-reproducible method for the evaluation of acromial tilt. There is a significant difference in tilt-angle values between some groups of subjects examined, but the lack of specificity limits the clinical importance of such measurement. (orig.)

  7. The anterior tilt of the acromion: radiographic evaluation and correlation with shoulder diseases

    Energy Technology Data Exchange (ETDEWEB)

    Prato, N.; Peloso, D.; Franconeri, A. [Department of Radiology, San Carlo Hospital, Genoa (Italy); Tegaldo, G. [Dept. of Orthopaedic Surgery, San Carlo Hospital, Genoa (Italy); Ravera, G.B. [Inst. of Medical Statistics and Biometry, University of Genoa (Italy); Silvestri, E.; Derchi, L.E. [Inst. of Radiology, University of Genoa (Italy)

    1998-12-01

    The aim of this study was to test whether the anterior tilt of the acromion can be objectively evaluated on lateral radiographs, and whether there is a relation between this anatomical feature and the most common shoulder diseases. Lateral radiographs of 15 dried scapulas were performed in neutral position and with 5 of caudal, cranial, anterior and posterior angulations. Two hundred and forty-three shoulders, both asymptomatic and affected by chronic and post-traumatic impingement, calcific tendinitis and instability, were examined by conventional radiography. The presence of rotator-cuff tears was investigated by sonography. A method was elaborated to obtain reproducible lateral radiographs and to determine the acromial tilt angle. Inter- and intraobserver and inter- and intraoperator variations in measurements were evaluated. Variations in tube angulation produced changes in tilt-angle values on dried scapulas. The average tilt angle for the chronic impingement and the instability groups were significantly different from the post-traumatic, calcific tendinitis and control groups. Rotator-cuff tears were significantly more frequent in the chronic impingement group and related to a more acute tilt angle. The inter- and intraobserver variability coefficients were 0.95 and 0.98, whereas the inter- and intraoperator variability coefficients were 0.94 and 0.96, respectively. Conventional radiography using fluoroscopy for positioning is a well-reproducible method for the evaluation of acromial tilt. There is a significant difference in tilt-angle values between some groups of subjects examined, but the lack of specificity limits the clinical importance of such measurement. (orig.) With 6 figs., 3 tabs., 34 refs.

  8. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    Science.gov (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  9. Narcissism dimensions differentially moderate selective attention to evaluative stimuli in incarcerated offenders.

    Science.gov (United States)

    Krusemark, Elizabeth A; Lee, Christopher; Newman, Joseph P

    2015-01-01

    Narcissistic personality disorder is associated with distinguishing traits including self-enhancement, arrogance, and intense reactivity to ego threat. Theoretical accounts of narcissism suggest these heterogeneous behaviors reflect a defensive motivational style that functions to both uphold and protect the self-concept. However, the notion that narcissism can be characterized by grandiose and vulnerable dimensions raises the possibility that these diverse behaviors represent distinct expressions of narcissistic defensiveness. The present study examined whether both dimensions exhibit a general defensive style marked by selective attention to evaluative stimuli or are differentially associated with selective attention to positive and negative information, respectively. Using a dot probe task consisting of valenced and neutral trait adjectives, we evaluated these hypotheses in a group of male offenders. Results indicated that vulnerable narcissism was associated with attention biases for both positive and negative stimuli, though the dimension was further distinguished by disengagement difficulties and a greater recognition memory bias in response to negative words. Conversely, grandiose narcissism was associated with increased accuracy when attending to positive stimuli and directing attention away from negative stimuli. Overall, these findings suggest narcissistic individuals share motivated selective attention in response to evaluative stimuli, while simultaneously highlighting important phenotypic differences between grandiose and vulnerable dimensions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  10. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  11. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  12. Birth and demise of a Middle Jurassic isolated shallow-marine carbonate platform on a tilted fault block: Example from the Southern Iberian continental palaeomargin

    Science.gov (United States)

    Navarro, V.; Ruiz-Ortiz, P. A.; Molina, J. M.

    2012-08-01

    Subbetic Middle Jurassic oolitic limestones of the Jabalcuz Formation crop out in San Cristóbal hill, near Jaén city (Andalucía, Spain), between hemipelagic limestone and marl successions. The Jabalcuz limestones range in facies from calcareous breccias and micritic limestones to white cross-bedded oolitic limestones. Recent erosion has exhumed a Jurassic isolated shallow-water carbonate platform on the San Cristóbal hill. This shallow platform developed on a tilted fault block. An almost continuous, laterally extensive outcrop reveals tectono-sedimentary features distinctive of block-tilting in the different margins of the fault block. The studied sections represent various palaeogeographic positions in the ancient shallow-water carbonate platform and basin transition. This exceptional outcrop allows to decipher the triggering mechanisms of the birth, evolution, and drowning of this Jurassic isolated shallow-water carbonate platform. Two shallowing-upward depositional sequences separated by flooding surfaces can be distinguished on two different sides of the fault block. In the southeastern part of the outcrop, proximal sections grade vertically from distal talus fault breccias, with bivalve and serpulid buildup intercalations, to white cross-bedded oolitic limestones defining the lowermost depositional sequence. Upwards, overlying a flooding surface, the second sequence with oolitic limestones prograding over micritic deposits is recorded. In the southwest, oolitic, peloidal, and more distal micritic facies alternate, with notable southeastern progradation of oolitic facies in the upper part of the section, which represents the upper depositional sequence. The top of this second depositional sequence is another flooding surface recorded by the sedimentation of marls with radiolarians from the overlying formation. In the northwestern outcrops, the two depositional sequences are also almost completely preserved and can be differentiated. A 100 m

  13. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    International Nuclear Information System (INIS)

    Schuler, Alexander; Hausotte, Tino; Weckenmann, Albert

    2014-01-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results. (paper)

  14. Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification

    Czech Academy of Sciences Publication Activity Database

    Mordukhovich, B. S.; Outrata, Jiří

    2013-01-01

    Roč. 49, č. 3 (2013), s. 446-464 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : variational analysis * second-order theory * generalized differentiation * tilt stability Subject RIV: BA - General Mathematics Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-tilt stability in nonlinear programming under mangasarian-fromovitz constraint qualification.pdf

  15. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    Science.gov (United States)

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  16. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part II – Comparison Between Theory and Experiment

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2006-01-01

    This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately...... 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared...... to theoretical values obtained using a three dimensional thermo-elasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads...

  17. Emotional Stimuli and Motor Conversion Disorder

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt, Jr.; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to…

  18. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Lufaso, M.W.; Woodward, P.M.

    2004-01-01

    In transition metal oxides, preferential occupation of specific d orbitals on the transition metal ion can lead to the development of a long-range ordered pattern of occupied orbitals. This phenomenon, referred to as orbital ordering, is usually observed indirectly from the cooperative Jahn-Teller distortions (CJTDs) that result as a consequence of the orbital ordering. This paper examines the interplay between orbital ordering, octahedral tilting and cation ordering in perovskites. Both ternary AMX 3 perovskites containing an active Jahn-Teller (J-T) ion on the octahedral site and quaternary A 2 MM'X 6 perovskites containing a J-T ion on one-half of the octahedral sites have been examined. In AMX 3 perovskites, the tendency is for the occupied 3d 3x 2 -r 2 and 3d 3z 2 -r 2 orbitals to order in the ac plane, as exemplified by the crystal structures of LaMnO 3 and KCuF 3 . This arrangement maintains a favorable coordination environment for the anion sites. In AMX 3 perovskites, octahedral tilting tends to enhance the magnitude of the J-T distortions. In A 2 MM'X 6 perovskites, the tendency is for the occupied 3d 3z 2 -r 2 orbitals to align parallel to the c axis. This pattern maintains a favorable coordination environment about the symmetric M'-cation site. The orbital ordering found in rock-salt ordered A 2 MM'X 6 perovskites is compatible with octahedral rotations about the c axis (Glazer tilt system a 0 a 0 c - ) but appears to be incompatible with GdFeO 3 -type octahedral tilting (tilt system - b + a - ). (orig.)

  19. Tilted Bianchi type I dust fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 3. Tilted Bianchi type I dust fluid cosmological model in general ... In this paper, we have investigated a tilted Bianchi type I cosmological model filled with dust of perfect fluid in general relativity. To get a determinate solution, we have assumed a condition  ...

  20. Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Atenco A, N.; Perez R, F. [lnstituto de Fisica, Universidad Autonoma de Puebla, A.P. J-48, 72570 Puebla (Mexico); Makarov, N.M. [lnstituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, 72050 Puebla (Mexico)

    2005-07-01

    A theory for calculating the relaxation frequency {nu} and the shift {delta} {omega} of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R{sub C} for the well width fluctuations is much larger than the exciton radius a{sub 0} (R{sub C} >> a{sub 0}). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al{sub 0.3} Ga{sub 0.7}As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of {nu} and {delta} {omega} be quite realistic. In particular, the relaxation frequency {nu} for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency {omega}{sub 0}, while the surface-induced resonance shift {delta} {omega} vanishes near {omega}{sub 0}, and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs.

  1. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    Science.gov (United States)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  2. Estimation of pelvic tilt on anteroposterior X-rays - a comparison of six parameters

    International Nuclear Information System (INIS)

    Tannast, M.; Murphy, S.B.; Langlotz, F.; Anderson, S.E.; Siebenrock, K.A.

    2006-01-01

    To compare six different parameters described in literature for estimation of pelvic tilt on an anteroposterior pelvic radiograph and to create a simple nomogram for tilt correction of prosthetic cup version in total hip arthroplasty. Simultaneous anteroposterior and lateral pelvic radiographs are taken routinely in our institution and were analyzed prospectively. The different parameters (including three distances and three ratios) were measured and compared to the actual pelvic tilt on the lateral radiograph using simple linear regression analysis. One hundred and four consecutive patients (41 men, 63 women with a mean age of 31.7 years, SD 9.2 years, range 15.7-59.1 years) were studied. The strongest correlation between pelvic tilt and one of the six parameters for both men and women was the distance between the upper border of the symphysis and the sacrococcygeal joint. The correlation coefficient was 0.68 for men (P<0.001) and 0.61 for women (P<0.001). Based on this linear correlation, a nomogram was created that enables fast, tilt-corrected cup version measurements in clinical routine use. This simple method for correcting variations in pelvic tilt on plain radiographs can potentially improve the radiologist's ability to diagnose and interpret malformations of the acetabulum (particularly acetabular retroversion and excessive acetabular overcoverage) and post-operative orientation of the prosthetic acetabulum. (orig.)

  3. Tilt shift determinations with spatial-carrier phase-shift method in temporal phase-shift interferometry

    International Nuclear Information System (INIS)

    Liu, Qian; Wang, Yang; He, Jianguo; Ji, Fang; Wang, Baorui

    2014-01-01

    An algorithm is proposed to deal with tilt-shift errors in temporal phase-shift interferometry (PSI). In the algorithm, the tilt shifts are detected with the spatial-carrier phase-shift (SCPS) method and then the tilt shifts are applied as priori information to the least-squares fittings of phase retrieval. The algorithm combines the best features of the SCPS and the temporal PSI. The algorithm could be applied to interferograms of arbitrary aperture without data extrapolation for the Fourier transform is not involved. Simulations and experiments demonstrate the effectiveness of the algorithm. The statistics of simulation results show a satisfied accuracy in detecting tilt-shift errors. Comparisons of the measurements with and without environmental vibration show that the proposed algorithm could compensate tilt-shift errors and retrieve wavefront phase accurately. The algorithm provides an approach to retrieve wavefront phase for the temporal PSI in vibrating environment. (paper)

  4. Robust optic alignment in a tilt-free implementation of the Rowland circle spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Devon R., E-mail: devon@easyxafs.com [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States); easyXAFS, LLC, Seattle, WA 98122 (United States); Seidler, Gerald T., E-mail: seidler@uw.edu [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States)

    2017-02-15

    Highlights: • A Rowland circle spectrometer using spherically-bend crystal analyzers can be constructed and operated without the use of a two-axis tilt for analyzer alignment. • The resulting instrument allows immediate exchange of fully-tuned optics after a single, initial alignment. • This improvement will help enable the expansion of high-resolution x-ray expansion spectroscopy outside of synchrotron light sources. - Abstract: High-resolution x-ray emission spectroscopy (XES) has recently been demonstrated in the laboratory setting, achieving nearly synchrotron-level count rates despite the use of only conventional x-ray tube sources. This development holds high potential for expanding the reach of x-ray spectroscopies beyond the specialist community of synchrotron users, but comes with its own unique technical challenges for instrument performance and also, just as importantly, for ease of use by non-experts in x-ray science. Here, we address spectrometer design and operations in the context of the imperfect parallelness between the desired crystal plane and the wafer surface in spherically bent crystal analyser (SBCAs), an effect usually called “wafer miscut”. This introduces an ambiguous re-focusing error that typically requires a motorized two-axis tilt stage for fine alignment of the SBCA optic onto the ideal Rowland circle configuration. We instead demonstrate an asymmetric Rowland geometry that eliminates all need for motorized fine-tilt adjustment. We find rapid, extremely reproducible re-insertion of any aligned SBCA, i.e., without the need for any subsequent reoptimization. These improvements strongly benefit the ease of use of laboratory based spectrometers, taking them an important step closer to the level of turnkey operations needed for wide adoption outside of the existing specialist community.

  5. Tilt rotor tricopter : control system for the holonomic multirotor platform

    OpenAIRE

    Gjertsen, Sindre; Salem, Daniel

    2013-01-01

    Masteroppgave i mekatronikk MAS500 2013 – Universitetet i Agder, Grimstad Development of a new approach to the multicopter segment of the Unmanned Areal Vehicle (UAV) family is presented. The system is designed on a T-shaped tricopter platform with ability to tilt all three motors, hereby defined as Tilt Rotor Tricopter (TRT). The highly coupled nonlinear system is investigated through the mathematical model, and verified by simulations. Linearization of the system has been ach...

  6. Measurement of long term surface inflation signals at GLISP with two independent tiltmeter systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, F.W.; Rogers, J.S.; Ertman, M.E.; Thibault, J.

    1989-01-06

    Long-term monitoring at an Alberta oil recovery project was conducted to trace the Earth surface tilt response to the steam injection and related water movement through the formations at the site. Attempts were also made to relate the tilt to the various enhancement process activities in order to improve understanding of the long-term recovery process. Field comparisons were made between biaxial mercury-level borehole tiltmeters and biaxial bubble sensor tiltmeters, and some results are presented. It was generally found that the two types of tiltmeters reported similar tilt responses. Examples are shown of tilt response correlated with process activity and of a long-term tilt migration effect. 6 figs.

  7. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  8. Comparative analysis of diffused solar radiation models for optimum tilt angle determination for Indian locations

    International Nuclear Information System (INIS)

    Yadav, P.; Chandel, S.S.

    2014-01-01

    Tilt angle and orientation greatly are influenced on the performance of the solar photo voltaic panels. The tilt angle of solar photovoltaic panels is one of the important parameters for the optimum sizing of solar photovoltaic systems. This paper analyses six different isotropic and anisotropic diffused solar radiation models for optimum tilt angle determination. The predicted optimum tilt angles are compared with the experimentally measured values for summer season under outdoor conditions. The Liu and Jordan model is found to exhibit t lowest error as compared to other models for the location. (author)

  9. Tilting Uranus without a Collision

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  10. Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-01-01

    Full Text Available Wireless power transfer (WPT based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX (r2 = 0.075 m, 0.1 m, 0.15 m and the horizontal distance (y = 0 m, 0.05 m, 0.1 m, are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.

  11. Higher-order relationship between eigen-value separation and static flux tilts

    International Nuclear Information System (INIS)

    Beckner, W.D.

    1975-01-01

    Spatial kinetics phenomena in nuclear reactors, such as xenon-induced spatial flux oscillations, are currently being analyzed using the higher harmonic solutions to the static reactor balance equation. An important parameter in such an analysis is a global quantity called eigenvalue separation. It is desirable to be able to experimentally measure this parameter in power reactors in order to confirm design calculations. Since spatial distortions in the flux shape depend on the eigenvalue separation of the reactor, an attempt has been made previously to use this fact as a means of measuring the parameter. It was postulated that an induced flux distortion or ''static flux tilt'' could be measured and theoretically related to eigenvalue separation. Unfortunately, the behavior of experimental data did not exactly agree with theoretical predictions, and values of the parameter found using the original static flux tilt technique were consistently low. The theory has been re-evaluated here and the previously observed discrepancy eliminated. Techniques have been also developed to allow for more accurate interpretation of experimental data. In order to make the method applicable to real systems, the theory has been extended to two spatial dimensions; extension to three dimensions follows directly. Possible trouble areas have been investigated, and experimental procedures for use of the technique to measure the eigenvalue separation in power reactors are presented

  12. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  13. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    International Nuclear Information System (INIS)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.; Sibilia, C.

    2009-01-01

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  14. Tilt Table Therapies for Patients with Severe Disorders of Consciousness: A Randomized, Controlled Trial.

    Science.gov (United States)

    Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann

    2015-01-01

    One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718.

  15. Tilt Table Therapies for Patients with Severe Disorders of Consciousness: A Randomized, Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Carmen Krewer

    Full Text Available One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo. The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com, identifier number ISRCTN72853718.

  16. Doping and tilting on optics in noncentrosymmetric multi-Weyl semimetals

    Science.gov (United States)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-01-01

    We calculate the absorptive part of the ac optical conductivity of a multi-Weyl semimetal with winding number J in both the direction of the tilt σz z(Ω ) and perpendicular to it σx x(Ω ) as a function of photon energy Ω , tilt C, and chemical potential μ (doping). For zero tilt there is a discontinuous rise in the conductivity at twice the value of the chemical potential Ω =2 μ . Below 2 μ , both σx x(Ω ) and σz z(Ω ) are zero and above 2 μ they merge with their value at charge neutrality and display a linear in Ω dependence for J =1 while for J =2 , σx x(Ω ) remains linear but σz z(Ω ) is instead constant. For finite tilt the sharp jump at Ω =2 μ is lost and the onset of absorption starts instead from zero at a lower photon energy Ω =2 μ /(1 +C ) after which it acquires a quasilinear rise to merge with the undoped untilted interband background at Ω =2 μ /(1 -C ) for type I Weyl while for type II the undoped untilted background is never recovered. For noncentrosymmetric materials the energies of a pair of opposite chirality Weyl nodes become shifted by ±Q0 and this leads to two separate absorption edges corresponding to the effective chemical potential of each of the two nodes at 2 (μ +χ Q0) depending on chirality χ =± . We provide analytic expressions for the conductivity in this case which depend only on the ratio Q0/μ and tilt when plotted against Ω /μ . The signature of finite energy shift Q0 is more pronounced for σz z and J =2 than for the other cases.

  17. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    Science.gov (United States)

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  18. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Science.gov (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  19. Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations

    Science.gov (United States)

    Jobe, Oli; Thiessen, David B.; Marston, Philip L.

    2017-11-01

    Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.

  20. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  1. Cellular structures using U_q-tilting modules

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina; Tubbenhauer, Daniel

    We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic........ Our approach also generalize to certain categories containing infinite dimensional modules. As an application, we recover several known cellular structures (which can all be fit into our general set-up) as we illustrate in a list of examples.......We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic...

  2. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  3. Use of an Android application “clinometer” for measurement of head down tilt given during subarachnoid block

    Science.gov (United States)

    Dixit, RB; Neema, MM

    2016-01-01

    Context: Head down tilt is given to patients after sub arachnoid block for adjustment of height of block. However, the amount of tilt given is subjective and cannot be documented. Aims: We used an android application named “clinometer” to measure exact degree of tilt given by anesthesiologists as their routine practice. Settings and Design: This observational study, at a medical college hospital, was done in 130 patients given sub arachnoid block for lower abdominal surgeries. Materials and Methods: We observed and documented vital data of patients and measured tilt given by application “clinometer.” Results: We observed that the application was easy to use and measured tilt each time. The result obtained can be documented, digitally saved and transferred. In 130 patients studied, we observed incidence of degree of tilt as follows: 6-8° tilt in 38 patients (29.23%), 8-10 in 36 patients (27.69%), 10-12 in 30 patients (23.08%), 12-14 in 12 patients (9.23%) and 14-16° tilt in 14 patients (10.77%). Use of application was received with enthusiasm by practicing anesthesiologists. Various possible uses of this application are discussed. PMID:26955307

  4. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper

    2014-01-01

    Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...

  5. Exploring integral controllers in actively-lubricated tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    investigation of integral controllers for feedback-controlled lubrication with the aim of: a) presetting the static journal center and consequently exploring the changes of bearing dynamic properties; b) obtaining an integral controller capable of re-positioning the static journal eccentricity for matching......Active tilting-pad journal bearings with radial oil injection combine good stability properties of conventional tilting-pad journal bearings with the capability of improving their dynamic properties even more by control techniques. The main contribution of this work is the experimental...

  6. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    International Nuclear Information System (INIS)

    Madhav, P; Crotty, D J; Tornai, M P; McKinley, R L

    2009-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  7. Binocular Combination of Second-Order Stimuli

    Science.gov (United States)

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  8. "Happiness and Education": Tilting at Windmills?

    Science.gov (United States)

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  9. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  10. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2003-01-01

    The profile relaxation from a magnetic hydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  11. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-10-01

    The profile relaxation from a magnetohydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  12. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-01-01

    The profile relaxation from a magnetichydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) in investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulations is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic is effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  13. The aurora at quite magnetospheric conditions: Repeatability and dipole tilt angle dependence

    International Nuclear Information System (INIS)

    Oznovich, I.; Eastes, R.W.; Huffman, R.E.; Tur, M.; Glaser, I.

    1993-01-01

    Is there a magnetospheric ground state? Do the position and size of the auroral oval depend on the magnetic dipole tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 Angstrom, obtained by Polar BEAR at solar minimum (beginning of 1987), were related to high temporal resolution IPM 8 measurements of the interplanetary magnetic field, to solar wind velocity, and to the ground-based activity index Kp. The first problem was addressed by a two-dimensional correlation study of the repeatability of auroral emissions in corrected geomagnetic space at conditions of minimum energy transfer from the magnetosphere. The correlation measure of auroral images was 0.6-0.85. Error simulations indicate that given the uncertainties in pixel position and intensity, the maximum expected value of the correlation measure is 0.65-0.9. The notion of a ground state magnetosphere is therefore supported by this data. Repeatability was found at the same level regardless of time or reconfigurations of the magnetosphere between images and independent of magnetic time sector. The second problem was addressed by relating latitudinal shifts of the aurora with dipole tilt angle without resorting to auroral boundary specification. This data indicate that the latitude of the continuous aurora is related to the dipole tilt angle at quiet magnetospheric conditions. In the winter hemisphere a 10 degrees increase in the dipole tilt angle causes a 1 degree decrease (increase) in the latitude of auroral emissions at noon (midnight). The magnetic local time distribution of the latitudinal shifts with dipole tilt angle support a simple model in which the dipole tilt angle determines the position of the center of the auroral circle along the magnetic meridian 1320-0120 MLT (for IMF B y positive) and does not affect its radius. 22 refs., 8 figs

  14. The effects of using stimuli from three different dimensions on autoshaping with a complex negative patterning discrimination.

    Science.gov (United States)

    Pearce, John M; George, David N

    2002-10-01

    In two experiments pigeons received a complex negative patterning discrimination, using autoshaping, in which food was made available after three stimuli if they were presented alone (A, B, C), or in pairs (AB, AC, BC), but not when they were all presented together (ABC). Subjects also received a positive patterning discrimination in which three additional stimuli were not followed by food when presented alone (D, E, F), or in pairs (DE, DF, EF), but they were followed by food when presented together (DEF). Stimuli A and D belonged to one dimension, B and E to a second dimension, and D and F to a third dimension. For both problems, the discrimination between the individual stimuli and the triple-element compounds developed more readily than that between the pairs of stimuli and the triple-element compound. The results are consistent with predictions that can be derived from a configural theory of conditioning.

  15. Tilting-Twisting-Rolling: a pen-based technique for compass geometric construction

    Institute of Scientific and Technical Information of China (English)

    Fei LYU; Feng TIAN; Guozhong DAI; Hongan WANG

    2017-01-01

    This paper presents a new pen-based technique,Tilting-Twisting-Rolling,to support compass geometric construction.By leveraging the 3D orientation information and 3D rotation information of a pen,this technique allows smooth pen action to complete multi-step geometric construction without switching task states.Results from a user study show this Tilting-Twisting-Rolling technique can improve user performance and user experience in compass geometric construction.

  16. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  17. Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching

    Directory of Open Access Journals (Sweden)

    Tomoki Murakami

    2017-01-01

    Full Text Available This paper introduces a network-assisted interference suppression scheme using beam-tilt switching per frame for wireless local area network systems and its effectiveness in an actual indoor environment. In the proposed scheme, two access points simultaneously transmit to their own desired station by adjusting angle of beam-tilt including transmit power assisted from network server for the improvement of system throughput. In the conventional researches, it is widely known that beam-tilt is effective for ICI suppression in the outdoor scenario. However, the indoor effectiveness of beam-tilt for ICI suppression has not yet been indicated from the experimental evaluation. Thus, this paper indicates the effectiveness of the proposed scheme by analyzing multiple-input multiple-output channel matrices from experimental measurements in an office environment. The experimental results clearly show that the proposed scheme offers higher system throughput than the conventional scheme using just transmit power control.

  18. Realization of a tilted reference wave for electron holography by means of a condenser biprism

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: Falk.Roeder@tu-dresden.de [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Houdellier, Florent; Denneulin, Thibaud; Snoeck, Etienne; Hÿtch, Martin [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2016-02-15

    As proposed recently, a tilted reference wave in off-axis electron holography is expected to be useful for aberration measurement and correction. Furthermore, in dark-field electron holography, it is considered to replace the reference wave, which is conventionally diffracted in an unstrained object area, by a well-defined object-independent reference wave. Here, we first realize a tilted reference wave by employing a biprism placed in the condenser system above three condenser lenses producing a relative tilt magnitude up to 20/nm at the object plane (300 kV). Paraxial ray-tracing predicts condenser settings for a parallel illumination at the object plane, where only one half of the round illumination disc is tilted relative to the optical axis without displacement. Holographic measurements verify the kink-like phase modulation of the incident beam and return the interference fringe contrast as a function of the relative tilt between both parts of the illumination. Contrast transfer theory including condenser aberrations and biprism instabilities was applied to explain the fringe contrast measurement. A first dark-field hologram with a tilted – object-free – reference wave was acquired and reconstructed. A new application for bright/dark-field imaging is presented.

  19. Mechanism for the tilting of Geunther Tulip inferior vena cava filter inserted via femoral vein: an experimental study in vitro

    International Nuclear Information System (INIS)

    Xiao Liang; Shen Jing; Huang Desheng; Xu Ke

    2011-01-01

    Objective: To clarify the mechanism causing the tilting of Geunther Tulip inferior Vena Cava filter (GTF) which is inserted via femoral vein access by means of the experiment in vitro. Methods: The caval model was established by placing one 25 mm × 10 cm Dacron graft and two 10 mm × 20 cm Dacron grafts into a transparent bifurcate glass tube. The study consisted of two groups: right straight group (G RS ) (n=100) and left straight group (G LS ) (n=100). The distance (D CH ) between the caval right wall and the hook was measured. The degree of tilting (DT) was classified into 5 grades and the data were recorded. Before and after the GTF was released, the angle (A CM1,2 ) between the axis of IVC and the metal mount, the distance (D CM1,2 ) between the caval right wall and the metal mount, the angle (A CF ) between the axis of IVC and the axis of the filter and the diameter of IVC (D IVC ) were measured separately. Results: The degree of GTF tilting in each group revealed a divergent tendency. In Group RS, the apex of the filter tended to be grade Ⅲ compared that in Group LS (59% vs 36%, P=0.003). The differences in most variables between G RS and G LS were considered as statistical significance. Significant positive correlation existed between A CM1 and A CF , A CM1 -A CM2 and D CH1 -D CH2 in each group, respectively, while significant negative association was also existed between D CH1 and A CF in each group. Conclusion: The tilting angle of GTF filter axis before it is released is a major cause of the occurrence of femoral GTF filter tilting. (authors)

  20. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    International Nuclear Information System (INIS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-01-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10 −5 ° (that is, 0.08% of the measuring range). (paper)

  1. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients

    Directory of Open Access Journals (Sweden)

    Amirehsan Sarabadani Tafreshi

    2017-06-01

    Full Text Available Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b whether changing the PE frequency (i.e., stepping speed influences the PE effect on the cardiovascular system, (c whether PE could prevent orthostatic hypotension, and finally, (d whether PE effect is consistent from day to day.Methods: Heart rate (HR, and systolic and diastolic blood pressures (sBP, dBP in response to PE at two different tilt angles (α = 20°, 60° with three different PE frequencies (i.e., 0, 24, and 48 steps per minute of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements.Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b The effect of PE was not influenced by its speed. (c Neither during head-up tilt alone nor in combination with PE did

  2. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients.

    Science.gov (United States)

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2017-01-01

    Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants

  3. Tilted seat position for non-ambulant individuals with neurological and neuromuscular impairment: a systematic review.

    Science.gov (United States)

    Michael, S M; Porter, D; Pountney, T E

    2007-12-01

    To determine the effects of tilt-in-space seating on outcomes for people with neurological or neuromuscular impairment who cannot walk. Search through electronic databases (MEDLINE, Embase, CINAHL, AMED). Discussions with researchers who are active in field. Selection criteria included interventional studies that investigated the effects of seat tilt on outcome or observational studies that identified outcomes for those who had used tilt-in-space seating in populations with neurological or neuromuscular impairments. Two reviewers independently selected trials for inclusion, assessed quality and extracted data. Nineteen studies were identified which fulfilled the selection criteria. Seventeen of these were essentially before-after studies investigating the immediate effects of tilting the seating. All studies looked at populations with neurological impairment, and most were on children with cerebral palsy (n=8) or adults with spinal cord injury (n=8). REVIEWER'S CONCLUSION: Posterior tilt can reduce pressures at the interface under the pelvis.

  4. High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering

    Science.gov (United States)

    Tan, Ming; Hao, Yanming; Deng, Yuan; Chen, Jingyi

    2018-06-01

    In this paper, we present an innovative tilt-structure design concept for (Sb, Bi)2Te3 nanowire array assembled by high-quality nanowires with well oriented growth, utilizing a simple vacuum thermal evaporation technique. The unusual tilt-structure (Sb, Bi)2Te3 nanowire array with a tilted angle of 45° exhibits a high thermoelectric dimensionless figure-of-merit ZT = 1.72 at room temperature. The relatively high ZT value in contrast to that of previously reported (Sb, Bi)2Te3 materials and the vertical (Sb, Bi)2Te3 nanowire arrays evidently reveals the crucial role of the unique tilt-structure in favorably influencing carrier and phonon transport properties, resulting in a significantly improved ZT value. The transport mechanism of such tilt-structure is proposed and investigated. This method opens a new approach to optimize nano-structure in thin films for next-generation thermoelectric materials and devices.

  5. Preserved suppression of salient irrelevant stimuli during visual search in Age-Associated Memory Impairment

    Directory of Open Access Journals (Sweden)

    Laura eLorenzo-López

    2016-01-01

    Full Text Available Previous studies have suggested that older adults with age-associated memory impairment (AAMI may show a significant decline in attentional resource capacity and inhibitory processes in addition to memory impairment. In the present paper, the potential attentional capture by task-irrelevant stimuli was examined in older adults with AAMI compared to healthy older adults using scalp-recorded event-related brain potentials (ERPs. ERPs were recorded during the execution of a visual search task, in which the participants had to detect the presence of a target stimulus that differed from distractors by orientation. To explore the automatic attentional capture phenomenon, an irrelevant distractor stimulus defined by a different feature (color was also presented without previous knowledge of the participants. A consistent N2pc, an electrophysiological indicator of attentional deployment, was present for target stimuli but not for task-irrelevant color stimuli, suggesting that these irrelevant distractors did not attract attention in AAMI older adults. Furthermore, the N2pc for targets was significantly delayed in AAMI patients compared to healthy older controls. Together, these findings suggest a specific impairment of the attentional selection process of relevant target stimuli in these individuals and indicate that the mechanism of top-down suppression of entirely task-irrelevant stimuli is preserved, at least when the target and the irrelevant stimuli are perceptually very different.

  6. Correlation and flux tilt measurements of coupled-core reactor assemblies

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-01-01

    The systematics of coupling reactivity and time delay between cores have been investigated with a series of coupled-core assemblies on the AAEC Split-table Critical Facility. The assemblies were similar to the Universities' Training Reactor (UTR), but had graphite coupling region thickness of 450 mm, 600 mm and 800 mm. The coupling reactivity measured by both the cross-correlation of reactor noise and the flux tilt methods was stronger than for the UTRs, but showed a similar trend with core spacing. The cross-correlograms were analysed using the two-node model to derive the time delays between the cores. The time delays were compared with thermal neutron wave propagation, and found to be consistent when the time delays were added to the individual node response-function delays. (author)

  7. Tip-tilt compensation: Resolution limits for ground-based telescopes using laser guide star adaptive optics

    International Nuclear Information System (INIS)

    Olivier, S.S.; Max, C.E.; Gavel, D.T.; Brase, J.M.

    1992-01-01

    The angular resolution of long-exposure images from ground-based telescopes equipped with laser guide star adaptive optics systems is fundamentally limited by the the accuracy with which the tip-tilt aberrations introduced by the atmosphere can be corrected. Assuming that a natural star is used as the tilt reference, the residual error due to tilt anisoplanatism can significantly degrade the long-exposure resolution even if the tilt reference star is separated from the object being imaged by a small angle. Given the observed distribution of stars in the sky, the need to find a tilt reference star quite close to the object restricts the fraction of the sky over which long-exposure images with diffraction limited resolution can be obtained. In this paper, the authors present a comprehensive performance analysis of tip-tilt compensation systems that use a natural star as a tilt reference, taking into account properties of the atmosphere and of the Galactic stellar populations, and optimizing over the system operating parameters to determine the fundamental limits to the long-exposure resolution. Their results show that for a ten meter telescope on Mauna Kea, if the image of the tilt reference star is uncorrected, about half the sky can be imaged in the V band with long-exposure resolution less than 60 milli-arc-seconds (mas), while if the image of the tilt reference star is fully corrected, about half the sky can be imaged in the V band with long-exposure resolution less than 16 mas. Furthermore, V band images long-exposure resolution of less than 16 mas may be obtained with a ten meter telescope on Mauna Kea for unresolved objects brighter than magnitude 22 that are fully corrected by a laser guide star adaptive optics system. This level of resolution represents about 70% of the diffraction limit of a ten meter telescope in the V band and is more than a factor of 45 better than the median seeing in the V band on Mauna Kea

  8. Effect of Pelvic Tilt and Rotation on Cup Orientation in Both Supine and Standing Positions.

    Science.gov (United States)

    Yun, Hohyun; Murphy, William S; Ward, Daniel M; Zheng, Guoyan; Hayden, Brett L; Murphy, Stephen B

    2018-05-01

    The purpose of this study is to analyze the effect of pelvic tilt and rotation on radiographic measurement of cup orientation. A total of 68 patients (79 hips) were included in this study. The patients had a computed tomography study and approximately 3 months of postoperative standing anteroposterior pelvic radiographs in both supine and standing positions. We used 2-dimensional (2D)/3-dimensional (3D) matching to measure pelvic tilt and rotation, and cup orientation. There was a wide range of pelvic tilt between individuals in both supine and standing positions. Supine pelvic tilt was different from standing pelvic tilt (P cup anteversion before and after 2D/3D matching in both supine and standing positions (P cup anteversion before and after 2D/3D matching. When all 79 hips were separated into right and left side, pelvic rotation inversely correlated with the pelvic tilt-adjusted difference in anteversion before and after 2D/3D matching of the right side but directly correlated with that of the left side in both supine and standing positions. This study demonstrated that the measurement of cup anteversion on anteroposterior radiographs is significantly affected by both pelvic tilt and pelvic rotation (depending on the side). Improved understanding of pelvic orientation and improved ability to measure pelvic orientation may eventually allow for desired cup positioning to potentially protect against complications associated with malposition of the cup. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    Science.gov (United States)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  10. Can persons with dementia be engaged with stimuli?

    Science.gov (United States)

    Cohen-Mansfield, Jiska; Marx, Marcia S; Dakheel-Ali, Maha; Regier, Natalie G; Thein, Khin

    2010-04-01

    To determine which stimuli are 1) most engaging 2) most often refused by nursing home residents with dementia, and 3) most appropriate for persons who are more difficult to engage with stimuli. Participants were 193 residents of seven Maryland nursing homes. All participants had a diagnosis of dementia. Stimulus engagement was assessed by the Observational Measure of Engagement. The most engaging stimuli were one-on-one socializing with a research assistant, a real baby, personalized stimuli based on the person's self-identity, a lifelike doll, a respite video, and envelopes to stamp. Refusal of stimuli was higher among those with higher levels of cognitive function and related to the stimulus' social appropriateness. Women showed more attention and had more positive attitudes for live social stimuli, simulated social stimuli, and artistic tasks than did men. Persons with comparatively higher levels of cognitive functioning were more likely to be engaged in manipulative and work tasks, whereas those with low levels of cognitive functioning spent relatively more time responding to social stimuli. The most effective stimuli did not differ for those most likely to be engaged and those least likely to be engaged. Nursing homes should consider both having engagement stimuli readily available to residents with dementia, and implementing a socialization schedule so that residents receive one-on-one interaction. Understanding the relationship among type of stimulus, cognitive function, and acceptance, attention, and attitude toward the stimuli can enable caregivers to maximize the desired benefit for persons with dementia.

  11. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  12. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  13. Tilt measurements at Vulcano Island

    OpenAIRE

    B. Saraceno; G. Laudani; F. Guglielmino; A. Ferro; G. Falzone; O. Campisi; S. Gambino

    2007-01-01

    A network of tiltmeters has been operational on Vulcano Island for numerous years. At present, the network comprises five functioning borehole stations, four of which are installed at 8-10 m and allow recording very stable, high precision signals with very low noise. We report observations over the last 12 years that illustrate impulsive variations linked to seismicity and long-term (several years) trends in the signals. We suggest a relationship between tilt changes correlated to the stro...

  14. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics.

    Science.gov (United States)

    Peng, Jiantao; Chen, Zhe; Zhang, Xingxiang; Fu, Tianjiao; Ren, Jianyue

    2015-08-20

    Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.

  15. Naltrexone alters the processing of social and emotional stimuli in healthy adults.

    Science.gov (United States)

    Wardle, Margaret C; Bershad, Anya K; de Wit, Harriet

    2016-12-01

    Endogenous opioids have complex social effects that may depend on specific receptor actions and vary depending on the "stage" of social behavior (e.g., seeking vs. responding to social stimuli). We tested the effects of a nonspecific opioid antagonist, naltrexone (NTX), on social processing in humans. NTX is used to treat alcohol and opiate dependence, and may affect both mu and kappa-opioid systems. We assessed attention ("seeking"), and subjective and psychophysiological responses ("responding") to positive and negative social stimuli. Based on literature suggesting mu-opioid blockade impairs positive social responses, we hypothesized that NTX would decrease responses to positive social stimuli. We also tested responses to negative stimuli, which might be either increased by NTX's mu-opioid effects or decreased by its kappa-opioid effects. Thirty-four healthy volunteers received placebo, 25 mg, or 50 mg NTX across three sessions under double-blind conditions. At each session, participants completed measures of attention, identification, and emotional responses for emotional faces and scenes. NTX increased attention to emotional expressions, slowed identification of sadness and fear, and decreased ratings of arousal for social and nonsocial emotional scenes. These findings are more consistent with anxiolytic kappa-antagonist than mu-blocking effects, suggesting effects on kappa receptors may contribute to the clinical effects of NTX.

  16. Swimming micro-robot powered by stimuli-sensitive gel

    Science.gov (United States)

    Masoud, Hassan; Alexeev, Alexander

    2012-11-01

    Using three-dimensional computer simulations, we design a simple maneuverable micro-swimmer that can self-propel and navigate in highly viscous (low Reynolds-number) environments. Our simple swimmer consists of a cubic gel body which periodically changes volume in response to external stimuli, two rigid rectangular flaps attached to the opposite sides of the gel body, and a flexible steering flap at the front end of the swimmer. The stimuli-sensitive body undergoes periodic expansions (swelling) and contractions (deswelling) leading to a time-irreversible beating motion of the propulsive flaps that propel the micro-swimmer. Thus, the responsive gel body acts as an ``engine'' actuating the motion of the swimmer. We examine how the swimming speed depends on the gel and flap properties. We also probe how the swimmer trajectory can be changed using a responsive steering flap whose curvature is controlled by an external stimulus. We show that the turning occurs due to steering flap bending and periodic beating. Furthermore, our simulations reveal that the turning direction can be regulated by changing the intensity of external stimulus.

  17. Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement

    International Nuclear Information System (INIS)

    Guo, Tuan; Chen, Chengkun; Albert, Jacques

    2009-01-01

    Temperature-immune micro-displacement measurement is demonstrated by using a Gaussian-chirped tilted fiber Bragg grating (TFBG). The internal tilt angles of the sensing TFBG are effectively modulated via a displacement-induced Gaussian-strain-gradient along the specially designed bending cantilever beam. The phase mismatch between different effective pitches and tilt angles weakens the core-to-cladding mode coupling as the beam is displaced. While the power of the ghost mode resonance in transmission shows a strong sensitivity to the displacement, it is immune from spatially uniform temperature changes. Ghost-power-referenced displacement measurement and temperature-insensitive property are experimentally achieved for this cost-effective sensing device

  18. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, S; Terunuma, K; Kamoshida, H [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-12-31

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs.

  19. Impact of Mechanical down Tilt and Height on the Pilot Coverage of UMTS Networks

    Directory of Open Access Journals (Sweden)

    N. Faruk

    2012-06-01

    Full Text Available The task of planning a network can be very challenging as it involves many careful studies with a lot of considerations and, at times, trial and error. In this paper, the impacts of antenna mechanical down tilt and antenna height on UMTS network performance are studied. First, we used ASSET3G simulation software to design 3G pilot coverage. Optimization techniques were deployed to study the performance of the network. Simulation results show about 2.6% increase in the coverage area when the antenna height was increased from 15 m to 25 m at the same tilt angle of 0 ° The coverage drops by 24% when transiting from 0° to 6° tilt angle was made for 15 m height antenna. The results also indicated that, pilot pollution could be reduced by choosing optimum down tilt angle.

  20. Process, Design and Materials for Unidirectionally Tilted Polymeric Micro/Nanohairs and Their Adhesion Characteristics

    Directory of Open Access Journals (Sweden)

    Hyeon Seong Im

    2016-09-01

    Full Text Available Recent research in the field of gecko-inspired dry adhesive has focused on modifying the material and structural properties of polymer-based nanohairs. Polymers such as polystyrene (PS, high-density polyethylene (HDPE, ultraviolet curable epoxy (SU-8, polyurethane acrylate (PUA, polycarbonate (PC, and polydimethyl siloxane (PDMS can fulfill many mechanical property requirements, are easily tunable, and can be produced via large-scale fabrication. However, the fabrication process for tilted structure remains challenging. The tilted structure is a crucial factor in high-degree conformal contact, which facilitates high adhesion, low effective modulus, and directional adhesion properties. Recent studies have attempted to create a tilted structure by applying beam irradiation, mechanical and thermal stress, and magnetic fields. This review provides a comprehensive investigation into advanced strategies for producing tilted polymeric nanostructures and their potential applications in the near future.

  1. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    International Nuclear Information System (INIS)

    Sugawara, S.; Terunuma, K.; Kamoshida, H.

    1995-01-01

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs

  2. Spontaneous tilting after placement of the gunther-tulip inferior vena caval filter: a case report

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Cha, In Ho; Seol, Hae Young; Park, Cheol Min

    2006-01-01

    Tilting of a deployed filter in the inferior vena cava (IVC) is a particular kind of periprocedural complication and this can reduce the filter's clot-trapping ability and increase the occlusion of the IVC at a later period. The authors report here on a case of spontaneous tilting of an inferior vena caval filter that was associated with thrombosis in the IVC within 2 weeks of the initially successful placement of the filter without tilting

  3. Keblish's lateral surgical approach enhances patellar tilt in valgus knee arthroplasty

    Directory of Open Access Journals (Sweden)

    José Roberto Tonelli Filho

    Full Text Available ABSTRACT OBJECTIVE: To compare the clinical and radiological outcomes of conventional medial and lateral approaches for total knee replacement in the valgus osteoarthritic knee. METHODS: In this randomized controlled trial, 21 patients with valgus knee osteoarthritis were randomized to total knee replacement through medial or lateral approach. The primary outcome was radiographic patellar tilt. Secondary outcomes were visual analog scale of pain, postoperative levels of hemoglobin, and clinical aspect of the operative wound. RESULTS: There were no differences between the groups regarding other clinical variables. Mean lateral tilt of the patella was 3.1 degrees (SD ± 5.3 in the lateral approach group and 18 degrees (SD ± 10.2 in the medial approach group (p = 0.02. There were no differences regarding the secondary outcomes. CONCLUSION: Lateral approach provided better patellar tilt following total knee replacement in valgus osteoarthritic knee.

  4. Tilt measurement using inclinometer based on redundant configuration of MEMS accelerometers

    Science.gov (United States)

    Lu, Jiazhen; Liu, Xuecong; Zhang, Hao

    2018-05-01

    Inclinometers are widely used in tilt measurement and their required accuracy is becoming ever higher. Most existing methods can effectively work only when the tilt is less than 60°, and the accuracy still can be improved. A redundant configuration of micro-electro mechanical system accelerometers is proposed in this paper and a least squares method and data processing normalization are used. A rigorous mathematical derivation is given. Simulation and experiment are used to verify its feasibility. The results of a Monte Carlo simulation, repeated 3000 times, and turntable reference experiments have shown that the tilt measure range can be expanded to 0°–90° by this method and that the measurement accuracy of θ can be improved by more than 10 times and the measurement accuracy of γ can be also improved effectively. The proposed method is proved to be effective and significant in practical application.

  5. Relating Attentional Biases for Stimuli Associated with Social Reward and Punishment to Autistic Traits

    Directory of Open Access Journals (Sweden)

    Brian A. Anderson

    2018-04-01

    Full Text Available Evidence for impaired attention to social stimuli in autism has been mixed. The role of social feedback in shaping attention to other, non-social stimuli that are predictive of such feedback has not been examined in the context of autism. In the present study, participants searched for a color-defined target during a training phase, with the color of the target predicting the emotional reaction of a face that appeared after each trial. Then, participants performed visual search for a shape-defined target while trying to ignore the color of stimuli. On a subset of trials, one of the non-targets was rendered in the color of a former target from training. Autistic traits were measured for each participant using the Autism Quotient (AQ. Our findings replicate robust attentional capture by stimuli learned to predict valenced social feedback. There was no evidence that autistic traits are associated with blunted attention to predictors of social outcomes. Consistent with an emerging body of literature, our findings cast doubt on strong versions of the claim that autistic traits can be explained by a blunted influence of social information on the attention system. We extend these findings to non-social stimuli that predict socially relevant information.

  6. Developing Affective Mental Imagery Stimuli with Multidimensional Scaling

    Directory of Open Access Journals (Sweden)

    Matthew J. Facciani

    2015-06-01

    Full Text Available The goal of this paper is to provide an example of how multidimensional scaling (MDS can be used for stimuli development. The study described in this paper illustrates this process by developing affective mental imagery stimuli using the circumplex model of affect as a guide. The circumplex model of affect argues that all emotions can be described in terms of two underlying primary dimensions: valence and arousal (Russel, 1980. We used MDS to determine if affective mental imagery stimuli obtained from verbal prompts could be separated by arousal and valence to create four distinct categories (high –positive, low-positive, high-negative, and low-negative as seen in other stimuli. 60 students from the University of South Carolina participated in the first experiment to evaluate three sets of stimuli. After being analyzed using MDS, selected stimuli were then assessed again in a second experiment to validate their robust valence and arousal distinctions. The second experiment was conducted with 34 subjects to validate 40 of the best stimuli from experiment 1. It was found that mental imagery stimuli can produce a reliable affective response for the dimensions of valence and arousal and that MDS can be an effective tool for stimuli development.

  7. Perceived direction of gravity and the body-axis during static whole body roll-tilt in healthy subjects.

    Science.gov (United States)

    Tamura, Atsushi; Wada, Yoshiro; Inui, Takuo; Shiotani, Akihiro

    2017-10-01

    We used the subjective visual vertical (SVV) and two different subjective visual body axis (SVBA) methods to quantify roll-tilt perception under gravity, and investigated the characteristics of these methods during static roll-tilt. In addition, we independently developed a compact device to facilitate evaluation of SVBA in different gravitational environments. Ten male volunteers participated in this study. We created a roll-tilt environment using a flight simulator in a dark room. The cockpit of the simulator was tilted leftward or rightward (-30°, -20°, -10°, 0°, 10°, 20° and 30°) in each randomly ordered trial. We quantified roll-tilt perception such that the experiment was conducted under 21 different conditions per participant. We found no significant differences among the SVV error and the two types of SVBA error. The SVV and the SVBA methods may be useful for evaluating subjective roll-tilt perception.

  8. Skin-transmitted pathogens and the heebie jeebies: evidence for a subclass of disgust stimuli that evoke a qualitatively unique emotional response.

    Science.gov (United States)

    Blake, Khandis R; Yih, Jennifer; Zhao, Kun; Sung, Billy; Harmon-Jones, Cindy

    2017-09-01

    Skin-transmitted pathogens have threatened humans since ancient times. We investigated whether skin-transmitted pathogens were a subclass of disgust stimuli that evoked an emotional response that was related to, but distinct from, disgust and fear. We labelled this response "the heebie jeebies". In Study 1, coding of 76 participants' experiences of disgust, fear, and the heebie jeebies showed that the heebie jeebies was elicited by unique stimuli which produced skin-crawling sensations and an urge to protect the skin. In Experiment 2,350 participants' responses to skin-transmitted pathogen, fear-inducing, and disgust-inducing vignettes showed that the vignettes elicited sensations and urges which loaded onto heebie jeebies, fear, and disgust factors, respectively. Experiment 3 largely replicated findings from Experiment 2 using video stimuli (178 participants). Results are consistent with the notion that skin-transmitted pathogens are a subclass of disgust stimuli which motivate behaviours that are functionally consistent with disgust yet qualitatively distinct.

  9. Spontaneous tilting after placement of the gunther-tulip inferior vena caval filter: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Seok; Cha, In Ho; Seol, Hae Young; Park, Cheol Min [Guro Hospital, Korea University College of Medicine, Seoul (Korea, Republic of)

    2006-10-15

    Tilting of a deployed filter in the inferior vena cava (IVC) is a particular kind of periprocedural complication and this can reduce the filter's clot-trapping ability and increase the occlusion of the IVC at a later period. The authors report here on a case of spontaneous tilting of an inferior vena caval filter that was associated with thrombosis in the IVC within 2 weeks of the initially successful placement of the filter without tilting.

  10. Common brain activations for painful and non-painful aversive stimuli

    Directory of Open Access Journals (Sweden)

    Hayes Dave J

    2012-06-01

    Full Text Available Abstract Background Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis and rodents (i.e. systematic review of functional neuroanatomy. Results Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex or non-pain-related (e.g. amygdala aversive processing. Conclusions This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.

  11. Transverse Seebeck and Peltier effect in tilted metal-semiconductor multilayer structures; Transversaler Seebeck- und Peltier-Effekt in verkippten Metall-Halbleiter-Multilagenstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Reitmaier, Christina

    2012-07-01

    Whether in aerospace, automobile industry or in home appliances, thermoelectric effects find use in many areas of technology. This work deals with the investigation of a special form of these effects, the transversal Seebeck- and Peltier effect. Via modelling under variation of the sample parameters the cooling efficiencies, the attainable temperature differences and the Figures of merit are optimised and than suitable samples are produced according to these specifications. With these tilted metal semiconductor multilayer structures consisting of lead and bismuth telluride a transversal Peltier effect is observed. Moreover, the generation of electric power is examined via the transversal Seebeck effect. In tilted Pb-Bi2Te3 multilayers the efficiency is measured with the conversion by heat in electric power and is compared to model calculations. (orig.)

  12. VARIABILITY FROM NON-AXISYMMETRIC FLUCTUATIONS INTERACTING WITH STANDING SHOCKS IN TILTED BLACK HOLE ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Henisey, Ken B. [Natural Science Division, Pepperdine University, Malibu, CA 90263 (United States); Blaes, Omer M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States)

    2012-12-10

    We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.

  13. Tilting-Pad Guide Bearing in Large Hydro-unit

    Directory of Open Access Journals (Sweden)

    Li-Feng Ma

    2000-01-01

    Full Text Available A new numerical method is proposed for predicting the nonlinearity of tilting-pad guide bearing oilfilm force in the rotor-bearing system in a large hydro-unit. Nonlinear displacement and velocity of the journal center, as well as nonlinear tilting angles and angular velocities of the pads in non-stationary Reynolds equation are taken into account. This method is also suited for other small rotor-bearing system. As an example, the response due to a momentarily created unbalance is Calculated. The nonlinear motion patterns of the pad and journal whirling orbit are obtained. Finally, the nonlinear orbit is compared to the linear one that could be calculated from linear stiffness and damping coefficients. It is shown that there are important differences between those two orbits and that the nonlinear simulation is more accurate.

  14. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  15. Dynamic change of ERPs related to selective attention to signals from left and right visual field during head-down tilt

    Science.gov (United States)

    Wei, Jinhe; Zhao, Lun; Van, Gongdong; Chen, Wenjuan; Ren, Wei; Duan, Ran

    To study further the effect of head-down tilt(HDT) on slow positive potential in the event-related potentials(ERPs), the temporal and spatial features of visual ERPs changes during 2 hour HDT(-10 °) were compared with that during HUT(+20°) in 15 normal subjects. The stimuli were consisted of two color LED flashes appeared randomly in left or right visual field(LVF or RVF) with same probability. The subjects were asked to make switch response to target signals(T) differentially: switching to left for T in LVF and to right for T in RVF, ignoring non-target signals(N). Five sets of tests were made during HUT and HDT. ERPs were obtained from 9 locations on scalp. The mean value of the ERPs in the period from 0.32-0.55 s was taken as the amplitude of slow positive potential(P400). The main results were as follows. 1)The mean amplitude of P400 decreased during HDT which was more significant at the 2nd, 3rd and 5th set of tests; 2)spatially, the reduction of mean P400 amplitude during HDT was more significant for signals from RVF and was more significant at posterior and central brain regions than that on frontal locations. As that the positive potential probably reflects the active inhibition activity in the brain during attention process, these data provide further evidence showing that the higher brain function was affected by the simulated weightlessness and that this effect was not only transient but also with interesting spatial characteristics.

  16. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  17. Numerical study of crucial parameters in tilt casting for titanium aluminides

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2011-08-01

    Full Text Available Numerical modeling of the tilt casting process for TiAl alloys was investigated to achieve a tranquil mould filling and TiAl castings free of defects. Titanium alloys are very reactive in molten state, so they are widely melted in cold crucible, e.g. the Induction Skull Melting (ISM furnace. Then the crucible holding the molten metal together with the mould is rotated to transfer the metal into the mould — ISM+ tilt casting. This paper emphasizes the effect of crucial parameters on mould filling and solidification of the castings during tilt casting. All crucial parameters, such as rotation rate, rotation profile, venting, initial mould temperature, casting orientation, feeder design, change of radius in 'T' junction and mould insulation have been discussed using numerical modeling data. Simulations were performed using a 3D CFD code PHYSICA implemented with front tracking, heat transfer algorithms and a turbulence model (which accounts for an advancing solid front.

  18. On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes

    International Nuclear Information System (INIS)

    Khalifa, Abdul Jabbar N.

    2011-01-01

    Many experimental and numerical studies have been carried out on different configurations of solar stills to optimize the design by investigating the effect of climatic, operational and design parameters on its performance. One of the main parameters that have received a considerable attention is the cover tilt angle. A large number of studies on the effect of cover tilt angle on productivity in different seasons and latitude angles are cited in this article. The investigation that tackle the detailed effect of the cover tilt angle on productivity report contradictory conclusions about the effect of tilt angle on productivity and the value of the optimum tilt angle. A relation between the cover tilt angle and productivity of simple solar still in various seasons is established together with a relation between the optimum tilt angle and the latitude angle by an extensive review of the literature. The conclusions of this study should assist in choosing the proper cover tilt angle in various seasons and latitudes.

  19. A tip/tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility

    Science.gov (United States)

    Rijnveld, N.; Henselmans, R.; Nijland, B.

    2011-09-01

    One of the critical elements in the Four Laser Guide Star Facility (4LGSF) for the ESO Very Large Telescope (VLT) is the Optical Tube Assembly (OTA), consisting of a stable 20x laser beam expander and an active tip/tilt mirror, the Field Selector Mechanism (FSM). This paper describes the design and performance testing of the FSM. The driving requirement for the FSM is its large stroke of +/-6.1 mrad, in combination with less than 1.5 μrad RMS absolute accuracy. The FSM design consists of a Zerodur mirror, bonded to a membrane spring and strut combination to allow only tip and tilt. Two spindle drives actuate the mirror, using a stiffness based transmission to increase resolution. Absolute accuracy is achieved with two differential inductive sensor pairs. A prototype of the FSM is realized to optimize the control configuration and measure its performance. Friction in the spindle drive is overcome by creating a local velocity control loop between the spindle drives and the shaft encoders. Accuracy is achieved by using a cascaded low bandwidth control loop with feedback from the inductive sensors. The pointing jitter and settling time of the FSM are measured with an autocollimator. The system performance meets the strict requirements, and is ready to be implemented in the first OTA.

  20. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  1. Is neck tilt and shoulder imbalance the same phenomenon? A prospective analysis of 89 adolescent idiopathic scoliosis patients (Lenke type 1 and 2).

    Science.gov (United States)

    Kwan, Mun Keong; Wong, Kai Ann; Lee, Chee Kean; Chan, Chris Yin Wei

    2016-02-01

    To introduce a new clinical neck tilt grading and to investigate clinically and radiologically whether neck tilt and shoulder imbalance is the same phenomenon in AIS patients. 89 AIS Lenke 1 and 2 cases were assessed prospectively using the new clinical neck tilt grading. Shoulder imbalance and neck tilt were correlated with coracoid height difference (CHD), clavicle\\rib intersection distance (CRID), clavicle angle (CA), radiographic shoulder height (RSH), T1 tilt and cervical axis. Mean age was 17.2 ± 3.8 years old. 66.3 % were Lenke type 1 and 33.7 % were type 2 curves. Strong intraobserver (0.79) and interobserver (0.75) agreement of the clinical neck tilt grading was noted. No significant correlation was observed between clinical neck tilt and shoulder imbalance (0.936). 56.3 % of grade 3 neck tilt, 50.0 % grade 2 neck tilt patients had grade 0 shoulder imbalance. In patients with grade 2 shoulder imbalance, 42.9 % had grade 0, 35.7 % grade 1, 14.3 % grade 2 and only 7.1 % had grade 3 neck tilt. CHD, CRID, CA and RSH correlated with shoulder imbalance. T1 tilt and cervical axis measurements correlated with neck tilt. In conclusion, neck tilt is distinct from shoulder imbalance. Clinical neck tilt has poor correlation with clinical shoulder imbalance. Clinical neck tilt grading correlated with cervical axis and T1 tilt whereas clinical shoulder grading correlated with CHD, RSH CRID and CA.

  2. Critical bias fields for tilting stability in the BETA-II experiment

    International Nuclear Information System (INIS)

    Dalhed, H.E.

    1981-01-01

    The PEST equilibrium code and the GATO ideal MHD stability code have been modified to study stability properties of Spheromak configurations. Of particular interest is the effect on tilting modes of perfectly conducting walls which do not link the plasma. This paper makes use of equilibria and conducting walls specifically designed to model the BETA-II experiment at LLNL. Onset of the tilting mode is determined as a function of the bias magnetic field. Comparison with available experimental data shows promising agreement with the numerical results

  3. Reward modulates oculomotor competition between differently valued stimuli.

    Science.gov (United States)

    Bucker, Berno; Silvis, Jeroen D; Donk, Mieke; Theeuwes, Jan

    2015-03-01

    The present work explored the effects of reward in the well-known global effect paradigm in which two objects appear simultaneously in close spatial proximity. The experiment consisted of three phases (i) a pre-training phase that served as a baseline, (ii) a reward-training phase to associate differently colored stimuli with high, low and no reward value, and (iii) a post-training phase in which rewards were no longer delivered, to examine whether objects previously associated with higher reward value attracted the eyes more strongly than those associated with low or no reward value. Unlike previous reward studies, the differently valued objects directly competed with each other on the same trial. The results showed that initially eye movements were not biased towards any particular stimulus, while in the reward-training phase, eye movements started to land progressively closer towards stimuli that were associated with a high reward value. Even though rewards were no longer delivered, this bias remained robustly present in the post-training phase. A time course analysis showed that the effect of reward was present for the fastest saccades (around 170 ms) and increased with increasing latency. Although strategic effects for slower saccades cannot be ruled out, we suggest that fast oculomotor responses became habituated and were no longer under strategic attentional control. Together the results imply that reward affects oculomotor competition in favor of stimuli previously associated high reward, when multiple reward associated objects compete for selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [WMN: a negative ERPs component related to working memory during non-target visual stimuli processing].

    Science.gov (United States)

    Zhao, Lun; Wei, Jin-he

    2003-10-01

    To study non-target stimuli processing in the brain. Features of the event-related potentials (ERPs) from non-target stimuli during selective response task (SR) was compared with that during visual selective discrimination (DR) task in 26 normal subjects. The stimuli consisted of two color LED flashes (red and green) appeared randomly in left (LVF) or right (RVF) visual field with same probability. ERPs were derived at 9 electrode sites on the scalp under 2 task conditions: a) SR, making switch response to the target (NT) stimuli from LVF or RVF in one direction and making no response to the non-target (NT) ones; b) DR, making switching response to T stimuli differentially, i.e., to the left for T from LVF and to the right for T from RVF. 1) the non-target stimuli in DR conditions, compared with that in SR condition, elicited smaller P2 and P3 components and larger N2 component at the frontal brain areas; 2) a significant negative component, named as WMN (working memory negativity), appeared in the non-target ERPs during DR in the period of 100 to 700 ms post stimulation which was predominant at the frontal brain areas. According to the major difference between brain activities for non-target stimuli during SR and DR, the predominant appearance of WMN at the frontal brain areas demonstrated that the non-target stimulus processing was an active process and was related to working memory, i.e., the temporary elimination and the retrieval of the response mode which was stored in working memory.

  5. An Online Tilt Estimation and Compensation Algorithm for a Small Satellite Camera

    Science.gov (United States)

    Lee, Da-Hyun; Hwang, Jai-hyuk

    2018-04-01

    In the case of a satellite camera designed to execute an Earth observation mission, even after a pre-launch precision alignment process has been carried out, misalignment will occur due to external factors during the launch and in the operating environment. In particular, for high-resolution satellite cameras, which require submicron accuracy for alignment between optical components, misalignment is a major cause of image quality degradation. To compensate for this, most high-resolution satellite cameras undergo a precise realignment process called refocusing before and during the operation process. However, conventional Earth observation satellites only execute refocusing upon de-space. Thus, in this paper, an online tilt estimation and compensation algorithm that can be utilized after de-space correction is executed. Although the sensitivity of the optical performance degradation due to the misalignment is highest in de-space, the MTF can be additionally increased by correcting tilt after refocusing. The algorithm proposed in this research can be used to estimate the amount of tilt that occurs by taking star images, and it can also be used to carry out automatic tilt corrections by employing a compensation mechanism that gives angular motion to the secondary mirror. Crucially, this algorithm is developed using an online processing system so that it can operate without communication with the ground.

  6. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  7. Tilt engineering of exchange coupling at G-type SrMnO3/(La,Sr)MnO3 interfaces

    Science.gov (United States)

    Li, F.; Song, C.; Wang, Y. Y.; Cui, B.; Mao, H. J.; Peng, J. J.; Li, S. N.; Wang, G. Y.; Pan, F.

    2015-11-01

    With the recent realization of hybrid improper ferroelectricity and room-temperature multiferroic by tilt engineering, “functional” octahedral tilting has become a novel concept in multifunctional perovskite oxides, showing great potential for property manipulation and device design. However, the control of magnetism by octahedral tilting has remained a challenging issue. Here a qualitative and quantitative tilt engineering of exchange coupling, one of the magnetic properties, is demonstrated at compensated G-type antiferromagnetic/ferromagnetic (SrMnO3/La2/3Sr1/3MnO3) interfaces. According to interfacial Hamiltonian, exchange bias (EB) in this system originates from an in-plane antiphase rotation (a-) in G-type antiferromagnetic layer. Based on first-principles calculation, tilt patterns in SrMnO3 are artificially designed in experiment with different epitaxial strain and a much stronger EB is attained in the tensile heterostructure than the compressive counterpart. By controlling the magnitude of octahedral tilting, the manipulation of exchange coupling is even performed in a quantitative manner, as expected in the theoretical estimation. This work realized the combination of tilt engineering and exchange coupling, which might be significant for the development of multifunctional materials and antiferromagnetic spintronics.

  8. Comparison of broad band time series recorded parallel by FGI type interferometric water level and Lippmann type pendulum tilt meters at Conrad observatory, Austria

    Science.gov (United States)

    Ruotsalainen, Hannu; Papp, Gabor; Leonhardt, Roman; Ban, Dora; Szücs, Eszter; Benedek, Judith

    2016-04-01

    The Finnish Geodetic Institute (FGI) the progenitor of Finnish Geospatial Research Institute of NLS designed and built a 5.5m long prototype of interferometric water level tiltmeter (iWT) in early 2014. Geodetic and Geophysical Institute (GGI), Sopron, Hungary bought the instrument and started tilt measurement in August 2014 at the Conrad observatory (COBS), Austria to monitor geodynamical phenomena like microseisms, free oscillations of the Earth, earth tides, mass loading effects and crustal deformations in cooperation with Austrian Central Institute for Meteorology and Geodynamics (ZAMG) and the FGI. On the July 16 2015 a Lippmann-type 2D tilt sensor (LTS) was also installed by GGI on the 6 m long pier where iWT was set up previously. This situation opens a possibility to do broad band (from secular to seismic variations up to 15 Hz) geophysical signal analysis comparing the responses of long (several meters) and short (a few decimeters) base instruments implementing different physical principles (relative height change of a level surface and inclination change of the plumb line). The characteristics of the sensors are studied by the evaluation of the spectra of recorded signals dominated by microseisms. The iWT has internal interferometric calibration and it can be compared to Lippmanns tilt meter one. Both instruments show good long term ( > 1 day) stability when earth tides and ocean and air mass loading tilts are modelled.

  9. Advanced single-slice rebinning for tilted spiral cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Fuchs, Theo; Schaller, Stefan; Kalender, Willi A.

    2001-01-01

    Future medical CT scanners and today's micro CT scanners demand cone-beam reconstruction algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a direction that is not perpendicular to the plane of rotation. Since this is not a special application of medical CT but rather a daily routine in head exams, there is a strong need for corresponding reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and the table increment vector due to alignment problems. Especially for those micro CT scanners that have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very promising approach for medical cone-beam reconstruction due to its high image quality and its high reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate this extended ASSR approach (which we will denote as ASSR + , for convenience) in comparison to the original ASSR algorithm using simulated phantom data for reconstruction. For the case of nonparallel object motion ASSR + shows significant improvements over ASSR, however, its computational complexity is slightly increased due to the broken symmetry of the spiral trajectory

  10. A computer simulation study of tilted smectic mesophases

    International Nuclear Information System (INIS)

    Withers, I.M.

    2000-05-01

    Results are presented from a series of simulations undertaken to determine the effect of a novel form of molecular biaxiality upon the phase behaviour of the well established Gay-Berne (GB) liquid crystal model. Firstly, the simulation of a bulk system interacting via the Internally-Rotated Gay Berne (IRGB) potential, which offers a single-site representation of a molecule rigidly constrained into a zig-zag conformation, is presented. The results of simulations performed for systems of IRGB particles with an aspect ratio of 3:1 confirm that the introduction of biaxiality into the model results in the destabilisation of the orientationally ordered phases. For particles with a sufficiently pronounced zig-zag conformation, this results in the complete destabilisation of the smectic A phase and the smectic B phase being replaced by the tilted smectic J phase. Following these observations, the effect upon the phase behaviour of increasing molecular elongation is also considered, with an increase in the aspect ratio from 3:1 to 4:1 resulting in the nematic and smectic J phases being replaced by smectic A and smectic G phases respectively. Secondly, a version of the IRGB potential modified to include a degree of molecular flexibility is considered. Results obtained from bulk systems interacting via the flexible IRGB for 3:1 and 4:1 molecules show that the introduction of flexibility results in the destabilisation of the smectic A phase and the stabilisation of the nematic and tilted hexatic phases. Finally, the effect upon the phase behaviour of the rigid IRGB model of the inclusion of a longitudinal linear quadrupole is examined. These results show that increasing quadrupole moment results in the destabilisation of the tilted hexatic phase, although the biaxial order parameter is increased with increasing quadrupole moment. There is no clear correlation between quadrupole magnitude and the other observed phase transitions, with the nematic and smectic A phases being

  11. Self-cleaning efficiency of artificial superhydrophobic surfaces.

    Science.gov (United States)

    Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin

    2009-03-03

    The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.

  12. Serous Macular Detachment Associated with Dome-Shaped Macula and Tilted Disc

    Directory of Open Access Journals (Sweden)

    Diamar Pardo-López

    2011-03-01

    Full Text Available Introduction: An entirely new type of staphyloma has been recently described as dome-shaped macula (DSM. It is characterized by an abnormal convex macular contour within the concavity of a posterior staphyloma. We found DSM associated with serous macular detachment (SMD and tilted disc in two consecutive cases. Case Reports: Case 1: A 37-year-old female presented to our department because of sudden onset blurred vision in her right eye (OD. The best-corrected visual acuity (BCVA was 0.5 in both eyes. Funduscopy evidenced bilateral tilted disc associated with posterior staphyloma. Optical coherence tomography (OCT demonstrated a DSM with SMD in her OD. After 15 months of follow-up, BCVA of her OD remained stable with chronic SMD. Case 2: A 32-year-old female presented to our department because of blurred vision in her OD. The BCVA was 0.4 in the OD and 1.0 in the left eye (OS. Bilateral tilted disc and posterior staphyloma were evidenced in the funduscopy. OCT demonstrated a bilateral DSM with SMD in her OD. After 45 months of follow-up, two further episodes of transient SMD were observed in her OD and seven in her OS. The final BCVA was 0.63 in the OD and 0.8 in the OS. Discussion: SMD associated with tilted disc constitutes a potential cause of subretinal fluid accumulation in myopic patients. OCT is essential for the detection of both SMD and DSM.

  13. Repeatability of decision-making behaviour in male threespine stickleback Gasterosteus aculeatus: Effects of dummy vs. live stimuli

    Directory of Open Access Journals (Sweden)

    Teresa L. DZIEWECZYNSKI, Lindsay M. FORRETTE

    2011-02-01

    Full Text Available Individuals select from a number of behaviours when responding to various situations and the decisions they make may affect their fitness. The costs and benefits of these responses vary among individuals causing them to differ even in identical situations. One example of this type of situation is when territorial males encounter both a male and female simultaneously, gene- rating a trade-off that likely leads to individual differences due to differing costs of various actions among males. This situation commonly occurs in threespine stickleback, Gasterosteus aculeatus. However, for selection to act effectively, individuals must behave in a consistent manner and measuring repeatability can aid in understanding how selection may shape such trade-offs. Males of this species exhibit consistent individual differences in their response to dummy males and females but it is unknown if patterns are similar when feedback from the stimuli is present. To assess this, male threespine stickleback were tested with dummy and live male and female conspecifics, presented separately and simultaneously. While the same trends were found regardless of stimulus type, males were more aggressive towards the live conspecifics than to the dummies. Repeatability values were similar within a treatment regardless of whether live or dummy conspecifics were used, suggesting that individuals show the same level of consistency. This study adds to our understanding of consistent individual differences by demonstrating that feedback may not affect responses to conflicting stimuli and that male threespine stickleback respond in a consistent manner to both dummy and live stimuli [Current Zoology 57 (1: 101–108, 2011].

  14. An fMRI investigation into the effect of preceding stimuli during visual oddball tasks.

    Science.gov (United States)

    Fajkus, Jiří; Mikl, Michal; Shaw, Daniel Joel; Brázdil, Milan

    2015-08-15

    This study investigates the modulatory effect of stimulus sequence on neural responses to novel stimuli. A group of 34 healthy volunteers underwent event-related functional magnetic resonance imaging while performing a three-stimulus visual oddball task, involving randomly presented frequent stimuli and two types of infrequent stimuli - targets and distractors. We developed a modified categorization of rare stimuli that incorporated the type of preceding rare stimulus, and analyzed the event-related functional data according to this sequence categorization; specifically, we explored hemodynamic response modulation associated with increasing rare-to-rare stimulus interval. For two consecutive targets, a modulation of brain function was evident throughout posterior midline and lateral temporal cortex, while responses to targets preceded by distractors were modulated in a widely distributed fronto-parietal system. As for distractors that follow targets, brain function was modulated throughout a set of posterior brain structures. For two successive distractors, however, no significant modulation was observed, which is consistent with previous studies and our primary hypothesis. The addition of the aforementioned technique extends the possibilities of conventional oddball task analysis, enabling researchers to explore the effects of the whole range of rare stimuli intervals. This methodology can be applied to study a wide range of associated cognitive mechanisms, such as decision making, expectancy and attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.

    2016-01-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations

  16. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies......-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges. Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty) were evaluated and found to be highly significant. Since the attack angle...... balance, unless all terms in the carbon dioxide conservation equation can be precisely estimated....

  17. Tilt table standing for reducing spasticity after spinal cord injury.

    Science.gov (United States)

    Bohannon, R W

    1993-10-01

    A patient with a T12 spinal cord injury and intractable extensor spasms of the lower extremities participated in tilt table standing trial on 5 nonconsecutive days to determine if the intervention would affect his spasticity and spasms. Each day's standing trial was followed by an immediate reduction in lower extremity spasticity (measured using the modified Ashworth scale and pendulum testing). Standing was also accompanied by a reduction in spasms that lasted until the following morning. The reduction of spasms was particularly advantageous to the performance of car transfers. Tilt table standing merits further examination as a physical treatment of spasms that accompany central nervous system lesions.

  18. Formation of tilted smectic-C liquid crystal phase in polar Gay-Berne molecules

    International Nuclear Information System (INIS)

    Saha, J.; Bose, T.R.; Ghosh, D.; Saha, M.

    2005-01-01

    We perform molecular dynamics simulation for a system of Gay-Berne molecules having two terminal dipole moments to generate tilted smectic-C liquid crystal phase. We investigate the effect of dipolar orientation with respect to the long molecular axis on phase behaviour. The study indicates that larger dipolar angle can give rise to greater tilt in molecular organization within a layer

  19. Instructed fear stimuli bias visual attention

    NARCIS (Netherlands)

    Deltomme, Berre; Mertens, G.; Tibboel, Helen; Braem, Senne

    We investigated whether stimuli merely instructed to be fear-relevant can bias visual attention, even when the fear relation was never experienced before. Participants performed a dot-probe task with pictures of naturally fear-relevant (snake or spider) or -irrelevant (bird or butterfly) stimuli.

  20. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  1. Prevailing theories of consciousness are challenged by novel cross-modal associations acquired between subliminal stimuli.

    Science.gov (United States)

    Scott, Ryan B; Samaha, Jason; Chrisley, Ron; Dienes, Zoltan

    2018-06-01

    While theories of consciousness differ substantially, the 'conscious access hypothesis', which aligns consciousness with the global accessibility of information across cortical regions, is present in many of the prevailing frameworks. This account holds that consciousness is necessary to integrate information arising from independent functions such as the specialist processing required by different senses. We directly tested this account by evaluating the potential for associative learning between novel pairs of subliminal stimuli presented in different sensory modalities. First, pairs of subliminal stimuli were presented and then their association assessed by examining the ability of the first stimulus to prime classification of the second. In Experiments 1-4 the stimuli were word-pairs consisting of a male name preceding either a creative or uncreative profession. Participants were subliminally exposed to two name-profession pairs where one name was paired with a creative profession and the other an uncreative profession. A supraliminal task followed requiring the timed classification of one of those two professions. The target profession was preceded by either the name with which it had been subliminally paired (concordant) or the alternate name (discordant). Experiment 1 presented stimuli auditorily, Experiment 2 visually, and Experiment 3 presented names auditorily and professions visually. All three experiments revealed the same inverse priming effect with concordant test pairs associated with significantly slower classification judgements. Experiment 4 sought to establish if learning would be more efficient with supraliminal stimuli and found evidence that a different strategy is adopted when stimuli are consciously perceived. Finally, Experiment 5 replicated the unconscious cross-modal association achieved in Experiment 3 utilising non-linguistic stimuli. The results demonstrate the acquisition of novel cross-modal associations between stimuli which are not

  2. Motion sickness and tilts of the inertial force environment : Active suspension systems vs. active passengers

    NARCIS (Netherlands)

    Golding, J. F.; van der Bles, W.; Bos, J. E.; Haynes, T.; Gresty, M. A.

    2003-01-01

    Background: Maneuvering in vehicles exposes occupants to low frequency forces (<1 Hz) which can provoke motion sickness. Hypothesis: Aligning with the tilting inertial resultant (gravity + imposed horizontal acceleration: gravito-inertial force (GIF)) may reduce motion sickness when tilting is

  3. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Ansuja Pulickal Mathew

    2017-04-01

    Full Text Available The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.

  4. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  5. SU-F-J-19: Robust Region-Of-Interest (ROI) for Consistent Registration On Deteriorated Surface Images

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H; Malin, M; Chmura, S; Hasan, Y; Al-Hallaq, H [The Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL (United States)

    2016-06-15

    Purpose: For African-American patients receiving breast radiotherapy with a bolus, skin darkening can affect the surface visualization when using optical imaging for daily positioning and gating at deep-inspiration breath holds (DIBH). Our goal is to identify a region-of-interest (ROI) that is robust against deteriorating surface image quality due to skin darkening. Methods: We study four patients whose post-mastectomy surfaces are imaged daily with AlignRT (VisionRT, UK) for DIBH radiotherapy and whose surface image quality is degraded toward the end of treatment. To simulate the effects of skin darkening, surfaces from the first ten fractions of each patient are systematically degraded by 25–35%, 40–50% and 65–75% of the total area of the clinically used ROI-ipsilateral-chestwall. The degraded surfaces are registered to the reference surface in six degrees-of-freedom. To identify a robust ROI, three additional reference ROIs — ROI-chest+abdomen, ROI-bilateral-chest and ROI-extended-ipsilateral-chestwall are created and registered to the degraded surfaces. Differences in registration using these ROIs are compared to that using ROI-ipsilateral-chestwall. Results: For three patients, the deviations in the registrations to ROI-ipsilateral-chestwall are > 2.0, 3.1 and 7.9mm on average for 25–35%, 40–50% and 65–75% degraded surfaces, respectively. Rotational deviations reach 11.1° in pitch. For the last patient, registration is consistent to within 2.6mm even on the 65–75% degraded surfaces, possibly because the surface topography has more distinct features. For ROI-bilateral-chest and ROI-extended-ipsilateral-chest registrations deviate in a similar pattern. However, registration on ROI-chest+abdomen is robust to deteriorating image qualities to within 4.2mm for all four patients. Conclusion: Registration deviations using ROI-ipsilateral-chestwall can reach 9.8mm on the 40–50% degraded surfaces. Caution is required when using AlignRT for patients

  6. Novel stimuli are negative stimuli: evidence that negative affect is reduced in the mere exposure effect.

    Science.gov (United States)

    Robinson, Brent M; Elias, Lorin J

    2005-04-01

    Repeated exposure of a nonreinforced stimulus results in an increased preference for that stimulus, the mere exposure effect. The present study repeatedly presented positive, negative, and neutrally affective faces to 48 participants while they made judgments about the emotional expression. Participants then rated the likeability of novel neutrally expressive faces and some of these previously presented faces, this time in their neutral expression. Faces originally presented as happy were rated as the most likeable, followed by faces originally presented as neutral. Negative and novel faces were not rated significantly differently from each other. These findings support the notion that the increase in preference towards repeatedly presented stimuli is the result of the reduction in negative affect, consistent with the modified two-factor uncertainty-reduction model and classical conditioning model of the mere exposure effect.

  7. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  8. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali; Sava, Paul C.

    2010-01-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  9. Motion sickness and tilts of the inertial force environment: active suspension systems vs. active passengers

    NARCIS (Netherlands)

    Golding, J.F.; Bles, W.; Bos, J.E.; Haynes, T.; Gresty, M.A.

    2003-01-01

    Maneuvering in vehicles exposes occupants to low frequency forces (<1 Hz) which can provoke motion sickness. Hypothesis: Aligning with the tilting inertial resultant (gravity + imposed horizontal acceleration: gravito-inertial force (GIF)) may reduce motion sickness when tilting is either 'active'

  10. Mathematical Model and Analysis of the Water-Lubricated Hydrostatic Journal Bearings considering the Translational and Tilting Motions

    Directory of Open Access Journals (Sweden)

    Hui-Hui Feng

    2014-01-01

    Full Text Available The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.

  11. Transient theory of double slope floating cum tilted - wick type solar still

    International Nuclear Information System (INIS)

    Balan, R.; Chandrasekaran, J.; Janarthanan, B.; Kumar, S.

    2011-01-01

    A double slope floating cum tilted-wick solar still has been fabricated and transient theory of floating cum tilted-wick type solar still has been proposed. Analytical expressions have been derived for the different temperatures components of the proposed system. For elocution of the analytical results, numerical calculations have been carried out using the meteorological parameters for a typical summer day in Coimbatore. Analytical expression results are found to be in the close agreement with the experimental results. (authors)

  12. Asymmetric step-like characteristics in a tilted rocking ratchet potential

    International Nuclear Information System (INIS)

    Lee, A. Khangjune; Lee, Jong-Rim; Lee, K.H.

    2012-01-01

    The overdamped Langevin dynamics has been employed to study the directional transport of particles driven in a tilted rocking ratchet potential. The system subjected to a constant direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at two different critical forces that are consistent with the predicted values. When an additional alternating force is applied to the system, the time-averaged velocity shows several steps of equal height as the direct force increases. These steps are similar to the Shapiro steps in an rf-driven Josephson junction, and appear whenever the system's natural frequency given by the direct force matches an integer multiple of the applied frequency. When the alternating force exceeds a certain critical value which can be also estimated for a slow rocking, a directional motion known as the rectification effect occurs even at zero direct force.

  13. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    International Nuclear Information System (INIS)

    Liu, H F; Chi, D Z; Liu, W; Guo, S

    2016-01-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal–organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [–4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al 2 O 3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings. (paper)

  14. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    Science.gov (United States)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  15. Tilt signals at Mount Melbourne, Antarctica: evidence of a shallow volcanic source

    Directory of Open Access Journals (Sweden)

    Salvatore Gambino

    2016-06-01

    Full Text Available Mount Melbourne (74°21′ S, 164°43′ E is a quiescent volcano located in northern Victoria Land, Antarctica. Tilt signals have been recorded on Mount Melbourne since early 1989 by a permanent shallow borehole tiltmeter network comprising five stations. An overall picture of tilt, air and permafrost temperatures over 15 years of continuous recording data is reported. We focused our observations on long-term tilt trends that at the end of 1997 showed coherent changes at the three highest altitude stations, suggesting the presence of a ground deformation source whose effects are restricted to the summit area of Mount Melbourne. We inverted these data using a finite spherical body source, thereby obtaining a shallow deflation volume source located under the summit area. The ground deformation observed corroborates the hypothesis that the volcanic edifice of Mount Melbourne is active and should be monitored multidisciplinarily.

  16. Effect of tilted anisotropy on spin states of strongly anisotropic 2D film

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.

    2012-01-01

    The spin states of a 2D film with a strong easy-plane anisotropy and single-ion tilted anisotropy, the axis of which forms a certain angle with the normal to the film plane are investigated. In this system, an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase can be formed; the realization of these states noticeably depends on the degree of tilted anisotropy.

  17. MODELLING AND CONTROL OF H-SHAPED RACING QUADCOPTER WITH TILTING PROPELLERS

    Directory of Open Access Journals (Sweden)

    Ahmed Alkamachi

    2017-08-01

    Full Text Available Traditional quadcopter suffers terribly from its underactuation which implies the coupling between the rotational and the translational motion. In this paper, we present a quadcopter with dynamic rotor tilting capability in which the four propellers are allowed to tilt together around their arm axis. The proposed model provides leveled forward/backward horizontal motion and therefore, ensures a correct view of the onboard camera, and increases the vehicle speed by reducing the air drag. The rotor tilt mechanism also provides an instant high speed in the forward or reverse direction and offers a quick and solid air brake to restrain that fast moving speed.  The nonlinear dynamical model for the quadcopter under consideration is derived using Newton-Euler formalization. A control strategy is then proposed aimed to control the altitude, attitude, and the forward speed of the obtained model. Finally, a numerical simulation is used to integrate the system model with the controller and to test the system performance. Simulation results are reported to demonstrate the advantages of the proposed novel configuration.

  18. Octahedral tilt independent magnetism in confined GdTiO3 films

    Science.gov (United States)

    Need, R. F.; Isaac, B. J.; Kirby, B. J.; Borchers, J. A.; Stemmer, S.; Wilson, Stephen D.

    2018-03-01

    Low temperature polarized neutron reflectometry measurements are presented, exploring the evolution of ferrimagnetism in thin GdTiO3 films embedded within a SrTiO3 matrix. In GdTiO3 films thinner than ˜4 nm, the TiO6 octahedral tilts endemic to GdTiO3 coherently relax toward the undistorted, cubic phase of SrTiO3. Our measurements indicate that the ferrimagnetic state within the GdTiO3 layers survives as these TiO6 octahedral tilts are suppressed. Furthermore, our data suggest that layers of suppressed magnetization (i.e., magnetic dead layers) develop within the GdTiO3 layer at each GdTiO3/SrTiO3 interface and explain the apparent magnetization suppression observed in thin GdTiO3 films when using volume-averaged techniques. Our data show that the low temperature magnetic moment inherent to the core GdTiO3 layers is only weakly impacted as the octahedral tilt angles are suppressed by more than 50% and the t2 g bandwidth is dramatically renormalized.

  19. Sensory and Postural Input in the Occurrence of a Gender Difference in Orienting Liquid Surfaces

    Science.gov (United States)

    Robert, Michele; Longpre, Sophie

    2005-01-01

    In the water-level task, both spatial skill and physical knowledge contribute to representing the surface of a liquid as horizontal irrespective of the container's tilt. Under the standard visual format of the task, men systematically surpass women at drawing correct water lines in outlines of tilted containers. The present exploratory experiments…

  20. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting the diffraction plane detector by an equivalent amount.

  1. The dynamic performance of narrow actively tilting vehicles

    NARCIS (Netherlands)

    Pauwelussen, J.P.

    2000-01-01

    The major advantage of a motorcycle with respect to a passenger car is the possibility of the driver to tilt during cornering and thereby maintaining stability whereas a passenger car will suffer from the risk of capsizing at high speed. This observation has motivated recently various manufacturers

  2. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  3. Determination of the Optimal Tilt Angle for Solar Photovoltaic Panel in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    K.R. Ajao

    2013-06-01

    Full Text Available The optimal tilt angle of solar photovoltaic panel in Ilorin, Nigeria was determined. The solar panel was first mounted at 0o to the horizontal and after ten minutes, the voltage and current generated with the corresponding atmospheric temperature were recorded. The same procedure was repeated for 2o to 30o at a succession of 2o at ten minutes time interval over the entire measurement period. The result obtained shows that the average optimal tilt angle at which a solar panel will be mounted for maximum power performance at fixed position in Ilorin is 22o. This optimum angle of tilt of the solar panel and the orientation are dependent on the month of the year and the location of the site of study.

  4. Increased Aldosterone Release During Head-Up Tilt in Early Primary Hypertension.

    Science.gov (United States)

    Reinold, Annemarie; Schneider, Andreas; Kalizki, Tatjana; Raff, Ulrike; Schneider, Markus P; Schmieder, Roland E; Schmidt, Bernhard M W

    2017-05-01

    Hyperaldosteronism is well known cause of secondary hypertension. However, the importance of aldosterone for the much larger group of patients with primary hypertension is less clear. We hypothesized that in young subjects with primary hypertension, the rise of plasma aldosterone levels in response to head-up tilt testing as a stress stimulus is exaggerated. Hemodynamics (blood pressure (BP), heart rate (HR), cardiac index (CI), and total peripheral vascular resistance index (TPRI), all by TaskForce monitor) and hormones (plasma renin activity (PRA), angiotensin II (Ang II), aldosterone) were measured before and during 30 minutes of head-up tilt in 45 young hypertensive and 45 normotensive subjects. BP, HR, CI, and TPRI all increased in response to head-up tilt, with no difference between groups. There was no difference in baseline PRA, Ang II, and aldosterone between groups. During head-up tilt, PRA, and Ang II levels increased similarly. However, aldosterone levels increased to a greater extent in the hypertensive vs. normotensive subjects (P = 0.0021). Our data suggest that an increased release of aldosterone in response to orthostatic stress is a feature of early primary hypertension. The similar increase in PRA and Ang II suggests a potential role for secretagogues of aldosterone other than Ang II in this response. In addition to its established role in secondary hypertension, dysregulation of aldosterone release might contribute to the development of primary arterial hypertension. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Turning the tide: comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries

    Science.gov (United States)

    Kleinhans, Maarten G.; van der Vegt, Maarten; Leuven, Jasper; Braat, Lisanne; Markies, Henk; Simmelink, Arjan; Roosendaal, Chris; van Eijk, Arjan; Vrijbergen, Paul; van Maarseveen, Marcel

    2017-11-01

    Analogue models or scale experiments of estuaries and short tidal basins are notoriously difficult to create in the laboratory because of the difficulty to obtain currents strong enough to transport sand. Our recently discovered method to drive tidal currents by periodically tilting the entire flume leads to intense sediment transport in both the ebb and flood phase, causing dynamic channel and shoal patterns. However, it remains unclear whether tilting produces periodic flows with characteristic tidal properties that are sufficiently similar to those in nature for the purpose of landscape experiments. Moreover, it is not well understood why the flows driven by periodic sea level fluctuation, as in nature, are not sufficient for morphodynamic experiments. Here we compare for the first time the tidal currents driven by sea level fluctuations and by tilting. Experiments were run in a 20 × 3 m straight flume, the Metronome, for a range of tilting periods and with one or two boundaries open at constant head with free inflow and outflow. Also, experiments were run with flow driven by periodic sea level fluctuations. We recorded surface flow velocity along the flume with particle imaging velocimetry and measured water levels along the flume. We compared the results to a one-dimensional model with shallow flow equations for a rough bed, which was tested on the experiments and applied to a range of length scales bridging small experiments and large estuaries. We found that the Reynolds method results in negligible flows along the flume except for the first few metres, whereas flume tilting results in nearly uniform reversing flow velocities along the entire flume that are strong enough to move sand. Furthermore, tidal excursion length relative to basin length and the dominance of friction over inertia is similar in tidal experiments and reality. The sediment mobility converges between the Reynolds method and tilting for flumes hundreds of metres long, which is impractical

  6. Turning the tide: comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries

    Directory of Open Access Journals (Sweden)

    M. G. Kleinhans

    2017-11-01

    Full Text Available Analogue models or scale experiments of estuaries and short tidal basins are notoriously difficult to create in the laboratory because of the difficulty to obtain currents strong enough to transport sand. Our recently discovered method to drive tidal currents by periodically tilting the entire flume leads to intense sediment transport in both the ebb and flood phase, causing dynamic channel and shoal patterns. However, it remains unclear whether tilting produces periodic flows with characteristic tidal properties that are sufficiently similar to those in nature for the purpose of landscape experiments. Moreover, it is not well understood why the flows driven by periodic sea level fluctuation, as in nature, are not sufficient for morphodynamic experiments. Here we compare for the first time the tidal currents driven by sea level fluctuations and by tilting. Experiments were run in a 20  ×  3 m straight flume, the Metronome, for a range of tilting periods and with one or two boundaries open at constant head with free inflow and outflow. Also, experiments were run with flow driven by periodic sea level fluctuations. We recorded surface flow velocity along the flume with particle imaging velocimetry and measured water levels along the flume. We compared the results to a one-dimensional model with shallow flow equations for a rough bed, which was tested on the experiments and applied to a range of length scales bridging small experiments and large estuaries. We found that the Reynolds method results in negligible flows along the flume except for the first few metres, whereas flume tilting results in nearly uniform reversing flow velocities along the entire flume that are strong enough to move sand. Furthermore, tidal excursion length relative to basin length and the dominance of friction over inertia is similar in tidal experiments and reality. The sediment mobility converges between the Reynolds method and tilting for flumes hundreds of

  7. Recall and recognition hypermnesia for Socratic stimuli.

    Science.gov (United States)

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.

  8. Morphology, structure, and electrical properties of YBa2Cu3Ox thin films on tilted NdGaO3 substrates, deposited by DC-sputtering

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Kotelyanskii, Iosif M.; Luzanov, Valery A.; Mozhaeva, Julia E.; Donchev, Todor; Mateev, Emil; Nurgaliev, Timur; Bdikin, Igor K.; Narymbetov, Bakhyt Zh.

    2005-01-01

    Thin YBa 2 Cu 3 O x (YBCO) films were deposited using DC-sputtering technique on NdGaO 3 substrates, tilted from (1 1 0) orientation by 0-26 deg . The structure and surface quality of the substrates were carefully characterized to obtain reliable results of thin films deposition. Structural, morphological and electrical properties of the YBCO thin films show three different ranges of inclination angle: vicinal, intermediate and high. In the vicinal range the properties of the film are generally the same as of the standard films deposited on (1 1 0) NdGaO 3 substrate. An increase of the inclination angle to the intermediate range results in a significant improvement of morphology and structural quality of the film. Best electrical parameters are measured for the films of the intermediate range also. Probable reason for such behavior is simultaneous and regular seeding of the film in the joints of facets on the substrate surface. Further increase of inclination angle leads to step bunching and oxygen out-diffusion, destroying both structural and electrical perfection of the tilted-axes YBCO film

  9. Description of multi-quasiparticle bands by the tilted axis cranking model

    International Nuclear Information System (INIS)

    Frauendorf, S.

    2000-01-01

    The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73

  10. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection.

    Science.gov (United States)

    Wang, Xin; Gu, Mengjie; Toh, Tan Boon; Abdullah, Nurrul Lissa Binti; Chow, Edward Kai-Hua

    2018-02-01

    Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.

  11. Patients with severe acquired brain injury show increased arousal in tilt-table training

    DEFF Research Database (Denmark)

    Riberholt, Christian G; Thorlund, Jonas Bloch; Mehlsen, Jesper

    2013-01-01

    Patients with severe acquired brain injury (ABI) are often mobilised using a tilt-table. Complications such as orthostatic intolerance have been reported. The primary objective of this study was to investigate if using a tilt-table was feasible for mobilising patients with severe ABI admitted...... for sub-acute rehabilitation. We also investigated change in arousal, treatment duration before termination due to orthostatic reactions and change in muscle tone....

  12. Tilted c-Axis Thin-Film Bulk Wave Resonant Pressure Sensors With Improved Sensitivity

    OpenAIRE

    Anderås, Emil; Katardjiev, Ilia; Yantchev, Ventsislav

    2012-01-01

    Aluminum nitride thin film bulk wave resonant pressure sensors employing c- and tilted c-axis texture, have been fabricated and tested for their pressure sensitivities. The c-axis tilted FBAR pressure sensors demonstrate substantially higher pressure sensitivity compared to its c-axis oriented counterpart. More specifically the thickness plate quasi-shear resonance has demonstrated the highest pressure sensitivity while further being able to preserve its performance in liquid environment.

  13. Slow changing postural cues cancel visual field dependence on self-tilt detection.

    Science.gov (United States)

    Scotto Di Cesare, C; Macaluso, T; Mestre, D R; Bringoux, L

    2015-01-01

    Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants had to indicate whether they felt being tilted forward at successive angles. Results show that thresholds for self-tilt detection substantially differed between visual field dependent/independent subjects, when only the visual scene was rotated. This difference was no longer present when the body was actually rotated, whatever the visual scene condition (i.e., absent, static or rotated relative to the observer). These results suggest that the cancellation of visual field dependence by dynamic postural cues may rely on a multisensory reweighting process, where slow changing vestibular/somatosensory inputs may prevail over visual inputs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Downward continuation and tilt derivative of magnetic data for ...

    Indian Academy of Sciences (India)

    S K Pal

    2017-06-12

    Jun 12, 2017 ... Downward continuation; tilt derivative; magnetic data; coal fire mapping; Jharia coal field;. India. 1. .... of seams are thin and not suitable for mining but have the ...... Theory and Application; McGraw Hill Education (India).

  15. determination of determination of optimal tilt angle for maximum

    African Journals Online (AJOL)

    eobe

    Keywords: Energy output, photovoltaic module, best tilt angle, solar radiation, sunshine hours, ambient temperature. 1. .... at any given time is vital in the design of a PV system. The solar ..... [8] E. Taymur, Photovoltaic System Sizing [thesis].

  16. Modified alignment CGHs for aspheric surface test

    Science.gov (United States)

    Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2009-08-01

    Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.

  17. A study of tilt change recorded from July to October 2006 at the Phlegraean Fields (Naples, Italy

    Directory of Open Access Journals (Sweden)

    C. Del Gaudio

    2007-06-01

    Full Text Available The tiltmetric dataset of Phlegraean Fields area showed a discrete correlation with the volcanic dynamics, suggesting that tiltmetric monitoring is important for the surveillance of active volcanic areas. Tilt data recorded in 2006 at 2 stations belonging to the monitoring network of the Osservatorio Vesuviano (INGV, National Institute for Geophysics and Volcanology, Italy in the Phlegraean Fields are discussed in this paper. The acquired signals have shown a strong tiltmetric inversion that took place from the end of July 2006. After correcting tilt variations to eliminate the influence of temperature (influencing 90% of the signal at OLB station, hereafter OLB a significant value of the tilt still remains. This change is related to a local inflation episode lasting 3 months, during an unrest phase that started 2 years before. It is interesting to note that tilt amplitude is much greater at OLB than the slope of the displacement field predicted by the theoretical inflation models, but data show that this field is not homogeneous and in some areas very tilted. Moreover, in the last days before the end of tilt inversion, a low energy seismic swarm happened at about 1 km of distance from the tiltmetric station by hundreds of VT (Volcano-Tectonics and LP (Long-Period events.

  18. Integrative Blood Pressure Response to Upright Tilt Post Renal Denervation

    Science.gov (United States)

    Howden, Erin J.; East, Cara; Lawley, Justin S.; Stickford, Abigail S.L.; Verhees, Myrthe; Fu, Qi

    2017-01-01

    Abstract BACKGROUND Whether renal denervation (RDN) in patients with resistant hypertension normalizes blood pressure (BP) regulation in response to routine cardiovascular stimuli such as upright posture is unknown. We conducted an integrative study of BP regulation in patients with resistant hypertension who had received RDN to characterize autonomic circulatory control. METHODS Twelve patients (60 ± 9 [SD] years, n = 10 males) who participated in the Symplicity HTN-3 trial were studied and compared to 2 age-matched normotensive (Norm) and hypertensive (unmedicated, HTN) control groups. BP, heart rate (HR), cardiac output (Qc), muscle sympathetic nerve activity (MSNA), and neurohormonal variables were measured supine, and 30° (5 minutes) and 60° (20 minutes) head-up-tilt (HUT). Total peripheral resistance (TPR) was calculated from mean arterial pressure and Qc. RESULTS Despite treatment with RDN and 4.8 (range, 3–7) antihypertensive medications, the RDN had significantly higher supine systolic BP compared to Norm and HTN (149 ± 15 vs. 118 ± 6, 108 ± 8 mm Hg, P < 0.001). When supine, RDN had higher HR, TPR, MSNA, plasma norepinephrine, and effective arterial elastance compared to Norm. Plasma norepinephrine, Qc, and HR were also higher in the RDN vs. HTN. During HUT, BP remained higher in the RDN, due to increases in Qc, plasma norepinephrine, and aldosterone. CONCLUSION We provide evidence of a possible mechanism by which BP remains elevated post RDN, with the observation of increased Qc and arterial stiffness, as well as plasma norepinephrine and aldosterone levels at approximately 2 years post treatment. These findings may be the consequence of incomplete ablation of sympathetic renal nerves or be related to other factors. PMID:28338768

  19. The clinical relevance of the duration of loss of consciousness provoked by tilt testing.

    Science.gov (United States)

    Zyśko, Dorota; Gajek, Jacek; Kozluk, Edward; Agrawal, Anil Kumar; Smereka, Jacek; Checiński, Igor

    2010-04-01

    The authors assessed the relationships between the duration of loss of consciousness (dLOC) during tilt testing-induced syncope (TTS) and demographics, medical history as well as tilt testing results. Previous research focused on the relevance of the type of neurocardiogenic reaction during TTS. The importance of dLOC has not been assessed so far. The study was carried out in 274 patients with suspected neurally mediated syncope and total loss of consciousness during tilt testing. The syncope burden, demographics, and data regarding spontaneous syncope orTTS were compared between group I with dLOC > or =47 seconds and group 2 with dLOC <47 seconds. Medical history revealed that patients in group I had more syncopal spells, more frequent syncope-related traumatic injuries, urine incontinence, jerking movements and typical vasovagal history than in group 2. Moreover, group I patients had more frequently a cardioinhibitory type of reaction and a shorter active phase duration. In addition, they manifested more frequent accompanying cerebral hypoperfusion signs and reproduction of symptoms during TTS than patients in group 2. The loss of consciousness during tilt testing-induced syncope differs in terms of duration among patients with neurally mediated syncope. The dLOC during TTS is associated with medical history and tilt-testing data which confirm the vasovagal aetiology of spontaneous events. The longer dLOC suggests deeper cerebral haemodynamic disturbances during either spontaneous or provoked syncope.

  20. Modeling of Tilting-Pad Journal Bearings with Transfer Functions

    Directory of Open Access Journals (Sweden)

    J. A. Vázquez

    2001-01-01

    Full Text Available Tilting-pad journal bearings are widely used to promote stability in modern rotating machinery. However, the dynamics associated with pad motion alters this stabilizing capacity depending on the operating speed of the machine and the bearing geometric parameters, particularly the bearing preload. In modeling the dynamics of the entire rotor-bearing system, the rotor is augmented with a model of the bearings. This model may explicitly include the pad degrees of freedom or may implicitly include them by using dynamic matrix reduction methods. The dynamic reduction models may be represented as a set of polynomials in the eigenvalues of the system used to determine stability. All tilting-pad bearings can then be represented by a fixed size matrix with polynomial elements interacting with the rotor. This paper presents a procedure to calculate the coefficients of polynomials for implicit bearing models. The order of the polynomials changes to reflect the number of pads in the bearings. This results in a very compact and computationally efficient method for fully including the dynamics of tilting-pad bearings or other multiple degrees of freedom components that interact with rotors. The fixed size of the dynamic reduction matrices permits the method to be easily incorporated into rotor dynamic stability codes. A recursive algorithm is developed and presented for calculating the coefficients of the polynomials. The method is applied to stability calculations for a model of a typical industrial compressor.

  1. Experimental and Numerical Simulation of Unbalance Response in Vertical Test Rig with Tilting-Pad Bearings

    Directory of Open Access Journals (Sweden)

    Mattias Nässelqvist

    2014-01-01

    Full Text Available In vertically oriented machines with journal bearing, there are no predefined static radial loads, such as dead weight for horizontal rotor. Most of the commercial software is designed to calculate rotordynamic and bearing properties based on machines with a horizontally oriented rotor; that is, the bearing properties are calculated at a static eccentricity. For tilting-pad bearings, there are no existing analytical expressions for bearing parameters and the bearing parameters are dependent on eccentricity and load angle. The objective of this paper is to present a simplified method to perform numerical simulations on vertical rotors including bearing parameters. Instead of recalculating the bearing parameters in each time step polynomials are used to represent the bearing parameters for present eccentricities and load angles. Numerical results are compared with results from tests performed in a test rig. The test rig consists of two guide bearings and a midspan rotor. The guide bearings are 4-pad tilting-pad bearings. Shaft displacement and strains in the bearing bracket are measured to determine the test rig’s properties. The comparison between measurements and simulated results shows small deviations in absolute displacement and load levels, which can be expected due to difficulties in calculating exact bearing parameters.

  2. Dynamic performance of a C/C composite finger seal in a tilting mode

    Directory of Open Access Journals (Sweden)

    Hailin ZHAO

    2017-08-01

    Full Text Available The complex operating state of aeroengines has an impact on the performance of finger seals. However, little work has been focused on the issue and the dynamic performance of finger seals is also rarely studied. Therefore, a distributed mass equivalent model considering working conditions is proposed in this paper for solving the existing problems. The effects of the fiber bundle density and the preparation direction of the fiber bundle of a C/C composite on the dynamic performance of a finger seal are investigated in rotor tilt based on the proposed model. The difference between the C/C composite finger seal performances under the rotor precession and nutation tilt cases is also investigated. The results show that the fiber bundle density and the preparation direction of the fiber bundle have an influence on the dynamic performance of the finger seal as rotor tilt is considered, and the dynamic performance of the finger seal is different in the two kinds of tilting modes. In addition, a novel method for design of finger seals is presented based on the contact pressure between finger boots and the rotor. Finger seals with good leakage rates and low wear can be acquired in this method.

  3. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  4. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  5. Optimum tilt angle for flat plate collectors all over the World – A declination dependence formula and comparisons of three solar radiation models

    International Nuclear Information System (INIS)

    Stanciu, Camelia; Stanciu, Dorin

    2014-01-01

    consists in finding this global optimum instead of “local” ones for which monthly adjustment is required. The results are compared to the approximation given in the technical literature according to which the optimum tilt angle should be local latitude plus or minus (for winter or summer seasons, respectively) 10° or 15° (with small variations as it is further presented)

  6. The impact of gravity during head-up tilt

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette; Smith, Brittany

    2011-01-01

    The impact of gravity during head-up tilt, a test often used in the clinic to diagnose patients who suffer from dizziness or frequent episodes of syncope, is not well described. This study uses mathematical modeling to analyze experimental blood pressure data measured at the level of the aorta an...

  7. Establishment of Approximate Analytical Model of Oil Film Force for Finite Length Tilting Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2015-01-01

    Full Text Available Tilting pad bearings offer unique dynamic stability enabling successful deployment of high-speed rotating machinery. The model of dynamic stiffness, damping, and added mass coefficients is often used for rotordynamic analyses, and this method does not suffice to describe the dynamic behaviour due to the nonlinear effects of oil film force under larger shaft vibration or vertical rotor conditions. The objective of this paper is to present a nonlinear oil force model for finite length tilting pad journal bearings. An approximate analytic oil film force model was established by analysing the dynamic characteristic of oil film of a single pad journal bearing using variable separation method under the dynamic π oil film boundary condition. And an oil film force model of a four-tilting-pad journal bearing was established by using the pad assembly technique and considering pad tilting angle. The validity of the model established was proved by analyzing the distribution of oil film pressure and the locus of journal centre for tilting pad journal bearings and by comparing the model established in this paper with the model established using finite difference method.

  8. Acute and Conditioned Blood Pressure Changes in Relation to Social and Psychosocial Stimuli in Rats

    NARCIS (Netherlands)

    Fokkema, Dirk S.; Koolhaas, Jaap M.

    1985-01-01

    The naturally occurring tendency to compete with other rats for territorial space has been used to study individual behavior characteristics and blood pressure reactivity to social stimuli in adult male TMD-S3 rats. The competitive characteristics of the individual rats are consistent in two

  9. Contextual influences on implicit evaluation: a test of additive versus contrastive effects of evaluative context stimuli in affective priming.

    Science.gov (United States)

    Gawronski, Bertram; Deutsch, Roland; Seidel, Oliver

    2005-09-01

    Drawing on two alternative accounts of the affective priming effect (spreading activation vs. response interference), the present research investigated the underlying processes of how evaluative context stimuli influence implicit evaluations in the affective priming task. Employing two sequentially presented prime stimuli (rather than a single prime), two experiments showed that affective priming effects elicited by a given prime stimulus were more pronounced when this stimulus was preceded by a context prime of the opposite valence than when it was preceded by a context prime of the same valence. This effect consistently emerged for pictures (Experiment 1) and words (Experiment 2) as prime stimuli. These results suggest that the impact of evaluative context stimuli on implicit evaluations is mediated by contrast effects in the attention to evaluative information rather than by additive effects in the activation of evaluative information in associative memory.

  10. Conceptual design study of 1985 commercial tilt rotor transports. Volume 3. STOL design summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sambell, K.W.

    1976-04-01

    A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability. (GRA)

  11. Steady-state VEP responses to uncomfortable stimuli.

    Science.gov (United States)

    O'Hare, Louise

    2017-02-01

    Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    rarely available required for precise sizing of energy systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate clearness index (Kt) used by Gueymard (2000) for estimating solar irradiation H, irradiation at the earth's surface has ...

  13. Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans

    Science.gov (United States)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.

    1993-01-01

    The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous microcirculation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, O deg, -6 deg (HDT), -12 deg, -6 deg, O deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P less than 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.

  14. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  15. Dynamic Defrosting on Scalable Superhydrophobic Surfaces

    International Nuclear Information System (INIS)

    Murphy, Kevin R.; McClintic, William T.; Lester, Kevin C.; Collier, C. Patrick; Boreyko, Jonathan B.

    2017-01-01

    Recent studies have shown that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces. During defrosting, the melting sheet of Cassie frost spontaneously dewets into quasi-spherical slush droplets that are highly mobile. Promoting Cassie frost would therefore seem advantageous from a defrosting standpoint; however, nobody has systematically compared the efficiency of defrosting Cassie ice versus defrosting conventional surfaces. Here, we characterize the defrosting of an aluminum plate, one-half of which exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. For thick frost sheets (>1 mm), the superhydrophobic surface was able to dynamically shed the meltwater, even at very low tilt angles. In contrast, the hydrophobic surface was unable to shed any appreciable meltwater even at a 90° tilt angle. For thin frost layers (≲1 mm), not even the superhydrophobic surface could mobilize the meltwater. We attribute this to the large apparent contact angle of the meltwater, which for small amounts of frost serves to minimize coalescence events and prevent droplets from approaching the capillary length. Finally, we demonstrate a new mode of dynamic defrosting using an upside-down surface orientation, where the melting frost was able to uniformly detach from the superhydrophobic side and subsequently pull the frost from the hydrophobic side in a chain reaction. Treating surfaces to enable Cassie frost is therefore very desirable for enabling rapid and low-energy thermal defrosting, but only for frost sheets that are sufficiently thick.

  16. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    Science.gov (United States)

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup

  17. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  18. Structural analysis of a flexure tilt table by using finite element method; Strukturanalyse eines Biege-Kipp-Tisches mittels Finite-Elemente-Methode

    Energy Technology Data Exchange (ETDEWEB)

    Schust, Matthias

    2012-08-15

    At the research institute DESY the synchrotron radiation source PETRA III is operated at Hamburg site. The facility is the most powerful lightsource of its kind and enables scientists to use X-ray beams with hitherto unattained brilliance. In a so-called double-crystal monochromator certain wavelengths can be selected from the light. In these systems tilt tables with flexure hinges are used. So far, a certain susceptibility of the assembly to vibration can be seen, which decreases the beam quality. The goal of this thesis is to determine the causes of the problem and to discuss the findings concerning the known behavior. First of all the functioning of the tilt table will be explained. Afterwards the theory of flexure hinges and the boundary conditions of a finite element analysis will be treated. Using a simulation program, several assembly models will be investigated and parameter studies are carried out. Beginning with the base object of investigation - the tilt table - the model of the whole assembly is systematically developed. Natural frequencies, the stress at the spring hinges and the displacement of the crystal surface can be determined. The results of the research show that the vibration behavior of the assembly is very complex and cannot be comprehensively described within the analyses carried out. The cause of the problems has not been identified yet and therefore further studies would be necessary. (orig.)

  19. External noise distinguishes attention mechanisms.

    Science.gov (United States)

    Lu, Z L; Dosher, B A

    1998-05-01

    We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.

  20. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  1. The perception of roll tilt in pilots during a simulated coordinated turn in a gondola centrifuge.

    Science.gov (United States)

    Tribukait, Arne; Grönkvist, Mikael; Eiken, Ola

    2011-05-01

    It has previously been reported that nonpilots underestimate the roll tilt angle after acceleration in a gondola centrifuge. The aim of the present work was to elucidate the significance of flight experience for roll tilt perception based on vestibular information. The subjective visual horizontal (SVH) was measured by means of an adjustable luminous line in darkness. Eight nonpilots (N), nine fighter pilots (F), and eight helicopter pilots (H) underwent two centrifuge runs (2 G, 5 min) heading forward and backward, respectively. The roll position of the gondola (60 degrees at 2 G) was controlled so that the subject was always upright with respect to the gravitoinertial force. Upon acceleration of the centrifuge there was a tilt of the SVH in a direction compensatory to the inclination of the gondola. This tilt was larger in the forward position [N: 17.2 +/- 6.4 degrees, F: 31.2 +/- 16.4 degrees, H: 33.6 +/- 18.2 degrees (means +/- SD)] than in the backward position (N: -5.0 +/- 6.8 degrees, F: -12.2 +/- 17.4 degrees, H: -10.4 +/- 15.4 degrees). In N the tilt declined with time, approaching zero by the end of the 2-G plateau. In the pilots it was significantly larger and did not decline. Flight experience results in an increased ability to perceive the roll tilt during movement along a curved path. That this can be revealed in a centrifuge might suggest that acceleration of the centrifuge constitutes a movement pattern which is similar, from a vestibular point of view, to that of an airplane entering a coordinated turn.

  2. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  3. HREM investigation of the structure of the Σ5(310)/[001] symmetric tilt grain boundaries in Nb

    International Nuclear Information System (INIS)

    King, W.E.; Compbell, G.H.; Coombs, A.; Ruehle, M.

    1991-01-01

    This paper reports on atomistic simulations using interatomic potentials for Nb developed employing the embedded atom method (EAM) and the model generalized pseudopotential theory (MGPT) that have indicated a possible cusp at the Σ5 (310) orientation in the energy vs tilt angle curves for left-angle 001 right-angle symmetric tilt grain boundaries. In addition, the most stable structure predicted using EAM exhibits shifts of one crystal relative to the other along the tilt axis and along the direction perpendicular to the tilt axis lying in the boundary plane. The structure predicted using the MGPT was mirror symmetric across the plane of the grain boundary. This boundary has been prepared for experimental study using the ultra high vacuum diffusion bonding method. A segment of this boundary has been studied using high resolution electron microscopy

  4. Quest for consistent modelling of statistical decay of the compound nucleus

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2018-01-01

    A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.

  5. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    International Nuclear Information System (INIS)

    Gasparro, Joel; Hult, Mikael; Johnston, Peter N.; Tagziria, Hamid

    2008-01-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV

  6. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, Joel [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Hult, Mikael [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Johnston, Peter N. [Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001 (Australia); Tagziria, Hamid [EC-JRC-IPSC, Institute for the Protection and the Security of the Citizen, Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy)

    2008-09-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV.

  7. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    Science.gov (United States)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  8. Cost characteristics of tilt-rotor, conventional air and high speed rail short-haul intercity passenger service

    Science.gov (United States)

    Schoendorfer, David L.; Morlok, Edward K.

    1985-01-01

    The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.

  9. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: A self-consistent field theory

    NARCIS (Netherlands)

    Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.

    2008-01-01

    The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with

  10. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review.

    Science.gov (United States)

    Maya, S; Sarmento, Bruno; Nair, Amrita; Rejinold, N Sanoj; Nair, Shantikumar V; Jayakumar, R

    2013-01-01

    Nanogels are nanosized hydrogel particles formed by physical or chemical cross-linked polymer networks. The advantageous properties of nanogels related to the ability of retaining considerable amount of water, the biocompatibility of the polymers used, the ability to encapsulate and protect a large quantity of payload drugs within the nanogel matrix, the high stability in aqueous media, their stimuli responsively behavior potential, and the versatility in release drugs in a controlled manner make them very attractive for use in the area of drug delivery. The materials used for the preparation of nanogels ranged from natural polymers like ovalbumin, pullulan, hyaluronic acid, methacrylated chondroitin sulfate and chitosan, to synthetic polymers like poly (N-isopropylacrylamide), poly (Nisopropylacrylamide- co-acrylic acid) and poly (ethylene glycol)-b-poly (methacrylic acid). The porous nanogels have been finding application as anti-cancer drug and imaging agent reservoirs. Smart nanogels responding to external stimuli such as temperature, pH etc can be designed for diverse therapeutic and diagnostic applications. The nanogels have also been surface functionalized with specific ligands aiding in targeted drug delivery. This review focus on stimuli-sensitive, multi-responsive, magnetic and targeted nanogels providing a brief insight on the application of nanogels in cancer drug delivery and imaging in detail.

  11. Dynamic characteristics of polymer faced tilting pad journal bearings

    DEFF Research Database (Denmark)

    Simmons, Gregory F.; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Dynamic characteristics of polymer faced tilting pad journal bearings are presented. Investigations are conducted using a single pad, load on pad configuration over a range of shaft speeds and loads. Two polyether ether ketone (PEEK) faced pads, one polytetrafluoroethylene (PTFE) faced pad and two...

  12. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  13. Age-related differences in attention and memory toward emotional stimuli.

    Science.gov (United States)

    Bi, Dandan; Han, Buxin

    2015-09-01

    From the perspectives of time perception and motivation, socioemotional selectivity theory (SST) postulates that in comparison with younger adults, older adults tend to prefer positive stimuli and avoid negative stimuli. Currently the cross-cultural consistency of this positivity effect (PE) is still not clear. While empirical evidence for Western populations is accumulating, the validation of the PE in Asians is still rare. The current study compared 28 younger and 24 older Chinese adults in the processing of emotional information. Eye-tracking and recognition data of participants in processing pictures with positive, negative, or neutral emotional information sampled from the International Affection Picture System were collected. The results showed less negative bias for emotional attention in older adults than in younger adults, whereas for emotional recognition, only younger adults showed a negative bias while older adults showed no bias between negative and positive emotional information. Overall, compared with younger adults, emotional processing was more positive in older adults. It was concluded that Chinese older adults show a PE. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  14. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    Science.gov (United States)

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  15. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  16. Visual and auditory stimuli associated with swallowing. An fMRI study

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Watanabe, Yutaka; Tonogi, Morio; Yamane, Gen-yuki; Abe, Shinichi; Yamada, Yoshiaki; Callan, Akiko

    2009-01-01

    We focused on brain areas activated by audiovisual stimuli related to swallowing motions. In this study, three kinds of stimuli related to human swallowing movement (auditory stimuli alone, visual stimuli alone, or audiovisual stimuli) were presented to the subjects, and activated brain areas were measured using functional MRI (fMRI) and analyzed. When auditory stimuli alone were presented, the supplementary motor area was activated. When visual stimuli alone were presented, the premotor and primary motor areas of the left and right hemispheres and prefrontal area of the left hemisphere were activated. When audiovisual stimuli were presented, the prefrontal and premotor areas of the left and right hemispheres were activated. Activation of Broca's area, which would have been characteristic of mirror neuron system activation on presentation of motion images, was not observed; however, activation of brain areas related to swallowing motion programming and performance was verified for auditory, visual and audiovisual stimuli related to swallowing motion. These results suggest that audiovisual stimuli related to swallowing motion could be applied to the treatment of patients with dysphagia. (author)

  17. Perceptual Sensitivity and Response to Strong Stimuli Are Related

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2017-09-01

    Full Text Available To shed new light on the long-standing debate about the (independence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS theory (Tops et al., 2010, 2014. Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid. PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007. Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account.

  18. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    Science.gov (United States)

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of

  19. Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hamit Saruhan

    2004-01-01

    Full Text Available This article focuses on the use of genetic algorithms in developing an efficient optimum design method for tilting pad bearings. The approach optimizes based on minimum film thickness, power loss, maximum film temperature, and a global objective. Results for a five tilting-pad preloaded bearing are presented to provide a comparison with more traditional optimum design methods such as the gradient-based global criterion method, and also to provide insight into the potential of genetic algorithms in the design of rotor bearings. Genetic algorithms are efficient search techniques based on the idea of natural selection and genetics. These robust methods have gained recognition as general problem solving techniques in many applications.

  20. The influence of a tilt training programme on the renin-angiotensin-aldosterone system activity in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Krzemińska, Sylwia; Mazurek, Walentyna

    2009-08-01

    We assessed the influence of short-term and long-term tilt training on the activity of the renin-angiotensin-aldosterone system (RAAS) in vasovagal patients. Thirty-nine patients (28 F, 11 M) aged 39.7 +/- 11.2 years with a history of vasovagal syncope and a positive head-up tilt test (HUT) were studied. Blood samples for plasma renin activity (PRA) and aldosterone (ALDO) concentration were drawn at the baseline, immediately after HUT and 10 min after HUT, during the diagnostic, the negative short-term (2-5 days) follow-up HUT and long-term (1-3 months) follow-up HUT. Tilt training was started after diagnostic HUT. In diagnostic HUT, PRA increased significantly immediately after HUT comparing to the baseline, during recovery the values did not change. ALDO concentration increased after HUT comparing to baseline and further increased during recovery. After short-term tilt training, PRA and ALDO concentrations did not significantly change compared to their corresponding values in diagnostic HUT. After long-term tilt training, PRA did not significantly change compared to the values in the diagnostic and short-term follow-up HUT. ALDO concentration also did not change significantly at the baseline and immediately after HUT, and 10 min after HUT ALDO concentration was significantly lower than after diagnostic HUT. Tilt training changes the response of RAAS to the prolonged orthostasis in vasovagal patients. The coupling between PRA and ALDO after diagnostic HUT has been found to be altered and the physiological relationship was restored after long-term tilt training. The beneficial effect of tilt training depends partially on changed RAAS activation.