Sample records for surface-tethered polyelectrolyte brushes

  1. Macroion Interaction at Polyelectrolyte Brush Interfaces (United States)

    Qu, Chen


    The effect of macroions, including synthetic polyelectrolytes, DNA and proteins, on the structure and surface properties of charged polymer thin films remains inadequately understood partially due to the complexity involving the hydrophobic effect and the conformational change of polymeric macroions. In this work, we explore a group of inorganic nanocluster based macroions, hydrophilic polyoxometalates (POMs) of robust nanocluster structure and carrying high surface charges (~ 2-42 negative charges) to investigate their interaction with surface tethered poly-2-vinylpyridine (P2VP) brush-like thin films immersed in aqueous solution. We observe the collapse of swollen P2VP chains by adding POM macroions of increased concentration by AFM, QCM and contact goniometer measurements, in sharp contrast to the increased chain stretching by adding monovalent salts. A careful comparison is made between distinct POMs based on their charge, size and chemical nature. These findings serve as a good reference for theoretical model modification and design of new mesoporous composite membranes.

  2. Macroion induced dehydration of weak polyelectrolyte brushes (United States)

    Zheng, Zhongli; Zhu, Y. Elaine


    The interaction of macroions, including polyelectrolytes, DNAs, and proteins, with polymer and cellular surfaces is critically related to many biomolecular activities, such as protein adsorption and DNA hybridization at probe surfaces. In an experimental approach to examine the macroion electrostatic interaction with a polymer surface while minimizing the long-debated hydrophobic interaction, we study the interaction of molybdenum-based inorganic polyoxometalate (POM) nanoclusters carrying 42 negative charges as model hydrophilic macroions with surface-tethered poly-2-vinylpyridine (P2VP) brushes immersed in aqueous solutions. By AFM, QCM, and contact goniometer, we have observed the collapse of P2VP chains by adding POM macroions at a constant pH. Surprisingly, added POM macroions can cause the shift of swollen-to-collapse transition pH to a lower value, in contrast to the shift to high pH value by adding simple monovalent salts. At sufficiently high POM concentration, a stable POM-P2VP composite layer, showing little dependence on solution pH and additional salts, can be formed, suggesting a simple route to construct meso-porous polymer membranes.

  3. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction

    NARCIS (Netherlands)

    Biesheuvel, P.M.


    Semi-analytical scaling theory is used to describe quenched and annealed (weakly charged, ionizable, charge-regulating) polyelectrolyte brushes in electrolyte solutions of arbitrary salt concentration. An Alexander-De Gennes box model with homogeneous distribution of polymer segments and the free en

  4. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko;


    This work demonstrates the feasibility of superhydrophilic polyelectrolyte brush coatings for anti-icing applications. Five different types of ionic and nonionic polymer brush coatings of 25-100 nm thickness were formed on glass substrates using silane chemistry for surface premodification followed......(-), SO4(2-), and C12SO3(-) ions. By consecutive measurements of the strength of ice adhesion toward ion-incorporated polymer brushes on glass it was found that Li(+) ions reduce ice adhesion by 40% at -18 °C and 70% at -10 °C. Ag(+) ions reduce ice adhesion by 80% at -10 °C relative to unmodified glass....... In general, superhydrophilic polyelectrolyte brushes exhibit better anti-icing property at -10 °C compared to partially hydrophobic brushes such as poly(methyl methacrylate) and surfactant exchanged polyelectrolyte brushes. The data are interpreted using the concept of a quasi liquid layer (QLL...

  5. Protein adsorption in polyelectrolyte brush type cation-exchangers. (United States)

    Khalaf, Rushd; Coquebert de Neuville, Bertrand; Morbidelli, Massimo


    Ion exchange chromatography materials functionalized with polyelectrolyte brushes (PEB) are becoming an integral part of many protein purification steps. Adsorption onto these materials is different than that onto traditional materials, due to the 3D partitioning of proteins into the polyelectrolyte brushes. Despite this mechanistic difference, many works have described the chromatographic behavior of proteins on polyelectrolyte brush type ion exchangers with much of the same methods as used for traditional materials. In this work, unconventional chromatographic behavior on polyelectrolyte brush type materials is observed for several proteins: the peaks shapes reveal first anti-Langmuirian and then Langmuirian types of interactions, with increasing injection volumes. An experimental and model based description of these materials is carried out in order to explain this behavior. The reason for this behavior is shown to be the 3D partitioning of proteins into the polyelectrolyte brushes: proteins that fully and readily utilize the 3D structure of the PEB phase during adsorption show this behavior, whereas those that do not show traditional ion exchange behavior.

  6. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew


    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  7. Formation of surface-attached microstructured polyelectrolyte brushes

    Institute of Scientific and Technical Information of China (English)

    Hai Ning Zhang


    Surface-attached micropatterned polyelectrolyte brushes on planar solid surfaces are generated using free radical polymerization photo-initiated by self-assembled initiator monolayers. It is shown that the formed patterns can be either negative or positive with different patterning processes.

  8. Charge regulation and local dielectric function in planar polyelectrolyte brushes. (United States)

    Kumar, Rajeev; Sumpter, Bobby G; Kilbey, S Michael


    Understanding the effect of inhomogeneity on the charge regulation and dielectric properties, and how it depends on the conformational characteristics of the macromolecules is a long-standing problem. In order to address this problem, we have developed a field-theory to study charge regulation and local dielectric function in planar polyelectrolyte brushes. The theory is used to study a polyacid brush, which is comprised of chains end-grafted at the solid-fluid interface, in equilibrium with a bulk solution containing monovalent salt ions, solvent molecules, and pH controlling acid. In particular, we focus on the effects of the concentration of added salt and pH of the bulk in determining the local charge and dielectric function. Our theoretical investigations reveal that the dipole moment of the ion-pairs formed as a result of counterion adsorption on the chain backbones play a key role in affecting the local dielectric function. For polyelectrolytes made of monomers having dipole moments lower than the solvent molecules, dielectric decrement is predicted inside the brush region. However, the formation of ion-pairs (due to adsorption of counterions coming from the dissociation of added salt) more polar than the solvent molecules is shown to increase the magnitude of the dielectric function with respect to its bulk value. Furthermore, an increase in the bulk salt concentration is shown to increase the local charge inside the brush region.

  9. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  10. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. (United States)

    Kobayashi, Motoyasu; Tanaka, Hiroyoshi; Minn, Myo; Sugimura, Joichi; Takahara, Atsushi


    The water lubrication behavior of a polyelectrolyte brush was investigated by using double-spacer-layer ultra-thin-film interferometry to determine the thickness of the aqueous lubrication layer present at the interface between the brush and a spherical glass lens. A hydrophilic poly{[2-(methacryloyloxy)ethyl]trimethylammonium chloride} brush was prepared on an optical glass disk coated with layers of semireflective chromium and silica. The thickness of the hydrodynamic lubrication layer was estimated interferometrically. On increasing the sliding velocity from 10(-5) to 10(-1) m·s(-1), the gap between the rotating disk and loading sphere glass lens showed a marked increase to 130 nm at 2×10(-2) m·s(-1), and the friction coefficient simultaneously decreased to 0.01-0.02, indicating that the polyelectrolyte brush promoted the formation of a fluid lubrication layer that separates the rubbing surfaces, preventing direct contact and providing a low friction coefficient.

  11. A modified box model including charge regulation for protein adsorption in a spherical polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wittemann, A.


    Recent experiments showed significant adsorption of bovine serum albumin (BSA) in spherical polyelectrolyte brushes (SPB) consisting of polyacrylic acid, even for pH values above the isoelectric point of the protein, when both protein and polyion are negatively charged. To describe these experimenta

  12. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes (United States)

    Léonforte, F.; Welling, U.; Müller, M.


    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  13. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes. (United States)

    Zeng, Zhenping; Ai, Ye; Qian, Shizhi


    Mimicking biological ion channels capable of pH-regulated ionic transport, synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have been considered as versatile tools for active transport control of ions, fluids, and bioparticles on the nanoscale. The ionic current rectification (ICR) phenomenon through a conical nanopore functionalized with PE brushes whose charge highly depends upon the local solution properties (i.e., pH and background salt concentration) is studied theoretically for the first time. The results show that the rectification magnitude, as well as the preferential rectification direction, is sensitive to the pH stimulus. The bulk concentration of the background salt can also significantly influence the charge of the PE brushes and accordingly affect the ICR phenomenon. The obtained results provide an insightful understanding of the pH-regulated ICR and guidelines for designing nanopores functionalized with PE brushes for pH-tunable applications.

  14. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy (United States)

    Guo, Xiaoxia; Zhao, Kongshuang


    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  15. Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles (United States)

    Zhu, Yan; Chen, Kaimin; Wang, Xiang; Guo, Xuhong


    Ultrafine magnetic nanoparticles (MNP, 1.4-5.8 nm) were generated within a nanoreactor of spherical polyelectrolyte brushes (SPB). SPB consist of a solid polystyrene (PS) core and densely grafted poly(acrylic acid) (PAA) chains. Due to strong chemical coordination between carboxyl groups in PAA and MNP surfaces, the obtained magnetic spherical polyelectrolyte brushes (MSPB) kept excellent stability and maintained pH sensitivity. The magnetic properties of MSPB were confirmed by a vibrating sample magnetometer (VSM). The size and the size dispersion of MNP can be modulated by varying adding sequences (conventional coprecipitation or reverse coprecipitation), or nanoreactor structure (with or without crosslinking). MNP content in MSPB could be adjusted by multicycle reactions. This new strategy makes it possible to synthesize ultrafine inorganic nanoparticles with tunable size in SPB.

  16. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. (United States)

    Li, Hao; Chen, Guang; Das, Siddhartha


    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses.

  17. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes

    Directory of Open Access Journals (Sweden)

    Dikran Kesal


    Full Text Available The impact of electrostatic attraction on the uptake of gold nanoparticles (AuNPs into positively charged strong poly-[2-(Methacryloyloxy ethyl] trimethylammonium chloride (PMETAC polyelectrolyte brushes was investigated. In this work, PMETAC brushes were synthesized via surface-initiated atom transfer radical polymerization (Si-ATRP. PMETAC/AuNP composite materials were prepared by incubation of the polymer brush coated samples into 3-mercaptopropionic acid-capped AuNP (5 nm in diameter suspension. The electrostatic interactions were tuned by changing the surface charge of the AuNPs through variations in pH value, while the charge of the PMETAC brush was not affected. Atomic-force microscopy (AFM, ellipsometry, UV/Vis spectroscopy, gravimetric analysis and transmission electron microscopy (TEM were employed to study the loading and penetration into the polymer brush. The results show that the number density of attached AuNPs depends on the pH value and increases with increasing pH value. There is also strong evidence that the particle assembly is dependent on the pH value of the AuNP suspension. Incubation of PMETAC brushes in AuNP suspension at pH 4 led to the formation of a surface layer on top of the brush (2D assembly due to sterical hindrance of the clustered AuNPs, while incubation in AuNP suspension at pH 8 led to deeper particle penetration into the brush (3D assembly. The straightforward control of particle uptake and assembly by tuning the charge density of the nanoparticle surface is a valuable tool for the development of materials for colorimetric sensor applications.

  18. Dielectric analysis based on spherical-shell model for cationic and anionic spherical polyelectrolyte brushes (United States)

    Guo, Xiaoxia; Zhao, Kongshuang


    We report here a dielectric study on cationic and anionic spherical polyelectrolyte brush (SPB) (consisting of a polystyrene (PS) core and poly (2-aminoethylmethacrylate hydrochloride (PAEMH) chains or poly (acrylic acid) (PAA) chains grafted onto the core) suspensions over a frequency range of 40 Hz-110 MHz. The relaxation behavior of the suspensions shows significant changes in the brush layer properties when changing the particle mass fraction or pH of the system. After eliminating the electrode polarization effect at a low frequency, two definite relaxations related to interfacial polarization, around 100 kHz and 10 MHz respectively, are observed. Based on a single layer spherical-shell model, we developed a curve-fitting procedure to analyze such dielectric spectra for soft particles, and then calculated the dielectric properties of the components of the SPBs (such as the permittivities and conductivities of the layer and solution phase), especially the layer thickness d s of the polyelectrolyte chain (PE) layer. We also found a larger confinement degree of counterions in the PAEMH brush due to the protonation of the amino group. Moreover, the repulsive force between the SPB particles is evaluated by using the d s combined with the relative theoretical formulas. We conclude that by raising (reducing) the acidity of the system, the stability of the PAEMH-SPB (PAA-SPB) suspension was improved. An increase in particle concentration can also improve the stability of these two dispersions.

  19. Huge Differences in the Kinetics of Swelling Enhancement and De-enhancement of Permanently Charged Polyelectrolyte Brushes. (United States)

    Chu, Xiao; Yang, Jingfa; Zhao, Jiang


    As demonstrated previously (X. Chu et al., Soft Matter 2014, 10, 5568), permanently charged polyelectrolyte brushes can experience an enhancement of swelling by exposure to an external monovalent salt solution in moderate concentrations. Beyond the previous static measurements, the kinetics of the swelling enhancement and de-enhancement were investigated in the current study by using a quartz crystal microbalance with dissipation (QCM-D). By developing an effective approach to quantify the response in QCM-D, a vast difference in swelling enhancement and de-enhancement of a model permanently charged polyelectrolyte brush (sodium polystyrene sulfonate, NaPSS) was discovered. The results indicate new physics of the charged brushes: the difference in the attachment and detachment of counterions to the polyelectrolyte chains.

  20. Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution

    Directory of Open Access Journals (Sweden)

    Stephanie Christau


    Full Text Available The effect of brush thickness on the loading of gold nanoparticles (AuNPs within stimuli-responsive poly-(N,N-(dimethylamino ethyl methacrylate (PDMAEMA polyelectrolyte brushes is reported. Atom transfer radical polymerization (ATRP was used to grow polymer brushes via a “grafting from” approach. The brush thickness was tuned by varying the polymerization time. Using a new type of sealed reactor, thick brushes were synthesized. A systematic study was performed by varying a single parameter (brush thickness, while keeping all other parameters constant. AuNPs of 13 nm in diameter were attached by incubation. X-ray reflectivity, electron scanning microscopy and ellipsometry were used to study the particle loading, particle distribution and interpenetration of the particles within the brush matrix. A model for the structure of the brush/particle hybrids was derived. The particle number densities of attached AuNPs depend on the brush thickness, as do the optical properties of the hybrids. An increasing particle number density was found for increasing brush thickness, due to an increased surface roughness.

  1. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property

    Directory of Open Access Journals (Sweden)

    Na Su


    Full Text Available The synthesis procedure and dopant are crucial to the electrical conductivity, thermal stability, and solubility properties of polyaniline (PANI. In this paper, high-performance PANI was synthesized by means of chemical oxidative polymerization using anionic spherical polyelectrolyte brushes (ASPB as dopant. The bonding structure, crystallographic structure, morphology, and thermal stability of the conductive nanocomposite were analyzed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and thermo-gravimetric analysis (TGA respectively. Meanwhile, investigation on the electrical conductivity suggested that the room-temperature electrical conductivity of PANI doped with ASPB (PANI/ASPB was 19.3 S/cm, which was higher than that of PANI (7.0 S/cm, PANI doped with poly(sodium-p-styrenesulfonate (PSS (PANI/PSS (14.6 S/cm, PANI doped with SiO2 (PANI/SiO2 (18.2 S/cm, and PANI doped with canonic spherical polyelectrolyte brushes (CSPB (PANI/CSPB (8.0 S/cm. Meanwhile, the addition of ASPB improved the thermal stability and solubility properties of PANI. ASPB played the role of template. Conductive mechanism of PANI/ASPB nanocomposite can be explained by the theoretical models of three-dimensional variable range-hopping (3D VRH.

  2. Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes

    Directory of Open Access Journals (Sweden)

    N. Su


    Full Text Available The procedures for the synthesis of polypyrrole (PPy doped with anionic spherical polyelectrolyte brushes (ASPB (PPy/ASPB nanocomposite by means of in situ chemical oxidative polymerization were presented. Fourier transform infrared spectroscopy (FTIR and Raman spectroscopic analysis suggested the bonding structure of PPy/ASPB nanocomposite. Scanning electron microscopy (SEM was used to confirm the morphologies of samples. The crystallographic structure, chemical nature and thermal stability of conducting polymers were analyzed by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and Thermo-gravimetric analysis (TGA respectively. Investigation of the electrical conductivity at room temperature showed that the electrical conductivity of PPy/ASPB nanocomposite was 20 S/cm, which was higher than that of PPy (3.6 S/cm.

  3. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. (United States)

    Wegmann, Susanne; Medalsy, Izhar D; Mandelkow, Eckhard; Müller, Daniel J


    The structure and properties of amyloid-like Tau fibrils accumulating in neurodegenerative diseases have been debated for decades. Although the core of Tau fibrils assembles from short β-strands, the properties of the much longer unstructured Tau domains protruding from the fibril core remain largely obscure. Applying immunogold transmission EM, and force-volume atomic force microscopy (AFM), we imaged human Tau fibrils at high resolution and simultaneously mapped their mechanical and adhesive properties. Tau fibrils showed a ≈ 16-nm-thick fuzzy coat that resembles a two-layered polyelectrolyte brush, which is formed by the unstructured short C-terminal and long N-terminal Tau domains. The mechanical and adhesive properties of the fuzzy coat are modulated by electrolytes and pH, and thus by the cellular environment. These unique properties of the fuzzy coat help in understanding how Tau fibrils disturb cellular interactions and accumulate in neurofibrillary tangles.

  4. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects. (United States)

    Liu, Xiaochi; Xu, Yisheng; Wang, Xiaohan; Shao, Mingfei; Xu, Jun; Wang, Jie; Li, Li; Zhang, Rui; Guo, Xuhong


    A more efficient and convenient strategy was demonstrated to immobilize silver nanoparticles (NPs) with a crystalline structure into the spherical polyelectrolyte brushes (SPB) as an antibacterial material. The SPB used for surface coating (Ag immobilized PVK-PAA SPB) consists of a poly(N-vinylcarbazole) (PVK) core and poly(acrylic acid) (PAA) chain layers which are anchored onto the surface of PVK core at one end. Well-dispersed silver nanoparticles (diameter∼3.5 nm) then formed and were electrostatically confined in the brush layer. Ag content is controlled by a repeated loading process. Thin film coatings were then constructed by layer-by-layer depositions of positive charged poly(diallyldimethylammonium chloride) (PDDA) and SPB. The multilayer composites display excellent stability as well as antibacterial performance but not for simple PVK-PAA coated surface. The results show that almost complete bacteria growth including both dispersed bacterial cells and biofilms was inhibited over a period of 24 h. This approach opens a novel strategy for stable and efficient immobilization of Ag NPs in fabrication of antibacterial materials.

  5. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes. (United States)

    Chen, Guang; Das, Siddhartha


    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces. (United States)

    Riley, John K; An, Junxue; Tilton, Robert D


    The interactions between silica nanoparticles grafted with a brush of cationic poly(2-(dimethylamino) ethyl methacrylate) (SiO2-g-PDMAEMA) and anionic surfactant sodium dodecyl sulfate (SDS) is investigated by dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy. SiO2-g-PDMAEMA exhibits pH-dependent charge and size properties which enable the SDS binding to be probed over a range of electrostatic conditions and brush conformations. SDS monomers bind irreversibly to SiO2-g-PDMAEMA at low surfactant concentrations (∼10(-4) M) while exhibiting a pH-dependent threshold above which cooperative, partially reversible SDS binding occurs. At pH 5, SDS binding induces collapse of the highly charged and swollen brush as observed in the bulk by DLS and on surfaces by QCM-D. Similar experiments at pH 9 suggest that SDS binds to the periphery of the weakly charged and deswollen brush and produces SiO2-g-PDMAEMA/SDS complexes with a net negative charge. SiO2-g-PDMAEMA brush collapse and charge neutralization is further confirmed by colloidal probe AFM measurements, where reduced electrosteric repulsions and bridging adhesion are attributed to effects of the bound SDS. Additionally, sequential adsorption schemes with SDS and SiO2-g-PDMAEMA are used to enhance deposition relative to SiO2-g-PDMAEMA direct adsorption on silica. This work shows that the polyelectrolyte brush configuration responds in a more dramatic fashion to SDS than to pH-induced changes in ionization, and this can be exploited to manipulate the structure of adsorbed layers and the corresponding forces of compression and friction between opposing surfaces.

  7. Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. (United States)

    Calvo, Alejandra; Fuertes, M Cecilia; Yameen, Basit; Williams, Federico J; Azzaroni, Omar; Soler-Illia, Galo J A A


    A robust and straightforward strategy allowing the controlled confinement of metal nanoparticles within the 3D framework of mesoporous films is presented. The chemical methodology is based on the inner surface modification of mesoporous silica films with polyelectrolyte brushes. We demonstrate that the macromolecular building blocks significantly enhance the site-selective preconcentration of nanoparticle precursors in the inner environment of the mesoporous film. Then, chemical reduction of the preconcentrated precursors led to the formation of metal nanoparticles locally addressed in the mesoporous structure. We show that the synergy taking place between two versatile functional nanobuilding blocks (ordered mesocavities and polymer brushes) can produce stable embedded nanoparticles with tuned optical properties in a very simple manner. As a general framework, the strategy can be easily adapted to different sets of polymer brushes and mesoporous films in order to regulate the monomer-precursor interactions and, consequently, manipulate the site-selective character of the different chemistries taking place in the film. We consider that the "integrative chemistry" approach described in this work provides new pathways to manipulate the physicochemical characteristics of hybrid organic-inorganic advanced functional assemblies based on the rational design of chemistry and topology in confined environments.

  8. Influence of Anion Hydrophilicity on the Conformation of a Hydrophobic Weak Polyelectrolyte Brush

    NARCIS (Netherlands)

    Murdoch, Timothy J.; Willott, Joshua David; de Vos, Wiebe Matthijs; Nelson, Andrew; Prescott, Stuart W.; Wanless, Erica J.; Webber, Grant B.


    The conformation of a hydrophobic, weak cationic poly(2-diisopropylamino)ethyl methacrylate (PDPA) brush was studied using neutron reflectometry as a function of aqueous solution pH, ionic strength, and anion identity. In pH 4, 10 mM potassium nitrate the brush is highly charged, resulting in an

  9. Ionic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient. (United States)

    Lin, Jeng-Yang; Lin, Chih-Yuan; Hsu, Jyh-Ping; Tseng, Shiojenn


    The behavior of ionic current rectification (ICR) in a conical nanopore with its surface modified by pH-tunable polyelectrolyte (PE) brushes connecting two large reservoirs subject to an applied electric field and a salt gradient is investigated. Parameters including the solution pH, types of ionic species, strength of applied salt gradient, and applied potential bias are examined for their influences on the ionic current and rectification factor, and the mechanisms involved are investigated comprehensively. The ICR behavior depends highly on the charged conditions of the PE layer, the level of pH, the geometry of nanopore, and the thickness of the double layer. In particular, the distribution of ionic species and the local electric field near the nanopore openings play a key role, yielding profound and interesting results that are informative to device design as well as experimental data interpretation.

  10. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    CERN Document Server

    Matsuoka, H; Matsumoto, K


    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanost...

  11. Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets. (United States)

    He, Xiulan; Zhang, Kailin; Li, Ting; Jiang, Yanan; Yu, Ping; Mao, Lanqun


    Here we report for the first time that ion current rectification (ICR) can be observed at the micrometer scale in symmetric electrolyte solution with polyimidazolium brush (PimB)-modified micropipets, which we call micrometer-scale ion current rectification (MICR). To qualitatively understand MICR, a three-layer model including a charged layer, an electrical double layer, and a bulk layer is proposed, which could also be extended to understanding ICR at the nanoscale. Based on this model, we propose that when charges in the charged layer are comparable with those in the bulk layer, ICR would occur regardless of whether the electrical double layers are overlapped. Finite element simulations based on the solution of Poisson and Nernst-Planck equations and in situ confocal laser scanning microscopy results qualitatively validate the experimental observations and the proposed three-layer model. Moreover, possible factors influencing MICR, including the length of PimB, electrolyte concentration, and the radius of the pipet, are investigated and discussed. This study successfully extends ICR to the micrometer scale and thus opens a new door to the development of ICR-based devices by taking advantage of ease-in-manipulation and designable surface chemistry of micropipets.

  12. Modification of Spherical Polyelectrolyte Brushes by Layer-by-Layer Self-Assembly as Observed by Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Yuchuan Tian


    Full Text Available Multilayer modified spherical polyelectrolyte brushes were prepared through alternate deposition of positively charged poly(allylamine hydrochloride (PAH and negatively charged poly-l-aspartic acid (PAsp onto negatively charged spherical poly(acrylic acid (PAA brushes (SPBs on a poly(styrene core. The charge reversal determined by the zeta potential indicated the success of layer-by-layer (LBL deposition. The change of the structure during the construction of multilayer modified SPBs was observed by small-angle X-ray scattering (SAXS. SAXS results indicated that some PAH chains were able to penetrate into the PAA brush for the PAA-PAH double-layer modified SPBs whereas part of the PAH moved towards the outer layer when the PAsp layer was loaded to form a PAA-PAH-PAsp triple-layer system. The multilayer modified SPBs were stable upon changing the pH (5 to 9 and ionic strength (1 to 100 mM. The triple-layer modified SPBs were more tolerated to high pH (even at 11 compared to the double-layer ones. SAXS is proved to be a powerful tool for studying the inner structure of multilayer modified SPBs, which can establish guidelines for the a range of potential applications of multilayer modified SPBs.

  13. Core-Shell-Corona Silica Hybrid Nanoparticles Templated by Spherical Polyelectrolyte Brushes: A Study by Small Angle X-ray Scattering. (United States)

    Han, Haoya; Li, Li; Wang, Weihua; Tian, Yuchuan; Wang, Yunwei; Wang, Junyou; von Klitzing, Regine; Guo, Xuhong


    Core-shell-corona silica/polymer hybrid nanoparticles with narrow size distribution were prepared in the template of spherical polyelectrolyte brushes (SPB) which consist of a solid polystyrene (PS) core densely grafted with linear poly(acrylic acid) (PAA) chains. The microstructure of obtained hybrid nanoparticles was studied by small-angle X-ray scattering (SAXS) and in combination with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The generation of silica shell within the brush is confirmed by the significant increase of the electron density in the shell, and the silica shell showed a unique inner-loose-outer-dense structure, whose thickness is pH sensitive but is insensitive to ionic strength as revealed by fitting SAXS data. After dissolving the PS core, hollow silica nanoparticles were obtained and determined by SAXS, which should be ideal carriers for pH-triggered drug delivery. SAXS is confirmed to be a powerful method to characterize the core-shell-corona silica/polymer hybrid and hollow silica nanoparticles.

  14. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Llarena, Irantzu; Romero, Gabriela; Moya, Sergio E [CIC biomaGUNE Paseo Miramon, 182 Edificio Empresarial C, E-20009 San Sebastian, Gipuzkoa (Spain); Ziolo, Ronald F, E-mail: [Centro de Investigacion en Quimica Aplicada, Blv. Enrique Reyna No. 140, Saltillo, Coahuila 25253 (Mexico)


    Carbon nanotubes (CNTs) have been successfully coated with a covalently bonded polymer brush of negatively charged poly(3-sulfopropylamino methacrylate) (PSPM) by in situ polymerization employing atomic transfer radical polymerization (ATRP) from initiating silanes attached to the CNTs before the polymerization. The CNT-bonded brush forms a polymer layer or shell-like structure around the CNTs and provides colloidal stabilization for the CNTs in aqueous media. In situ syntheses of nanocrystalline CdS and magnetic iron oxide in the polymer brushes lead to the formation of hybrid nanocomposites consisting of nanoparticle-containing PSPM-coated CNTs that remain readily dispersible and stable in aqueous media. The hybrid nanostructures are synthesized by ion exchange with the cations of the sulfonate groups of the PSPM followed by precipitation and were followed by stepwise zeta potential measurements and TEM. Such structures could have applications in the design of more complex structures and devices. The general synthetic scheme can be extended to include other nanoparticles as brush cargo to broaden the utility or functionality of the CNTs. TEM data shows nanocrystalline CdS in the range of 5-8 nm embedded in the PSPM brush and nanocrystalline iron oxide with a size between 2 and 4 nm, with the former consistent with UV-vis spectroscopy and fluorescence measurements.

  15. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. (United States)

    Liu, Guoqiang; Liu, Zhilu; Li, Na; Wang, Xiaolong; Zhou, Feng; Liu, Weimin


    We report the fabrication of poly(3-sulfopropyl methacrylate potassium salt) (PSPMK) brushes grafted poly(N-isopropylacrylamide) (PNIPAAm) microgels and their potential as artificial synovial fluid for biomimetic aqueous lubrication and arthritis treatment. The negatively charged PSPMK brushes and thermosensitive PNIPAAm microgels play water-based hydration lubrication and temperature-triggered drug release, respectively. Under soft friction pairs, an ultralow coefficient of friction was achieved, while the hairy thermosensitive microgels showed a desirable temperature-triggered drugs release performance. Such a soft charged hairy microgel offers great possibility for designing intelligent synovial fluid. What is more, the combination of lubrication and drug loading capabilities enables the large clinical potential of novel soft hairy nanoparticles as synthetic joint lubricant fluid in arthritis treatment.

  16. Charge-driven and reversible assembly of ultra-dense polymer brushers: Formation and antifouling properties of a zipper brush

    NARCIS (Netherlands)

    Vos, de W.M.; Meijer, G.; Keizer, de A.; Cohen Stuart, M.A.; Kleijn, J.M.


    We investigated a new type of polymer brushes: the zipper brush. By adsorbing a diblock-copolymer with one charged block and one neutral block to an oppositely charged polyelectrolyte brush, a neutral polymer brush is formed on top of an almost neutral complex layer of polyelectrolytes. This neutral

  17. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes. (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M


    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  18. A facile avenue to conductive polymer brushes via cyclopentadiene-maleimide Diels-Alder ligation. (United States)

    Yameen, Basit; Rodriguez-Emmenegger, Cesar; Preuss, Corinna M; Pop-Georgievski, Ognen; Verveniotis, Elisseos; Trouillet, Vanessa; Rezek, Bohuslav; Barner-Kowollik, Christopher


    Cyclopentadienyl end-capped poly(3-hexylthiophene) was employed to fabricate conductive surface tethered polymer brushes via a facile route based on cyclopentadiene-maleimide Diels-Alder ligation. The efficient nature of the Diels-Alder ligation was further combined with a biomimetic polydopamine-assisted functionalization of surfaces, making it an access route of choice for P3HT surface immobilization.

  19. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)


    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  20. Interfacial properties of bottle-brush polyelectrolytes

    DEFF Research Database (Denmark)

    Claesson, P. M.; Naderi, A.; Iruthayaraj, J.


    whereas on silica both electrostatic forces and interactions between silica and ethylene oxide chains drive the adsorption. On silica the adsorbed amount is very sensitive to solution ionic strength and pH. We also report on surface interactions and frictional forces obtained between surfaces coated...

  1. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.


    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  2. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.


    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  3. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo


    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  4. Wetting phase diagrams of polyacid brush with a triple point.

    NARCIS (Netherlands)

    Mercurieva, A.A.; Iakovlev, P.A.; Zhulina, E.B.; Birshtein, T.M.; Leermakers, F.A.M.


    The (pre)wetting behavior of an annealed polyelectrolyte (PE) brush by an electrolyte solution that is strongly segregated from an apolar phase is analyzed. In this complex interface, there are interactions on various length scales. There are short-range interactions with the (uncharged) surface, an

  5. Electrostatics of Rigid Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, G.C.L.


    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  6. Polymer brushes: routes toward mechanosensitive surfaces. (United States)

    Bünsow, Johanna; Kelby, Tim S; Huck, Wilhelm T S


    Soft nanotechnology involves both understanding the behavior of soft matter and using these components to build useful nanoscale structures and devices. However, molecular scale properties such as Brownian motion, diffusion, surface forces, and conformational flexibility dominate the chemistry and physics in soft nanotechnology, and therefore the design rules for generating functional structures from soft, self-assembled materials are still developing. Biological motors illustrate how wet nanoscale machines differ from their macroscopic counterparts. These molecular machines convert chemical energy into mechanical motion through an isothermal process: chemical reactions generate chemical potential and diffusion of ions, leading to conformational changes in proteins and the production of mechanical force. Because the actuation steps form a thermodynamic cycle that is reversible, the application of mechanical forces can also generate a chemical potential. This reverse process of mechanotransduction is the underlying sensing and signaling mechanism for a wide range of physiological phenomena such as hearing, touch, and growth of bone. Many of the biological systems that respond to mechanical stimuli do this via complex stress-activated ion channels or remodeling of the actin cytoskeleton. These biological actuation and mechanosensing processes are rather different from nano- and microelectromechanical systems (NEMS and MEMS) produced via semiconductor fabrication technologies. In our group, we are working to emulate biological mechanotransduction by systematically developing building blocks based on polymer brushes. In this soft nanotechnology approach to mechanotransduction, the chemical building blocks are polymer chains whose conformational changes and actuation can be investigated at a very basic level in polymer brushes, particularly polyelectrolyte brushes. Because these polymer brushes are easily accessible synthetically with control over parameters such as

  7. Brushes and proteins

    NARCIS (Netherlands)

    Bosker, W.T.E.


      Brushes and Proteins   Wouter T. E. Bosker         Protein adsorption at solid surfaces can be prevented by applying a polymer brush at the surface. A polymer brush consists of polymer chains end-grafted to the surface at such a grafting density that th

  8. Insulated Fiber Brush. (United States)

    An insulated-strand fiber brush is provided for a DC motor /generator. The brush is comprised of a plurality of fiber segments which are insulated from one another near the contact surface of a rotor bar. In one embodiment, insulating spacers are fixed to a brush assembly and wear with the fibers, and in another embodiment insulation is provided by a separate shell. (Author)

  9. Conjugated polyelectrolytes fundamentals and applications

    CERN Document Server

    Liu, Bin


    This is the first monograph to specifically focus on fundamentals and applications of polyelectrolytes, a class of molecules that gained substantial interest due to their unique combination of properties. Combining both features of organic semiconductors and polyelectrolytes, they offer a broad field for fundamental research as well as applications to analytical chemistry, optical imaging, and opto-electronic devices. The initial chapters introduce readers to the synthesis, optical and electrical properties of various conjugated polyelectrolytes. This is followed by chapters on the applica

  10. Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures (United States)

    Yenice, Zuleyha; Karg, Matthias; von Klitzing, Regine


    Adjusting the inter-particle distances in ordered nanoparticle arrays can create new nano-devices and is of increasing importance to a number of applications such as nanoelectronics and optical devices. The assembly of negatively charged polystyrene (PS) nanoparticles (NPs) on Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, quaternized PDMAEMA brushes and Si/PEI/(PSS/PAH)2, was studied using dip- and spin-coating techniques. By dip-coating, two dimensional (2-D), randomly distributed non-close packed particle arrays were assembled on Si/PEI/(PSS/PAH)2 and PDMAEMA brushes. The inter-particle repulsion leads to lateral mobility of the particles on these surfaces. The 200 nm diameter PS NPs tended to an inter-particle distance of 350 to 400 nm (center to center). On quaternized PDMAEMA brushes, the strong attractive interaction between the NPs and the brush dominated, leading to clustering of the particles on the brush surface. Particle deposition using spin-coating at low spin rates resulted in hexagonal close-packed multilayer structures on Si/PEI/(PSS/PAH)2. Close-packed assemblies with more pronounced defects are also observed on PDMAEMA brushes and QPDMAEMA brushes. In contrast, randomly distributed monolayer NP arrays were achieved at higher spin rates on all polyelectrolyte architectures. The area fraction of the particles decreased with increasing spin rate. PMID:23787476

  11. Polyelectrolyte Building Blocks for Nanotechnology: Atomic Force Microscopy Investigations of Polyelectrolyte-Lipid Interactions, Polyelectrolyte Brushes and Viral Cages



    The work presented here has a multidisciplinary character, having as a common factor the characterization of self-assembled nanostructures through force spectroscopy. Exploring AFM as a tool for characterizing self-assembly and interaction forces in soft matter nanostructures, three different Bio and nonbiological systems where investigated, all of them share the common characteristic of being soft matter molecular structures at the nanoscale. The studied systems in question are: a) Polyelect...

  12. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Brzozowska, A. M.; Spruijt, E.; de Keizer, A.; Stuart, M. A. Cohen; Norde, W.


    We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and pol

  13. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes. (United States)

    Tagliazucchi, Mario; Rabin, Yitzhak; Szleifer, Igal


    This work reports a comprehensive theoretical study of the transport-rectification properties of cylindrical nanopores with neutral inner walls and chemically modified outer membrane. The chemical species on the two outer sides of the membrane have charges of opposite sign and can be either surface-confined species (i.e., surface charges) or polyelectrolyte brushes. The advantage of this design over other types of rectifying nanopores is that it requires controlling the composition of the outer walls of the pore (which are easy to access) rather than the inner walls, thus simplifying the fabrication process. Ion-current rectification in nanopores with charged outer walls is ascribed to applied-potential-induced changes in the ionic concentration within the pore. The rectification efficiency is studied as a function of pore length, radius, surface charge and bulk electrolyte concentration. An analytical model is derived for the case of surface-confined charges that predicts the current-potential curves in very good agreement with the numerical calculations. Neutral nanopores with polyelectrolyte-modified outer walls have two distinct advantages compared to surface-charged systems: (i) they exhibit higher rectification factors due to the large charge density immobilized by the polyelectrolyte brushes, and (ii) the applied potential deforms the polyelectrolyte chains toward the oppositely charged electrode. This deformation brings the polyelectrolyte brushes into the pore in the low conductivity state and expels them from the pore in the high conductivity regime. Calculations of the potentials of mean-force suggest that the applied-field-induced conformational changes can be used to control the translocation of cargoes larger than ions, such as proteins and nanoparticles.

  14. Cavitation during wire brushing (United States)

    Li, Bo; Zou, Jun; Ji, Chen


    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  15. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes. (United States)

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C


    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.

  16. Underwater Reversible Adhesion Between Oppositely Charged Weak Polyelectrolytes (United States)

    Alfhaid, Latifah; Geoghegan, Mark; Williams, Nicholas; Seddon, William


    Force-distance data has shown that the adhesion between two oppositely charged polyelectrolytes: poly(methacrylic acid) (PMAA, a polyacid) and poly[2-(diethylamino)ethyl methacrylate] (PDEAEMA, a polybase), was controllable by varying the pH level of their surrounding. Accordingly, adhesive force at the interface between these two polymers was higher inside basic surroundings at pH 6 and 7, and then it started to decrease at pH level below 3 and above 8. Stimulating adhesion between PMAA gel and PDEAEMA brushes by adding salt to their surrounded water has only a limited effect on the adhesive force between them, contradicting previous results. Increasing the molar concentration of sodium chloride (NaCl) in the surrounded water of these two polymers from 0.1 to 1M did not decrease the adhesion forces between a PMAA gel and a grafted PDEAEMA layer (brush). The JKR equation was used to evaluate the adhesion forces between the polymer gel and the brushes and it was observed that the adhesion increased with the elastic modulus of the gel decreased.

  17. Functional Coatings with Polymer Brushes


    König, Meike


    The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic a...

  18. Endobiliary brush biopsy

    DEFF Research Database (Denmark)

    Adamsen, Sven; Olsen, Marianne; Jendresen, Marianne Bille;


    OBJECTIVE: Obtaining cytological specimens by wire-guided endobiliary brushing at the time of endoscopic retrograde cholangiopancreatography (ERCP) is a convenient way to reach a diagnosis. Sensitivity for malignant disease is generally around 50% and specificity around 100%. The present study wa...

  19. Ureteral retrograde brush biopsy (United States)

    ... biopsy URL of this page: // Ureteral retrograde brush biopsy To use ... minutes. A cystoscope is first placed through the urethra into the bladder. Cystoscope is a tube with a ... results may show cancer cells ( carcinoma ). This test is often used to ...

  20. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos


    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  1. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur


    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.


    Institute of Scientific and Technical Information of China (English)


    The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc.,the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to establish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process.

  3. Building Highly Flexible Polyelectrolyte Nanotubes

    Institute of Scientific and Technical Information of China (English)


    @@ Flexibility of polyelectrolyte nanotubes is necessary if they are to be exploited in applications such as developing photoelectric devices with strong mechanical properties. In a recent attempt, high flexibility has been observed from such nanotubes prepared by a research team headed by Prof. Li Junbai of the CAS Institute of Chemistry (ICCAS).

  4. Biomolecule-functionalized polymer brushes. (United States)

    Jiang, Hui; Xu, Fu-Jian


    Functional polymer brushes have been utilized extensively for the immobilization of biomolecules, which is of crucial importance for the development of biosensors and biotechnology. Recent progress in polymerization methods, in particular surface-initiated atom transfer radical polymerization (ATRP), has provided a unique means for the design and synthesis of new biomolecule-functionalized polymer brushes. This current review summarizes such recent research activities. The different preparation strategies for biomolecule immobilization through polymer brush spacers are described in detail. The functional groups of the polymer brushes used for biomolecule immobilization include epoxide, carboxylic acid, hydroxyl, aldehyde, and amine groups. The recent research activities indicate that functional polymer brushes become versatile and powerful spacers for immobilization of various biomolecules to maximize their functionalities. This review also demonstrates that surface-initiated ATRP is used more frequently than other polymerization methods in the designs of new biomolecule-functionalized polymer brushes.

  5. Water Soluble Responsive Polymer Brushes

    Directory of Open Access Journals (Sweden)

    Andrew J. Parnell


    Full Text Available Responsive polymer brushes possess many interesting properties that enable them to control a range of important interfacial behaviours, including adhesion, wettability, surface adsorption, friction, flow and motility. The ability to design a macromolecular response to a wide variety of external stimuli makes polymer brushes an exciting class of functional materials, and has been made possible by advances in modern controlled polymerization techniques. In this review we discuss the physics of polymer brush response along with a summary of the techniques used in their synthesis. We then review the various stimuli that can be used to switch brush conformation; temperature, solvent quality, pH and ionic strength as well as the relatively new area of electric field actuation We discuss examples of devices that utilise brush conformational change, before highlighting other potential applications of responsive brushes in real world devices.

  6. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis. (United States)

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui


    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach.

  7. Why Is Brushing with Toothpaste Important? (United States)

    ... to your desktop! more... Why is Brushing With Toothpaste Important? Article Chapters Why is Brushing With Toothpaste ... mouth with a clean feeling. Is brushing with toothpaste enough to fight cavities and gum disease? No. ...

  8. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-oxazoline) on Glassy Carbon

    KAUST Repository

    Zhang, Ning


    We report on the synthesis of brushes of bottle-brushes of poly(2-oxazoline)s on polished glassy carbon (GC) substrates. First, homogeneous and stable poly(2-isopropenyl-2-oxazoline) (PIPOx) brush layers with thicknesses up to 160 nm were created directly onto GC by the self-initiated photografting and photopolymerization (SIPGP) of 2-isopropenyl-2-oxazoline (IPOx). Kinetic studies reveal a linear increase in thickness with the polymerization time. In a second reaction, the pendant 2-oxazoline ring of the PIPOx brushes were used for the living cationic ring-opening polymerization (LCROP) with different substituted 2-oxazoline monomers to form the side chains. Also for the second surface-initiatedLCROPfrom the surface-bound macroinitiator brushes, the thickness increase with the polymerization time was found to be linear and reproducible. Characterization of the resulting bottle-brush brushes by FTIR spectroscopy,contact angle, and AFM indicates a high side chain grafting density and quantitative reactions. Finally, we have demonstrated the possibility of functionalizing the bottle-brush brushes side chain end groups with sterically demanding molecules. © 2009 American Chemical Society.

  9. Saloplastics: processing compact polyelectrolyte complexes. (United States)

    Schaaf, Pierre; Schlenoff, Joseph B


    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented.

  10. Polyelectrolyte properties of proteoglycan monomers (United States)

    Li, Xiao; Reed, Wayne F.


    Light scattering measurements were made on proteoglycan monomers (PGM) over a wide range of ionic strengths Cs, and proteoglycan concentrations [PG]. At low Cs there were clear peaks in the angular scattering intensity curve I(q), which moved towards higher scattering wave numbers q, as [PG]1/3. This differs from the square root dependence of scattering peaks found by neutron scattering from more concentrated polyelectrolyte solutions. The peaks remained roughly fixed as Cs increased, but diminished in height, and superposed I(q) curves yielded a sort of isosbestic point. Under certain assumptions the static structure factor S(q) could be extracted from the measured I(q), and was found to retain a peak. A simple hypothesis concerning coexisting disordered and liquidlike correlated states is presented, which qualitatively accounts for the most salient features of the peaks. There was evidence of a double component scattering autocorrelation decay at low Cs, which, when resolved into two apparent diffusion coefficients, gave the appearance of simultaneous ``ordinary'' and ``extraordinary'' phases. The extraordinary phase was ``removable,'' however, by filtering. At higher Cs the proteoglycans appear to behave as random nonfree draining polyelectrolyte coils, with a near constant ratio of 0.67 between hydrodynamic radius and radius of gyration. The apparent persistence length varied as roughly the -0.50 power of ionic strength, similar to various linear synthetic and biological polyelectrolytes. Electrostatic excluded volume theory accounted well for the dependence of A2 on Cs.

  11. Fabrication of Thiol-Ene "Clickable" Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. (United States)

    Dübner, Matthias; Gevrek, Tugce N; Sanyal, Amitav; Spencer, Nicholas D; Padeste, Celestino


    We demonstrate a new approach to grafting thiol-reactive nanopatterned copolymer-brush structures on polymeric substrates by means of extreme ultraviolet (EUV) interference lithography. The copolymer brushes were designed to contain maleimide functional groups as thiol-reactive centers. Fluoropolymer films were exposed to EUV radiation at the X-ray interference lithography beamline (XIL-II) at the Swiss Light Source, in order to create radical patterns on their surfaces. The radicals served as initiators for the copolymerization of thiol-ene "clickable" brushes, composed of a furan-protected maleimide monomer (FuMaMA) and different methacrylates, namely, methyl methacrylate (MMA), ethylene glycol methyl ether methacrylate (EGMA), or poly(ethylene glycol) methyl ether methacrylate (PEGMA). Copolymerization with ethylene-glycol-containing monomers provides antibiofouling properties to these surfaces. The number of reactive centers on the grafted brush structures can be tailored by varying the monomer ratios in the feed. Grafted copolymers were characterized by using attenuated total reflection infrared (ATR-IR) spectroscopy. The reactive maleimide methacrylate (MaMA) units were utilized to conjugate thiol-containing moieties using the nucleophilic Michael-addition reaction, which proceeds at room temperature without the need for any metal-based catalyst. Using this approach, a variety of functionalities was introduced to yield polyelectrolytes, as well as fluorescent and light-responsive polymer-brush structures. Functionalization of the brush structures was demonstrated via ATR-IR and UV-vis spectroscopy and fluorescence microscopy, and was also indicated by a color switch. Furthermore, grafted surfaces were generated via plasma activation, showing a strongly increased wettability for polyelectrolytes and a reversible switch in static water contact angle (CA) of up to 18° for P(EGMA-co-MaMA-SP) brushes, upon exposure to alternating visible and UV-light irradiation.


    Directory of Open Access Journals (Sweden)

    E. B. Zhulina


    Full Text Available We present an analytical self-consistent field (scf theory that describes planar brushes formed by regularly branched root-tethered dendrons of the second and third generations. The developed approach gives the possibility for calculation of the scf molecular potential acting at monomers of the tethered chains. In the linear elasticity regime for stretched polymers, the molecular potential has a parabolic shape with the parameter k depending on architectural parameters of tethered macromolecules: polymerization degrees of spacers, branching functionalities, and number of generations. For dendrons of the second generation, we formulate a general equation for parameter k and analyze how variations in the architectural parameters of these dendrons affect the molecular potential. For dendrons of the third generation, an analytical expression for parameter k is available only for symmetric macromolecules with equal lengths of all spacers and equal branching functionalities in all generations. We analyze how the thickness of dendron brush in a good solvent is affected by variations in the chain architecture. Results of the developed scf theory are compared with predictions of boxlike scaling model. We demonstrate that in the limit of high branching functionalities, the results of both approaches become consistent if the value of exponent bin boxlike model is put to unity.In conclusion, we briefly discuss the systems to which the developed scf theory is applicable. These are: planar and concave spherical and cylindrical brushes under various solvent conditions (including solvent-free melted brushes and brush-like layers of ionic (polyelectrolyte dendrons.

  13. Guided wave sensing of polyelectrolyte multilayers

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Cuisinier, F.J.G.


    A planar optical waveguide configuration is proposed to monitor the buildup of thick polyelectrolyte multilayers on the surface of the waveguide in aqueous solutions. Instead of detecting the layer by the electromagnetic evanescent field the polyelectrolyte layer acts as an additional waveguiding...... film that is sensed by guided waves instead of evanescent waves. This leads to a considerably improved sensitivity and dynamic range....

  14. Ionizing radiation in the polyelectrolytes technology (United States)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Toma, M.; Ferdes, O.; Jianu, A.; Bestea, V.; Manea, A.


    Gamma ray and accelerated electron beam application in the chemistry of polyelectrolytes is presented. The polyelectrolytes preparation is based on radiation induced polymerization of aqueous solutions containing an appropriate mixture of monomers such as acrylamide, acrylic acid, vinyl acetate, diallyldimethylammonium-chloride and certain initiators, complexing agents and chain transfer agents. The effects of absorbed dose, rate of absorbed dose and chemical composition of aqueous solution on the polymerization process are discussed. The results obtained by testing these polyelectrolytes with waste water from food industry are also given.

  15. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu


    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  16. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.


    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter sys

  17. Complex Formation Between Polyelectrolytes and Ionic Surfactants



    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  18. Charge-regularization effects on polyelectrolytes (United States)

    Muthukumar, Murugappan


    When electrically charged macromolecules are dispersed in polar solvents, their effective net charge is generally different from their chemical charges, due to competition between counterion adsorption and the translational entropy of dissociated counterions. The effective charge changes significantly as the experimental conditions change such as variations in solvent quality, temperature, and the concentration of added small electrolytes. This charge-regularization effect leads to major difficulties in interpreting experimental data on polyelectrolyte solutions and challenges in understanding the various polyelectrolyte phenomena. Even the most fundamental issue of experimental determination of molar mass of charged macromolecules by light scattering method has been difficult so far due to this feature. We will present a theory of charge-regularization of flexible polyelectrolytes in solutions and discuss the consequences of charge-regularization on (a) experimental determination of molar mass of polyelectrolytes using scattering techniques, (b) coil-globule transition, (c) macrophase separation in polyelectrolyte solutions, (c) phase behavior in coacervate formation, and (d) volume phase transitions in polyelectrolyte gels.

  19. Brush/Fin Thermal Interfaces (United States)

    Knowles, Timothy R.; Seaman, Christopher L.; Ellman, Brett M.


    Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems. In a typical application according to conventional practice, a replaceable heat-generating unit includes a mounting surface with black-anodized metal fins that mesh with the matching fins of a heat sink or radiator on which the unit is mounted. The fins do not contact each other, but transfer heat via radiation exchange. A brush/fin interface also includes intermeshing fins, the difference being that the gaps between the fins are filled with brushes made of carbon or other fibers. The fibers span the gap between intermeshed fins, allowing heat transfer by conduction through the fibers. The fibers are attached to the metal surfaces as velvet-like coats in the manner of the carbon fiber brush heat exchangers described in the preceding article. The fiber brushes provide both mechanical compliance and thermal contact, thereby ensuring low contact thermal resistance. A certain amount of force is required to intermesh the fins due to sliding friction of the brush s fiber tips against the fins. This force increases linearly with penetration distance, reaching 1 psi (6.9 kPa) for full 2-in. (5.1 cm) penetration for the conventional radiant fin interface. Removal forces can be greater due to fiber buckling upon reversing the sliding direction. This buckling force can be greatly reduced by biasing the fibers at an angle perpendicularly to the sliding direction. Means of containing potentially harmful carbon fiber debris, which is electrically conductive, have been developed. Small prototype brush/fin thermal interfaces have been tested and found to exhibit temperature drops about onesixth of that of conventional

  20. Molecular Dynamics Simulations of Polyelectrolyte Solutions (United States)

    Dobrynin, Andrey


    Polyelectrolytes are polymers with ionizable groups. In polar solvents, these groups dissociate releasing counterions into solution and leaving uncompensated charges on the polymer backbone. Examples of polyelectrolytes include biopolymers such as DNA and RNA, and synthetic polymers such as poly(styrene sulfonate) and poly(acrylic acids). In this talk I will discuss recent molecular dynamics simulations of static and dynamic properties of polyelectrolyte solutions. These simulations show that in dilute and semidilute polyelectrolyte solutions the electrostatic induced chain persistence length scales with the solution ionic strength as I - 1 / 2. This dependence of the chain persistence length is due to counterion condensation on the polymer backbone. In dilute polyelectrolyte solutions the chain size decreases with increasing the salt concentration as R ~ I- 1 / 5. This is in agreement with the scaling of the chain persistence length on the solution ionic strength, lp ~ I- 1 / 2. In semidilute solution regime at low salt concentrations the chain size decreases with increasing polymer concentration, R ~ cp-1 / 4 . While at high salt concentrations one observes a weaker dependence of the chain size on the solution ionic strength, R ~ I- 1 / 8. Analysis of the simulation data throughout the studied salt and polymer concentration ranges shows that there exist general scaling relations between multiple quantities X (I) in salt solutions and corresponding quantities X (I0) in salt-free solutions, X (I) = X (I0) (I /I0) β . The exponent β = -1/2 for chain persistence length lp , β = 1/4 for solution correlation length, β = -1/5 and β = -1/8 for chain size R in dilute and semidilute solution regimes respectively. Furthermore, the analysis of the spectrum and of the relaxation times of Rouse modes confirms existence of the single length scale (correlation length) that controls both static and dynamic properties of semidilute polyelectrolyte solutions. These findings

  1. Brush Seals for Improved Steam Turbine Performance (United States)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter


    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  2. Energy conversion in polyelectrolyte hydrogels (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  3. Spin-Coated Polyelectrolyte Coacervate Films. (United States)

    Kelly, Kristopher D; Schlenoff, Joseph B


    Thin films of complexes made from oppositely charged polyelectrolytes have applications as supported membranes for separations, cell growth substrates, anticorrosion coatings, biocompatible coatings, and drug release media, among others. The relatively recent technique of layer-by-layer assembly reliably yields conformal coatings on substrates but is impractically slow for films with thickness greater than about 1 μm, even when accelerated many fold by spraying and/or spin assembly. In the present work, thin, uniform, smooth films of a polyelectrolyte complex (PEC) are rapidly made by spin-coating a polyelectrolyte coacervate, a strongly hydrated viscoelastic liquidlike form of PEC, on a substrate. While the apparatus used to deposit the PEC film is conventional, the behavior of the coacervate, especially the response to salt concentration, is highly nontraditional. After glassification by immersion in water, spun-on films may be released from their substrates to yield free-standing membranes of thickness in the micrometer range.

  4. Waste-moulding dusts modified with polyelectrolytes

    Directory of Open Access Journals (Sweden)

    A. Baliński


    Full Text Available In the article described problems of the influence of advanced oxidizing process, the supersonic tooling of waste - moulding dusts and their modification with polyelectrolytes, on the technological proprieties of the moulding sands prepared with their participation.Physicochemical characterization of the used polyelectrolytes PSS (poli 4-styreno sodium sulfonate and PEI (poli etyleno imine, in theaspect of their modificatory influences on the waste - moulding dust, was described. Defined the influence of adsorption proprieties ofthe polyelectrolyte PEI on the surface of small parts of the waste - dust, on technological proprieties of the sandmix. Ascertained theprofitable influence of this electrolyte on mechanical proprieties of the moulding sands, that is to say the increase in value of thecompression strength (about 10% and tensile strenght (about 13%, comparatively to analogous proprieties of the moulding sandsprepared with the participation of the not modified waste- dust.

  5. Molecular Thermodynamic Model for Polyelectrolyte Solutions with Added Salts

    Institute of Scientific and Technical Information of China (English)

    ZHANGBo; CAIJun; 等


    A molecular thermodynamic model of polyelectrolyte developed previously was extended to polyelectrolyte solutions with added salts.Thermodynamic properties,such as activity coefficients of polyelectrolytes or added salts and osmotic coefficients of solvent, of a number of aqueous mixtures of polyelectrolytes and salts are analyzed with the proposed model.Successful correlation is obtained in the range of moderate or higher polyion concentration.For the same sample,thermodynamic properties of polyelectrolytes with and without simple electrolytes can be predicted mutually using parameters from regression data.

  6. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  7. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring. (United States)

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V


    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

  8. Nanotribology of charged polymer brushes (United States)

    Klein, Jacob

    Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.


    Directory of Open Access Journals (Sweden)

    Elina Orblin


    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  10. Actuation and ion transportation of polyelectrolyte gels (United States)

    Hong, Wei; Wang, Xiao


    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  11. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Narayanan Nair, Arun Kumar


    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  12. Resisting protein adsorption on biodegradable polyester brushes. (United States)

    Hu, Xinfang; Gorman, Christopher B


    The protein adsorption and degradation behaviors of poly(lactic acid), poly(glycolic acid) (PGA) and poly(ε-caprolactone) (PCL) brushes and their co-polymer brushes with oligo(ethylene glycol) (OEG) were studied. Both brush structure and relative amount of OEG and polyester were found to be important to the protein resistance of the brushes. A protein-resisting surface can be fabricated either by using OEG as the top layer of a copolymer brush or by increasing the amount of OEG relative to polyester when using a hydroxyl terminated OEG (OEG-OH) and a methoxy terminated OEG (OEG-OMe) mixture as the substrate layer. The degradation of single polyester brushes and their co-polymer brushes using OEG-OH as a substrate layer or using OEG as a top layer was hindered. This phenomenon was rationalized by the inhibition of the proposed back-biting process as the hydroxy end groups of polyester were blocked by OEG molecules. Among these brushes tested, PGA co-polymer brushes using the methoxy/hydroxyl OEG mixture as the substrate layer proved to be both protein-resistant and degradable due to the relatively large amount of OEG moieties and the good biodegradability of PGA.

  13. Cube sugar-like sponge/polymer brush composites for portable and user-friendly heavy metal ion adsorbents. (United States)

    Bae, Ji Young; Lee, Ha-Jin; Choi, Won San


    Portable, non-toxic, and user-friendly sponge composites decorated with polyelectrolyte (PE) brushes were developed for the fast and efficient removal of heavy metal ions from waste water or drinking water. The polyacrylamide (PAM) and polyacrylic acid (PAA) brushes were grafted onto the sponge via "grafting-from" polymerization. For the polyethyleneimine (PEI) brush, "grafting-to" polymerization was used. A polydopamine (Pdop) layer was first coated on the sponge. Then, PEI was grafted onto the Pdop-coated sponge via a Michael addition reaction. The PEI-grafted sponge exhibited the best adsorption capacity and the fastest reaction rate of all the brushes due to the numerous adsorption sites of the PEI. The adsorption performance of two different PEI-grafted sponges depended on the molecular weight (MW) of the PEI. Simply by being dipped into a glass of water, non-toxic PEI-grafted sponge instantly removed the low concentration heavy metal ions, demonstrating a practical application for individual users. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    CERN Document Server

    Voisin, D


    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each po...

  15. Tooth brushing for oral prophylaxis

    Directory of Open Access Journals (Sweden)

    Haruaki Hayasaki, DDS, PhD


    Full Text Available Control of plaque and debris is essential for the prevention of inflammatory periodontal diseases and dental caries, because plaque is the primary etiological factor in the introduction and development of both of these infection-oriented diseases. Plaque removal with a toothbrush is the most frequently used method of oral hygiene. Powered toothbrushes were developed beginning in the 1960s and are now widely used in developed countries. The bristles of a toothbrush should be able to reach and clean efficiently most areas of the mouth, and recently the design of both manual and powered toothbrushes has focused on the ability to reach and clean interproximal tooth surfaces. An individual's tooth brushing behavior, including force, duration, motivation and motion, are also critical to tooth brushing efficacy. Dental floss and the type of toothpaste play additional important roles as auxiliary tools for oral prophylaxis. Dental professionals should help their care-receivers’ meet the requirements of oral hygiene to maintain their QOL. This article reviews these topics.

  16. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.


    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett

  17. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen


    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg

  18. Structures of some surfactant–polyelectrolyte complexes

    Indian Academy of Sciences (India)

    Rema Krishnaswamy; V A Raghunathan; A K Sood


    Structures of complexes formed in aqueous solutions by some anionic polyelectrolytes (double and single stranded (ds and ss) DNA, poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS)) with a cationic surfactant system consisting of cetyltrimethylammonium bromide (CTAB) and sodium 3-hydroxy-2-naphthoate (SHN) have been determined using small angle X-ray diffraction. All complexes are found to have a two-dimensional (2-D) hexagonal structure at low SHN concentrations. Analysis of the diffraction data shows that the ds DNA–CTAB complex has an intercalated structure, with each DNA strand surrounded by three cylindrical micelles. On increasing SHN concentration, DNA–CTAB–SHN complexes exhibit a hexagonal-to-lamellar transition, whereas PVS complexes show a hexagonal → centered rectangular → lamellar transition. PSS complexes show yet another sequence of structures. These results indicate the significant influence of the chemical nature of the polyelectrolyte on the structure of the complexes.

  19. Polyelectrolytes from NS-novolak production waste

    Energy Technology Data Exchange (ETDEWEB)

    Bajdur, W.M.; Sulkowski, W.W. [Czestochowa Technical University, Dept. of Ergonomics and Work Protection, Czestochowa (Poland)


    The chemical modification of polymer plastic wastes into useful products, such as polyelectrolytes, could be a step toward their management. For these products to be obtained, the synthesis of amino derivatives of phenol-formaldehyde resin (NS-novolak) production waste by means of known methods was performed. Products that contained different contents of amino groups in the polymer chains and that were soluble in dilute KOH and NaOH solutions were obtained. The flocculation properties of these products were tested. Studies were conducted of mine water from the Kleofas coal mine and for water from the Czestochowa metallurgical plant blast-furnace circulation system. The amino derivatives of the phenol-formaldehyde resin waste were found to have good flocculation properties. The application of these products caused a decrease in the turbidity and concentration of the dissolved contamination and improved the quality parameters of the purified sewage. These polyelectrolytes could also be used in industrial water treatment.

  20. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.


    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  1. Binary Polymer Brushes of Strongly Immiscible Polymers. (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander


    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  2. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.


    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  3. Stabilization of protein-loaded starch microgel by polyelectrolytes

    NARCIS (Netherlands)

    Li, Y.; Norde, W.; Kleijn, J.M.


    The interaction of biocompatible polyelectrolytes (chargeable poly(amino acids)) with oxidized starch microgel particles has been studied. The aim was to form a polyelectrolyte complex layer around the outer shell of microgel particles filled with functional ingredients to slow down the release of

  4. Stabilization of Protein-Loaded Starch Microgel by Polyelectrolytes

    NARCIS (Netherlands)

    Li, Yuan; Norde, Willem; Kleijn, J. Mieke


    The interaction of biocompatible polyelectrolytes (chargeable poly(amino acids)) with oxidized starch microgel particles has been studied. The aim was to form a polyelectrolyte complex layer around the outer shell of microgel particles filled with functional ingredients to slow down the release of

  5. Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration

    NARCIS (Netherlands)

    Ilyas, Shazia; Joseph, Nithya; Szymczyk, Anthony; Volodin, Alexander; Nijmeijer, Kitty; Vos, de Wiebe M.; Vankelecom, Ivo F.J.


    This manuscript encompasses the investigation into the solvent resistant nanofiltration (SRNF) performance of multilayer membranes prepared from weak polyelectrolytes. These weak polyelectrolytes are unique in that the charge density is not fixed and depends on the coating pH, adding an extra variab

  6. Modeling of polymer brush grafted nanoparticles for algal harvesting (United States)

    Goins, Jason

    Microalgae derived biofuel shows great potential as a replacement to petroleum based fuels. However, industrial scale and economical production of fuel from microalgae suffer from an expensive dewatering step brought on by the organism's specific cell properties. A retrievable, paramagnetic nanoparticle polyelectrolyte brush (NPPB) has been designed as a flocculation agent to provide a low cost method in collecting algal biomass in biofuel production. In conjunction with experiment, subsequent theoretical investigations have been conducted in order to understand experimental observations and inform future design. A strategy has been implemented to provide informative descriptions for the relationship between flocculation agent parameters and dewatering efficiency. We studied the effect altering the degree of polymerization and monomer charge fraction had on the harvesting efficiency by considering flocculation as the criteria for harvesting. As the number of charges on the polymer backbone of the NPPB is increased, less NPPB concentrations are required to achieve equal harvesting efficiencies. This is a result of needing less NPPB to completely screen the effective charge on the algae surface. However, the Debye length limits the amount of charge on the algae surface one NPPB can screen. Using the free energy calculations for the complete set of pair interactions between the NPPB and the algae, we determined how many adsorbed NPPB were required in order for the force between coated algae to become attractive at some algae surface separation. This corresponded to the NPPB bridging two algae surfaces. NPPB with higher monomer charge fractions and degree of polymerizations led to a stronger bridging bond and larger bridging gap that could outweigh the algae pair repulsion. Optimized structures maximize these effects.

  7. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold


    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  8. New polyelectrolyte complex particles as colloidal dispersions based on weak synthetic and/or natural polyelectrolytes

    Directory of Open Access Journals (Sweden)


    Full Text Available This study aims to evidence the formation of stable polyelectrolyte complex particles as colloidal dispersions using some weak polyelectrolytes: chitosan and poly(allylamine hydrochloride as polycations and poly(acrylic acid (PAA and poly(2-acrylamido-2-methylpropanesulfonic acid – co – acrylic acid (PAMPSAA as polyanions. Polyelectrolyte complex particles as colloidal dispersion were prepared by controlled mixing of the oppositely charged polymers, with a constant addition rate. The influences of the polyelectrolytes structure and the molar ratio between ionic charges on the morphology, size, and colloidal stability of the complex particles have been deeply investigated by turbidimetry, dynamic light scattering and atomic force microscopy. A strong influence of polyanion structure on the values of molar ratio n–/n+ when neutral complex particles were obtained has been noticed, which shifts from the theoretical value of 1.0, observed when PAA was used, to 0.7 for PAMPSAA based complexes. The polyions chain characteristics influenced the size and shape of the complexes, larger particles being obtained when chitosan was used, for the same polyanion, and when PAMPSAA was used, for the same polycation.

  9. Touch- and Brush-Spinning of Nanofibers. (United States)

    Tokarev, Alexander; Asheghali, Darya; Griffiths, Ian M; Trotsenko, Oleksandr; Gruzd, Alexey; Lin, Xin; Stone, Howard A; Minko, Sergiy


    Robust, simple, and scalable touch- and brush-spinning methods for the drawing of nanofibers, core-shell nanofibers, and their aligned 2D and 3D meshes using polymer solutions and melts are discussed.

  10. Preparation of gradient polyacrylate brushes in microchannels. (United States)

    Lee, Seongyeol; Youm, Sang Gil; Song, Yeari; Yi, Whikum; Sohn, Daewon


    Gradient poly(2-hydroxyethyl methacrylate) brushes were synthesized by surface-initiated atom transfer radical polymerization (ATRP) confined within a microfluidic system on a silicon wafer. For ATRP, surface initiator, 11-((2-bromo, 2-methyl) propionyloxy) undecyltrichlorosilane (BUC), was synthesized, and allowed to self-assemble in a monolayer on the Si wafer, as analyzed by XPS to confirm the presence of an ester group of BUC. A solution containing 2-hydroxyethylmethacrylate, Cu catalyst, and bipyridin was allowed to flow in a microchannel and polymerize, resulting in the brushes with a gradient of thickness on the Si wafer. Using ellipsometry and ATR-IR, we verified the gradients of well established brushes on the Si wafer. AFM and contact angle data showed that wettability of the brushes did not exhibit a linear relationship with hydrophilicity.

  11. Polymer Brushes that Mimic Repulsive Properties of the Boundary Lubricant Glycoprotein Lubricin (United States)

    Torres, Jahn; Jay, Gregory; Ni, Qian; Bello, David; Bothun, Geoffrey; Kim, Kyung-Suk


    This is a report on the design of tailored functional groups which mimic the repulsive forces at work in the natural-joint boundary lubricant known as lubricin. Lubricin, an amphiphilic polyelectrolyte biomolecule, decreases friction and cellular adhesion by exhibiting surface force fields based on steric hindrance, Debye electrostatic double layer repulsion and hydration repulsive forces. We have identified a physically and chemically stable candidate polymers for anti-fouling coatings that will mimic lubricin's repulsive properties. Synthetic polymer brushes mimicking lubricin have been produced using these polymers grafted onto a glass surfaces. The average adhesive forces for the polymer brushes measured through atomic force microscopy are as low (56.796 +/- 0.796 mN/m), similar to those exhibited by lubricin coated surfaces and on the same order of magnitude as superhydrophobic surfaces. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  12. Design and Testing of High Performance Brushes. (United States)


    shows an example. What ordinarily serves as a ’brush’. applitations such as homopolar motors / generators and in transmitting current across an interface...speed current collection bricating layer of silver and graphite debris. systems for homopolar electrical machines. Use The other, associated with the...performantc hornopolar by examining the origin of the power losses when electrical motors and generators, based either on superconducting or brushes

  13. Water driven turbine/brush pipe cleaner (United States)

    Werlink, Rudy J. (Inventor)


    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  14. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.


    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  15. Rheological Behavior of the Guanidio Polyelectrolytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-mei; JIANG Jian-ming; CHEN Yan-mo


    The rheological behavior of polyhexamethylene guanidine hydrochloride (PHGC) and polyethylene guanidine stearate (PHGS) has been investigated using the capillary rheometer. It is shown that the polyelectrolyte melts are non-Newtonian of shear. thinning fluid. The melt viscosity, the flow activation energy and the flow temperature are high even if the molecular weight is not high. The melting viscosity of PHGC is higher than that of PHGS at the same experimental conditions. By comparison with the case of PHGS the non-Newtonian index of PHGC is smaller, the flow activation energy and the flow temperature of PHGC are higher, which was caused by the difference in their molecular structure.

  16. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces. (United States)

    Wei, Qiangbing; Yu, Bo; Wang, Xiaolong; Zhou, Feng


    Stratified polymer brushes are fabricated using microcontact printing (μCP) of initiator integrated polydopamine (PDOPBr) on polymer brush surfaces and the following surface initiated atom transfer radical polymerization (SI-ATRP). It is found that the surface energy, chemically active groups, and the antifouling ability of the polymer brushes affect transfer efficiency and adhesive stability of the polydopamine film. The stickiness of the PDOPBr pattern on polymer brush surfaces is stable enough to perform continuous μCP and SI-ATRP to prepare stratified polymer brushes with a 3D topography, which have broad applications in cell and protein patterning, biosensors, and hybrid surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries (United States)

    Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.


    Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also

  18. Modeling competitive substitution in a polyelectrolyte complex

    Energy Technology Data Exchange (ETDEWEB)

    Peng, B.; Muthukumar, M., E-mail: [Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003 (United States)


    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution.

  19. Fluorescent Polystyrene Sulfonate for Polyelectrolyte Studies (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Zhang, Donghui; Russo, Paul


    The slow-mode decay found by dynamic light scattering for polyelectrolytes in low-salt conditions has perplexed investigators since its first observation. Many characterization methods have suggested temporary or transient aggregation, although there is still no consensus on the cause. Many different polyelectrolytes demonstrate the slow-mode decay, but the sodium salt of polystyrene sulfonate (NaPSS) is the most popular choice for study. Commercially available NaPSS may have hydrophobic patches due to incomplete sulfonation leading to associations apart from any putative ionic mechanisms. Therefore, essentially full sulfonation, or ``patchless'', NaPSS should be synthesized. To facilitate fluorescence measurements, which can provide new insights to the slow-mode phenomenon, the material must be rendered fluorescent (F-NaPSS). Several approaches to F-NaPSS have appeared; some labeled a previously synthesized NaPSS without concern for its hydrophobic patches. Other strategies include a free radical copolymerization of styrene sulfonate and a vinyl amine to provide side chains viable for labeling. This method is successful, but yields only small amounts of nearly monodisperse polymer after fractionation. In this presentation, a high-yield synthesis of fully sulfonated, low-polydispersity, fluorescently tagged polymer will be discussed.

  20. Polyelectrolyte multilayers: An odyssey through interdisciplinary science (United States)

    Jaber, Jad A.

    This dissertation provides an overview of a self assembled multilayer technique based on the alternating deposition of oppositely charged polyelectrolytes onto charged solid supports. The basic principles and methodologies governing this technique are laid down, and new strategies are built upon the latter, in an effort to develop innovative technologies that would be beneficial for making new products or improving the quality of existing ones. Fundamental studies to characterize the water content, efficiency of ion-pairing, differential strength of electrostatic interactions, topology, and viscoelastic properties of polyelectrolyte multilayers, PEMUs, are illustrated and conducted. In addition, polyelectrolyte multilayers that are stimulus responsive, or support active and controlled bio-motor protein interactions are described. Attenuated total reflectance Fourier transform infrared, (ATR), spectroscopy was used to compare the extent of swelling and doping within PAH/PSS and PDADMA/PSS polyelectrolyte multilayers. Unlike PDADMA/PSS, whose water content depended on the solution ionic strength, PAH/PSS was resistant to swelling by salt. It was stable up to 4.0 M sodium chloride, with 6 water molecules per ion-pair. Using the infrared active perchlorate sodium salt, the amount of residual persistent extrinsic sites in both PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of sodium perchlorate, was in the order of 4.5 kJ mol-1 and -9.5 kJ mol-1 for PDADMA/PSS and PAH/PSS correspondingly. Thus, indicating the relatively strong electrostatic association between the polymer segments in a PAH/PSS relative to PDADMA/PSS multilayer. Adjusting the pH of the solution in contact with the PAH/PSS multilayer to 11.5 resulted in a first order discontinuous dissociation of the Pol+Pol- bonds. Techniques used to study the mechanical properties of single muscle fiber were adapted to


    Institute of Scientific and Technical Information of China (English)

    Hai-hu Yu; De-sheng Jiang


    Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in whichthere are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.

  2. Anisotropic Diffusion of Polyelectrolyte Chains within Multi-layer Films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Stevens Institute of Technology, Hoboken, New Jersey; Kozlovskaya, Veronika [University of Alabama, Birmingham; Kharlampieva, Eugenia [University of Alabama, Birmingham; Ankner, John Francis [ORNL; Sukhishvili, Prof. Svetlana A. [Stevens Institute of Technology, Hoboken, New Jersey


    We found diffusion of polyelectrolyte chains within multilayer films to be highly anisotropic, with the preferential chain motion parallel to the substrate. The degree of anisotropy was quantified by a combination of fluorescence recovery after photobleaching and neutron reflectometry, probing chain diffusion in directions parallel and perpendicular to the substrate, respectively. Chain mobility was controlled by ionic strength of annealing solutions and steric hindrance to ionic pairing of interacting polyelectrolytes.

  3. Polyelectrolyte Multilayers: Towards Single Cell Studies

    Directory of Open Access Journals (Sweden)

    Dmitry Volodkin


    Full Text Available Single cell analysis (SCA is nowadays recognized as one of the key tools for diagnostics and fundamental cell biology studies. The Layer-by-layer (LbL polyelectrolyte assembly is a rather new but powerful technique to produce multilayers. It allows to model the extracellular matrix in terms of its chemical and physical properties. Utilization of the multilayers for SCA may open new avenues in SCA because of the triple role of the multilayer film: (i high capacity for various biomolecules; (ii natural mimics of signal molecule diffusion to a cell and (iii cell patterning opportunities. Besides, light-triggered release from multilayer films offers a way to deliver biomolecules with high spatio-temporal resolution. Here we review recent works showing strong potential to use multilayers for SCA and address accordingly the following issues: biomolecule loading, cell patterning, and light-triggered release.

  4. Stereoregularity Drives Precipitation in Polyelectrolyte Complex Formation (United States)

    Tirrell, Matthew; Perry, Sarah; Leon, Lorraine; Kade, Matthew; Priftis, Dimitris; Black, Katie; Hoffman, Kyle; Whitmer, Jonathan; Qin, Jian; de Pablo, Juan


    This study investigates the effect of stereoregularity on the formation of polypeptide-based complex formation and assembly into micelles, hydrogels and ordered phases. We demonstrate that fluid complex coacervate formation (rather than solid complex precipitation) between oppositely charged polypeptides requires at least one racemic partner in order to disrupt backbone hydrogen bonding networks and prevent the hydrophobic collapse of the polymers into compact, fibrillar secondary structures. Computer simulations bear this out and enable visualization of the molecular structure of the complexes. The ability to choose between conditions of fluid phase formation and solid phase formation is a useful tool in developing new self-assembled materials based on polyelectrolyte complex formation. Support from the Argonne National Laboratory Laboratory Research and Development Program (2011-217) is gratefully acknowledged.

  5. Hydrophobically modified polyelectrolytes: Characterization, aggregation and adsorption (United States)

    Islam, Mohammad Ferdous

    The focus of our work was to experimentally study the aggregation and adsorption behavior of model HM polyelectrolytes. Hydrophobically modified alkali soluble emulsions (HASE), the model HM polyelectrolytes, were chosen because they had complex architecture yet possessed key variables for systematic study. The HASE polymers have methacrylic acid (MAA) and ethyl acrylate (EA) in the backbone with pendent hydrophobic groups. Characterization of a single molecule is an important first step in understanding the aggregation and adsorption of these polymers. However, characterizations of the HASE polymers using conventional techniques such as gel permeation chromatography or static light scattering were difficult because of the hydrophobic association. In this study, two different approaches have been taken to prevent the hydrophobic association in aqueous solution: (1) hydrolyze the polymer to cleave the hydrophobic constituents, and (2) use methyl beta-cyclodextrin that has a hydrophobic cavity and a hydrophilic outer shell, to shield the hydrophobes from associating. By taking these two approaches and using gel permeation chromatography (GPC), dynamic (DLS) and static (SLS) light scattering techniques, the molecular weight, hydrodynamic radius and radius of gyration of a single molecule were determined. Except for one chemical site, we were able to determine that branching or grafting did not occur in the polymer chain during synthesis. Our aggregation studies showed that, in aqueous solutions, the HASE polymers formed small aggregates (presumably single micelles of single or a few chains) and large aggregates (presumably formed by bridging between micelles). The radii and masses of the larger aggregates, measured using DLS and SLS, were found to increase with an increase in the polymer concentration, indicating an open association process for the HASE polymers. Our SLS results also showed that, at high salt concentration, the aggregates of the HASE polymer with

  6. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. (United States)

    Ou, Zhaoyang; Muthukumar, M


    We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.

  7. Novel cationic polyelectrolyte coatings for capillary electrophoresis. (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K


    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  8. Solvent-induced immiscibility of polymer brushes eliminates dissipation channels

    NARCIS (Netherlands)

    Beer, de S.; Kutnyanszky, E.; Schon, P.M.; Vancso, G.J.; Müser, M.H.


    Polymer brushes lead to small friction and wear and thus hold great potential for industrial applications. However, interdigitation of opposing brushes makes them prone to damage. Here we report molecular dynamics simulations revealing that immiscible brush systems can form slick interfaces, in whic

  9. Brushes and soap : Grafted polymers and their interactions with nanocolloids

    NARCIS (Netherlands)

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafting, howev

  10. Brushes and soap : grafted polymers and their interactions with nanocolloids

    NARCIS (Netherlands)

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafti

  11. Brushes and soap : grafted polymers and their interactions with nanocolloids

    NARCIS (Netherlands)

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the

  12. Lubrication at physiological pressures by polyzwitterionic brushes. (United States)

    Chen, Meng; Briscoe, Wuge H; Armes, Steven P; Klein, Jacob


    The very low sliding friction at natural synovial joints, which have friction coefficients of mu lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations.

  13. Scaling Relationships for Spherical Polymer Brushes Revisited. (United States)

    Chen, Guang; Li, Hao; Das, Siddhartha


    In this short paper, we revisit the scaling relationships for spherical polymer brushes (SPBs), i.e., polymer brushes grafted to rigid, spherical particles. Considering that the brushes can be described to be encased in a series of hypothetical spherical blobs, we identify significant physical discrepancies in the model of Daoud and Cotton (Journal of Physics, 1982), which is considered to be the state of the art in scaling modeling of SPBs. We establish that the "brush" configuration of the polymer molecules forming the SPBs is possible only if the swelling ratio (which is the ratio of the end-to-end length of the blob-encased polymer segment to the corresponding coil-like polymer segment) is always less than unity-a notion that has been erroneously overlooked in the model of Daoud and Cotton. We also provide new scaling arguments that (a) establish this swelling (or more appropriately shrinking) ratio as a constant (less than unity) for the case of "good" solvent, (b) recover the scaling predictions for blob dimension and monomer number and monomer concentration distributions within the blob, and

  14. Chinese Brush Calligraphy Character Retrieval and Learning (United States)

    Zhuang, Yueting; Zhang, Xiafen; Lu, Weiming; Wu, Fei


    Chinese brush calligraphy is a valuable civilization legacy and a high art of scholarship. It is still popular in Chinese banners, newspaper mastheads, university names, and celebration gifts. There are Web sites that try to help people enjoy and learn Chinese calligraphy. However, there lacks advanced services such as content-based retrieval or…

  15. Structural study of coacervation in protein-polyelectrolyte complexes (United States)

    Chodankar, S.; Aswal, V. K.; Kohlbrecher, J.; Vavrin, R.; Wagh, A. G.


    Coacervation is a dense liquid-liquid phase separation and herein we report coacervation of protein bovine serum albumin (BSA) in the presence of polyelectrolyte sodium polystyrene sulfonate (NaPSS) under varying solution conditions. Small-angle neutron scattering (SANS) measurements have been performed on above protein-polyelectrolyte complexes to study the structural evolution of the process that leads to coacervation and the phase separated coacervate as a function of solution pH , protein-polyelectrolyte ratio and ionic strength. SANS study prior to phase separation on the BSA-NaPSS complex shows a fractal structure representing a necklace model of protein macromolecules randomly distributed along the polystyrene sulfonate chain. The fractal dimension of the complex decreases as pH is shifted away from the isoelectric point (˜4.7) of BSA protein, which indicates the decrease in the compactness of the complex structure due to increase in the charge repulsion between the protein macromolecules bound to the polyelectrolyte. Concentration-dependence studies of the polyelectrolyte in the complex suggest coexistence of two populations of polyelectrolytes, first one fully saturated with proteins and another one free from proteins. Coacervation phase has been obtained through the turbidity measurement by varying pH of the aqueous solution containing protein and polyelectrolyte from neutral to acidic regime to get them to where the two components are oppositely charged. The spontaneous formation of coacervates is observed for pH values less than 4. SANS study on coacervates shows two length scales related to complex aggregations (mesh size and overall extent of the complex) hierarchically branched to form a larger network. The mesh size represents the distance between cross-linked points in the primary complex, which decreases with increase in ionic strength and remains the same on varying the protein-polyelectrolyte ratio. On the other hand, the overall extent of the

  16. Synthesis and characterization of metal oxide nanorod brushes

    Indian Academy of Sciences (India)

    Kalyan Raidongia; M Eswaramoorthy


    Nanorod brushes of -Al2O3, MoO3 and ZnO have been synthesized using amorphous carbon nanotube (-CNT) brushes as the starting material. The brushes of -Al2O3 and MoO3 are made up of single crystalline nanorods. In the case of ZnO brushes, the nanorod bristles are made by the fusion of 15–25 nm size nanoparticles and are porous in nature. Metal oxide nanorod brushes thus obtained have been characterized by XRD, FESEM, TEM and Raman spectroscopy. Single crystalline ruby nanorods were obtained by introducing chromium ions during the synthesis of alumina rods.

  17. Adsorption of a synthetic heparinoid polyelectrolyte on an ion-exchanging surface

    NARCIS (Netherlands)

    Froehling, Peter E.; Bantjes, Adriaan; Kolar, Z.


    The adsorption of a synthetic heparinoid polyelectrolyte on poly(vinylchloride) previously treated with tridodecylmethylammonium chloride (TDMAC) was studied using radiotracer techniques to provide a more quantitative picture of antithrombogenic surface coatings. 125I-labeled polyelectrolyte was use

  18. Anthrax Cases Associated with Animal-Hair Shaving Brushes. (United States)

    Szablewski, Christine M; Hendricks, Kate; Bower, William A; Shadomy, Sean V; Hupert, Nathaniel


    During the First World War, anthrax cases in the United States and England increased greatly and seemed to be associated with use of new shaving brushes. Further investigation revealed that the source material and origin of shaving brushes had changed during the war. Cheap brushes of imported horsehair were being made to look like the preferred badger-hair brushes. Unfortunately, some of these brushes were not effectively disinfected and brought with them a nasty stowaway: Bacillus anthracis. A review of outbreak summaries, surveillance data, and case reports indicated that these cases originated from the use of ineffectively disinfected animal-hair shaving brushes. This historical information is relevant to current public health practice because renewed interest in vintage and animal-hair shaving brushes has been seen in popular culture. This information should help healthcare providers and public health officials answer questions on this topic.

  19. Multilayered Polyelectrolyte Films:A Tool for Biomaterial Coatings and Tissue Engineering?

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude; VOEGEL; Joёlle; OGIER; Catherine; PICART; Nadia; JESSEL; Philippe; LAVALLE; Vincent; BALL; Bernard; SENGER; Pierre; SCHAAF


    1 Physicochemical aspects of multilayered polyelectrolyte films Multilayered polyelectrolyte films are obtained by alternated depositions on a solid surface of polyanions and polycations~([1]). The driving force for the build-up results from the charge excess which appears on the top of the film after each new polyelectrolyte adsorption. The film top becomes thus positively (respectively negatively) charged when the film is ending by a polycation (respectively polyanion). Various polyelectrolyte systems hav...

  20. Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems

    CERN Document Server

    Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M


    A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.

  1. Coacervation in Symmetric Mixtures of Oppositely Charged Rodlike Polyelectrolytes (United States)

    Kumar, Rajeev; Fredrickson, Glenn


    Phase separation in the salt-free symmetric mixtures of oppositely charged rodlike polyelectrolytes is studied using quasi-analytical calculations. Stability analyses for the isotropic-isotropic and the isotropic-nematic phase transitions in the symmetric mixtures are carried out. It is shown that electrostatics favor nematic ordering. Also, the coexistence curves for the symmetric mixtures are computed, and the effects of the linear charge density and the electrostatic interaction strength on the phase boundaries are studied. It is found that the counterions are uniformly distributed in the coexisting phases for low electrostatic interaction strengths characterized by the linear charge density of the polyelectrolytes and the Bjerrum's length. However, the counterions also phase separate along with the rodlike polyelectrolytes with an increase in the electrostatic interaction strength. It is shown that the number density of the counterions is higher in the concentrated (or coacervate) phase than in the dilute (or supernatant) phase. In contrast to the rodlike mixtures, flexible polyelectrolyte mixtures can undergo only isotropic-isotropic phase separation. A comparison of the coexistence curves for the weakly charged rodlike with the flexible polyelectrolyte mixtures reveals that the electrostatic driving force for the isotropic-isotropic phase separation is stronger in the flexible mixtures.

  2. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles. (United States)

    Elzbieciak, M; Wodka, D; Zapotoczny, S; Nowak, P; Warszynski, P


    Polyelectrolyte films structure formed by the "layer-by-layer" (LbL) technique can be enriched by addition of charged nanoparticles like carbon nanotubes and silver or hydroxyapatite nanoparticles, which can improve properties of the polyelectrolyte films or modify their functionality. In our paper we examined the formation and properties of model polyelectrolyte multilayers containing a synthetic layered silicate, Laponite. The Laponite nanoparticles were incorporated into multilayer films, which were formed from weak, branched polycation PEI and strong polyanion PSS. Since charge of PEI is pH-dependent, we build up multilayer films in two deposition conditions: pH = 6 when PEI was strongly charged and pH = 10.5 when charge density of PEI was low. Thicknesses of the films constructed with various numbers of Laponite layers were measured by single wavelength ellipsometry. We also determined the differences in permeability for selected electroactive molecules using cyclic voltamperometry. Properties of the films containing clay nanoparticles were compared with model polyelectrolyte multilayer films PEI/PSS formed at the same conditions. We found that Laponite nanoparticles strongly influenced PEI/PSS multilayer film properties. Replacement of PSS by Laponite eliminated the oscillations of the film thickness in the case when PEI was weakly charged. PSS layer adsorbed on top of PEI/Laponite bilayers increased the thickness of multilayer films and improved their barrier properties so synergistic effects between these properties for polyelectrolytes and Laponite nanoparticles could be observed.

  3. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo


    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  4. Polyelectrolyte (PE) induced interactions between Charged and zwitterionic Colloids (United States)

    Pryamitsyn, Victor; Ganesan, Venkat


    A numerical self-consistent field (SCF) theory approach was developed for studying mixture of polyelectrolytes with charged and uncharged nanoparticles. Such an approach was used to analyze within the mean-field limit the polyelectrolyte-mediated effective interactions between the particles. The system considered allows for the local PE and particle charges to be defined by the local concentration of ionizable on groups on the particles and polyelectrolytes, ambient conditions like pH and the local electrostatic potential. Calculation of the free energy of a system of one, two and three particles in the polyelectrolyte solution allowdd us to calculate the particle insertion free energy, two and three body particle-particle interactions as a function of the properties of solution, polymer-particle interactions and the particle size. For the situation involving acidic PE and a base type positively charged particles, the PE mediated particle-particle interaction is purely repulsive for the larger particle-particle distances at low polymer concentrations. At short-particle particle distances and/or higher polyelectrolyte concentrations the particle-particle interaction becomes a depletion-type attraction. For Zwitterionic positively chaged paticles particles we have found a a range

  5. Electrostatic Self-Assembled Multilayers from Side Chain Azo Polyelectrolytes

    Institute of Scientific and Technical Information of China (English)

    庹新林; 陈峥; 邓永红; 王晓工; 刘德山


    Photoresponsive behavior and self-assembly properties of three side chain azo polyelectrolytes, poly (2-(4-phenylazophenoxy) ethanol-co-acrylic acid) (PPAPE), poly (2-(4-(4′-nitrophenylazo) phenoxy) ethanol-co-acrylic acid) (PNAPE), and poly (2-(4-(4′-ethoxyphenylazo) phenoxy) ethanol-co-acrylic acid) (PEAPE), were studied. These polyelectrolytes with different degrees of functionalization of azo chromophores were fabricated into nano-composite multilayers using two types of dipping solutions through a layer-by-layer electrostatic self-assembling process. Results show that the ratio between tetrahydrofuran (THF) and H2O significantly influences the photoresponsive behavior of PNAPE in THF-H2O mixture. The THF-H2O dipping solution, used in this work for self-assembly of hydrophobic polyelectrolytes, is proved to be as applicable as aqueous dipping solution for normal self-assembly of hydrophobic polyelectrolytes. However, significant differences in the multilayer growth between the two systems were also observed, which resulted from the remarkable difference of the existing forms of the polyelectrolytes in these two dipping solutions.


    Directory of Open Access Journals (Sweden)

    I. M. Neelov


    Full Text Available The paper deals with investigation of the conformational properties of some charged homopolypeptides in dilute aqueous solutions by computer simulation. A method of molecular dynamics for the full-atomic models of polyaspartic acid and polylysine with explicit account of water and counter-ions is used for this purpose. For systems containing these polypeptides we calculated time trajectories and the size, shape, distribution functions and time correlation functions of inertia radius and the distances between the ends of peptide chains. We have also calculated the solvatation characteristics of considered polyelectrolytes. We have found out that polyaspartic acid in dilute aqueous solution has more compact structure and more spherical shape than polylysine. We have shown that these differences are due to different interaction between the polypeptides and water molecules (in particular, the quality and quantity of hydrogen bonds formed by these peptides with water, and the difference in an amount of ion pairs formed by the charged groups of the peptides and counter-ions. The obtained results should be taken into account for elaboration of new products based on the investigated peptides and their usage in various industrial and biomedical applications.

  7. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse


    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  8. Transparent Aluminium Oxide Coatings of Polymer Brushes. (United States)

    Micciulla, Samantha; Duan, XiaoFei; Strebe, Julia; Löhmann, Oliver; Lamb, Robert N; von Klitzing, Regine


    A novel method for the preparation of transparent Al2O3 coatings of polymers is presented. An environmental-friendly sol-gel method is employed, which implies mild conditions and low costs. A thermoresponsive brush is chosen as a model surface. X-ray photoelectron spectroscopy is used to characterize the samples during the conversion of the precursor Al(OH)3 into oxide and to prove the mildness of the protocol. The study evidences a relation between lateral homogeneity of alumina and the wettability of the polymer surface by the precursor solution, while morphology and elasticity are dominated by the polymer properties. The study of the swelling behavior of the underneath brush reveals the absence of water uptake, proving the impermeability of the alumina layer. The broad chemical and structural variety of polymers, combined with the robustness of transparent alumina films, makes these composites promising as biomedical implants, protective sheets and components for electric and optical devices.

  9. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum


    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  10. Dynamic Polymer Brush at Polymer/Water Interface (United States)

    Yokoyama, Hideaki; Inoue, Kazuma; Ito, Kohzo; Inutsuka, Manabu; Tanaka, Keiji; Yamada, Norifumi


    A layer of polymer chains tethered by one end to a surface is called polymer brush and known to show various unique properties such as anti-fouling. The surface segregation phenomena of copolymers with surface-active blocks should be useful for preparing such a brush layer in spontaneous process. We report hydrophilic polymer brushes formed at the interface between water and polymer by the segregation of amphiphilic diblock copolymers blended in a crosslinked rubbery matrix and call it ``dynamic polymer brush.'' In this system, the hydrophilic block with high surface energy avoids air surface, but segregates to cover the interface between hydrophobic elastomer and water. The structures of the brush layers at D2O/polymer interfaces were measured by neutron reflectivity. The dynamic polymer brush layer surprisingly reached 75% of the contour length of the chain and 2.7 chains/nm2. The brush density was surprisingly comparable to the polymer brush fabricated by the ``grafting-from'' method. We will discuss the dependence of the brush structure on molecular weight and block fraction of amphiphilic block copolymers. Such a surprisingly thick and dense polymer brush were induced by the large enthalpy gain of hydration of hydrophilic block.

  11. Metastatic urachal carcinoma in bronchial brush cytology

    Directory of Open Access Journals (Sweden)

    Fatima Zahra Aly


    Full Text Available Urachal carcinoma is rare comprising less than 1% of all bladder carcinomas. Metastases of urachal carcinoma have been reported to meninges, brain, ovary, lung, and maxilla. Cytologic features of metastatic urachal carcinoma have not been previously reported. We present a case of metastatic urachal adenocarcinoma in bronchial brushings and review the use of immunohistochemistry in its diagnosis. A 47-year-old female was seen initially in 2007 with adenocarcinoma of the bladder dome for which she underwent partial cystectomy. She presented in 2011 with a left lung mass and mediastinal adenopathy. Bronchoscopy showed an endobronchial lesion from which brushings were obtained. These showed numerous groups of columnar cells with medium sized nuclei and abundant cytoplasm. The cells were positive for CK20 and CDX2 and negative for CK7. The cytomorphological findings were similar to those in the previous resection specimen and concurrent biopsy. This is the first case report of bronchial brushings containing metastatic urachal carcinoma. No specific immunohistochemical profile is available for its diagnosis. The consideration of a second primary was a distinct possibility in this case due to the lapse of time from primary resection, absence of local disease, and lack of regional metastases.

  12. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. (United States)

    Zheng, Zhiguo; Zhang, Xingcai; Carbo, Daniel; Clark, Cheryl; Nathan, Cherie-Ann; Lvov, Yuri


    A new method of nanoparticle formulation for poorly water-soluble materials was demonstrated for curcumin. The drug was dissolved in organic solvent that is miscible with water (ethanol), and drug nucleation was initiated by gradual worsening of the solution by the addition of an aqueous polyelectrolyte assisted by ultrasonication. Curcumin crystals of 60-100 nm size were obtained depending on the component concentrations, sonication power, and initial solvent. Layer-by-layer shell assembly with biocompatible polyelectrolytes was used to provide a particle coating with a high surface potential and the stabilization of drug nanocolloids. Polyelectrolyte layer-by-layer encapsulation allowed sustained drug release from nanoparticles over the range of 10-20 h.

  13. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase. (United States)

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A M; Ruggiero, Carmelina


    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.


    Energy Technology Data Exchange (ETDEWEB)

    Schanze, Kirk S [University of Florida


    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  15. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase.

    Directory of Open Access Journals (Sweden)

    Laura Pastorino

    Full Text Available Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.

  16. Complex coacervation of supercharged proteins with polyelectrolytes. (United States)

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D


    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  17. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David


    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each polyelectrolyte-surfactant particle in the region of the CAC, and just beyond, contains many polyelectrolyte chains, held together essentially by micelle bridges. These particles, however, remain net positively charged, and therefore stable. At the other end of the binding range of the surfactant, so many internal micelles are present that the polymer-surfactant particles are now net negatively charged. Indeed binding stops since no further micelles can be accommodated. Again, the particles are stable. However, there exists a range of surfactant concentrations, lying within the range referred to above, where the net charge is reduced sufficiently that the polymer-surfactant particles will flocculate to form much larger structures. The onset of this second range might be termed the 'critical flocculation concentration' (CFC), and the end, the 'critical stabilisation concentration' (CSC). In this work, the CFC and

  18. An interdisciplinary approach to valuing water from brush control


    Lemberg, B.; Mjelde, J.; Conner, J; Griffin, R.; Rosenthal, W; Stuth, J


    Metadata only record This paper develops an integrated model to assess the viability of increasing water yields in the Frio River basin of Texas through brush control. The presented method accounts for the effect of brush control on forage productivity and water supply by incorporating ecological, hydrologic, and economic models. The simulation of water yields suggests that brush control would increase water yields on 35% of the land area, but the costs usually would exceed the financial b...

  19. Entanglements of End Grafted Polymer Brushes in a Polymeric Matrix (United States)

    Grest, Gary S.; Hoy, Robert S.


    The entanglement of a polymer brush immersed in a melt of mobile polymer chains is studied by molecular dynamics simulations. A primitive path analysis (PPA) is carried out to identify the brush/brush, brush/melt and melt/melt entanglements as a function of distance from the substrate. The PPA characterizes the microscopic state of conformations of the polymer chain and is ideally suited to identify chain/chain entanglements. We use a new thin-chain PPA technique to eliminate spurious non-entangled inter chain contacts arising from excluded volume. As the grafting density of the brush increases we find that the entanglements of the brush with the melt decrease as the system crosses over from the wet to dry brush regime. Results are compared to brush/brush entanglements in an implicit solvent of varying solvent quality. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Mechanisms for nano particle removal in brush scrubber cleaning (United States)

    Huang, Yating; Guo, Dan; Lu, Xinchun; Luo, Jianbin


    A model describing the nano particle (cleaning is presented based on experiment results and theoretical analysis. The forces on the particles in different situations are analyzed and discussed. The adhesion forces of the van der Waals force, the electrostatic force, the brush load and the static friction between the particle and the wafer are calculated. The contact elastic force, hydrodynamic drag force and friction between the brush and the particle are considered as removal forces and are evaluated. The porous structure and roughness surface of brush material are considered in the hydrodynamic model to describe the brush deformation and the flow field in the cleaning process. The porous structure will result in decrease of hydrodynamic drag force. There are four situations of the particles relative to the brush roughness asperities for which the forces on the particle are different. When the particle is in contact with a brush asperity or on the wafer surface and in a semi-infinite fluid flow field, the particle may be removed by hydrodynamic force and elastic force in the presence of surfactant. When the particle is embedded in the brush asperity, the remove will realized when the friction caused by adhesion between the brush and the particle overcome the adhesion force between particle and wafer surface. The removed particles will be in the flow field or adhered on the brush surface and may redeposit on the wafer surface.

  1. Morphological transformations in polymer brushes in binary mixtures: DPD study. (United States)

    Cheng, Jianli; Vishnyakov, Aleksey; Neimark, Alexander V


    Morphological transformations in polymer brushes in a binary mixture of good and bad solvents are studied using dissipative particle dynamics simulations drawing on a characteristic example of polyisoprene natural rubber in an acetone-benzene mixture. A coarse-grained DPD model of this system is built based on the experimental data in the literature. We focus on the transformation of dense, collapsed brush in bad solvent (acetone) to expanded brush solvated in good solvent (benzene) as the concentration of benzene increases. Compared to a sharp globule-to-coil transition observed in individual tethered chains, the collapsed-to-expanded transformation in brushes is found to be gradual without a prominent transition point. The transformation becomes more leveled as the brush density increases. At low densities, the collapsed brush is highly inhomogeneous and patterned into bunches composed of neighboring chains due to favorable polymer-polymer interaction. At high densities, the brush is expanded even in bad solvent due to steric restrictions. In addition, we considered a model system similar to the PINR-acetone-benzene system, but with the interactions between the solvent components worsened to the limit of miscibility. Enhanced contrast between good and bad solvents facilitates absorption of the good solvent by the brush, shifting the collapsed-to-expanded transformation to lower concentrations of good solvent. This effect is especially pronounced for higher brush densities.

  2. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    NARCIS (Netherlands)

    Mohd Amin, M.F.; Heijman, S.G.J.; Lopes, S.I.C.; Rietveld, L.C.


    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with

  3. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K


    Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating...

  4. Salt-induced release of lipase from polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Schweins, Ralf; Stuart, Martien A. Cohen; Norde, Willem


    With the aim to gain insight into the possible applicability of protein-filled polyelectrolyte complex micelles under physiological salt conditions, we studied the behavior of these micelles as a function of salt concentration. The micelles form by electrostatically driven co-assembly from strong ca

  5. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)


    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  6. Humidity Sensitive Properties of a Silicone-containing Polyelectrolyte Material

    Institute of Scientific and Technical Information of China (English)

    Mu Jie YANG; Zong Wu YAO; You Si CHEN; Yang LI


    Resistive-type film humidity sensors were prepared with a silicone-containing polyelectrolyte (Si-PE) and their humidity sensitive properties have been investigated. The sensors so obtained show high sensitivity to humidity variation over a wide range of RH (20-96%).In addition, they exhibit high reversibility, quick response and well long-term stability.

  7. Electrostatics and charge regulation in polyelectrolyte multilayered assembly. (United States)

    Cherstvy, Andrey G


    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  8. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    NARCIS (Netherlands)

    Mohd Amin, M.F.; Heijman, S.G.J.; Lopes, S.I.C.; Rietveld, L.C.


    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with

  9. Effect of Frequency of Brushing Teeth on Plaque and Calculus Accumulation, and Gingivitis in Dogs. (United States)

    Harvey, Colin; Serfilippi, Laurie; Barnvos, Donald


    The efficacy of brushing the teeth of beagle dogs in a randomized, controlled, blinded study design using a clearly-defined brushing technique was evaluated for 4 brushing frequencies: brushing daily, brushing every other day, brushing weekly and brushing every other week, compared with no brushing in a control group of dogs. All dogs were fed a standard dry kibble diet during the study. Standard plaque, calculus, and gingivitis indices were used to score the teeth. A 'clean tooth' model was used. No gingival or non-gingival lacerations or other signs of injury to oral tissues were found at the end of the 28 day trial period. Brushing more frequently had greater effectiveness in retarding accumulation of plaque and calculus, and reducing the severity of pre-existing gingivitis. Brushing daily or every other day produced statistically significant improved results compared with brushing weekly or every other week. Based on the results of this study, daily brushing is recommended.

  10. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides (United States)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew


    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  11. Efficacy of oral brush cytology in the evaluation of the oral premalignant and malignant lesions


    Babshet, M; Nandimath, K; S K Pervatikar; V G Naikmasur


    Objective: In the present study, oral brush cytology of premalignant and malignant lesions was performed using tooth brush. The cytopathological diagnosis of brush cytology was compared with that of punch biopsy. The reliability of oral brush cytology using tooth brush was assessed in terms of sensitivity and specificity. Materials and Methods: A total of 67 patients, 32 premalignant lesions and other 35 frank oral carcinomas, were included in the study. All patients underwent oral brush ...

  12. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking. (United States)

    Bekri, Samya; Leclercq, Laurent; Cottet, Hervé


    The present work aims at studying the influence of the nature of the polyelectrolytes used in successive multiple ionic polymers on the performances of protein separation in acetic acid volatile background electrolyte. A broad library of polyelectrolyte multilayers was compared on the basis of 9 different weak/strong polyanions and 8 different weak/strong polycations. More than 20 couples of different polyelectrolytes were investigated. The separation efficiencies (expressed as the N/l ratio, where N is the plate number and l is the capillary effective length) were systematically compared for the separation of a protein test mixture. The coating stability was evaluated by the relative standard deviation of the migration times. For weak polyelectrolyte multilayers, the influence of the polymer crosslinking on the coating stability and separation efficiency has been studied. Intra-day repeatability of 100 successive runs, and capillary-to-capillary reproducibility were tested on coatings of each category (crosslinked and non crosslinked). The main (not obvious) result rising from this study is that the nature of the polyanion constituting the multilayers is of primary importance for the performance in terms of separation efficiency and stability, even when the mulilayers finish with a polycation.

  13. Brush seal shaft wear resistant coatings (United States)

    Howe, Harold


    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  14. Carbazole functionalized isocyanide brushes in heterojunction photovoltaic devices

    NARCIS (Netherlands)

    Lim, E.; Gao, F.; Schwartz, E.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; Rowan, A.E.; Greenham, N.C.; Do, L.M.


    In this work, carbazole-containing polyisocyanide (PIACz) brushes were used for photovoltaic devices. A photovoltaic device was fabricated on top of the brushes by spin-coating a suitable acceptor and evaporating an Al cathode. Devices with a poly(N-vinylcarbazole) (PVK) bulk polymer were also prepa

  15. 16 CFR Figure 9 to Part 1610 - Brushing Device Template (United States)


    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  16. 16 CFR Figure 8 to Part 1610 - Brush (United States)


    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Brush 8 Figure 8 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 8 Figure 8 to Part 1610—Brush ER25MR08.007...

  17. 16 CFR Figure 7 to Part 1610 - Brushing Device (United States)


    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Brushing Device 7 Figure 7 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 7 Figure 7 to Part 1610—Brushing Device ER25MR08.006...

  18. 75 FR 39706 - Natural Bristle Paint Brushes From China (United States)


    ... the antidumping duty order on natural bristle paint brushes from China (75 FR 21347, April 23, 2010... revoke the order on June 16, 2010 (75 FR 34097). In light of these developments, the Commission is... COMMISSION Natural Bristle Paint Brushes From China AGENCY: United States International Trade...

  19. Hair breakage during combing. IV. Brushing and combing hair. (United States)

    Robbins, Clarence; Kamath, Yash


    During combing of hair, longer fiber breaks (>2.5 cm) occur principally by impact loading of looped crossover hairs, while short segment breaks (bleaching hair, a longer comb stroke, increasing fiber curvature, wet combing versus dry combing, and brushing versus combing all provide for an increase in long segment breaks and this ratio, with the largest effect produced by brushing.

  20. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica


    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  1. Method for making a high current fiber brush collector (United States)

    Scuro, S. J.


    An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.

  2. Virtual hairy brush for digital painting and calligraphy

    Institute of Scientific and Technical Information of China (English)

    XU Songhua; Lau Francis C. M.; XU Congfu; PAN Yunhe


    The design of user friendly and expressive virtual brush systems for interactive digital painting and calligraphy has attracted a lot of attention and effort in both computer graphics and human-computer interaction circles for a long time. Providing a digital environment for paper-less artwork creation is not only challenging in terms of algorithmic design, but also promising for its potential market values. This paper proposes a novel algorithmic framework for interactive digital painting and calligraphy based a novel virtual hairy brush model. The algorithms in the kernel of our simulation framework are built upon solid modeling techniques. Implementing the algorithms, we have developed a virtual hairy brush prototype system with which end users can interactively produce high-quality digital paintings and calligraphic artwork. (The latest progress of our virtual brush project is reported at the website "".)

  3. On the scattering properties of polyelectrolyte gels (United States)

    Barrat, Jean-Louis; Joanny, Jean-François; Pincus, Phil


    We present a simple model for scattering properties of polyelectrolyte gels at swelling equilibrium. In the weak screening limit where the Debye-Hückel screening length is larger than the mesh size of the gel, the direct electrostatic interactions are negligible and the swelling is driven by the osmotic pressure of the counterions. The tension created by this pressure is transmitted through the crosslinks to the elastic chains which behave as isolated chains with an applied force at their end points. The structure factor of the gel can be split into a frozen component due to the average concentration heterogeneities and a thermodynamic component due to concentration fluctuations. The frozen component has a peak at a wavevector of the order of the mesh size of the gel, the thermodynamic component has a peak at a higher wavevector of the order of the inverse transverse radius of the chains. At infinite times the dynamic structure factor relaxes towards the frozen component of the static structure factor. In the limit of small wavevectors the relaxation is diffusive with a diffusion constant equal to the Stokes diffusion constant of the Pincus blobs of the stretched chains. The diffusion constant shows a minimum at a wavevector of the order of the inverse transverse radius of the chains. Nous présentons un modèle simple pour étudier la diffusion de rayonnement par des gels polylectrolytes à l'équilibre de gonflement. Dans la limite d'écrantage faible où la longueur d'écran de Debye-Hückel est plus grande que la maille du gel, les interactions électrostatiques directes sont négligeables et le gonflement est dû à la pression osmotique des contreions. La tension créée par cette pression est transmise par les noeuds du gel aux chaines élastiques qui se comportent comme des chaines isolées avec une force extérieure appliquée aux extrémités. Le facteur de structure du gel est la somme d'une composante gelée due aux hétérogénéités de concentration

  4. Polyelectrolyte complexes : Preparation, characterization, and use for control of wet and dry adhesion between surfaces


    Ankerfors, Caroline


    This thesis examines polyelectrolyte complex (PEC) preparation, adsorption behaviour, and potential use for control of wet and dry adhesion between surfaces. PEC formation was studied using a jet-mixing method not previously used for mixing polyelectrolytes. The PECs were formed using various mixing times, and the results were compared with those for PECs formed using the conventional polyelectrolyte titration method. The results indicated that using the jet mixer allowed the size of the form...

  5. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms. (United States)

    Phenrat, Tanapon; Liu, Yueqiang; Tilton, Robert D; Lowry, Gregory V


    The surfaces of reactive nanoscale zerovalent iron (NZVI) particles used for in situ groundwater remediation are modified with polymers or polyelectrolytes to enhance colloidal stability and mobility in the subsurface. However, surface modification decreases NZVI reactivity. Here, the TCE dechlorination rate and reaction products are measured as a function of adsorbed polyelectrolyte mass for three commercially available polyelectrolytes used for NZVI surface modification including poly(styrene sulfonate) (PSS), carboxymethyl cellulose (CMC), and polyaspartate (PAP). The adsorbed mass, extended layer thickness, and TCE-polyelectrolyte partition coefficient are measured and used to explain the effect of adsorbed polyelectrolyte on NZVI reactivity. For all modifiers, the dechlorination rate constant decreased nonlinearly with increasing surface excess, with a maximum of a 24-fold decrease in reactivity. The TCE dechlorination pathways were not affected. Consistent with Scheutjens-Fleer theory for homopolymer adsorption, the nonlinear relationship between the dechlorination rate and the surface excess of adsorbed polyelectrolyte suggests that adsorbed polyelectrolyte decreases reactivity primarily by blocking reactive surface sites at low surface excess where they adsorb relatively flat onto the NZVI surface, and by a combination of site blocking and decreasing the aqueous TCE concentration at the NZVI surface due to partitioning of TCE to adsorbed polyelectrolytes. This explanation is also consistent with the effect of adsorbed polyelectrolyte on acetylene formation. This conceptual model should apply to other medium and high molecular weight polymeric surface modifiers on nanoparticles, and potentially to adsorbed natural organic matter.

  6. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions (United States)

    Marinsky, J.A.; Reddy, M.M.


    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  7. Comprehensive physical rehabilitation after injury brush

    Directory of Open Access Journals (Sweden)

    Kovalenko M.I.


    Full Text Available The influence of physical rehabilitation for patients after recovery efficiency injured hand. The study enrolled 36 patients after a hand injury, which was carried out surgery. Among patients were dominated women 66% and men 34% aged 25 to 50 years. To evaluate the effectiveness of rehabilitation programs used protractor Richter, centimeter tape, hand dynamometer, MHQ questionnaire and system of integral evaluation function brush. Survey of patients conducted at the clinical stage of rehabilitation for two weeks and before surgery. The efficiency effects of passive therapeutic exercises, massage and lymph drainage design for a hand operated device ARTROMOT-F. It is noted that physical rehabilitation for two weeks has greatly improved hand functions. Established to improve results core group of control by 21.8%, poor performance of the control group higher by 10.1% of the principal of, indicating the efficacy of the program.

  8. Nanoparticle organization in sandwiched polymer brushes. (United States)

    Curk, Tine; Martinez-Veracoechea, Francisco J; Frenkel, Daan; Dobnikar, Jure


    The organization of nanoparticles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the formation of colloidal structures in polymer brushes. Here we show that external fields are not essential to obtain such colloidal patterns: we report Monte Carlo and molecular dynamics simulations that demonstrate that ordered structures can be achieved by compressing a "sandwich" of two grafted polymer layers, or by squeezing a coated nanotube, with nanoparticles in between. We show that the pattern formation can be efficiently controlled by the applied pressure, while the characteristic length-scale, that is, the typical width of the patterns, is sensitive to the length of the polymers. Based on the results of the simulations, we derive an approximate equation of state for nanosandwiches.

  9. Quantifying Fluctuations/Correlations in Polymer Brushes (United States)

    Wang, Qiang; Zhang, Xinghua; Zhang, Pengfei; Li, Baohui


    Fast lattice Monte Carlo (FLMC) simulations with multiple occupancy of lattice sites and Kronecker δ -function interactions give orders of magnitude faster/better sampling of the configurational space of multi-chain systems than conventional lattice MC simulations with self- and mutual- avoiding walks and nearest-neighbor interactions. Using FLMC simulations with Wang-Landau -- Transition-Matrix sampling, we have studied polymer brushes in both an implicit and explicit solvent. The various quantities obtained from simulations (including the internal energy, Helmholtz free energy, constant-volume heat capacity, segmental distribution, and chain sizes) are compared with predictions from the corresponding lattice self-consistent field theory and Gaussian fluctuation theory that are based on the same Hamiltonian as in FLMC simulations (thus without any parameter-fitting) to unambiguously and quantitatively reveal the effects of system fluctuations and correlations neglected or treated only approximately in the theories. Q. Wang, Soft Matter, 5, 4564 (2009).

  10. Efficiency of the surgical washing of hands with brush and without brush

    Directory of Open Access Journals (Sweden)

    Fresia Canales Carmona


    Full Text Available The purpose of this article is to establish the answer to a clinical question regarding the effectiveness ofpreoperative hygiene with hand washing brush or without it. This first technique has been performed on the skinto reduce transient bacteria and to inhibit the growth of resident microorganisms as a common and required actbefore any surgical procedure. Despite this measure and others such as prophylactic antibiotics, the mainoperative complication continues to be the surgical wound infection. Today, it is as prevalent as in the past withthe consequent negative effects derived from it, both for the institutions and for patients. Being controversialtoday which one is the most effective and safe surgical hand washing method for the binomial: professionalsurgical team/ patient, this study is done under the criteria of the Evidence-Based Nursing.A question was builtin PICO format (Personal, Intervention, Comparison and Outcome. After this is done, continues informationsearch in the databases GOOGLE ACADÉMICO, Pub Med, Cochrane y Base de Datos para la Investigación enEnfermería (BDIE We obtained 20 articles related to the topic of them 8, which fulfilled the set CASPe criteriato answer the clinical question, were analyzed. We conclude that washing hands with a brush is equally effectiveas without brush technique in terms of decreased of the superficial skin bacterial flora, although this technique hasadvantages over the traditional practice.

  11. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. (United States)

    Zyuzin, Mikhail V; Díez, Paula; Goldsmith, Meir; Carregal-Romero, Susana; Teodosio, Cristina; Rejman, Joanna; Feliu, Neus; Escudero, Alberto; Almendral, María Jesús; Linne, Uwe; Peer, Dan; Fuentes, Manuel; Parak, Wolfgang J


    The immunocompability of polyelectrolyte capsules synthesized by layer-by-layer deposition has been investigated. Capsules of different architecture and composed of either non-degradable or biodegradable polymers, with either positively or negatively charged outer surface, and with micrometer size, have been used, and the capsule uptake by different cell lines has been studied and quantified. Immunocompatibility studies were performed with peripheral blood mononuclear cells (PBMCs). Data demonstrate that incubation with capsules, at concentrations relevant for practical applications, did not result in a reduced viability of cells, as it did not show an increased apoptosis. Presence of capsules also did not result in an increased expression of TNF-α, as detected with antibody staining, as well as at mRNA level. It also did not result in increased expression of IL-6, as detected at mRNA level. These results indicate that the polyelectrolyte capsules used in this study are immunocompatible.

  12. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers. (United States)

    Zawko, Scott A; Schmidt, Christine E


    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts.

  13. Aqueous dispersions of silver nanoparticles in polyelectrolyte solutions

    Indian Academy of Sciences (India)

    Dan Donescu; Raluca Somoghi; Marius Ghiurea; Raluca Ianchis; Cristian Petcu; Stefania Gavriliu; Magdalena Lungu; Claudia Groza; Carmen R Ionescu; Carmen Panzaru


    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spectrophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to study how the reagents and their concentrations influence particle size. SEM images show the nanostructure of the hybrid films and indicate a strong interaction between the polyelectrolyte and the silver NPs. Moreover, the silver NPs could be stored for one year without observation of aggregates or sedimentation. The final solid products obtained after evaporating to dryness can be used to produce stable dispersions upon mixing with water. Few of the final products were found to exhibit a high antibacterial and antifungal activity.

  14. Interaction of Fluorocarbon Containing Hydrophobically Modified Polyelectrolyte with Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)


    The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte (FMPAANa) with two kinds of nonionic surfactants (hydrogenated and fluorinated) in a semidilute (0.5 wt% ) aqueous solution had been studied by rheological measurements. Association behavior was found in both systems. The hydrophobic interaction of FMPAANa with fluorinated surfactant (FC171) is much stronger than that with hydrogenated surfactant (NP7.5) at low surfactant concentrations. The interaction is strengthened by surfactants being added for the density of active junctions increased. Whereas distinct phenomena for FC171 and NP7. 5 start to be found as the surfactants added over their respective certain concentration. The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.

  15. Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels (United States)

    Audus, Debra; Fredrickson, Glenn


    Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.

  16. Polyelectrolyte Multilayers in Microfluidic Systems for Biological Applications

    Directory of Open Access Journals (Sweden)

    Saugandhika Minnikanti


    Full Text Available The formation of polyelectrolyte multilayers (PEMs for the first time, two decades ago, demonstrating the assembly on charged substrates in a very simple and efficient way, has proven to be a reliable method to obtain structures tunable at the nanometer scale. Much effort has been put into the assembly of these structures for their use in biological applications. A number of these efforts have been in combination with microfluidic systems, which add to the nanoassembly that is already possible with polyelectrolytes, a new dimension in the construction of valuable structures, some of them not possible with conventional systems. This review focuses on the advancements demonstrated by the combination of PEMs and microfluidic systems, and their use in biological applications.

  17. Determination of three characteristic regimes of weakly charged polyelectrolytes monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Farhan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Shin, Kwanwoo [Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742 (Korea, Republic of)], E-mail:; Choi, Jae-Hak [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Satija, Sushil K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kim, Joon-Seop [Department of Polymer Science and Engineering, Chosun University (Korea, Republic of); Rafailovich, Miriam H.; Sokolov, Jon [Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794 (United States)


    We have demonstrated that monolayer films of randomly charged polystyrene sulfonated acid (PSSA) can be produced by the Langmuir technique, and observed the micro-domain structures, produced by the phase separation of electrostatically charged moieties and the hydrophobic moieties. Using atomic force microscopy and Langmuir isotherm, we found three specific regimes for the polyelectrolytes with various degrees of sulfonation (4-35%); very low charged PSSA (4-5%) in the hydrophobic regime, moderately charged PSSA (6-16%) which possessed a well-balanced nature between electrostatic and the hydrophobic interactions, and strongly amphiphilic nature of PSSA (6-16%) in the ionomer regime. Finally, we could categorize PSSA 35% in the polyelectrolyte regime, due to the dominance of the electrostatic interactions over the hydrophobic interactions.

  18. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer


    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  19. Polyelectrolyte Coacervates Deposited as High Gas Barrier Thin Films. (United States)

    Haile, Merid; Sarwar, Owais; Henderson, Robert; Smith, Ryan; Grunlan, Jaime C


    Multilayer coatings consisting of oppositely charged polyelectrolytes have proven to be extraordinarily effective oxygen barriers but require many processing steps to fabricate. In an effort to prepare high oxygen barrier thin films more quickly, a polyelectrolyte complex coacervate composed of polyethylenimine and polyacrylic acid is prepared. The coacervate fluid is applied as a thin film using a rod coating process. With humidity and thermal post-treatment, a 2 µm thin film reduces the oxygen transmission rate of 0.127 mm poly(ethylene terephthalate) by two orders of magnitude, rivalling conventional oxygen barrier technologies. These films are fabricated in ambient conditions using low-cost, water-based solutions, providing a tremendous opportunity for single-step deposition of polymeric high barrier thin films.

  20. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry


    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  1. Preparation of carbon brushes with thermosetting resin binder

    Institute of Scientific and Technical Information of China (English)


    Carbon brushes with a resin binder were prepared according to an industrial process and the effects of the molding pressure, grains size and cure temperature on the properties of brush samples were discussed. The results show that the bulk density,bending strength and Rockwell hardness increase, while resistivity decreases with increasing molding pressure. Cure temperature has much more influence on the properties of brushes than molding pressure and grains size. Isothermal differential scanning calorimetry(DSC) was used to estimate the degree of cure of resin binder and a novel method of using the true density to measure the degree of cure of resin binder was presented and discussed briefly. Based on optimal process parameters carbon brushes were manufactured, durability tests for brushes were carried out on an alternate current motor and scanning electron microscope(SEM)was adopted to observe the morphology of worn surface of brushes. The results show that a luster oxide film can be formed on the surface of brushes and their service life reaches 380 h.

  2. A norbornene polymer brush for electro-optic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue; Spring, Andrew M.; Yu, Feng; Yamamoto, Kazuhiro [Institute for Materials Chemistry and Engineering, Kyushu University, 6–1 Kasuga Fukuoka 816–8580 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588–2 Iwaoka, Nishi-ku, Kobe 651–2492 (Japan); Yokoyama, Shiyoshi, E-mail: [Institute for Materials Chemistry and Engineering, Kyushu University, 6–1 Kasuga Fukuoka 816–8580 (Japan)


    Norbornene-dicarboximide derived polymer brushes containing Disperse Red 1 appended chromophores have been prepared by sequencial ring opening metathesis polymerization and atom transfer radical polymerization. This brush was then employed as an electro-optic polymer host for high molecular hyperpolarizability phenyl vinylene thiophene vinylene (FTC) bridge chromophores in a binary chromophore system. The r{sub 33} of the polymer brush/bi-chromophore network was evaluated via in situ poling and was measured as 94 pm/V compared to the benchmark polymethylmethacrylate (PMMA) system of 76 pm/V with an identical chromophore. Furthermore, our polymer brush/bi-chromophore network exhibited an enhanced poling efficiency of 1.37 (nm/V){sup 2} as compared to a simple PMMA - FTC host - guest 0.70 (nm/V){sup 2}. - Highlights: • Synthesis of a norbornene polymer brush. • Use of this polymer brush as a host for electro-optic materials. • The polymer brush enables a large electro-optic coefficient r{sub 33}.

  3. Complex Coacervation composed of Polyelectrolytes Alginate and Chitosan

    Institute of Scientific and Technical Information of China (English)



    Alginate sodium (ALG) and chitosan (CHI) can form fiber, films, microspheres, hydrogels and all with a wide range of biomedical applications.Few works have been done as a result of the easily flocculation of chitosan in negatively charged matrix.Complex coacervation composed of polyelectrolytes alginate and chitosan were successfully fabricated.The results showed that the lower molecular weights of the chitosan is better for the fabricated of the complex coacervation.

  4. Formation of polyelectrolyte multilayers: ionic strengths and growth regimes

    NARCIS (Netherlands)

    Tang, K.; Besseling, N.A.M.


    This article presents a study of layer-by-layer (LbL) formation of poly-electrolyte multilayers (PEMs). Upon increasing ionic strength LbL growth patterns vary from linear for the lowest salt concentrations ([NaCl] = 0, 0.001, and 0.01 M) to exponential (for [NaCl] = 0.5 and 1 M). The slope of the

  5. Polyelectrolyte Biomaterial Interactions Provide Nanoparticulate Carrier for Oral Insulin Delivery


    Reis, Catarina Pinto; Ribeiro, António J; Veiga, Francisco; Neufeld, Ronald J; Damgé, Christiane


    Nanospheres are being developed for the oral delivery of peptide-based drugs such as insulin. Mucoadhesive, biodegradable, biocompatible, and acid-protective biomaterials are described using a combination of natural polyelectrolytes, with particles formulated through nanoemulsion dispersion followed by triggered in situgel complexation. Biomaterials meeting these criteria include alginate, dextran, chitosan, and albumin in which alginate/dextran forms the core matrix complexed with chitosan a...

  6. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization (United States)

    Sen, Swati; Kundagrami, Arindam


    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  7. Formation of polyelectrolyte multilayers: ionic strengths and growth regimes

    NARCIS (Netherlands)

    Tang, K.; Besseling, N.A.M.


    This article presents a study of layer-by-layer (LbL) formation of poly-electrolyte multilayers (PEMs). Upon increasing ionic strength LbL growth patterns vary from linear for the lowest salt concentrations ([NaCl] = 0, 0.001, and 0.01 M) to exponential (for [NaCl] = 0.5 and 1 M). The slope of the l

  8. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Swati; Kundagrami, Arindam, E-mail: [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, West Bengal (India)


    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton’s law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  9. Brushing abrasion of luting cements under neutral and acidic conditions. (United States)

    Buchalla, W; Attin, T; Hellwig, E


    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  10. Adsorption of anionic polyelectrolytes to dioctadecyldimethylammonium bromide monolayers (United States)

    Engelking, J.; Menzel, H.

    Monolayers of dioctadecyldimethylammonium bromide (DODA) at the air/water interface were used as model for charged surfaces to study the adsorption of anionic polyelectrolytes. After spreading on a pure water surface the monolayers were compressed and subsequently transferred onto a polyelectrolyte solution employing the Fromherz technique. The polyelectrolyte adsorption was monitored by recording the changes in surface pressure at constant area. For poly(styrene sulfonate) and carboxymethylcellulose the plot of the surface pressure as function of time gave curves which indicate a direct correlation between the adsorbed amount and surface pressure as well as a solely diffusion controlled process. In the case of rigid rod-like poly(p-phenylene sulfonate)s the situation is more complicated. Plotting the surface pressure as function of time results in a curve with sigmoidal shape, characterized by an induction period. The induction period can be explained by a domain formation, which can be treated like a crystallization process. Employing the Avrami expression developed for polymer crystallization, the change in the surface pressure upon adsorption of rigid rod-like poly(p-phenylene sulfonate)s can be described.

  11. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces. (United States)

    Zhang, Ying; Wang, Lei; Wang, Xuejing; Qi, Guodong; Han, Xiaojun


    A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer-by-layer technique on a silicon oxide surface modified with a 3-aminopropyltriethoxysilane (APTES) monolayer. The surface pK(a) value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer-by-layer assembly. Micropatterned polyelectrolyte films were obtained by deep-UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm(2) s(-1) in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.

  12. Solubilization of trichloroethylene by polyelectrolyte/surfactant complexes

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))


    An automated vapor pressure method is used to obtain solubilization isotherms for trichloroethylene (TCE) in polyelectrolyte/surfactant complexes throughout a wide range of solute activities at 20 and 25 C. The polyelectrolyte chosen is sodium poly(styrenesulfonate), PSS< and the surfactant is cetylpyridinium chloride or N-hexadecylpyridinium chloride, CPC. Data are fitted to the quadratic equation K = K[sub 0](1[minus][alpha]X + [beta]X[sup 2]), which correlates the solubilization equilibrium constant (K) with the mole fraction of TCE (X) in the micelles or complexes at each temperature. Activity coefficients are also obtained for TCE in the PSS/CPC complexes as a function of X. The general solubilization of TCE in PSS/CPC complexes resembles that of TCE in CPC micelles, as well as that of benzene or toluene in CPC micelles, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The presence of the polyelectrolyte causes a small decrease in the ability of the cationic surfactant to solubilize TCE, while greatly reducing the concentration of the surfactant present in monomeric form. PSS/CPC complexes may be useful in colloid-enhanced ultrafiltration processes to purify organic-contaminated water.

  13. Linear Viscoelasticity and Swelling of Polyelectrolyte Complex Coacervates (United States)

    Hamad, Fawzi; Colby, Ralph


    The addition of near equimolar amounts of poly(diallyldimethylammonium chloride) to poly(isobutylene-alt-maleate sodium), results in formation of a polyelectrolyte complex coacervate. Zeta-potential titrations conclude that these PE-complexes are nearly charge-neutral. Swelling and rheological properties are studied at different salt concentrations in the surrounding solution. The enhanced swelling observed at high salt concentration suggests the system behaves like a polyampholyte gel, and weaker swelling at very low salt concentrations implies polyelectrolyte gel behavior. Linear viscoelastic oscillatory shear measurements indicate that the coacervates are viscoelastic liquids and that increasing ionic strength of the medium weakens the electrostatic interactions between charged units, lowering the relaxation time and viscosity. We use the time-salt superposition idea recently proposed by Spruijt, et al., allowing us to construct master curves for these soft materials. Similar swelling properties observed when varying molecular weights. Rheological measurements reveal that PE-complexes with increasing molecular weight polyelectrolytes form a network with higher crosslink density, suggesting time-molecular weight superposition idea.

  14. Changes of Resistance During Polyelectrolyte-enhanced Stirred Batch Ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    ZHU Xin-Sheng; Kwang-Ho CHOO


    The permeation flux or the resistance in the ultrafiltration process is mainly limited by osmotic pressure,and it may originate from various kinds of polymer interactions. However, the real origin of permeation resistance hasn't been clarified yet in the light of polymer solution nature. The removal of nitrate contamination by polyelectrolytes was carried out with stirred batch ultrafiltration. The polyelectrolyte concentrations both in permeate and retentate were analyzed with total organic carbon analyzer and permeate mass was acquired by electronic balance connected with computer. The total resistance was calculated and interpreted based on the osmotic pressures in three concentration regimes. In the dilute region, the resistance was proportional to polymer concentration; in the semidilute region, the resistance depended on polymer concentration in the parabolic relationship; in the highly concentrated solution regime, the osmotic pressure factor (OPF) would dominate the total resistance; and the deviation from OPF control could come from the electrostatic repulsion between the tightly compacted and charged polyelectrolyte particles at extremely concentrated solution regime. It was first found that dilute and semidilute concentration regions can be easily detected by plotting the log-log curves of the polymer concentration versus the ratio of the total resistance to polymer concentration. The new concept OPF was defined and did work well at highly concentrated regime.

  15. Exploration of polyelectrolytes as draw solutes in forward osmosis processes

    KAUST Repository

    Ge, Qingchun


    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensiveenergy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic. In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. © 2011 Elsevier Ltd.

  16. Hollow polyelectrolyte multilayer tubes: mechanical properties and shape changes. (United States)

    Mueller, Renate; Daehne, Lars; Fery, Andreas


    In this paper, novel hollow polyelectrolyte multilayer tubes from poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) were prepared: Readily available glass fiber templates are coated with polyelectrolytes using the layer-by-layer technique, followed by subsequent fiber dissolution. Depending on the composition of the polymeric multilayer, stable hollow tubes or tubes showing a pearling instability are observed. This instability corresponds to the Rayleigh instability and is a consequence of an increased mobility of the polyelectrolyte chains within the multilayer. The well-defined stable tubes were characterized with fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy (AFM). The tubes were found to be remarkably free of defects, which results in an impermeable tube wall for even low molecular weight molecules. The mechanical properties of the tubes were determined with AFM force spectroscopy in water, and because continuum mechanical models apply, the Young's modulus of the wall material was determined. Additionally, scaling relations for the dependency of tube stiffness on diameter and wall thickness were validated. Because both parameters can be experimentally controlled by our approach, the deformability of the tubes can be varied over a broad range and adjusted for the particular needs.

  17. Antibacterial polyelectrolyte-coated Mg alloys for biomedical applications (United States)

    Seraz, Md. S.; Asmatulu, R.; Chen, Z.; Ceylan, M.; Mahapatro, A.; Yang, S. Y.


    This study deals with two biomedical subjects: corrosion rates of polyelectrolyte-coated magnesium (Mg) alloys, mainly used for biomedical purposes, and antibacterial properties of these alloys. Thin sheets of Mg alloys were coated with cationic polyelectrolyte chitosan (CHI) and anionic polyelectrolyte carboxymethyl cellulose (CMC) using a layer-by-layer coating method and then embedded with antibacterial agents under vacuum. Electrochemical impedance spectroscopy was employed to analyze these samples in order to detect their corrosion properties at different conditions. In the electrochemical analysis section, a corrosion rate of 72 mille inches per year was found in a salt solution for the sample coated with a 12 phosphonic acid self-assembled monolayer and 9 CHI/CMC multilayers. In the antibacterial tests, gentamicin was used to investigate the effects of the drug embedded with the coated surfaces against the Escherichia coli (E. coli) bacteria. Antibacterial studies were tested using the disk diffusion method. Based on the standard diameter of the zone of inhibition chart, the antibacterial diffusion from the surface strongly inhibited bacterial growth in the regions. The largest recorded diameter of the zone of inhibition was 50 mm for the pre-UV treated and gentamicin-loaded sample, which is more than three times the standard diameter.

  18. Deflocculation of Cellulosic Suspensions with Anionic High Molecular Weight Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Markus Heikki Juhani Korhonen


    Full Text Available Pulp fibers have a strong tendency to form flocs in water suspensions, which may cause their undesirable distribution in the paper sheets. This flocculation can be controlled by adding, e.g., an anionic high molecular weight polyelectrolyte in the fiber suspension. The objective of this study was to investigate the effect of anionic polyelectrolytes on deflocculation kinetics, dewatering, and rheology of cellulosic suspensions. The results showed that both microfibrillated cellulose (MFC and macroscopic pulp fibers can be dispersed using anionic polyacrylamides (APAM. The higher the molecular weight of APAM, the higher is its effect. Adsorption experiments illustrate that anionic polyelectrolytes do not strongly attach to cellulose surfaces but they can be partly entrapped or can disperse nanocellulose fibrils (increase the swelling. Based on rheological experiments, the MFC network became weaker with APAM addition. Similar to the flocculation mechanism of cellulosic materials with polymers, deflocculation is also time dependent. Deflocculation occurs very rapidly, and the maximum deflocculation level is achieved within a few seconds. When mixing is continued, the floc size starts to increase again. Also dewatering was found to be strongly dependent on the contact time with the APAMs. These results indicate that the positive effects of anionic deflocculants are quickly diminished due to shear forces, and therefore, the best deflocculating effect is achieved using as short a contact time as possible.

  19. Tunable protein-resistance of polycation-terminated polyelectrolyte multilayers. (United States)

    Tristán, Ferdinando; Palestino, Gabriela; Menchaca, J-Luis; Pérez, Elías; Atmani, Hassan; Cuisinier, Frédéric; Ladam, Guy


    The prevention of nonspecific protein adsorption is a crucial prerequisite for many biomedical and biotechnological applications. Therefore, the design of robust and versatile methods conferring optimal protein-resistance properties to surfaces has become a challenging issue. Here we report the unexpected case of polycation-ending polyelectrolyte multilayers (PEM) that efficiently prevented the adsorption of a negatively charged model protein, glucose oxidase (GOX). PEM films were based on two typical weak poyelectrolytes: poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). No chemical modification of the polyelectrolytes was required and tunable GOX adsorption was possible by simply changing the buildup pH conditions. Protein-resistance properties are attributed to high film hydration becoming the predominant factor over electrostatic interactions. We explain this effect by oscillations of the internal PAA ionization state throughout the buildup, which results in an excess of carboxylic acid groups within the film. This excess acts as a reservoir of potential carboxylate groups compensating the outer PAH positive charges. Partial results indicated that the system was also resistant to the adsorption of a positively charged protein, lysozyme. Control of the internal ionization of weak polyelectrolyte multilayers might open a route toward simple tuning of protein adsorption. These results should help to rationalize the design of biomaterials, biosensors, or protein separation devices.

  20. Brushes and soap : Grafted polymers and their interactions with nanocolloids


    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafting, however, this isotropic osmotic pressure results in an anisotropic stretching of the chains normal to the surface. This degree of stretching can be quite extensive; in this thesis PEO-chains of 700 mono...

  1. On the collapse transition of a polymer brush: the case of lateral mobility

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Egorov, S.A.


    We consider a polymer brush composed of end-grafted polymer chains. Classical theory advocates that a worsening of the solvent quality results in a smooth decrease of the brush height from a swollen to a dense brush. We report that a homogeneous brush under poor solvent conditions can have a

  2. Antimicrobial penetration in a dual-species oral biofilm after noncontact brushing : an in vitro study

    NARCIS (Netherlands)

    He, Y.; Peterson, B. W.; Ren, Y.; van der Mei, H. C.; Busscher, H. J.


    Oral biofilm is inevitably left behind, even after powered brushing. As a special feature, powered brushing removes biofilm in a noncontact mode. When the brushing distance becomes too large, biofilm is left behind. We hypothesize that biofilm left behind after brushing has different viscoelastic pr

  3. The Simulation of the Brush Stroke Based on Force Feedback Technology

    Directory of Open Access Journals (Sweden)

    Chao Guo


    Full Text Available A novel simulation method of the brush stroke is proposed by applying force feedback technology to the virtual painting process. The relationship between force and the brush deformation is analyzed, and the spring-mass model is applied to construct the brush model, which can realistically simulate the brush morphological changes according to the force exerted on it. According to the deformation of the brush model at a sampling point, the brush footprint between the brush and the paper is calculated in real time. Then, the brush stroke is obtained by superimposing brush footprints along sampling points, and the dynamic painting of the brush stroke is implemented. The proposed method has been successfully applied to the virtual painting system based on the force feedback technology. In this system, users can implement the painting in real time with a Phantom Desktop haptic device, which can effectively enhance reality to users.

  4. Adsorption of dispersing polyelectrolytes: stabilization of drilling fluids; Adsorption de polyelectrolytes dispersants: stabilisation des fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Balastre, M.


    Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)

  5. Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. (United States)

    Welch, M Elizabeth; Xu, Youyong; Chen, Hongjun; Smith, Norah; Tague, Michele E; Abruña, Héctor D; Baird, Barbara; Ober, Christopher K


    Polymer brushes have many desirable characteristics such as the ability to tether molecules to a substrate or change the properties of a surface. Patterning of polymer films has been an area of great interest due to the broad range of applications including bio-related and medicinal research. Consequently, we have investigated patterning techniques for polymer brushes which allow for two different functionalities on the same surface. This method has been applied to a biosensor device which requires both polymer brushes and a photosensitizer to be polymerized on a patterned gold substrate. Additionally, the nature of patterned polymer brushes as removable thin films was explored. An etching process has enabled us to lift off very thin membranes for further characterization with the potential of using them as Janus membranes for biological applications.

  6. Anthrax in Vintage Animal-hair Shaving Brushes

    Centers for Disease Control (CDC) Podcasts


    Dr. Kate Hendricks, a CDC anthrax expert, discusses anthrax in vintage shaving brushes.  Created: 8/8/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2017.

  7. Virtual instrument for monitoring process of brush plating

    Institute of Scientific and Technical Information of China (English)

    JING Xue-dong; XU Bin-shi; WANG Cheng-tao; ZHU Sheng; DONG Shi-yun


    A virtual instrument(Ⅵ) was developed to monitor the technological parameters in the process of brush plating, including coating thickness, brush-plating current, current density, deposition rate, and brush plating voltage. Meanwhile two approaches were presented to improve the measurement accuracy of coating thickness. One of them aims at eliminating the random interferences by moving average filtering; while the other manages to calculate the quantity of electricity consumed accurately with rectangular integration. With these two approaches, the coating thickness can be measured in real time with higher accuracy than the voltage-frequency conversion method. During the process of plating all the technological parameters are displayed visually on the front panel of the Ⅵ. Once brush current or current density overruns the limited values, or when the coating thickness reaches the objective value, the virtual will alarm. With this Ⅵ, the solution consumption can be decreased and the operating efficiency is improved.

  8. Electroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels

    Directory of Open Access Journals (Sweden)

    Qianqian Cao


    Full Text Available Mixed polymer brush-grafted nanochannels—where two distinct species of polymers are alternately grafted on the inner surface of nanochannels—are an interesting class of nanostructured hybrid materials. By using a coarse-grained molecular dynamics simulation method, we are able to simulate the electrokinetic transport dynamics of the fluid in such nanochannels as well as the conformational behaviors of the mixed polymer brush. We find that (1 the brush adopts vertically-layered and longitudinally-separated structures due to the coupling of electroosmotic flow (EOF and applied electric field; (2 the solvent quality affects the brush conformations and the transport properties of the EOF; (3 the EOF flux non-monotonically depends on the grafting density, although the EOF velocity in the central region of the channel monotonically depends on the grafting density.

  9. The study of functional parameter of the electric coal brushes

    Directory of Open Access Journals (Sweden)

    Claudia Staşac


    Full Text Available These paper present a study about the analyzeof the functional parameters of the electrical coal brush.The analyze was made with an experimental device, andthe results was prelucrate in MathCAD software.

  10. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B


    Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin...... lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed...... by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly "trapped" by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border...

  11. Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes (United States)


    REPORT Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report a novel solid phase...form poly-macromer brushes wherein macromonomers are linked via triazole groups. After each addition step, the terminal alkyne group can be deprotected...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Solid Phase Synthesis , polymers and copolymers Hernán R. Rengifo, Cristian Grigoras, Benjamin I

  12. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on

    NARCIS (Netherlands)

    Boehm, J.T.C.


    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.Polyacrylic acid (PAA), polymethacrylic acid (PMA) and the copolymers o

  13. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on emulsification

    NARCIS (Netherlands)

    Böhm, J.T.C.


    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.

    Polyacrylic acid (PAA), polymethacrylic acid (PMA)

  14. Cylindrical cell model for the electrostatic free energy of polyelectrolyte complexes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Cohen Stuart, M.A.


    Associative phase separation (complex coacervation) in a mixture of oppositely charged polyelectrolytes can lead to different types of (inter-)polyelectrolyte complexes (soluble micelles, macroscopic precipitation). In a previous report [Langmuir 2004, 20, 2785-2791], we presented a model for the

  15. Brush development for underwater ship hull coating maintenance (United States)

    Tribou, Melissa Eileen

    Ship hull grooming has been proposed as an environmentally friendly method of maintaining ship hull coatings in a fouling-free condition. It is defined as the frequent and gentle cleaning of a ship hull coating to prevent the establishment of fouling. This research investigated the grooming tool properties and operational requirements needed to implement the method. The grooming tool needs to provide sufficient force to remove incipient fouling without damaging the surface and consume minimal energy. Research showed that a vertical rotating brush design containing brushes filled with angled polypropylene bristles provided an effective method. This brush system was able to successfully prevent incipient fouling from becoming established on a copper ablative and two silicone fouling release coatings when groomed on a weekly basis; however, biofilm was not completely controlled. Brush design and operational parameters in relation to brush normal forces were investigated and models were developed to understand the relationship between bristle stiffness, dimensions, and angular velocity. A preliminary look at wear found that bristle stiffness has an effect on the degree of marring of the surface of a silicone fouling release coating. The knowledge gained by this research may be used to optimize grooming brush design and operational parameters that can be applied to the design and deployment of low power autonomous underwater vehicles that will groom the ship while in port.

  16. Rotordynamic and leakage characteristics of a 4-stage brush seal (United States)

    Conner, K. J.; Childs, D. W.


    Experimental results are presented for the direct and cross-coupled stiffness and damping coefficients as well as the leakage performance for a 4-stage brush seal. Variable test parameters include the inlet pressure, pressure ratio, shaft speed, fluid prerotation, and seal spacing. Direct damping is shown to increase with running speed; otherwise, the rotordynamic coefficients are relatively insensitive to changes in the test parameters. Cross-coupled stiffness is generally unchanged by increasing the inlet tangential velocity to the seals, suggesting that the brush seal is not affected by inlet swirl. Direct stiffness is shown to increase with frequency; however, the magnitudes of direct stiffness are always positive. Cross-coupled stiffness increases slightly with frequency; yet not as drastically as direct stiffness. Comparisons of test results for the 4-stage brush seal with an 8-cavity labyrinth showed superior rotordynamics performance for the brush seal; viz., large values for direct stiffness and lower values for the (destabilizing) cross-coupled stiffness coefficient. The damping for brush seals is smaller, but comparable to labyrinth seals. The whirl-frequency ratio is always smaller for the brush seal.

  17. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    CERN Document Server

    Steitz, R; Tauer, K; Khrenov, Yu V; Klitzing, K V


    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D sub 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  18. On the difference in ionization properties between planar interfaces and linear polyelectrolytes (United States)

    Borkovec, Michal; Daicic, John; Koper, Ger J. M.


    Ionizable planar interfaces and linear polyelectrolytes show markedly different proton-binding behavior. Planar interfaces protonate in a single broad step, whereas polyelectrolytes mostly undergo a two-step protonation. Such contrasting behavior is explained using a discrete-charge Ising model. This model is based on an approximation of the ionizable groups by point charges that are treated within a linearized Poisson–Boltzmann approximation. The underlying reason as to why planar interfaces exhibit mean-field-like behavior, whereas linear polyelectrolytes usually do not, is related to the range of the site–site interaction potential. For a planar interface, this interaction potential is much more long ranged if compared with that of the cylindrical geometry as appropriate to a linear polyelectrolyte. The model results are in semi-quantitative agreement with experimental data for fatty-acid monolayers, water-oxide interfaces, and various linear polyelectrolytes. PMID:9108004

  19. Morphology of cobalt ferrite nanoparticle-polyelectrolyte multilayered nanocomposites (United States)

    Alcantara, G. B.; Paterno, L. G.; Fonseca, F. J.; Morais, P. C.; Soler, M. A. G.


    Novel magnetic nanocomposite films with controlled morphology were produced via the electrostatic layer-by-layer assembly of cationic CoFe 2O 4 nanoparticles and anionic poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) complex. The electrostatic interaction between nanoparticle and the polyelectrolyte complex ensured a stepwise growth of the nanocomposite film with virtually identical amounts of materials being adsorbed at each deposition cycle as observed by UV-vis spectroscopy. AFM images acquired under the tapping mode revealed a globular morphology with dense and continuous layers of nanoparticles with voids being filled with polymeric material.

  20. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)


    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  1. Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. (United States)

    Peyratout, Claire S; Dähne, Lars


    This review addresses the fabrication and properties of novel polyelectrolyte microcapsules, with an emphasis on their mechanical and permeability properties. Ease of preparation through layer-by-layer self assembly, accurate control over wall thickness as well as flexibility in the choice of constituents make these capsules very promising for numerous applications in materials and life science. Moreover, by engineering the inner and outer interfaces, these capsules can be used as microreactors for precipitation, crystallization, and polymerization reactions, as well as enzymatic, and heterogeneous catalysis.

  2. Preparation and Properties of Water-soluble Conjugated Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    BAO Xiangjun; HONG Ruibin; HU Jianhua; ZHONG Yiping; LIU Ping; DENG Wenji


    The water-soluble conjugated polyelectrolyte, poly[3-(1′-ethyloxy-2′-N- methylimidazole) thiophene] (PEOIMT), was prepared. Its photophysical and electrochemical properties, and response characteristics to the external condition (e g, temperature response, solvent response and pH response), were investigated. The results show the PEOIMT belongs to the organic semiconductor. The interaction between the PEOIMT and the bovine serum albumin (BSA) was investigated using UV-vis spectroscopy. It was found that the PEOIMT could interact with the BSA. The PEOIMT can be used as a biosensor to detect the BSA.


    Institute of Scientific and Technical Information of China (English)

    Jian-qiang Chen; Yu-fang Shao; Zhen Yang; Hu Yang; Rong-shi Cheng


    It was found that the interface effects in viscous capillary flow influenced the process of viscosity measurement greatly,and the abnormal viscosity behaviors of polyelectrolytes as well as neutral polymers in dilute solution region were ascribed to interface effect.According to this theory,we have reviewed the previous viscosity data of derivatives of poly-2-vinylpyridine reported by Maclay and Fuoss first.Then,the abnormal viscosity behaviors of a series of sodium polystyrene sulfonate samples with various molecular weights in dilute aqueous solutions were studied further.The solute adsorption behaviors and structural information of polymers have been discussed carefully.

  4. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint) (United States)


    Baca, H.; Ashley, C.; Carnes , E.; Lopez, D.; Flemming, J.; Dunphy, D.; Singh, S.; Lopez, G.; Brozik, S.; Werner-Washburne, M.; Brinker, J. Science...concentration of aqueous polyelectrolytes was 2 mg/mL ( pH 6.8). All polymer samples were treated briefly in a sonicating bath and then vortex mixed before...positively charged and PGA is negatively charged at pH 6.5-7 due to amine and acid ionized Scheme 1 Figure 1. ζ-potential of a B. subtilis spore in DI water at

  5. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail:, E-mail: [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail:, E-mail: [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)


    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  6. Molecular Thermodynamic Model for Polyelectrolyte Solutions with Added Salts%含盐聚电解质溶液的分子热力学模型

    Institute of Scientific and Technical Information of China (English)

    张波; 蔡钧; 刘洪来; 胡英


    A molecular thermodynamic model of polyelectrolyte developed previously was extended to polyelectrolyte solutions with added salts. Thermodynamic properties, such as activity coefficients of polyelectrolytes or added salts and osmotic coefficients of solvent, of a number of aqueous mixtures of polyelectrolytes and salts are analyzed with the proposed model. Successful correlation is obtained in the range of moderate or higher polyion concentration. For the same sample, thermodynamic properties of polyelectrolytes with and without simple electrolytes can be predicted mutually using parameters from regression data.

  7. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I., E-mail: [Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3100 (United States)


    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  8. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers (United States)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.


    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  9. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. (United States)

    Yuan, Youyong; Liu, Bin


    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  10. Self-Assembly of Metallic and Magnetic Nanoparticles into Polyelectrolyte Multilayers (United States)

    Riffard, Lucie

    Gold nanoparticles were wrapped with polyelectrolytes and were deposited on a substrate coated with polyelectrolyte multilayer films. The adsorption of the colloids on the surface was followed by AFM and UV-VIS spectroscopy. The results suggested that the deposition of particles on a surface was performed successfully just by using a very simple and quick dipping method. Using the same technique, magnetic particles were coated with polyelectrolytes and deposited on polyelectrolyte multilayer films. Once again the adsorption of the particles on polymer films was achieved and more complex assemblies were then built. They consisted of a succession of polyelectrolyte films and magnetic nanoparticles. As the colloids exhibit magnetic properties, the possibility of controlling properties of thin polymer films with a strong magnet is investigated. Magnetic colloids were embedded into a polymer assembly which undergoes the effects of a magnet. Its thickness changes were analyzed by ellipsometry when the sample was immersed in water. It appeared that magnetic nanoparticles were able to squeeze a polyelectrolyte thin film in presence of a magnet, despite the polymer chains resistance. This phenomenon can be used as nano-switches in various applications in medical field for example. In the future, it could be interesting to study the effect of an oscillating magnetic field on composite polyelectrolyte multilayer-magnetic particles. If the thickness fluctuates with the magnetic field, new applications towards the nanodisplacement of a fluid on a surface can be possible: the oscillations at the surface moving the adjacent fluid.

  11. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. (United States)

    Chremos, Alexandros; Douglas, Jack F


    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains using molecular dynamics simulations that include both salt and an explicit solvent. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, lp, in comparison with monovalent counter-ions. On the other hand, polyelectrolyte chains having trivalent counter-ions adopt a much more compact conformation than polyelectrolytes having monovalent and divalent counter-ions. We demonstrate that the tendency of polyelectrolyte chains to become deformed by proximal high valence counter-ions is due to chain "coiling" around the counter-ions. In particular, we find that the number of contacts that the proximal counter-ions have with the polyelectrolyte dictates the extent of chain coiling. This ion-binding induced coiling mechanism influences not only the conformational properties of the polyelectrolyte, but also the counter-ion distribution around the chain. Specifically, we find that higher valent counter-ions lead both to a counter-ion enrichment in close proximity to the polyelectrolyte and to a significant reduction in the spatial extent of the diffuse counter-ion cloud around the polyelectrolyte.

  12. Solution properties of star polyelectrolytes having a moderate number of arms (United States)

    Chremos, Alexandros; Douglas, Jack F.


    We investigate polyelectrolyte stars having a moderate number of arms by molecular dynamics simulations of a coarse-grained model over a range of polyelectrolyte concentrations, where both the counter-ions and solvent are treated explicitly. This class of polymeric materials is found to exhibit rather distinct static and dynamic properties from linear and highly branched star polyelectrolyte solutions emphasized in past studies. Moderately branched polymers are particle-like in many of their properties, while at the same time they exhibit large fluctuations in size and shape as in the case of linear chain polymers. Correspondingly, these fluctuations suppress crystallization at high polymer concentrations, leading apparently to an amorphous rather than crystalline solid state at high polyelectrolyte concentrations. We quantify the onset of this transition by measuring the polymer size and shape fluctuations of our model star polyelectrolytes and the static and dynamic structure factor of these solutions over a wide range of polyelectrolyte concentration. Our findings for star polyelectrolytes are similar to those of polymer-grafted nanoparticles having a moderate grafting density, which is natural given the soft and highly deformable nature of both of these "particles."

  13. Key considerations in the determination of polyelectrolyte concentration by the colloidal titration method

    Directory of Open Access Journals (Sweden)

    Miguel A. Zanuttini


    Full Text Available Medium or high charge density cationic polyelectrolytes are frequently used for water treatment. In the papermaking wet-end they are used as retention agents or as flocculating aids. Negative polyelectrolytes that enter the papermaking system increase the demand for cationic poly-electrolytes. Polyelectrolyte concentration can be determined by the colloidal titration method, using either of two options for detecting the endpoint: i visual observation or spectrophotometric determination of the colour change of an indicator, or ii streaming current measurement. This work discusses the best conditions for the application of the titration using spectrophotometric measurement for the end point detection. Poly-diallyldimethylammonium chloride was used as the cationic polyelec-trolyte, potassium polyvinyl sulphate as the negative polyelectrolyte, and o-toluidine blue as the positive indicator dye. The polyelectrolyte concen-tration range, interference from the metal ions affecting the indicator color change, the optimal indicator concentration to avoid precipitation problems, and the effect of adding a surfactant to the indicator solution were also considered. Titration curves were analyzed and optimized. Under these conditions the technique provided results with acceptable precision.

  14. Effects of Geometry on Leakage Flow Characteristics of Brush Seal

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei; Zhaobo Chen∗; Yinghou Jiao


    In order to better application of brush seal in rotating machinery, the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds⁃Averaged Navier⁃Stokes ( RANS) model coupling with a non⁃Darcian porous medium model. The reliability of the present numerical method is proved, which is in agreement with the experimental and numerical results from literatures. Three different bristle pack thicknesses, fence heights and initial clearances under different pressure ratios, rotational velocities and other operating conditions are utilized to investigate the effects of geometry modification on the brush seal leakage flow behaviors. It discusses the effectiveness of various geometry configurations outlining important flow features. The results indicate that the increase of fence height and clearance would lead to the increase of leakage rate. But the leakage is not linearly with respect to the bristle pack thickness, and the effect of rotational velocity is not obvious. Moreover, the detailed leakage flow fields and pressure distributions along the rotor surface, free bristle height, and fence height of the brush seals are also presented. The static pressure drop amplitude through the bristle pack and the pressure rise amplitude through the cavity would increase while the pressure differential increases. And the axial pressure is the main reason of bristle blow down. The results provide theoretical support for the brush seal structure optimal design.

  15. Controlled Growth of Metal-Organic Frameworks on Polymer Brushes. (United States)

    Hou, Liman; Zhou, Mingdong; Dong, Xiaozhe; Wang, Lei; Xie, Zhigang; Dong, Dewen; Zhang, Ning


    Polymer brushes are for the first time used to induce the synthesis of metal-organic frameworks (MOFs). The semi-fixed polymer chains provide a confined environment, which allows a mild growth of MOFs in between polymer chains to give surface-attached spherical MOF nanoparticles, in contrast to the larger MOF cubes/plates formed simultaneously in solution. Polymer brushes bearing carboxylate acid functionalities are indispensable for the formation of surface bound MOFs, while no MOF nanoparticles are observed on neutral polymer brushes. Characterization of the resultant MOF/polymer brushes hybrid film indicates the formation of crystalline MOF structure. The dimension of surface-attached MOFs can be fine-tuned from 20 nm to 1.4 μm simply by varying the structural parameter of polymer brushes and the nucleation duration. The method is not only applicable to the synthesis of MOF-5 and MIL-125, but shows great potential for the preparation of other surface-attached MOFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Impact of polyelectrolytes and their corresponding multilayers to human primary endothelial cells. (United States)

    Nolte, Andrea; Hossfeld, Susanne; Schroeppel, Birgit; Mueller, Anne; Stoll, Dieter; Walker, Tobias; Wendel, Hans Peter; Krastev, Rumen


    The layer-by-layer technique, which allows simple preparation of polyelectrolyte multilayers, came into the focus of research for development of functionalized medical devices. Numerous literature exist that concentrate on the film build-up and the behaviour of cells on polyelectrolyte multilayers. However, in case of very soft polyelectrolyte multilayers, studies of the cell behaviour on these films are sometimes misleading with regard to clinical applications because cells do not die due to cytotoxicity but due to apoptosis by missing cell adhesion. It turns out that the adhesion in vitro, and thus, the viability of cells on polyelectrolyte multilayers is mostly influenced by their mechanical properties. In order to decide, which polyelectrolyte multilayers are suitable for implants, we take this problem into account by putting the substrates with soft films on top of pre-cultured human primary endothelial cells ('reverse assay'). Hence, the present work aims giving a more complete and reliable study of typical polyelectrolyte multilayers with regard to clinical applications. In particular, coatings consisting of hyaluronic acid and chitosan as natural polymers and sulfonated polystyrene and polyallylamine hydrochlorite as synthetic polymers were studied. The adsorption of polyelectrolytes was characterized by physico-chemical methods which show regular buildup. Biological examination of the native or modified polyelectrolyte multilayers was based on their effect to cell adhesion and morphology of endothelial cells by viability assays, immunostaining and scanning electron microscopy. Using the standard method, which is typically applied in literature--seeding cells on top of films--shows that the best adhesion and thus, viability can be achieved using sulfonated polystyrene/polyallylamine hydrochlorite. However, putting the films on top of endothelial cells reveals that hyaluronic acid/chitosan may also be suitable for clinical applications: This result is

  17. Catalytic polyelectrolyte multilayers at the bipolar membrane interface. (United States)

    Abdu, Said; Sricharoen, Kittikun; Wong, John E; Muljadi, Eko S; Melin, Thomas; Wessling, Matthias


    Bipolar membranes are laminated anion and cation exchange membranes that split water at their interface very efficiently upon application of an electric field. This paper investigates the layer-by-layer (LbL) deposition of polyelectrolyte multilayers, as a tool to introduce molecularly thin catalyst groups at this interface of bipolar membranes. The bipolar membranes were prepared by first modifying an anion exchange membrane by consecutive dipping LbL assembly, then casting a thin highly charged intermediate layer followed by casting a cation exchange layer. The results reveal that polyelectrolytes of higher charge density coated on the anion exchange layer yield better performance. Several parameters of the LbL interface deposition were varied. Out of the investigated LbL assembly parameters, ionic strength and number of layers have shown the largest influence on catalytic activity as well as ionic selectivity. The membrane with two bilayers of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and poly(ethyleneimine) (PEI), where the PEI was prepared in 0.5 M NaCl, gave rise to the best performance. Surprisingly, detailed data analysis at low electrical potential suggests that the interface layers of a bipolar membrane play a major role in its permselectivity. Previously, only the bulk thickness of the anion and cation exchange membrane was assumed to influence the bipolar membrane selectivity.

  18. Effect of Protein Supercharging on Interaction with Polyelectrolytes (United States)

    Olsen, Bradley; Obermeyer, Allie; Mills, Carolyn; Dong, Xuehui

    Complexation of proteins with polyelectrolytes can lead to a liquid-liquid phase separation to generate a viscous complex coacervate phase rich in protein and polyelectrolyte. However, many proteins do not readily coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were chemically modified to generate a panel of proteins with varying surface charge, with both the average charge and charge distribution quantified by mass spectrometry. Proteins phase separated with the qP4VP and qPDMAEMA polycations when the ratio of negatively charged residues to positively charged residues was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger charge ratio (1.5-2.0). The model proteins were also encapsulated in complex coacervate core micelles. Dynamic light scattering was used to assess the formation of micelles with POEGMA- b-qP4VP and revealed micellar hydrodynamic radii of approximately 25-30 nm. Small angle neutron scattering and transmission electron microscopy were used to confirm the formation of spherical micelles.

  19. Study of sporadical properties of crosslinked polyelectrolyte multilayers (United States)

    Balu, Deebika

    Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.

  20. Formation of Soft Nanoparticles via Polyelectrolyte Complexation: A Viscometric Study

    Directory of Open Access Journals (Sweden)

    Rondon Céline


    Full Text Available This paper describes the formation of soft nanoparticles resulting from electrostatically driven complexation of oppositely charged polyelectrolytes. The system was composed of a strong polyanion (polystyrene sulfonate, PSS and a weak polycation (poly(allylamine hydrochloride, PAH in large excess. Soft nanoparticles were obtained by pouring a PSS solution into a PAH one under constant stirring. The polyelectrolyte complexes (PEC were characterized through a viscometric study complemented by Dynamic Light Scattering (DLS, electrophoretic mobility and suspension turbidity measurements. PEC suspensions were centrifuged and by measuring the viscosity of the supernatant, we were able to estimate the free polycation concentration and hence the percentage of complexed polycation. We also measured the relative viscosity of the suspensions; from the estimated contribution of the PEC particles and of the polycation in excess, the average particle volume fraction was estimated. From all viscometric data, we could derive the evolution of the binding stoichiometry in PEC and of the effective particle volume fraction as a function of the mixing ratio (ratio of the cationic to anionic groups and of the pH. Our results emphasize the importance of charge accessibility in controlling both the stoichiometry and packing density of the complexes.

  1. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation. (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D


    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  2. Excluded volume effects in compressed polymer brushes: A density functional theory (United States)

    Chen, Cangyi; Tang, Ping; Qiu, Feng; Shi, An-Chang


    A classical density functional theory (DFT) is applied to investigate the behavior of compressed polymer brushes composed of hard-sphere chains. The excluded volume interactions among the chain segments are explicitly treated. Two compression systems are used to study the behavior of brush-wall and brush-brush interactions. For the brush-brush systems, an obvious interpenetration zone has been observed. The extent of the interpenetration depends strongly on the grafting density. Furthermore, the repulsive force between the brush and wall or between the two brushes has been obtained as a function of the compression distance. Compared to the prediction of the analytic self-consistent field theory, such force increases more rapidly in the brush-wall compression with high polymer grafting densities or at higher compressions. In the brush-brush compression system, the interpenetration between the two compressed brushes creates a "softer" interaction. The influence of hard-sphere solvents on the behavior of compressed brushes is also discussed.

  3. Endobiliary brush biopsy: Intra- and interobserver variation in cytological evaluation of brushings from bile duct strictures

    DEFF Research Database (Denmark)

    Adamsen, S; Olsen, M; Jendresen, MB


    OBJECTIVE: Obtaining cytological specimens by wire-guided endobiliary brushing at the time of endoscopic retrograde cholangiopancreatography (ERCP) is a convenient way to reach a diagnosis. Sensitivity for malignant disease is generally around 50% and specificity around 100%. The present study...... was designed to assess the reproducibility of the cytological examination. MATERIAL AND METHODS: Samples were obtained from 55 consecutive patients with biliary duct strictures that eventually turned out to be caused by malignant disease in 41 patients (73%). The cytology specimens were evaluated twice...... in different random order with an interval of at least 4 months by two pathologists blinded to the final diagnoses. Suitability for diagnosis (suitable, suboptimal or unsuitable) and cytologic diagnosis (benign, atypical, suspicious for malignancy and malignant cells) were registered. Kappa analysis...

  4. A Nanosecond Pulsed Plasma Brush for Surface Decontamination (United States)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi


    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  5. Surface changes of enamel after brushing with charcoal toothpaste (United States)

    Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.


    The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (penamel.

  6. Study on Technology and Properties of Brush Plating Coatings

    Institute of Scientific and Technical Information of China (English)

    DI Ping


    A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower cost. Scanning electronic microscopy(SEM), optical microscope, microhardness test and wear test were adopted to detect the surface quality and the properties of the coating, such as micrograph, microstructure, micro-hardness wear resistance and adherence between the coating and the substrate. The experimental results showed that the suitable technological parameters to be used, the coatings had better the surface quality, higher hardness and wear resistance.

  7. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression (United States)

    Hua, Yunfeng; Deng, Zhenyu; Jiang, Yangwei; Zhang, Linxi


    Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

  8. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates. (United States)

    Oded, Meirav; Kelly, Stephen T; Gilles, Mary K; Müller, Axel H E; Shenhar, Roy


    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topography that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.

  9. Interactions of phosphororganic agents with water and components of polyelectrolyte membranes. (United States)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Gor, Gennady Yu; Neimark, Alexander V


    Interactions of nerve G-agents (sarin and soman) and their simulants DMMP (dimethyl methylphosphonate) and DIFP (diisopropyl fluorophosphate) with water and components of polyelectrolyte membranes are studied using ab initio calculations in conjunction with thermodynamic modeling using the conductor-like screening model for real solvents (COSMO-RS). To test reliability of COSMO-RS calculations, we measured the vapor-liquid equilibrium in DMMP-water mixtures and found quantitative agreement between computed and experimental results. Using COSMO-RS, we studied the interactions of phosphororganic agents with the characteristic fragments of perfluorinated and sulfonated polystyrene (sPS) polyelectrolytes, which are explored for protective clothing membranes. We found that both simulants, DIFP and DMMP, mimic the thermodynamic properties of G-agents reasonably well; however, there are certain specific differences that are discussed. We also suggested that sPS-based polyelectrolytes have less affinity for phosphorganic agents compared to prefluorinated polyelectrolytes similar to Nafion.

  10. Electrodeposition of a palladium nanocatalyst by ion confinement in polyelectrolyte multilayers. (United States)

    Vago, Miguel; Tagliazucchi, Mario; Williams, Federico J; Calvo, Ernesto J


    A highly efficient and selective material for electrocatalytic hydrogenation has been prepared by depositing monodisperse palladium nanoparticles of size (6+/-1) nm by electrochemical reduction of PdCl(4)(2-) confined in a polyelectrolyte multilayer film.


    Directory of Open Access Journals (Sweden)

    Marcin Głodniok


    Full Text Available The paper addresses the problems connected with sewage sludge dewatering. The premise of the study was the analysis of whether there are opportunities to increase the efficiency of dewatering sludge, a relatively low-cost involving the use of innovative polymers. The authors analyzed the impact of the new type of polyelectrolyte gel on the effectiveness of dewatering sludge. Laboratory studies were carried out at polyelectrolyte dose selection and laboratory testing on the press chamber designed to simulate the actual operation of sludge dewatering system. Two different doses of polyelectrolyte were tested for dose I – 4 ml/m3 and dose II – 8 ml/m3. The conducted analysis on laboratory press showed an increase of sludge dewatering efficiency by about 2% for dose no. I and by about 13% for dose no. II, in comparison to the test without polyelectrolyte.

  12. Trends in Social Inequality in Tooth Brushing among Adolescents: 1991-2014

    DEFF Research Database (Denmark)

    Holstein, Bjørn Evald; Bast, Lotus Sofie; Brixval, Carina Sjöberg


    This study examines whether social inequality in tooth brushing frequency among adolescents changed from 1991 to 2014. The data material was seven comparable cross-sectional studies of nationally representative samples of 11- to 15-year-olds in Denmark with data about frequency of tooth brushing...... inequality assessed by odds ratios for infrequent tooth brushing also increased from 1991 to 2014....

  13. A PET activation study of brush-evoked allodynia in patients with nerve injury pain

    DEFF Research Database (Denmark)

    Witting, Nanna; Kupers, Ron; Svensson, Peter


    allodynia. Nine patients with peripheral nerve injury were scanned during rest, brush-evoked allodynia, and brushing of normal contralateral skin. PET data were analyzed for the whole group and for single subjects. Allodynic stimulation activated the contralateral orbitofrontal cortex (BA 11) in every...... computational demands of processing a mixed sensation of brush and pain....

  14. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture

    NARCIS (Netherlands)

    Quintana, Robert; Gosa, Maria; Janczewski, Dominik; Kutnyanszky, Edit; Vancso, G. Julius


    The successful implementation of zwitterionic polymeric brushes as antifouling materials for marine applications is conditioned by the stability of the polymer chain and the brush-anchoring segment in seawater. Here we demonstrate that robust, antifouling, hydrophilic polysulfobetaine-based brushes

  15. Controlled Release of the Indomethacin Microencapsulation Based on Layer-by-layer Assembly by Polyelectrolyte Multilayers

    Institute of Scientific and Technical Information of China (English)

    CHEN You-fang; LIN Xian-fu


    Indomethacin has been encapsulated with polyelectrolyte multilayers for controlled release. Gelatin and alginate were alternatively deposited on indomethacin microcrystals. The released amount of indomethacin from coated microcrystals in pH6. 8phosphate buffer solution (PBS) was measured with a UV spectrophometer. The polyelectrolyte multilayer capsule thickness was proved to control the release rate. The effects of osmotic pressure existed during the release process of indomethacin from microcapsules coated by (gelatin/alginate) 4.


    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng


    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  17. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment. (United States)

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G


    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  18. Morphology of cobalt ferrite nanoparticle-polyelectrolyte multilayered nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, G.B.; Paterno, L.G. [Universidade de Brasilia, Instituto de Fisica, Brasilia-DF 70910-900 (Brazil); Fonseca, F.J. [Universidade de Sao Paulo, EPUSP, Depto de Engenharia de Sistemas Eletronicos, Sao Paulo-SP 05508-900 (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, Brasilia-DF 70910-900 (Brazil); Soler, M.A.G., E-mail: soler@unb.b [Universidade de Brasilia, Instituto de Fisica, Brasilia-DF 70910-900 (Brazil)


    Novel magnetic nanocomposite films with controlled morphology were produced via the electrostatic layer-by-layer assembly of cationic CoFe{sub 2}O{sub 4} nanoparticles and anionic poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) complex. The electrostatic interaction between nanoparticle and the polyelectrolyte complex ensured a stepwise growth of the nanocomposite film with virtually identical amounts of materials being adsorbed at each deposition cycle as observed by UV-vis spectroscopy. AFM images acquired under the tapping mode revealed a globular morphology with dense and continuous layers of nanoparticles with voids being filled with polymeric material. - Research Highlights: Novel magnetic nanocomposite films with controlled morphology assembled by layer-by-layer. Electrostatic interaction of cationic CoFe{sub 2}O{sub 4} nanoparticles and anionic (PEDOT:PSS). Globular morphology of dense layers of nanoparticles with voids being filled with polymeric material.




    The stability of the structure of double-stranded DNA in the salt-free solution is discussed on the basis of the polyelectrolyte theory. Assuming that DNA is an infinitely long rod, and the formation of double strands is divided into combining process and folding process, the free energy changes required in these processes are calculated by the use of the exact solutions of two-dimensional Poisson-Boltzmann equation for the one rod and the two rod systems.By strong depression of electrostatic interaction due to counter-ion condensation phenomena, the free energy change is remarkably decreased so that the double-stranded structure of DNA can be stabilized by energy of hydrogen bonds between base pairs. The increase of the activity coefficient of a counterion upon heat denaturation of DNA is also explained.

  20. Polyelectrolyte Complexation: A Field-Theoretic Description of Phase Behavior (United States)

    Audus, Debra; Fredrickson, Glenn


    Our research focuses on a type of polyelectrolyte complexation called complex coacervation where two oppositely charged polymers in solution phase separate to form a dense polymer phase, known as the coacervate, and a supernatant, which typically has very low concentrations of polymer. To understand the effects of various parameters on coacervation, we previously developed a simple analytic theory for flexible polymers and small ions, which reproduces many general experimental trends. However, this theory is only valid for symmetric oppositely charged polymers, which limits its direct applicability to many experimental systems. Consequently, we have extended this theory to describe more complicated experimental systems where salt concentrations are high, pH equilibria shift with the complexation process, polymer concentrations are highly asymmetric, and counterion condensation may play an important role. To validate the modified theory, we compare our predictions with an exhaustive study of the phase behavior of polyacrylic acid and polyallylamine hydrochloride.

  1. New polyaniline(PAni)-polyelectrolyte (PDDMAC) composites: Synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.; Rao, Chepuri R.K.; Vijayan, M. [Functional Materials Division, Central Electrochemical Research Institute, Karaikudi-630 006 (India)


    Conducting and electroactive polymer blends of polyaniline (PAni) with polyelectrolyte, poly(diallydimethylammoniumchloride) (PDDMAC) have been synthesized by an in situ polymerization method and the resulting composites have been characterized by FT-IR, UV-Vis, XRD, AFM and electrochemical techniques. The blends are conducting and electroactive with even lower loadings of PAni and can be cast as films. The conductivity of the cast films containing 0.04-1.5 wt% PAni ranged from 4.5 x 10{sup -6} to 42 x 10{sup -6} S/cm. Some of the composites are tested for their corrosion inhibition property for pure iron in 1 M HCl solutions and were found to be active inhibitors. (author)

  2. Rapid polyelectrolyte-based membrane immunoassay for the herbicide butachlor. (United States)

    Dzantiev, B B; Byzova, N A; Zherdev, A V; Hennion, M C


    Oppositely charged water-soluble polyelectrolytes were used in the developed membrane immunoenzyme assay for the herbicide butachlor. High-affinity and rapid binding between polyanion polymethacrylate and polycation poly(N-ethyl-4-vinylpyridinium) was applied to separate reacted and free immunoreactants. Competitive immunoassay format with peroxidase-labeled antigen was realized. The insoluble colored product of the peroxidase reaction was formed by bound labeled immune complexes and was reflectometrically detected. The assay combines short duration (15 min), high sensitivity (0.03 g/mL) and availability for out-of-laboratory testing. Different image processing algorithms were used to determine the herbicide content. Low variation coefficients of the measurements in the proposed quantitative assay, namely 4.8-9.0% for the range of antigen concentrations from 0.1 to 3.0 ng/mL, are evidence of the assay effectiveness. Possibility to control the butachlor content in mineral, artesian, and drinking water was demonstrated.

  3. Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene (United States)

    Saga, Shota; Matsumoto, Hidetoshi; Saito, Keiichiro; Minagawa, Mie; Tanioka, Akihiko

    In the present study, composite polyelectrolyte membranes were prepared from sulfonated polystyrene and fullerene. The additive effect of the fullerene on the membrane properties - electric resistance, mechanical strength, oxidation resistance, and methanol permeability - were measured. The addition of fullerene improved the oxidation resistance, and reduced the methanol crossover. The mechanical strength of the fullerene-composite membrane, on the other hand, was not improved. The direct methanol fuel cell (DMFC) based on a 1.4 wt% fullerene-composite membrane showed the highest power density of 47 mW cm -2 at the current density of 200 mA cm -2 (this value is 60% of the Nafion-based DMFC). The transmission electron microscopy (TEM) observations suggest that the improved dispersity of the fullerene and the reduced number of micropores in the membranes would improve its performance in the fuel cell.

  4. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells (United States)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas


    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  5. Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores. (United States)

    Actis, Paolo; Vilozny, Boaz; Seger, R Adam; Li, Xiang; Jejelowo, Olufisayo; Rinaudo, Marguerite; Pourmand, Nader


    Most of the research in the field of nanopore-based platforms is focused on monitoring ion currents and forces as individual molecules translocate through the nanopore. Molecular gating, however, can occur when target analytes interact with receptors appended to the nanopore surface. Here we show that a solid state nanopore functionalized with polyelectrolytes can reversibly bind metal ions, resulting in a reversible, real-time signal that is concentration dependent. Functionalization of the sensor is based on electrostatic interactions, requires no covalent bond formation, and can be monitored in real time. Furthermore, we demonstrate how the applied voltage can be employed to tune the binding properties of the sensor. The sensor has wide-ranging applications and, its simplest incarnation can be used to study binding thermodynamics using purely electrical measurements with no need for labeling.

  6. Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. (United States)

    Chunder, Anindarupa; Sarkar, Sourangsu; Yu, Yingbo; Zhai, Lei


    Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.

  7. Organic monolayers and fluoropolymer brushes : functionalization, stability and tribology

    NARCIS (Netherlands)

    Bhairamadgi, N.S.


    This thesis deals with the adhesion and friction properties of densely grafted and covalently bound fluoropolymer brushes on silicon surfaces with varying thickness and fluorine content. A novel surface-functionalizing method is described using the thiol-yne click (TYC) reaction. The TYC reaction is

  8. Modeling the structure of a polydisperse polymer brush

    NARCIS (Netherlands)

    Vos, de W.M.; Leermakers, F.A.M.


    Numerical self-consistent field theory is used to study the structural characteristics of a polydisperse polymer brush. We consider the relevant case of a Schulz–Zimm distribution and find that even a small degree of polydispersity completely destroys the parabolic density profile. The first moment

  9. Nonwettable Thin Films from Hybrid Polymer Brushes can be Hydrophilic (United States)


    2006 Hybrid brushes composed of two liquid polymers, poly(dimethylsiloxane) (PDMS) and a highly branched ethoxylated polyethylenimine (EPEI), were...liquid polymers, poly(dimethylsiloxane) (PDMS) and a highly branched ethoxylated polyethylenimine (EPEI; Figure 1). We demonstrate here that hybrid... ethoxylated (highly branched, symmetrical polymer; about 80% of the primary and secondary amines are ethoxylated ), 37% solution in water (EPEI Mw


    An analytical methodology utilizing models from three disciplines is developed to assess the viability of brush control for wate yield in the Frio River Basin, TX. Ecological, hydrologic, and economic models are used to portray changes in forage production and water supply result...

  11. Multifocal Rhizopus microsporus lung infection following brush clearing

    Directory of Open Access Journals (Sweden)

    Artsiom V. Tsyrkunou


    Full Text Available We report a case of pulmonary Rhizopus microsporus infection in a patient with untreated diabetes following brush clearing. The patient was successfully treated with a combined medical and surgical approach with complete resolution of the lung lesions and remains asymptomatic at 11-month follow-up.

  12. Badger hair in shaving brushes comes from protected Eurasian badgers

    NARCIS (Netherlands)

    Domingo-Roura, X.; Marmi, J.; Ferrando, A.; López-Giráldez, F.; Macdonald, D.W.; Jansman, H.A.H.


    The Eurasian badger (Meles meles) is included in Appendix III of the Bern Convention and protected by national laws in many European countries. Badger hair is used to manufacture luxury shaving brushes, although it is frequently argued that the hog badger (Arctonyx collaris), which in Europe is an i

  13. Self-assembled polyelectrolyte nanorings observed by liquid-cell AFM

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca, J-Luis [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Flores, Hector [Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Cuisinier, Frederic [INSERM U 595, Federation de Recherche Odontologiques, Universite Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex (France); Perez, ElIas [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)


    Self-assembled polyelectrolyte nanorings formed by polyelectrolytes are presented for the first time in this work. They are formed by poly(ethylenimine) (PEI) and poly(sodium 4-styrenesulfanate) (PSS) during the two first steps of the formation of the self-assembled polyelectrolyte films (SAPFs). These are formed on a negatively charged glass surface and observed by an in situ liquid-cell AFM technique, which has recently been introduced as an alternative technique to follow polyelectrolyte multilayer formation without drying effects (Menchaca et al 2003 Colloids Surf. A 222 185). Nanoring formation strongly depends on the preparation method and parameters such as polyelectrolyte filtration, air and CO{sub 2} presence during SAPFs formation and buffer solution. A necessary condition to obtain nanorings is that polyelectrolyte solutions have to be filtered prior to injection into the liquid-cell AFM. The outer diameter of nanorings can be varied from hundreds of nanometres to microns by changing these parameters. Nanorings are stable in the liquid cell for hours but they disappear on contact with air. Additionally, carbonate ions seem to be mainly responsible for the formation of this novel structure.

  14. Changes in the Activity and Structure of Urease in the Interaction with Polyelectrolytes (United States)

    Saburova, E. A.; Tikhonenko, S. A.; Dybovskaya, Yu. N.; Sukhorukov, B. I.


    The influence of polyelectrolytes on the structural and catalytic characteristics of urease ( Canavalia ensiformis) was studied by the methods of steady-state kinetics, fluorescence spectroscopy, and circular dichroism. It was shown that, of the four polyelectrolytes studied, two of which were negatively charged (polystyrene sulfonate and dextran sulfate) and two were positively charged (polyallylamine (PAA) and polydiallyl dimethylammonium chloride), only PAA was a potent urease inhibitor: 0.5 μg/ml of PAA provided a 50% degree of inhibition for enzyme at neutral pH. It was found that polyelectrolyte did not inhibit urease in the presence of micromolar concentrations of ammonium chloride. Based on the experimental data and the calculated structure of urease from Canavalia ensiformis and on the identity with the amino acid sequence of urease from Bacillus pasteurii, the mechanism of urease inactivation by the PAA polyelectrolyte is discussed. This mechanism does not resemble the inhibiting action of polyelectrolytes on the previously studied oligomeric proteins—lactate dehydrogenase, glutamate dehydrogenase, and hemoglobin. It is proposed that the specific cation-binding sites determining the structural dynamics of the enzyme-polyelectrolyte complex play the regulating role in the urease molecule.

  15. A stable nanoplatform for antitumor activity using PEG-PLL-PLA triblock co-polyelectrolyte. (United States)

    Lim, Chaemin; Sim, Taehoon; Hoang, Ngoc Ha; Oh, Kyung Taek


    Polyelectrolyte has been proposed as an efficient approach for various types of drug formulations. However, one drawback of using the conventional polyelectrolyte for drug delivery is its dissociation in in vivo conditions by counter ions due to the lack of self-assembling aggregation force. In this study, we reported a stable nanoplatform based on triblock co-polyelectrolyte composed of a poly(ethylene glycol), poly(l-lysine), and poly(lactic acid). These co-polyelectrolytes formed stable aggregates through the hydrophobic interaction of PLA and showed consistent particle sizes under a high salt concentration. In addition, the doxorubicin (Dox) loaded triblock co-polyelectrolyte demonstrated enhanced cellular uptake and drug cytotoxicity with a positive charge from the poly(l-lysine) layer. In vivo, the triblock aggregates exhibited intensive accumulation at the targeted tumor site for 24h with good antitumor therapeutic efficacy. Therefore, the prepared stable triblock co-polyelectrolyte may have considerable potential as a nanomedicinal platform for anticancer and multi-drug combination therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. (United States)

    Kim, Sangsik; Huang, Jun; Lee, Yongjin; Dutta, Sandipan; Yoo, Hee Young; Jung, Young Mee; Jho, YongSeok; Zeng, Hongbo; Hwang, Dong Soo


    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.

  17. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity (United States)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr


    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  18. Precipitate-Coacervate Transformation in Polyelectrolyte-Mixed Micelle Systems. (United States)

    Comert, Fatih; Nguyen, Duy; Rushanan, Marguerite; Milas, Peker; Xu, Amy Y; Dubin, Paul L


    The polycation/anionic-nonionic mixed micelle, poly(diallyldimethylammonium chloride)-sodium dodecyl sulfate/Triton X-100 (PDADMAC-SDS/TX100), is a model polyelectrolyte-colloid system in that the micellar mole fraction of SDS (Y) controls the micelle surface charge density, thus modulating the polyelectrolyte-colloid interaction. The exquisite temperature dependence of this system provides an important additional variable, controlling both liquid-liquid (L-L) and liquid-solid (L-S) phase separation, both of which are driven by the entropy of small ion release. In order to elucidate these transitions, we applied high-precision turbidimetry (±0.1 %), isothermal titration calorimetry, and epifluorescence microscopy which demonstrates preservation of micelle structure under all conditions. The L-S region at large Y including precipitation displays a remarkable linear, inverse Y-dependence of the L-S transition temperature Ts. In sharp contrast, the critical temperature for L-L coacervation Tφ, shows nearly symmetrical effects of positive and negative deviations in Y from the point of soluble complex neutrality, which is controlled in solution by the micelle charge and the number of micelles bound per polymer chain n (Zcomplex = Zpolymer + nZmicelle). In solid-like states, n no longer signifies the number of micelles bound per polymer chain, since the proximity of micelles inverts the host-guest relationship with each micelle binding multiple PE chains. This intimate binding goes hand-in-hand with the entropy of release of micelle-localized charge-compensating ions whose concentration depends on Y. These ions need not be released in L-L coacervation, but during L-S transition their displacement by PE accounts for the inverse dependence of Ts on micelle charge, Y.

  19. Regenerable Polyelectrolyte Membrane for Ultimate Fouling Control in Forward Osmosis. (United States)

    Kang, Yan; Zheng, Sunxiang; Finnerty, Casey; Lee, Michael J; Mi, Baoxia


    This study demonstrated the feasibility of using regenerable polyelectrolyte membranes to ultimately control the irreversible membrane fouling in a forward osmosis (FO) process. The regenerable membrane was fabricated by assembling multiple polyethylenimine (PEI) and poly(acrylic acid) (PAA) bilayers on a polydopamine-functionalized polysulfone support. The resulting membrane exhibited higher water flux and lower solute flux in FO mode (with the active layer facing feed solution) than in PRO mode (with the active layer facing draw solution) using trisodium citrate as draw solute, most likely due to the unique swelling behavior of the polyelectrolyte membrane. Membrane regeneration was conducted by first dissembling the existing PEI-PAA bilayers using strong acid and then reassembling fresh PEI-PAA bilayers on the membrane support. It was found that, after the acid treatment, the first covalently bonded PEI layer and some realigned PAA remained on the membrane support, acting as a beneficial barrier that prevented the acid-foulant mixture from penetrating into the porous support during acid treatment. The water and solute flux of the regenerated membrane was very similar to that of the original membrane regardless of alginate fouling, suggesting an ultimate solution to eliminating the irreversible membrane fouling in an FO process. With a procedure similar to the typical membrane cleaning protocol, in situ membrane regeneration is not expected to noticeably increase the membrane operational burden but can satisfactorily avoid the expensive replacement of the entire membrane module after irreversible fouling, thereby hopefully reducing the overall cost of the membrane-based water-treatment system.

  20. Hydrologic Effects of Brush Management in Central Texas (United States)

    Banta, J. R.; Slattery, R.


    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  1. Clickable Antifouling Polymer Brushes for Polymer Pen Lithography. (United States)

    Bog, Uwe; de Los Santos Pereira, Andres; Mueller, Summer L; Havenridge, Shana; Parrillo, Viviana; Bruns, Michael; Holmes, Andrea E; Rodriguez-Emmenegger, Cesar; Fuchs, Harald; Hirtz, Michael


    Protein-repellent reactive surfaces that promote localized specific binding are highly desirable for applications in the biomedical field. Nonspecific adhesion will compromise the function of bioactive surfaces, leading to ambiguous results of binding assays and negating the binding specificity of patterned cell-adhesive motives. Localized specific binding is often achieved by attaching a linker to the surface, and the other side of the linker is used to bind specifically to a desired functional agent, as e.g. proteins, antibodies, and fluorophores, depending on the function required by the application. We present a protein-repellent polymer brush enabling highly specific covalent surface immobilization of biorecognition elements by strain-promoted alkyne-azide cycloaddition click chemistry for selective protein adhesion. The protein-repellent polymer brush is functionalized by highly localized molecular binding sites in the low micrometer range using polymer pen lithography (PPL). Because of the massive parallelization of writing pens, the tunable PPL printed patterns can span over square centimeter areas. The selective binding of the protein streptavidin to these surface sites is demonstrated while the remaining polymer brush surface is resisting nonspecific adsorption without any prior blocking by bovine serum albumin (BSA). In contrast to the widely used BSA blocking, the reactive polymer brushes are able to significantly reduce nonspecific protein adsorption, which is the cause of biofouling. This was achieved for solutions of single proteins as well as complex biological fluids. The remarkable fouling resistance of the polymer brushes has the potential to improve the multiplexing capabilities of protein probes and therefore impact biomedical research and applications.

  2. Comparison of bronchial brushing and sputum in detection of pediatric pulmonary tuberculosis. (United States)

    Chen, Qiao-Pei; Ren, Shi-Feng; Wang, Xin-Feng; Wang, Mao-Shui


    The retrospective study aimed to evaluate the diagnostic value of bronchial brushing and sputum using acid fast bacilli smear, mycobacterial culture and real-time PCR in detection of pediatric pulmonary tuberculosis, sensitivity and specificity of bronchial brushing and sputum examined by the three methods were calculated and compared to each other. Data showed there were no significant difference in sensitivity between bronchial brushing and matched sputum using each method. But the specificity of real-time PCR on bronchial brushing was lower than on sputum. Compared with bronchial brushing, sputum was better specimen in detection of pediatric pulmonary tuberculosis.

  3. Design optimization of a brush turbine with a cleaner/water based solution (United States)

    Kim, Rhyn H.


    Recently, a turbine-brush was analyzed based on the energy conservation and the force momentum equation with an empirical relationship of the drag coefficient. An equation was derived to predict the rotational speed of the turbine-brush in terms of the blade angle, number of blades, rest of geometries of the turbine-brush and the incoming velocity. Using the observed flow conditions, drag coefficients were determined. Based on the experimental values as boundary conditions, the turbine-brush flows were numerically simulated to understand first the nature of the flows, and to extend the observed drag coefficient to a flow without holding the turbine-brush.

  4. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte (United States)

    He, Yaning; Wang, Haopeng; Tuo, Xinlin; Deng, Wei; Wang, Xiaogong


    A polyacrylate-based azo polyelectrolyte was synthesized and characterized by the spectroscopic methods and thermal analysis. Layer-by-layer self-assembly of the azo polyelectrolyte through electrostatic adsorption was explored. By using a dipping solution of the anionic azo polyelectrolyte in anhydrous DMF, together with an aqueous solution of cationic poly(diallyldimethylammonium chloride) (PDAC), high quality multilayer films were obtained through the sequential deposition of the oppositely charged polyelectrolytes. With interfering illumination of Ar + laser beams (488 nm), significant surface-relief gratings formed on the self-assembled multiplayer films were observed.

  5. Polyelectrolytes: Influence on Evaporative Self-Assembly of Particles and Assembly of Multilayers with Polymers, Nanoparticles and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tatiana Bukreeva


    Full Text Available Assembling polyelectrolyte multilayers in a bottom-up approach is reported for polymers, particles, nanoparticles, and carbon nanotubes. Effects of polyelectrolyte multilayers on evaporative self-assembly of particles, which are of interest to a number of applications including photonic crystals, films and substrates, are investigated. Polyelectrolyte multilayer coatings bring multifunctionality to spherical particles and planar films. Studying the construction of polyelectrolyte assemblies is convenient in the planar layout: it is reported here for incorporation of gold and magnetic nanoparticles as well as of carbon nanotubes. Gold nanoparticles concentration is controlled within the films. Potential applications of both spherical structures and planar films are highlighted.

  6. Droplet: A Virtual Brush Model to Simulate Chinese Calligraphy and Painting

    Institute of Scientific and Technical Information of China (English)

    Xiao-FengMi; MinTang; Jin-XiangDong


    This paper proposes a virtual brush model based on droplet operation to simulate Chinese calligraph yand traditional Chinese painting in real time. Two ways of applying droplet model to virtual calligraphy and painting are discussed in detail. The second droplet model is more elaborated and can produce more vivid results while being slightly more time-consuming. The novel feature of the proposed droplet virtual brush model successfully enables the simulation painting system to overcome the poor expressional ability of virtual brush based on particle system and avoids the complex evaluation of physical brush with solid model. The model, derived from the actual calligraphy and painting experience, due to the simplicity of the droplet operation and its powerful expressive ability, considerably improves the performance of the simulation system and maintains painting effect comparable with real brush by supporting special Chinese brush effect such as dry brush, feng and stroke diffusion.

  7. Evaluation of multi-brush anode systems in microbial fuel cells

    KAUST Repository

    Lanas, Vanessa


    The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.

  8. Neutron reflectometry yields distance-dependent structures of nanometric polymer brushes interacting across water. (United States)

    Rodriguez-Loureiro, Ignacio; Scoppola, Ernesto; Bertinetti, Luca; Barbetta, Aurelio; Fragneto, Giovanna; Schneck, Emanuel


    The interaction between surfaces displaying end-grafted hydrophilic polymer brushes plays important roles in biology and in many wet-technological applications. In this context, the conformation of the brushes upon their mutual approach is crucial, because it affects interaction forces and the brushes' shear-tribological properties. While this aspect has been addressed by theory, experimental data on polymer conformations under confinement are difficult to obtain. Here, we study interacting planar brushes of hydrophilic polymers with defined length and grafting density. Via ellipsometry and neutron reflectometry we obtain pressure-distance curves and determine distance-dependent polymer conformations in terms of brush compression and reciprocative interpenetration. While the pressure-distance curves are satisfactorily described by the Alexander-de-Gennes model, the pronounced brush interpenetration as seen by neutron reflectometry motivates detailed simulation-based studies capable of treating brush interpenetration on a quantitative level.

  9. Cell patterning on polylactic acid through surface-tethered oligonucleotides. (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo


    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  10. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M.


    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  11. Assessment of Pain Response in Capsaicin-Induced Dynamic Mechanical Allodynia Using a Novel and Fully Automated Brushing Device

    Directory of Open Access Journals (Sweden)

    Kristian G du Jardin


    Full Text Available BACKGROUND: Dynamic mechanical allodynia is traditionally induced by manual brushing of the skin. Brushing force and speed have been shown to influence the intensity of brush-evoked pain. There are still limited data available with respect to the optimal stroke number, length, force, angle and speed. Therefore, an automated brushing device (ABD was developed, for which brushing angle and speed could be controlled to enable quantitative assessment of dynamic mechanical allodynia.

  12. Electrokinetics of pH-regulated zwitterionic polyelectrolyte nanoparticles (United States)

    Yeh, Li-Hsien; Tai, Yi-Hsuan; Wang, Nan; Hsu, Jyh-Ping; Qian, Shizhi


    The electrokinetic behavior of pH-regulated, zwitterionic polyelectrolyte (PE) nanoparticles (NPs) in a general electrolyte solution containing multiple ionic species is investigated for the first time. The NPs considered are capable of simulating entities such as proteins, biomolecules, and synthetic polymers. The applicability of the model proposed is verified by the experimental data of succinoglycan nanoparticles available in the literature. We show that, in addition to their effective charge density, counterion condensation, double-layer polarization, and electro-osmotic flow of unbalanced counterions inside the double layer all significantly affect the electrophoretic behaviors of NPs. Our model successfully predicts many interesting electrophoretic behaviors, which qualitatively agree with experimental observations available in the literature. In contrast, because the effects of double-layer polarization and charge regulation are neglected, the existing theoretical models fail to explain the experimental results. The results gathered provide necessary information for the interpretation of relevant electrophoresis data in practice, and for nanofluidic applications such as biomimetic ion channels and nanopore-based sensing of single biomolecules.The electrokinetic behavior of pH-regulated, zwitterionic polyelectrolyte (PE) nanoparticles (NPs) in a general electrolyte solution containing multiple ionic species is investigated for the first time. The NPs considered are capable of simulating entities such as proteins, biomolecules, and synthetic polymers. The applicability of the model proposed is verified by the experimental data of succinoglycan nanoparticles available in the literature. We show that, in addition to their effective charge density, counterion condensation, double-layer polarization, and electro-osmotic flow of unbalanced counterions inside the double layer all significantly affect the electrophoretic behaviors of NPs. Our model successfully

  13. Gelation threshold of cross-linked polymer brushes. (United States)

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe


    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  14. Photoelectricalchemical characteristics of brush plated tin sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B.; Jayachandran, M. [Central Electrochemical Research Inst., Karaikudi (India); Sanjeeviraja, C. [Alagappa Univ., Karaikudi (India). Dept. of Physics


    Thin films of tin sulfide find wide applications in optoelectronic devices and window materials for heterojunction solar cells. Thin films of p-SnS were brush plated onto tin oxide coated glass substrates from aqueous solution containing SnCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3}. Deposits have been characterized with XRD and SEM for structural analysis. Hot probe method showed invariably p-type nature for all the brush plated SnS films. The variation of space charge capacitance, C{sub sc} with applied potential, V, was recorded for the PEC cell with p-SnS/Fe{sup 3+}, Fe{sup 2+}/Pt system. The spectral response of the PEC cell formed with SnS photoelectrode was studied and reported. (author)

  15. Photoelectrochemical characteristics of brush plated tin sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B.; Jayachandran, M. [Central Electrochemical Research Institute, Karaikudi 630 006 (India); Sanjeeviraja, C. [Department of Physics, Alagappa University, Karaikudi 630 006 (India)


    Thin films of tin sulfide find wide applications in optoelectronic devices and window materials for heterojunction solar cells. Thin films of p-SnS were brush plated onto tin oxide coated glass substrates from aqueous solution containing SnCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3}. Deposits have been characterized with XRD and SEM for structural analysis. Hot probe method showed invariably p-type nature for all the brush plated SnS films. The variation of space charge capacitance, C{sub sc}, with applied potential, V, was recorded for the PEC cell with p-SnS/Fe{sup 3+}, Fe{sup 2+}/Pt system. The spectral response of the PEC cell formed with SnS photoelectrode was studied and reported.

  16. Usage of polymer brushes as substrates of bone cells

    Institute of Scientific and Technical Information of China (English)



    Implant methcal research and hssue eagmeer-ing both target the design of novel biomaterials for the improvement of human health and clinical applications. In order to develop improved surface coatings for hard tissue (bone)replacement materials and implant devices,we are developing micropartemed coatings consisting of polymer brushes. These are used as organic templates for the mineralization of calcium phosphate in oraer to improve adhesion of bone cells. First we give a shortaccount of the current state-of-the-art in this particular field of blomaterial development,while in the second part the preliminary results of cell culture experiments are presented,in which the biocompatibility of polymer brushes are tested on human mesenchvmal stem cells.

  17. Transient bacteremia consequent to tooth brushing in orthodontic patients. (United States)

    Dubey, Rachna; Jalili, Ved Prakash; Jain, Sandhya; Dubey, Akhilesh


    The study was conducted to find out the significance of transient bacteraemia consequent to tooth brushing in patients undergoing different orthodontic procedures. The study was carried out on 75 patients categorized in the separate groups with 25 subjects in each group of fixed, removable and myofunctional appliances. A matching control of 25 dental students was taken for comparison. The data was analyzed with the help of arithmetical mean and Chi-square test. It was observed that the transient bacteraemia consequent to tooth brushing in different orthodontic treatment groups was not significantly different from that found in subjects not wearing orthodontic appliances (control group). The risk of bacterial endocarditis and other cardiac lesions is not anyway higher in the patients wearing orthodontic appliances than those who were not undergoing any orthodontic treatment. Copyright © 2012. Published by Elsevier Srl.

  18. Cholinergic urethral brush cells are widespread throughout placental mammals. (United States)

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang


    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago.

  19. Stability against brushing abrasion and the erosion-protective effect of different fluoride compounds. (United States)

    Wiegand, A; Schneider, S; Sener, B; Roos, M; Attin, T


    This study aimed to analyse the impact of brushing on the protective effect of different fluoride solutions on enamel and dentin erosion. Bovine enamel and dentin specimens were rinsed once with TiF4, AmF, SnF2 (0.5 M F, 2 min) or water (control). Specimens were either left unbrushed or brushed with 10, 20, 50, 100 or 500 brushing strokes in an automatic brushing machine (2 N, non-fluoridated toothpaste slurry). Ten specimens per group were eroded with hydrochloric acid (HCl) (pH 2.3) for 60 s, and calcium release into the acid was determined by atomic absorption spectroscopy. Additionally, enamel and dentin surfaces were analysed by X-ray energy-dispersive spectroscopy (EDS) (n = 6/group) and scanning electron microscopy (SEM) (n = 2/group) before brushing and after 500 brushing strokes. Statistical analysis (p fluoride (AmF), tin (SnF2) and titanium (TiF4). SEM revealed that surface precipitates were affected by long-term brushing. Brushing reduced the protective potential of TiF4, AmF and SnF2 solutions. However, considering a small number of brushing strokes, the protective effect of fluoride solutions is only slightly affected by brushing abrasion.

  20. Role of gastric brush cytology in the diagnosis of giardiasis

    Directory of Open Access Journals (Sweden)

    Varma Deepali


    Full Text Available Background: Giardiasis, common in developing countries, has mostly nonspecific clinical symptoms, resulting in a limited role for preliminary tests. Aims: The present study aims to highlight the utility of endoscopic brush cytology (EBC in the diagnosis of giardiasis in clinically unsuspected cases. Materials and Methods: Endoscopic brush smears (EBS are routinely obtained in all patients presenting with gastric symptoms. The present study is a retrospective analysis of EBS, consisting of 12 cases whose smears had revealed trophozoites of Giardia lamblia . Biopsy correlation was available in five cases. Results: The patients ranged in age from 15 to 78 years (mean age: 34.08 years with a 1:1 sex ratio. Stool examination in all 12 cases yielded negative results for giardiasis. Upper gastrointestinal endoscopy was normal in all these cases. EBS from these cases revealed Giardia trophozoites, which were identified by their typical morphology. Conclusions: Endoscopic brush cytology can be used as a reliable screening tool in the diagnosis of gastro-duodenal giardiasis in clinically unsuspected cases, especially in developing countries where parasitic infections are common.

  1. Structural analysis of paintings based on brush strokes (United States)

    Sablatnig, Robert; Kammerer, Paul; Zolda, Ernestine


    The origin of works of art can often not be attributed to a certain artist. Likewise it is difficult to say whether paintings or drawings are originals or forgeries. In various fields of art new technical methods are used to examine the age, the state of preservation and the origin of the materials used. For the examination of paintings, radiological methods like X-ray and infra-red diagnosis, digital radiography, computer-tomography, etc. and color analyzes are employed to authenticate art. But all these methods do not relate certain characteristics in art work to a specific artist -- the artist's personal style. In order to study this personal style of a painter, experts in art history and image processing try to examine the 'structural signature' based on brush strokes within paintings, in particular in portrait miniatures. A computer-aided classification and recognition system for portrait miniatures is developed, which enables a semi- automatic classification and forgery detection based on content, color, and brush strokes. A hierarchically structured classification scheme is introduced which separates the classification into three different levels of information: color, shape of region, and structure of brush strokes.

  2. Systematic modification of the rheological properties of colloidal suspensions with polyelectrolyte multilayers. (United States)

    Hess, Andreas; Pretzl, Melanie; Heymann, Lutz; Fery, Andreas; Aksel, Nuri


    Tailoring rheological properties of colloidal suspensions with the adsorption of polyelectrolyte multilayers (PEMs) is based on the idea of controlling macroscopic mechanical properties by modifying the particle surface in a reproducible and well-understood manner. With layer-by-layer self-assembly, monodisperse polystyrene particles are coated with up to ten layers of the oppositely charged strong polyelectrolytes: poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate). The conformation of the adsorbed polyelectrolyte is controlled by the ionic strength of the used aqueous polyelectrolyte solution. For 1M NaCl solution, a brushlike adsorption of the polyelectrolyte is expected. The ability of PEMs to serve on a nanoscale level as surface modifiers and influence macroscopic rheological properties like viscoelasticity, yield stress, and shear banding is discussed. The mechanical behavior of these suspensions is qualitatively described by the theory of Derjaguin-Landau-Verwey-Overbeek with short-range repulsion and long-range attraction. A scaling rule is proposed which distinguishes between the precusor and the multilayer regime.

  3. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging (United States)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.


    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (;Fe-PolyM3;) assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  4. Polyelectrolyte multilayers prepared from water-soluble poly(alkoxythiophene) derivatives. (United States)

    Lukkari, J; Salomäki, M; Viinikanoja, A; Aäritalo, T; Paukkunen, J; Kocharova, N; Kankare, J


    Electronically conducting polyanion and polycation based on poly(alkoxythiophene) derivatives, poly-3-(3'-thienyloxy)propanesulfonate (P3TOPS) and poly-3-(3'-thienyloxy)propyltriethylammonium (P3TOPA) have been synthesized. Both polymers are water-soluble and exhibit high conjugation length in solution and in the solid state. These polyelectrolytes were used to prepare conducting and electroactive polyelectrolyte multilayers by the sequential layer-by-layer adsorption technique. In aqueous solutions multilayers of P3TOPS with inactive polyelectrolytes (e.g., poly(diallyldimethylammonium chloride), PDADMA) displayed electrochemical and optical behavior similar to polythiophene films prepared in organic media. Their in-plane conductivity was low (ca. 1.6 x 10(-)(5) S cm(-)(1)). The conductivity could, however, be increased by a factor of ca. 40 in "all-thiophene" films, in which P3TOPA was substituted for the inactive polycation (PDADMA). The interpenetration of layers is of prime importance in films containing conducting components. The interpenetration of P3TOPS was studied by measuring the charge-transfer rate across an insulating polyelectrolyte multilayer between the substrate and the P3TOPS layer with modulated electroreflectance. The extent of interpenetration was 8-9 polyelectrolyte layers, the length scale (7-15 nm) depending on the nature of the insulating layer and, especially, on the ionic strength of the solution used for the adsorption of P3TOPS.

  5. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zielińska, Katarzyna, E-mail:; Leeuwen, Herman P. van


    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex.

  6. The experimental study of polyelectrolyte coatings suitability for encapsulation of cells. (United States)

    Granicka, L H; Antosiak-Iwańska, M; Godlewska, E; Hoser, G; Strawski, M; Szklarczyk, M; Dudziński, K


    Living cells encapsulated in polymeric shells are receiving increasing attention because of their possible biotechnological and biomedical applications. The aim of this work is to evaluate how different polyelectrolyte coatings, characterized by different numbers of polyelectrolyte layers and by different polyelectrolyte conformations, affect the viability of encapsulated biological material. We demonstrate the ability to individually encapsulate HL-60 cells as well as rat pancreatic islets within polymeric shells consisting of different PE layers using the layer-by-layer process. Coating of HL-60 cells allows for surviving and functioning of cells for all applied PE as well as for different numbers of layers. The islets encapsulated in applied polyelectrolytes exhibited the lower level of mitochondrial activity as compared to non-encapsulated islets. Nevertheless, encapsulated islets exhibited comparable absorbance values during the whole period of culture. Polyelectrolyte coating seems to be a promising way of allowing capsule void volume minimization in a model of encapsulated biological material for local production of biologically active substances.

  7. Alternate drop coating for forming dual biointerfaces composed of polyelectrolyte multilayers. (United States)

    Watanabe, Junji; Shen, Heyun; Akashi, Mitsuru


    Two types of polyelectrolyte multilayers were formed on both sides of a quartz crystal microbalance (QCM) substrate by a novel alternate drop coating process. In this study, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrene sulfonate) (PSS) were used as strong-strong polyelectrolytes. On the other hand, PDDA and poly(acrylic acid) (PAA) were used as strong-weak polyelectrolytes. The novel alternate drop coating process can separately fabricate each polyelectrolyte multilayer on both sides of the substrate. The substrate provides dual biointerfaces, both sides of which comprise different multilayers, by employing a combination of polymers. The formation of the multilayer by alternate drop coating was evaluated in terms of changes in the frequency of the QCM and model protein adsorption for proteins such as bovine serum albumin, and their characteristics were investigated with those of the conventional alternate adsorption process by performing dip coating. There was no significant difference between the surface properties resulting from the two formation conditions. This result strongly supported the fact that the multilayers fabricated by alternate drop coating were similar in quality to those fabricated by conventional dip coating. The resulting dual biointerfaces with polyelectrolyte multilayers provide alternative biofunctions in terms of individual protein loading. In summary, the novel alternate drop coating process for substrates is a good candidate for the preparation of dual biointerfaces in the biomedical field.

  8. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. (United States)

    Pappa, Anna-Maria; Inal, Sahika; Roy, Kirsty; Zhang, Yi; Pitsalidis, Charalampos; Hama, Adel; Pas, Jolien; Malliaras, George G; Owens, Roisin M


    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  9. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. (United States)

    Wu, Qing-Xi; Zhang, Qi-Lei; Lin, Dong-Qiang; Yao, Shan-Jing


    Novel capsules loaded with lactoferrin (LF) were prepared using polyelectrolyte complexes that were formed by water soluble chitosan (WSC), sodium cellulose sulfate (NaCS) and sodium polyphosphate (PPS). Normal chitosan (soluble in acidic conditions) was chosen as a control to prepare similar capsules with NaCS and PPS. (1)H NMR and FTIR spectra analysis showed that WSC was in a form of chitosan hydrochloride which can be directly dissolved and protonated in acid-free water. SEM results showed that the capsules had a typical wall-capsule structure with a regular spherical shape and an average diameter of 1.97 mm. TGA studies revealed that the thermal stability of the capsules were enhanced and the moisture content of the drug-free/loaded capsules were 6.3% and 3.2%. SDS-PAGE results showed that the primary structures of the processed LF in the capsules were unchanged. Drug loading (LE%) and encapsulation efficiency (EE%) analysis showed that the capsules had a higher LE% (45.6%) and EE% (70.7%) than that of the control. In vitro release studies showed that the capsules had a regular and sustainable release profiles in simulated colonic fluid. All of these results indicated that the capsules prepared could be used as a candidate protein drug carrier for colon. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.


    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  11. Characterization of Responsive Hydrogel Nanoparticles upon Polyelectrolyte Complexation

    Directory of Open Access Journals (Sweden)

    Su-Kyoung Lee


    Full Text Available Characterization of responsive hydrogels and their interaction with other molecules have significantly expanded our understanding of the functional materials. We here report on the response of poly(N-isopropylacrylamide-co-acrylic acid (pNIPAm-co-AAc nanogels to the addition of the poly(allylamine hydrochloride (PAH in aqueous dispersions. We find that the hydrodynamic radius and stability of nanogels are dependent on the PAH/nanogel stoichiometry. If the nanogel solution is titrated with very small aliquots of PAH, the nanogels decrease in radius until the equivalence point, followed by aggregation at suprastoichiometric PAH additions. Conversely, when titrated with large aliquots, the nanogel charge switches rapidly from anionic to cationic, and no aggregation is observed. This behavior correlates well with electrophoretic mobility measurements, which shows the nanogel charge transitioning from negative to positive upon PAH addition. The volume phase transition temperature (VPTT of the nanogels is also measured to discover the effect of polyelectrolyte complexation on the deswelling thermodynamics. These data show that charge neutralization upon PAH addition decreases the VPTT of the nanogel at pH 6.5. However, if an excess amount of PAH is added to the nanogel solution, the VPTT shifts back to higher temperatures due to the formation of a net positive charge in the nanogel network.

  12. Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. (United States)

    Séon, Lydie; Lavalle, Philippe; Schaaf, Pierre; Boulmedais, Fouzia


    The prevention of pathogen colonization of medical implants represents a major medical and financial issue. The development of antimicrobial coatings aimed at protecting against such infections has thus become a major field of scientific and technological research. Three main strategies are developed to design such coatings: (i) the prevention of microorganisms adhesion and the killing of microorganisms (ii) by contact and (iii) by the release of active compounds in the vicinity of the implant. Polyelectrolyte multilayer (PEM) technology alone covers the entire widespread spectrum of functionalization possibilities. PEMs are obtained through the alternating deposition of polyanions and polycations on a substrate, and the great advantages of PEMs are that (i) they can be applied to almost any type of substrate whatever its shape and composition; (ii) various chemical, physicochemical, and mechanical properties of the coatings can be obtained; and (iii) active compounds can be embedded and released in a controlled manner. In this article we will give an overview of the field of PEMs applied to the design of antimicrobial coatings, illustrating the large versatility of the PEM technology.

  13. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors

    KAUST Repository

    Pappa, Anna-Maria


    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  14. Fibers by interfacial polyelectrolyte complexation – processes, materials and applications

    Directory of Open Access Journals (Sweden)

    Andrew C.A. Wan


    Full Text Available Interfacial polyelectrolyte (polyion complexation (IPC is a process whereby fibers and capsules are formed through interactions at the interface of oppositely charged polymers. Since its discovery in the late 1990s, the IPC fiber process, in particular, has been investigated for various applications such as tissue engineering, drug delivery, flexible electronics and biosensing. The advent of the IPC fiber and process has been supported by its unique mechanism of formation that makes it amenable to encapsulation and functionalization. In this first review on IPC fibers, we consolidate the current knowledge of the IPC process, mechanism of fiber formation and fiber physical properties, while documenting the various polycation–polyanion pairs and encapsulants that have been used to date. We review the rapidly accumulating literature on IPC fibers for tissue engineering, describing how they have been used to release protein factors in a sustained manner, made into random or spatially well-defined scaffolds and decorated with appropriate functionalities and extracellular matrices in order to tailor the microenvironment for cell growth and function.

  15. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes (United States)

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike


    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  16. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels. (United States)

    Li, Fei; Hill, Reghan J


    Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Preparation of photoluminescent carbon dots-embedded polyelectrolyte microcapsules

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Yang; Liming Peng; Jie Zong; Yihua Zhu


    Two types of photoluminescent carbon dots (CDs)-embedded polyelectrolyte (PE) microcapsules were successfully prepared via the layer-by-layer (LbL) assembly approach on sacrificial templates.For the first type,the PE microcapsules with CDs embedded in the cavity were produced from assembly of five pairs of poly(sodium 4-styrensulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on CDs-pre-loaded meso-porous silica.For the second type,the PE microcapsules with CDs embedded in the wall were made of CDs and PAH,which were derived from SiO2 particles as templates.Microscope images confirmed the introduction of CDs into the two CDs-embedded microcapsules.These two microcapsules also retained the optical properties of free CDs.Photoluminescence spectra revealed that the two types of microcapsules had excitation-dependent photoluminescence behavior.When the excitation wavelength changed from 280 to 340 nm,photoluminescence emission peak of the PE microcapsules with CDs embedded in the cavity shifts from 369 to 377 nm,while for microcapsules with CDs embedded in the wall,emission peak shifts from 367 to 390 nm.Due to low toxicity,good hydrophilicity and photoluminescence properties of CDs,these two kinds of photo-luminescent microcapsules have competitive potential for application in carriers for imaging,drug delivery and biosensors.

  18. Effect of Temperature on Polyelectrolyte Expansion of Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Hao Li


    Full Text Available The temperature effect on the polyelectrolyte expansion of sodium lignosulfonate (SL was studied in the range of 20 to 38 °C. A narrow molecular-weight distribution fraction of sodium lignosulfonate was first obtained by gel column chromatography, which was suitable for the hydrodynamic radius (Rh measurement by dynamic light scattering (DLS. Dynamic light scattering experiments showed that the hydrodynamic radius of sodium lignosulfonate decreased with increasing temperature. Using a quartz crystal microbalance (QCM and atomic force microscopy (AFM, it was found that the adsorbed sodium lignosulfonate film lost water with increasing temperature and reabsorbed water with decreasing temperature. Surface tension and contact angle experiments showed that there were more hydrophobic groups on the surface of the sodium lignosulfonate molecule as the temperature increased. It can be concluded that the sodium lignosulfonate molecule shrank and became more hydrophobic with increasing temperature. Analysis suggests that the decreasing of the hydrogen-bond interactions between the sodium lignosulfonate molecule and water molecules with increasing temperature is the primary reason for the molecular conformation change of sodium lignosulfonate.

  19. Mutable polyelectrolyte tube arrays: mesoscale modeling and lateral force microscopy. (United States)

    Cranford, Steven W; Han, Lin; Ortiz, Christine; Buehler, Markus J


    In this study, the pH-dependent friction of layer-by-layer assemblies of poly(allylamine hydrochloride) and poly(acrylic acid) (PAH/PAA) are quantified for microtube array structures via experimental and simulated lateral force microscopy (LFM). A novel coarse-grain tube model is developed, utilizing a molecular dynamics (MD) framework with a Hertzian soft contact potential (such that F ∼ δ(3/2)) to allow the efficient dynamic simulation of 3D arrays consisting of hundreds of tubes at micrometer length scales. By quantitatively comparing experimental LFM and computational results, the coupling between geometry (tube spacing and swelling) and material properties (intrinsic stiffness) results in a transition from bending dominated deformation to bending combined with inter-tube contact, independent of material adhesion assumptions. Variation of tube spacing (and thus control of contact) can be used to exploit the normal and lateral resistance of the tube arrays as a function of pH (2.0/5.5), beyond the effect of areal tube density, with increased resistances (potential mutability) up to a factor of ∼60. This study provides a novel modeling platform to assess and design dynamic polyelectrolyte-based substrates/coatings with tailorable stimulus-responsive surface friction. Our results show that micro-geometry can be used alongside stimulus-responsive material changes to amplify and systematically tune mutability.

  20. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)


    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  1. Functional polyelectrolyte multilayer membranes for water purification applications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Bijay P., E-mail: [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Dubey, Nidhi C. [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany); Stamm, M., E-mail: [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany)


    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior.

  2. Polyelectrolyte decomplexation via addition of salt: charge correlation driven zipper. (United States)

    Antila, Hanne S; Sammalkorpi, Maria


    We report the first atomic scale studies of polyelectrolyte decomplexation. The complex between DNA and polylysine is shown to destabilize and spontaneously open in a gradual, reversible zipper-like mechanism driven by an increase in solution salt concentration. Divalent CaCl2 is significantly more effective than monovalent NaCl in destabilizing the complex due to charge correlations and water binding capability. The dissociation occurs accompanied by charge reversal in which charge correlations and ion binding chemistry play a key role. Our results are in agreement with experimental work on complex dissociation but in addition show the underlying microstructural correlations driving the behavior. Comparison of our full atomic level detail and dynamics results with theoretical works describing the PEs as charged, rigid rods reveals that although charge correlation involved theories provide qualitatively similar responses, considering also specific molecular chemistry and molecular level water contributions provides a more complete understanding of PE complex stability and dynamics. The findings may facilitate controlled release in gene delivery and more in general tuning of PE membrane permeability and mechanical characteristics through ionic strength.

  3. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization. (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A


    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  4. Tooth brushing frequency and risk of new carious lesions. (United States)

    Holmes, Richard D


    Data sourcesMedline, Embase, CINHAL and the Cochrane databases.Study selectionTwo reviewers selected studies, and case-control, prospective cohort, retrospective cohort and experimental trials evaluating the effect of toothbrushing frequency on the incidence or increment of new carious lesions were considered.Data extraction and synthesisTwo reviewers undertook data abstraction independently using pre-piloted forms. Study quality was assessed using a quality assessment tool for quantitative studies developed by the Effective Public Health Practice Project (EPHPP). Meta-analysis of caries outcomes was carried out using RefMan and meta-regressions undertaken to assess the influence of sample size, follow-up period, caries diagnosis level and study methodological quality.ResultsThirty-three studies were included of which 13 were considered to be methodologically strong, 14 moderate and six weak. Twenty-five studies contributed to the quantitative analysis. Compared with frequent brushers, self-reported infrequent brushers demonstrated a higher incidence of carious lesions, OR=1.50 (95%CI: 1.34 -1.69). The odds of having carious lesions differed little when subgroup analysis was conducted to compare the incidence between ≥2 times/d vs carious lesions compared with ≥2/day brushing, standardised mean difference [SMD] =0.34; (95%CI; 0.18 - 0.49). Overall, infrequent brushing was associated with an increment of carious lesions, SMD= 0.28; (95%CI; 0.13 - 0.44). Meta-analysis conducted with the type of dentition as subgroups found the effect of infrequent brushing on incidence and increment of carious lesions was higher in deciduous, OR=1.75; (95%CI; 1.49 - 2.06) than permanent dentition OR=1.39; (95% CI: 1.29 -1.49). Meta-regression indicated that none of the included variables influenced the effect estimate.ConclusionsIndividuals who state that they brush their teeth infrequently are at greater risk for the incidence or increment of new carious lesions than those

  5. The effect of brushing with toothpaste containing nano calcium carbonate upon nanofill composite resin surface roughness (United States)

    Ramadhani, A. M.; Herda, E.; Triaminingsih, S.


    This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (p<0.005) after brushing with toothpaste containing nano calcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.

  6. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. (United States)

    Janmey, Paul A; Slochower, David R; Wang, Yu-Hsiu; Wen, Qi; Cēbers, Andrejs


    Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.

  7. Condensation of semiflexible polyelectrolytes in mixed solutions of mono- and multivalent salts (United States)

    Plunk, Amelia A.; Luijten, Erik


    The salt-dependent condensation of highly charged polyelectrolytes in aqueous solution is a topic of great biological and industrial importance that has been widely studied over the past decades. It is well established that interaction with multivalent counterions leads to the formation of bundle-like aggregates for rigid polyelectrolytes and to collapsed structures or disordered aggregates for flexible polyelectrolytes. Here, we investigate the behavior of semiflexible chain molecules, where the electrostatically induced aggregation is impeded by the intrinsic bending stiffness of the polymer. Moreover, we study the competition between monovalent and multivalent counterions in mixed solutions and establish the threshold salt concentration required for condensation. Our findings are relevant for a range of biomedical problems, including the fabrication of nanoparticles for gene delivery and the packaging of DNA by histones. This work is supported by the National Science Foundation.

  8. Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films

    Directory of Open Access Journals (Sweden)

    Ralf Zimmermann


    Full Text Available The analysis of the charge, structure and molecular interactions of/within polymeric substrates defines an important analytical challenge in materials science. Accordingly, advanced electrokinetic methods and theories have been developed to investigate the charging mechanisms and structure of soft material coatings. In particular, there has been significant progress in the quantitative interpretation of streaming current and surface conductivity data of polymeric films from the application of recent theories developed for the electrohydrodynamics of diffuse soft planar interfaces. Here, we review the theory and experimental strategies to analyze the interrelations of the charge and structure of polyelectrolyte layers supported by planar carriers under electrokinetic conditions. To illustrate the options arising from these developments, we discuss experimental and simulation data for plasma-immobilized poly(acrylic acid films and for a polyelectrolyte bilayer consisting of poly(ethylene imine and poly(acrylic acid. Finally, we briefly outline potential future developments in the field of the electrokinetics of polyelectrolyte layers.

  9. Treatment of effluents of poultry slaughterhouse with aluminum salts and natural polyelectrolytes. (United States)

    Ikeda, E; Rodrigues, D G; Nozaki, J


    A mixture of aluminum salts and natural polyelectrolytes, extracted from the cactus Opuntia ficus indica, has been used for cleaning of wastewater from poultry slaughterhouse. The aggregation and settling properties of colloids and complex organics such as oil, grease, fats, proteins, and suspended solids, was increased if compared with conventional methods of wastewater treatment using only aluminum or iron sulfate. A mixture of aluminum salt in a concentration range of 300 to 600 mg l(-1) and natural polyelectrolytes of 0.6 to 0.8 mg l(-1) was used for flocculation and coagulation. The combination of coagulant and natural polyelectrolytes was able to remove chemical oxygen demand (86%), oil and grease (93%), turbidity (89%), and suspended solids (93%). Methanization activity was also investigated for the effluents in natura.

  10. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing


    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  11. Synthesis and characterization of CdS-polyelectrolyte-Bi2S3 thin film by SILAR (United States)

    Desale, Dipalee J.; Shaikh, Shaheed; Siddiqui, Farha; AnilGhule, Ravikiran Birajadar; Sharma, Ramphal


    CdS-Polyelectrolyte-Bi2S3 was grown by cost effective successive ionic layer adsorption and reaction method (SILAR) on glass substrate. The polyelectrolyte used as a protecting layer for excessive ionic loss during the exchange reaction between the cation and anions of the reactants. Thin films was characterized for structural, morphological and an I-V characteristic. The X-ray diffraction pattern (XRD) pattern shows that, CdS-Polyelectrolyte-Bi2S3 thin films have mixed phase of hexagonal and orthorhombic crystal structures corresponding to CdS and Bi2S3 respectively. Scanning electron microscopy (SEM) corresponds deposition of the material along with the presence of bundle like shape is observed in thin film. The I-V measurement under dark and illumination to 100 mW/cm2 shows increase in photoconductivity.

  12. Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets. (United States)

    Shen, Jianfeng; Pei, Yu; Dong, Pei; Ji, Jin; Cui, Zheng; Yuan, Junhua; Baines, Robert; Ajayan, Pulickel M; Ye, Mingxin


    Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems.

  13. Reversible Self-Assembly of Hydrophilic Inorganic Polyelectrolytes into Highly Conservative, Vesicle-like Structures (United States)

    Kistler, Melissa; Bhatt, Anish; Liu, Guang; Liu, Tianbo


    The hydrophilic polyoxometalate (POM) macroanions are inorganic polyelectrolytes which offer a direct connection between simple ions and organic polyelectrolytes. POM solutions are perfect model systems for studying polyelectrolyte solutions because they are identical in size, shape, mass and charges, with easily tunable charge density. Many types of POM macroanions are highly soluble but undergo reversible self-assembly to form uniform, stable, soft, single-layer vesicle-like ``blackberry'' structures containing >1000 individual POMs in dilute solutions. The driving force of the blackberry formation is likely counterion-mediated attraction (like-charge attraction). The blackberry size can be accurately controlled by solvent quality, or the charge density on macroions. Many unexpected phenomena have been observed in these novel systems. Blackberry structures may be analogous to virus shell structures formed by capsid proteins. References: Nature, 2003, 426, 59; JACS, 2002, 124, 10942; 2003, 125, 312; 2004, 126, 16690; 2005, 127, 6942; 2006, 128, 10103.

  14. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.


    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  15. [Mechanical characteristics of synthetic polyelectrolyte gel as a physical model of the cytoskeleton]. (United States)

    Shkliar, T F; Toropova, O A; Safronov, A P; Pollack, G H; Bliakhman, F A


    A physical model of the cytoskeleton based on synthetic polyelectrolyte hydrogel of polymethacrylic acid has been proposed. From the physicochemical point of view, the structures of polyelectrolyte gel and the cytoskeleton show a high degree of similarity. It was shown that polyelectrolyte gel can shorten and produce mechanical stress in response to changes in the composition of the surrounding solution. The mechanical properties of the model gel were evaluated: Young modulus (2-6 kPa), stress relaxation time (0.1-1 s), and apparent viscosity (0.3-3 kPa x s). The viscoelastic properties of the gel depend on the degree of its swelling. It has been demonstrated that the mechanical properties of gels of polymethacrylic acid are close to those of biological objects.

  16. Chitosan-Based Zwitterionic Polyelectrolytes and Their N-Phosphobetainates: Facile Synthesis and Aqueous Solution Behaviors

    Institute of Scientific and Technical Information of China (English)

    Hongmei Kang; Yuanli Cai; Haijia Zhang; Junjie Deng; Pengsheng Liu


    @@ 1Introduction Chitosan has remarkable potential applications in pharmaceutical and cosmetic formulations[1], e.g. for drug delivery systems, tissue engineering, transplant and cell regeneration due to its excellent biocompatibility, biodegradability, mucoadhesion, etc. Its major drawback as considered for pharmaceutical and cosmetic formulations is its poor solubility due to strong hydrogen bonding and compact structures. Considerable efforts were focused on improving its solubility and enforcing its functionality[1]. As well-known that phosphorylcholine (PC), the structural component of cell membrane, is an amphiphile containing the zwitterionic quaternary ammonium and phosphonic acid moieties (phosphobetaine groups). There has been an intensive effort over the past decades to prepare and explore potential applications of the synthetic PC-polymers[2].In this paper, we describe a facile synthesis of chitosan derivatives containing zwitterionic secondary/tertiary amine and phosphonic acid groups and their further N-phosphobetainates. The polyelectrolyte effect and anti-polyelectrolyte effect of the chitosan-based zwitterionic polyelectrolytes were studied.

  17. Generation of mechanical force by grafted polyelectrolytes in an electric field: application to polyelectrolyte-based nano-devices (United States)

    Brilliantov, N. V.; Budkov, Yu. A.; Seidel, C.


    We analyse theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical force by a polyelectrolyte (PE) chain grafted to a plane. The PE is exposed to an external electric field that favours its adsorption on the plane. The free end of the chain is linked to a deformable target body. By varying the field, one can alter the length of the non-adsorbed part of the chain. This entails variation of the deformation of the target body and hence variation of the force arising in the body. Our theoretical predictions for the generated force are in very good agreement with the MD data. Using the theory developed for the generated force, we study the effectiveness of possible PE-based nano-vices, composed of two clenching planes connected by PEs and exposed to an external electric field. We exploit the Cundall-Strack solid friction model to describe the friction between a particle and the clenching planes. We compute the diffusion coefficient of a clenched particle and show that it drastically decreases even in weak applied fields. This demonstrates the efficacy of the PE-based nano-vices, which may be a possible alternative to the existing nanotube nano-tweezers and optical tweezers. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  18. Synthesis and characterization of polymer brushes for controlled adsorption of proteins (United States)

    Hoy, Olha

    Performance of biomedical devices to a large extent depends on the interactions between the device surface and the biological liquids/protein molecules. To achieve controllable interactions between the device and biomolecules and still retain the required mechanical strength on the whole, modification of the surface is often done. In the present study surface properties were modified through a polymer brush approach. After the modification, surfaces gain tunability toward protein adsorption. Mixed polymer brushes consisting of protein repelling and protein attractive components were used, with a "grafting to" method employed for the synthesis of polymer layers. First, poly(ethylene glycol), the protein repelling component of the mixed polymer brush, was tethered to the surface. Then, polyacrylic acid-b-polystyrene (the protein attractive component) was grafted on top of the previous layer. As one part of this study, the temperature dependence of grafting of the mixed brush components was studied. Surface morphology and surface properties of the mixed polymer brush were altered by treating the brush with different organic solvents. Changes in surface morphology and properties resulting from the solvent treatment were studied in dry conditions and in aqueous media. Hydrophobic interactions of the mixed polymer brush in different pH environments were also estimated. Synthesized mixed polymer brushes demonstrated a clear dependency between the external stimuli applied to the brush and the amount of the protein adsorbed onto the brush surface, allowing an effective control of protein adsorption. Attraction forces between the protein molecules and surface of he mixed polymer brush were measured using AFM and these supported the findings from the protein adsorption studies. 2-D molecular imprinting of the polymer brush approach was used to synthesize a surface with controlled positioning of the protein molecules on the surface. Protein adsorption onto the surface of the

  19. Tooth brushing, tongue cleaning and snacking behaviour of dental technology and therapist students

    Directory of Open Access Journals (Sweden)

    Clement C. Azodo


    Full Text Available Objective: To determine the tooth brushing, tongue cleaning and snacking behaviour of dental technology and therapist students. Methods: A descriptive cross-sectional study of students of Federal School of Dental Therapy and Technology Enugu, Nigeria. Self-administered questionnaire was used to obtain information on demography, frequency, duration and technique of tooth brushing and tongue cleaning as well as information on consumption of snacks. Results: A total of 242 students responded. Dental technology students made up 52.5% of the respondents and dental therapist in training made up 47.5%. Majority (63.2% of the respondents considered the strength of tooth brush when purchasing a tooth brush and 78.9% use tooth brushes with medium strength. Seven-tenth (71.9% of the respondents brush their teeth twice daily and 52.1% brush for 3–5 minutes. About one-third (30.2% brush their teeth in front of a mirror. Chewing stick was used by 51.7% of respondents in addition to the use of tooth brush. Tongue cleaning was done by 94.2% with only 9.5% using a tongue cleaner. Only 20.2% reported regular snacks consumption. Nine-tenth (90.4% of respondents were previously involved in educating others, apart from their colleagues, on tooth brushing. Conclusion: This survey revealed that most of the dental therapy and technology students had satisfactory tooth-brushing behaviour. The zeal to educate others about proper tooth brushing revealed in this study suggests that the students may be helpful in oral health promotion.

  20. Pericellular Brush and Mechanics of Guinea Pig Fibroblast Cells Studied with AFM. (United States)

    Dokukin, Maxim; Ablaeva, Yulija; Kalaparthi, Vivekanand; Seluanov, Andrei; Gorbunova, Vera; Sokolov, Igor


    The atomic force microscopy (AFM) indentation method combined with the brush model can be used to separate the mechanical response of the cell body from deformation of the pericellular layer surrounding biological cells. Although self-consistency of the brush model to derive the elastic modulus of the cell body has been demonstrated, the model ability to characterize the pericellular layer has not been explicitly verified. Here we demonstrate it by using enzymatic removal of hyaluronic content of the pericellular brush for guinea pig fibroblast cells. The effect of this removal is clearly seen in the AFM force-separation curves associated with the pericellular brush layer. We further extend the brush model for brushes larger than the height of the AFM probe, which seems to be the case for fibroblast cells. In addition, we demonstrate that an extension of the brush model (i.e., double-brush model) is capable of detecting the hierarchical structure of the pericellular brush, which, for example, may consist of the pericellular coat and the membrane corrugation (microridges and microvilli). It allows us to quantitatively segregate the large soft polysaccharide pericellular coat from a relatively rigid and dense membrane corrugation layer. This was verified by comparison of the parameters of the membrane corrugation layer derived from the force curves collected on untreated cells (when this corrugation membrane part is hidden inside the pericellular brush layer) and on treated cells after the enzymatic removal of the pericellular coat part (when the corrugations are exposed to the AFM probe). We conclude that the brush model is capable of not only measuring the mechanics of the cell body but also the parameters of the pericellular brush layer, including quantitative characterization of the pericellular layer structure.

  1. Comparison of Three types of Tooth Brushes on Plaque and Gingival Indices: A Randomized Clinical Trial (United States)

    Moeintaghavi, Amir; Sargolzaie, Naser; Rostampour, Mehrnoosh; Sarvari, Sara; Kargozar, Sanaz; Gharaei, Shideh


    Objective: To compare clinical results of three types of manual tooth brushes on plaque removal efficacy and gingivitis. Method: This study is a single blind randomized trial with crossover design which involved 30 periodontaly healthy individuals. Professional plaque removal and oral hygiene instruction were performed for all the participants in the first step of our study followed by asking them to avoid brushing for 2 days. Thereafter plaque and gingivitis scores were measured using plaque and gingival indices (PI and GI). Then subjects were instructed to use Pulsar tooth brush for a two-week period and then, GI and PI indices were assessed again. After passing one-week period for wash out, subjects didn't brush for 2 days and indices were recorded again. The same procedure was done for CrossAction, and Butler 411 tooth brushes respectively and at the end of the study these variables were analyzed using SPSS software ver.16. Repeated measurement ANOVA test was used to compare the scores between different brushes. Result: Finding of this study reveals that using all three types of tooth brushes resulted in significant plaque and gingivitis reduction compared to baseline levels. Pulsar tooth brush was significantly more effective in diminishing PI and GI than Butler tooth brush (p=0.044 and 0.031 respectively). Conclusion: According to our findings all 3 types of tooth brushes are effective in reduction of plaque and gingivitis and this reduction is significantly greater for Pulsar tooth brush compared to Butler and CrossAction tooth brushes. PMID:28357006

  2. Structure-property relationships in the design, assembly and applications of polyelectrolyte multilayer thin films (United States)

    Rmaile, Hassan H.

    Ultrathin films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer sequential assembly technique. To augment their typical applications in the water treatment, personal care as well as the pulp and paper industry, the structure and the design of these polyelectrolytes were tailored synthetically to satisfy the requirements of different types of applications. Some were used for surface modifications, hydrophobic and hydrophilic coatings, corrosion protection, conducting and biocompatible surfaces. Others were found to be very efficient for membrane and chromatographic applications. The ease with which these multilayer coatings can be constructed, their robustness and stability make them very good candidates for industrial applications. The dissertation focuses mainly on the structure-property relationships of these polyelectrolytes and their corresponding thin films. Various polyelectrolytes were synthesized or modified in a strategic approach and gave novel and promising properties. Some of them exhibited permeabilities that were higher than any membranes reported in the literature. Also, some are potentially very useful for designing drug delivery systems such as tablets or encapsulations since they were shown to control the permeability of sample drugs and vitamins very efficiently based on their sensitivity to pH changes. Other synthesized polyelectrolytes proved to be very effective in preventing protein adsorption or promoting cell growth and differentiation. Some systems were very useful as robust stationary phases for simple chiral separations in capillary electrochromatography. Along with modifications and improvements, the approach might one day be applied commercially for chiral separations using high performance liquid chromatography and replace currently used stationary phases. Last but not least, the potential for these polyelectrolytes and their

  3. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization. (United States)

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing


    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biofunctionalization of polyelectrolyte microcapsules with biotinylated polyethylene glycol-grafted liposomes. (United States)

    Gao, Jie; Reibetanz, Uta; Venkatraman, Subbu; Neu, Björn


    Hollow polyelectrolyte microcapsules (PEMC) are prepared using layer-by-layer self-assembly of polyelectrolytes on melamine formaldehyde templates, followed by template dissolution, and subsequent coating with biotinylated polyethylene glycol-grafted liposomes. These potential site-specific carrier systems show a high specificity for NeutrAvidin binding and a strong resistance against unspecific protein binding. It is concluded that this design with NeutrAvidin as the outermost layer of such capsules provides an ideal platform for the biofunctionalization of PEMC as drug delivery systems or as artificial cell-like structures for biomimetic studies.

  5. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry


    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  6. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.


    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  7. Endocytic trafficking from the small intestinal brush border probed with FM dye

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;


    The small intestinal brush border functions as the body's main portal for uptake of dietary nutrients and simultaneously acts as the largest permeability barrier against pathogens. To enable this, the digestive enzymes of the brush border are organized in lipid raft microdomains stabilized by cross...... localized deeper into the cytoplasm of the enterocytes. Two major raft-associated brush border enzymes, alkaline phosphatase and aminopeptidase N, were excluded from endocytosis. We propose that the terminal web cytoskeleton, by inhibiting traffic from apical early endosomes further into the cell......, contributes to the overall permeability barrier of the gut. Key words: FM dye, small intestine, brush border, endocytosis....

  8. Contaminated tooth brushes-potential threat to oral and general health

    Directory of Open Access Journals (Sweden)

    Rashmi Naik


    Full Text Available Background: Tooth brushing is most common method of maintaining oral hygiene. In removing plaque and other soft debris from the teeth, tooth brushes become contaminated with bacteria, blood, saliva and oral debris. These contaminated tooth brushes can be a source of infection. Aims and objectives: The aim of the present study was to evaluate the presence of microorganisms in the tooth brushes and to investigate the effect of disinfectants such as chlorhexidine gluconate, sodium hypochlorite and water to decontaminate them. Materials and Methods: Twenty-one children were asked to brush their teeth for 5 days with a tooth brush. The tooth brushes were put in Robertson′s Cooked Meat broth and were observed for growth of Streptococcal microorganisms. These tooth brushes were then placed in disinfectants such as 0.2% chlorhexidine gluconate (Group I, 1% sodium hypochlorite (Group II and water (Group III for 24 hrs and then cultured again. Reduction of growth of microorganisms was seen in Group I, Group II and remnants of growth seen in Group III. Conclusion: We conclude that the use of disinfectant for a tooth brush is a must for every individual at least at regular intervals.

  9. Interfacial properties of statistical copolymer brushes in contact with homopolymer melts. (United States)

    Trombly, David M; Pryamitsyn, Victor; Ganesan, Venkat


    We use polymer self-consistent field theory to quantify the interfacial properties of random copolymer brushes (AB) in contact with a homopolymer melt chemically identical to one of the blocks (A). We calculate the interfacial widths and interfacial energies between the melt and the brush as a function of the relative chain sizes, grafting densities, compositions of the random copolymer in the brush, and degree of chemical incompatibility between the A and B species. Our results indicate that the interfacial energies between the melt and the brush increase (signifying expulsion of the free chains from the brush) with increasing grafting density, chemical incompatibility between A and B components, and size of the free chains relative to the grafted chains. We also compare the interfacial energies of random copolymers of different sequence characteristics and find that, except for the case of very blocky or proteinlike chains, blockiness of the copolymer has only little effect on interfacial properties. Our results for interfacial energies are rationalized based on the concept of an "effective volume fraction" of the brush copolymers, f(eff), which quantifies the chemical composition of the brush segments in the interfacial zone between the brush and melt copolymers. Using this concept, we modify the strong-stretching theory of brush-melt interfaces to arrive at a simple model whose results qualitatively agree with our results from self-consistent field theory. We discuss the ramifications of our results for the design of neutral surfaces.

  10. Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. (United States)

    Kastl, Lena; Sasse, Daniel; Wulf, Verena; Hartmann, Raimo; Mircheski, Josif; Ranke, Christiane; Carregal-Romero, Susana; Martínez-López, José Antonio; Fernández-Chacón, Rafael; Parak, Wolfgang J; Elsasser, Hans-Peter; Rivera Gil, Pilar


    Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to

  11. Complexation of oppositely charged polyelectrolytes in gene delivery and biology (United States)

    Shklovskii, Boris


    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  12. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)


    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  13. Polyelectrolyte complex/PVA membranes for diffusion dialysis. (United States)

    Wang, Cong; Wu, Cuiming; Wu, Yonghui; Gu, Jingjing; Xu, Tongwen


    Polyelectrolyte complexes (PECs)/polyvinyl alcohol (PVA) membranes are prepared from PVA, anion exchange and cation exchange multisilicon copolymers, which contain plenty of functional groups of OH, N(+)(CH3)3/Si(OCH3)3, and SO3Na/Si(OCH3)3, respectively. The OH and Si(OCH3)3 groups can undertake sol-gel reaction to form crosslinking structure, while the N(+)(CH3)3 and SO3Na groups can be combined through electrostatic interaction. The PECs/PVA membranes exhibit improved thermal stability, swelling resistance and flexibility as compared with single anion or cation exchange hybrid membranes. The PECs/PVA membranes have the water uptakes (WR) of 25.3-70.4%, initial decomposition temperatures (IDTs) of 246-285°C, tensile strength of 23.1-33.8 MPa, and elongation at break of 3.5-13.1%. The membranes can be potentially applied for both acid and alkali recovery through diffusion dialysis (DD) process. The separation factor (S) for HCl/FeCl2 mixture can reach up to 89.9, which is about five times higher than that of commercial DF-120 membrane (18.5 at 25°C). The dialysis coefficients of NaOH (UOH) are in the range of 0.014-0.019 m/h, around 7-9 times higher than the value of commercial SPPO membrane (0.002 m/h at 25°C). The membranes also show potential usefulness for industrial acidic and alkali wastes treatment.

  14. Engineering muscle tissues on microstructured polyelectrolyte multilayer films. (United States)

    Monge, Claire; Ren, Kefeng; Berton, Kevin; Guillot, Raphael; Peyrade, David; Picart, Catherine


    The use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100 μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes. We found optimal conditions for both the formation of parallel-oriented myotubes and their maturation. Significantly, the myoblasts were collectively prealigned to the grooves before their differentiation. Before fusion, the highest aspect ratio and orientation of nuclei were observed for the 5 and 10 μm wide micropatterns. The formation of myotubes was observed regardless of the size of the micropatterns, and we found that their typical width was 10-12 μm. Their maturation was characterized by the immunolabeling of type II isomyosin. The amount of myosin striation was not affected by the topography, except for the 5 μm wide micropatterns. We highlighted the spatial constraints that led to an important nuclei deformation and further impairment of maturation within the 5 μm grooves. Altogether, our results show that the PEM film combined with PDMS is a powerful tool that is used for skeletal muscle engineering. This work opens perspectives for the development of skeletal muscle tissue in contact with films containing bioactive peptides or growth factors as well as for the study of pathogenic myotubes.

  15. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films


    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.


    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  16. Automatic brush-plating technology for component remanufacturing

    Institute of Scientific and Technical Information of China (English)

    WU Bin; XU Bin-shi; JING Xue-dong; LIU Cun-long; ZHANG Bin


    An automatic brush-plating system was developed for component remanufacturing. With this system, Ni/nano-alumina composite coatings from an electrolyte containing 20 g/L nano-alumina particles were prepared.Microstructure, surface morphology, microhardness and wear resistance of automatically plated coatings and manu ally plated coatings were investigated comparatively. The results show that the automatically plated coatings are relatively dense and uniform and have lower friction coefficient of 0. 089 under lubricant condition, when compared with manually plated coatings with friction coefficient of 0. 14.

  17. EUS-Guided Pancreatic Cyst Brushing: A Comparative Study in a Tertiary Referral Centre

    Directory of Open Access Journals (Sweden)

    Titus Thomas


    Full Text Available Context Fluid analysis obtained by EUS guided FNA is used to aid in diagnosis and management of cystic lesions in the pancreas. Complementing fluid aspiration with brushing of cyst wall may increase the cellular yield. Objective To compare cellular yield of pancreatic cyst FNA with and without wall brushing. Design Comparative study. Setting Tertiary referral centre. Patients Fifty-one patients with cystic pancreatic lesions referred for EUS-guided aspiration/sampling were included (median age 69 years; interquartile range: 49-77 years. Main outcome measures Comparing adequacy of cellular yield between EUS-guided aspiration alone vs. EUS-guided aspiration and cyst wall brushing. Intervention EUS-guided FNA and/or wall brushing (aspiration only: No. 27; brushing: No. 24. Results There was no significant difference in age (P=0.496 cyst size (P=0.084 or cyst location (P=0.227 between groups. Overall 29.5%; (15/51 of samples were acellular/insufficient with no significant difference between the two groups (22.2% in the aspiration only group vs. 37.5% in the brushing group; P=0.356. The remaining samples were adequate for cytological evaluation (77.8% vs. 62.5%; aspiration only vs. brushing groups. Seventeen cases were neoplastic (8 benign, 9 malignant. The diagnostic accuracy was 61.9% and 55.0% in aspiration only and brushing groups, respectively. Two out of 4 (50.0% patents were diagnosed as having cancer in the brushings group compared to 1/5 (20.0% in the FNA only group (P=0.524. Limitations Non-randomised series. Conclusions The cellular yield was similar in FNA and brushing group. Greater proportion of patients with malignant cystic pancreatic lesions diagnosed by EUS sampling was in the brushing group, but this did not reach statistical significance.

  18. Scaling features of the tribology of polymer brushes of increasing grafting density around the mushroom-to-brush transition (United States)

    Mayoral, E.; Klapp, J.; Gama Goicochea, A.


    Nonequilibrium coarse-grained, dissipative particle dynamics simulations of complex fluids, made up of polymer brushes tethered to planar surfaces immersed in a solvent yield nonmonotonic behavior of the friction coefficient as a function of the polymer grating density on the substrates, Γ , while the viscosity shows a monotonically increasing dependence on Γ . This effect is shown to be independent of the degree of polymerization, N , and the size of the system. It arises from the composition and the structure of the first particle layer adjacent to each surface that results from the confinement of the fluid. Whenever such layers are made up of as close a proportion of polymer beads to solvent particles as there are in the fluid, the friction coefficient shows a minimum, while for disparate proportions the friction coefficient grows. At the mushroom-to-brush transition (MBT) the viscosity scales with an exponent that depends on the characteristic exponent of the MBT (6/5) and the solvent quality exponent (ν =0.5 , for θsolvent), but it is independent of the polymerization degree (N ). On the other hand, the friction coefficient at the MBT scales as μ ˜N6 /5 , while the grafting density at the MBT scales as Γ ˜N-6 /5 when friction is minimal, in agreement with previous scaling theories. We argue these aspects are the result of cooperative phenomena that have important implications for the understanding of biological brushes and the design of microfluidics devices, among other applications of current academic and industrial interest.

  19. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition. (United States)

    Jurin, F E; Buron, C C; Martin, N; Filiâtre, C


    Self-assembled multilayer films made of PEDOT:PSS poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and PDDA poly(diallyldimethylammonium chloride) were prepared using layer-by-layer method. In order to modify the growth regime of the multilayer, to fabricate an electrical conductive film and to control its thickness, the effects of pH, type of electrolyte, ionic strength and polyelectrolyte concentration were investigated. Optical reflectometry measurements show that the pH of the solutions has no effect on the film growth while the adsorbed amount increases more rapidly when BaCl2 is used instead of NaCl as electrolyte. An increase in the ionic strength (with NaCl) induces a change in the growth regime from a linear to an exponential one at low polyelectrolyte concentration. As UV-vis measurements indicate, no decomplexation of PEDOT was recorded after film preparation. With polyelectrolyte concentration below 1 g L(-1), no conductive films were obtained even if 50 bilayers were deposited. A conductive film was prepared with a polyelectrolyte concentration of 1 g L(-1) and the measured conductivity was 0.3 S m(-1). A slight increase in conductivity was recorded when BaCl2 was used probably due to a modification of the film structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method. (United States)

    Fradj, Anouar Ben; Lafi, Ridha; Hamouda, Sofiane Ben; Gzara, Lassaad; Hamzaoui, Ahmed Hichem; Hafiane, Amor


    Understanding the role played by chemical additives such as NaCl salt, acid and Cetylpyridinium Chloride (CPC) surfactant on the interaction between dye and polyelectrolyte contributes to optimization of processes using polyelectrolytes in the removal of dye from aqueous solution. Herein we focus in the interaction between Safranin T, a cationic dye, with two anionic polyelectrolytes, poly(ammonium acrylate) and poly(acrylic acid) using spectrophotometric method and conductivity measurement. In aqueous solution, each of anionic polyelectrolytes forms a complex with the dye and induces a metachromasy indicated by the blue shift of the absorbance of the dye. The stoichiometry of complexes evaluated by the molar ratio method are 1:1 for Safranin T poly(ammonium acrylate) and 2:1 in the case of Safranin T poly(acrylic acid). The effect of additives on the stability of complexes has been studied by varying concentrations of the salt and the surfactant and pH of the solution. The thermodynamic parameters of interaction ΔG, ΔH and ΔS at different temperatures were evaluated to determine the stability constant of the complexes.


    Institute of Scientific and Technical Information of China (English)

    Zhan-wen Xing; Heng-te Ke; Shao-qin Liu; Zhi-fei Dai; Jin-rui Wang; Ji-bin Liu


    Objective To prepare and characterize polyelectrolyte multilayer film coated microbubbles for use as ultrasound contrast agent (UCA) and evaluate its effects in ultrasonic imaging on normal rabbit's fiver parenchyma.Methoda Pcrfluorocarbon (PFC)-containing microbubbles (ST68-PFC) were prepared by sonication based on surfactant ( Span 60 and Tween 80). Subsequently, the resulting ST68-PFC microbnbbles were coated using oppositely charged polyclectrolytes by microbubble-templated layer-by-layer self-assembly technique via electrostatic interaction.The enhancement effects in ultrasonic imaging on normal rabbit's liver parenchyma were assessed.Results The obtained microbubbles exhibited a narrow size distribution. The polyelectrolytes were successfully assembled onto the surface of ST68-PFC microbubbles. In vivo experiment showed that polyelectrolyte multilayer film coated UCA effectively enhanced the imaging of rabbit's liver parenchyma.Conclnsions The novel microbubbles UCA coated with polyelectrolyte multilayer, when enabled more function,has no obvious difference in enhancement effects compared with the pre-modified microbnbbles. The polymers with chemically active groups ( such as amino group and carboxyl group) can be used as the outermost layer for attachment of targeting ligands onto microbubbles, allowing selective targeting of the microbubbles to combine with desired sites.

  2. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.


    In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of

  3. Interaction of a hydophobic weak polyelectrolyte star with an apolar surface

    NARCIS (Netherlands)

    Rudd, O.V.; Leermakers, F.A.M.; Birshtein, T.M.


    We consider star-like polymers with weak, that is, pH-dependent, hydrophobic polyelectrolyte arms. For low ionic strength conditions, a microphase-segregated quasimicellar structure is found, for which the star features a compact apolar core and a charged and swollen corona. This state is jump-like

  4. Adsorption of polyelectrolytes and charged block copolymers on oxides consequences for colloidal stability

    NARCIS (Netherlands)

    Hoogeveen, N.G.


    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised

  5. Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Sol

    DEFF Research Database (Denmark)

    Knaapila, Matti; Stewart, Beverly; Costa, Telma


    We report on a multiscale polymer-within-polymer structure of the cationic conjugated polyelectrolyte poly{[9,9-bis(6-N,N,N-trimethylammonium)hexyl]fluorene phenylene} (HTMAPFP) in aqueous poly(vinyl alcohol).(PVA) sol. Molecular dynamics simulations and small-angle neutron scattering (SANS) data...

  6. Mechanism of rate enhancement of wood fiber saccharification by cationic polyelectrolytes. (United States)

    Mora, Sandeep; Lu, Jian; Banerjee, Sujit


    Cationic polyelectrolytes can increase the cellulase-induced hydrolysis rates of bleached wood fiber. We show that the polymer associates mainly with the amorphous region of fiber and acts principally on endoglucanase. Fiber/water partitioning of the enzyme follows a Langmuir isotherm for the untreated fiber but a Freundlich isotherm is obeyed for the polymer-treated fiber.

  7. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.


    In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimet

  8. Adsorption of polyelectrolytes and charged block copolymers on oxides. Consequences for colloidal stability.

    NARCIS (Netherlands)

    Hoogeveen, N.G.


    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised polyelectr

  9. Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels

    NARCIS (Netherlands)

    Glazer, P.J.; van Erp, M.; Embrechts, A.; Lemay, Serge Joseph Guy; Mendes, E.


    Polyelectrolyte gels are able to mimic artificial muscles, swelling, shrinking or bending in response to environmental stimuli. Mechanical response is also observed in the presence of an electric field, in which case electrical energy is directly converted into mechanical energy. Although several

  10. Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Xiaozheng Duan


    Full Text Available We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl–choline, PC and multivalent anionic (phosphatidylinositol, PIP2 lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.

  11. The photoluminescent lifetime of polyelectrolytes in thin films formed via layer by layer self-assembly. (United States)

    Reilly, Roseanne S; Smyth, Ciarán A; Rakovich, Yury P; McCabe, Eithne M


    We present results on luminescence lifetime studies of thin multilayer films of polyelectrolyte molecules produced via layer by layer (LbL) electrostatic assembly. We found that, in contrast to common assumptions, LbL films show measurable photoluminescent lifetimes with an average value of 6 ns. Scanning fluorescence lifetime imaging microscopy studies combined with steady-state photoluminescence measurements imply that this lifetime may be due to aggregation of polyelectrolyte molecules during preparation of LbL films. This conclusion has been further confirmed by atomic force microscopy (AFM). AFM images clearly show the presence of 100-200 nm high aggregates on the surface of these films. This aggregation of polyelectrolyte molecules contributes significantly to the experimentally detected luminescence decays of any light-emitting samples attached to LbL film, especially in a single molecule detection regime. To demonstrate this effect we compare photoluminescence lifetime results for CdTe quantum dots deposited on the surface of LbL polyelectrolyte films.

  12. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment (United States)

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano


    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  13. Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system. (United States)

    Junthip, Jatupol; Tabary, Nicolas; Leclercq, Laurent; Martel, Bernard


    A polyelectrolyte multilayer film (PEM) based on cationic and anionic β-cyclodextrin polyelectrolytes was coated onto a textile substrate for future drug delivery purposes. We firstly synthesized a novel cationic β-cyclodextrin polymer (polyEPG-CD) by crosslinking β-cyclodextrin (βCD) with epichlorohydrin (EP) under basic conditions, in the presence of glycidyltrimetrylammonium chloride (GTMAC) as cationizing group. The influence of preparation conditions has been investigated in order to preferably obtain a water soluble fraction whose charge density and molecular weights were optimal for the layer-by-layer (LbL) deposition process. The different cationic cyclodextrin polymers obtained were characterized by FTIR, NMR, colloidal titration, conductimetry, thermogravimetric analysis and size exclusion chromatography. Besides, the counterpart polyelectrolyte was a β-cyclodextrin polymer crosslinked with citric acid, polyCTR-CD, whose synthesis and characterization have been previously reported. Finally we realized the Layer by Layer (LbL) build-up of the PEM coating onto the textile support, using the dip coating method, by alternatively soaking it in cationic polyEPG-CD and anionic polyCTR-CD solutions. This multilayer self-assembly was monitored by SEM, gravimetry and OWLS in function of both polyelectrolytes concentrations and ratios. Solutions parameters such as pH, ionic strenght were also discussed.

  14. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Leermakers, F.A.M.


    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  15. The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents—a computational study (United States)

    Smiatek, J.; Wohlfarth, A.; Holm, C.


    In contrast to the broad knowledge about aqueous polyelectrolyte solutions, less is known about the properties in aprotic and apolar solvents. We therefore investigate the behavior of sulfonated polyelectrolytes in sodium form in the presence of different solvents via all-atom molecular dynamics simulations. The results clearly reveal strong variations in ion condensation constants and polyelectrolyte conformations for different solvents like water, dimethyl sulfoxide (DMSO) and chloroform. The binding free energies of the solvent contacts with the polyelectrolyte groups validate the influence of different solvent qualities. With regard to the ion condensation behavior, the numerical findings show that the explicit values for the condensation constants depend on the preferential binding coefficient as derived by the evaluation of Kirkwood-Buff integrals. Surprisingly, the smallest ion condensation constant is observed for DMSO compared to water, whereas in the presence of chloroform, virtually no free ions are present, which is in good agreement to the donor number concept. In contrast to the results for the low condensation constants, the sodium conductivity in DMSO is smaller compared to water. We are able to relate this result to the observed smaller diffusion coefficient for the sodium ions in DMSO.


    Directory of Open Access Journals (Sweden)

    Beata Bień


    Full Text Available The article presents the results of research on the impact of inorganic coagulants and polyelectrolytes and their common action on sonicated digested sludge. Sonication of sludge samples was carried out under static conditions for 60, 120 and 180 seconds. The ultrasonic wave of f = 20 kHz and two different amplitudes of A = 15.25 μm was used in tests. The coagulant PIX123 and the polyelectrolyte Zetag 8160 were used for conditioning. On the basis of CST test the doses of chemical reagents were chosen for conditioning. The results showed the effect of application of the PIX123 and Zetag 8160 and their combination on non-sonicated and sonicated sludge. The lowest CST was achieved for non-sonicated sludge while polyelectrolyte was applied. For sonicated sludge better results were achieved when PIX123 was used. The combination of coagulant and polyelectrolyte allowed to achieve COD reduction, but the best results were achieved for sludge prepared by PIX123. The application of Zetag8160 in this case was not satisfactory.

  17. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike


    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  18. Brush Seal Arrangement for the RS-68 Turbopump Set (United States)

    Nunez, D.; Ransom, D.; Prueger, G.


    The nature of the RS-68 turbopumps requires that the hydrogen seals separating the pump from the turbine must have extremely low levels of leakage and be contained in small packages. Conventional seal technologies are not able to reasonably satisfy such design requirements. A review of experimental measurements and analysis publications suggests that brush seals are well suited for the design requirements. Brush seals are shown to have less leakage than conventional labyrinth and damper seals and have no adverse effects on the rotordynamics of the machine. The bulk-flow analysis presented by Hendricks et al. is used as a guideline to create a spreadsheet that provides mass flow through the seal and heat generated by the rubbing contact of the bristles on the shaft. The analysis is anchored to published data for LN2 and LH2 leakage tests. Finally, the analysis is used to design seals for both applications. It is observed that the most important analysis parameter is the thickness of the bristle pack and its relationship to seal clearance, lay angle and pressure drop.

  19. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. (United States)

    Ramstedt, Madeleine; Cheng, Nan; Azzaroni, Omar; Mossialos, Dimitris; Mathieu, Hans Jörg; Huck, Wilhelm T S


    This article describes the aqueous atom transfer radical polymerization synthesis of poly(3-sulfopropylmethacrylate) brushes onto gold and Si/SiO2 surfaces in a controlled manner. The effect of Cu(I)/Cu(II) ratio was examined, and a quartz crystal microbalance was used to study the kinetics of the brush synthesis. The synthesized brushes displayed a thickness from a few nanometers to several hundred nanometers and were characterized using atomic force microscopy, ellipsometry, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The as-synthesized sulfonate brushes had very good ion-exchange properties for the ions tested in this study, i.e., Na+, K+, Cu2+, and Ag+. FTIR and XPS show that the metal ions are coordinating to sulfonate moieties inside the brushes. The brushes were easily loaded with silver ions, and the effect of silver ion concentration on silver loading of the brush was examined. The silver-loaded brushes were shown to be antibacterial toward both gram negative and gram positive bacteria. The silver leaching was studied through leaching experiments into water, NaNO3, and NaCl (physiological medium). The results from these leaching experiments are compared and discussed in the article.

  20. Grafting-Density Effects, Optoelectrical Properties and Nano-Patterning of Poly(para-Phenylene) Brushes (United States)


    brushes.18 Trichlorosilane end- functionalized PCHDs are deposited by spin-coating from dilute solution onto “piranha acid” or UV- ozone cleaned...brushes.18 Moreover, grazing angle attenuated total reectance Fourier transform infrared spectroscopy (GATR- FTIR ) shows disappearance of CH2 stretching

  1. The Weak Interaction of Surfactants with Polymer Brushes and Its Impact on Lubricating Behavior

    NARCIS (Netherlands)

    Zhang, Ran; Ma, Shuanhong; Wei, Qiangbing; Ye, Qian; Yu, Bo; Gucht, Van Der Jasper; Zhou, Feng


    We study the weak interaction between polymers and oppositely charged surfactants and its effect on the lubricating behavior and wettability of polymer brush-covered surfaces. For cationic (PMETAC) and anionic (PSPMA) brushes, a gradual transition from ultralow friction to ultrahigh friction was

  2. Mixed brush of chemically and physically adsorbed polymers under shear: Inverse transport of the physisorbed species (United States)

    Pastorino, C.; Müller, M.


    We study mixed brushes under shear flow by molecular dynamics simulation with an explicit solvent. The primary brush is formed by chemically grafting polymers to a solid substrate, the secondary brush is comprised of shorter, physically end-adsorbed molecules that can laterally diffuse. By virtue of the immobility of the grafted end-points of the primary brush, its individual macromolecules perform a cyclic motion. If there is a well defined solvent-brush interface, this cyclic motion of the primary brush molecules will collectively result in the reversal of the flow inside of the primary brush. This backflow, linear in the shear rate, gives rise to the transport of the shorter, physically end-adsorbed molecules in the opposite direction of the solvent flow. We discuss which conditions are necessary to observe this counter-intuitive phenomenon. Comparing Poiseuille and Couette flow we demonstrate that the magnitude of the local shear rate at the brush-liquid interface dictates the cyclic motion and concomitant inversion of transport but that these universal effects are independent of the type of driving the flow.

  3. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    NARCIS (Netherlands)

    Munirathinam, Rajesh; Ricardi, Roberto; Egberink, Richard J.M.; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, U.; Verboom, Willem


    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR,

  4. Friendship Network and Dental Brushing Behavior among Middle School Students: An Agent Based Modeling Approach. (United States)

    Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman


    By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals' dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network's nodes' in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students' brushing frequency was demonstrated by simulation results.

  5. A Colorimetric Interdental Probe as a Standard Method to Evaluate Interdental Efficiency of Interdental Brush. (United States)

    Bourgeois, D; Carrouel, F; Llodra, J C; Bravo, M; Viennot, S


    The aim of this study is to evaluate the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard, the IAP CURAPROX(©) calibrating colorimetric probe. It is carried out with the aim of facilitating the consensus development of best practices. All the subjects' interproximal spaces were evaluated using the reference technique (colorimetric probe), then after a time lapse of 1.2 ± 0.2 hours, using the empirical clinical technique (brushes) by the same examiner. Each examiner explored 3 subjects. The order the patients were examined with the colorimetric interdental probe (CIP) was random. 446 sites were selected in the study out of 468 potential sites. The correspondence of scores between interdental bushes vs. colorimetric probe is 43.0% [95%-CI: 38.5-47.6]. In 33.41% of the 446 sites, the brush is inferior to the probe; in 23.54% of cases, the brush is superior to the probe. Among the discrepancies there is thus a tendency for the subjects to use brushes with smaller diameter than that recommended by the colorimetric probe. This review has found very high-quality evidence that colorimetric probes plus interdental brushing is more beneficial than interdental brushing alone for increase the concordance between the empirical choice of interdental brushes of different diameters compared to the gold standard. Uncertainties remain and further research is required to provide detailed data on user satisfaction.

  6. Bioconjugation of protein-repellent zwitterionic polymer brushes grafted from silicon nitride

    NARCIS (Netherlands)

    Nguyen, A.T.; Baggerman, J.; Paulusse, J.M.J.; Zuilhof, H.; Rijn, van C.J.M.


    A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from α-bromo isobutyryl initiator-function

  7. Bioconjugation of Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicone Nitride

    NARCIS (Netherlands)

    Nguyen, A.T.; Baggerman, J.; Paulusse, J.M.J.; Zuilhof, H.; Rijn, van C.J.M.


    A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from a-bromo isobutyryl initiator-function

  8. Production rates for United States Forest Service brush disposal planning in the northern Rocky Mountains (United States)

    Dan Loeffler; Stu Hoyt; Nathaniel Anderson


    Timber harvesting operations generate brush and other vegetative debris, which often has no marketable value. In many western U.S. forests, these materials represent a fire hazard and a potential threat to forest health and must be removed or burned for disposal. Currently, there is no established, consistent method to estimate brush disposal production rates in the U....

  9. Measuring graft stability in a tethered polyelectrolyte film by X-ray and neutron reflectivity (United States)

    Dimitriou, Michael; Galvin, Casey; Satija, Sushil; Genzer, Jan


    The instability of tethered polymer films in mild conditions has recently brought into question the limits of use of such layers in certain technologies, such as anti-fouling coatings. In order to better understand the process of chain degrafting in a polymer brush, we have used X-ray reflectivity (XR) and neutron reflectivity (NR) to examine tethered layers of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA). Exposing an ~ 30 nm thick film of PDMAEMA brushes grafted on flat silica-coated substrates to a range of relative humidities (RH) resulted in reproducible thickness changes as measured by XR, illustrating the need of ambient solvent to induce degrafting. The thickness change showed non-linear behavior, increasing rapidly above ~ 70% RH and swelling to ~ 230% of its original thickness at ~ 99% RH. In order to better understand the apparent diffusive process of vapor into the brush, we have exposed brushes to isotopically labeled vapors. Using XR and NR, we examined the extent of modification in scattering length density within the brush using box and gradient models, and discuss the apparent entropic and enthalpic forces at play. We also conducted in situ aqueous measurements of similar samples to comprehend the degrafting process of a polymer brush. Through an appropriate choice of model, we detect variations in grafting density as a function of incubation time.

  10. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Li, Zhaoyang [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072 (China); Bao, Huijing; Li, Xue; Liu, Yunde [School of Laboratory Medicine, Tianjin Medical University, Tianjin, 300203 (China); Yang, Xianjin, E-mail: [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072 (China)


    Silver nanoparticle (AgNP) was incorporated into dopamine-modified alginate/chitosan (DAL/CHI) polyelectrolyte multilayer to modify the surface of titanium alloy and improve its antibacterial property. Scanning electron microscopy showed that AgNP with the size of 50 nm embedded in DAL/CHI multilayers homogeneously. X-ray photoelectron spectroscopy analysis indicated that the nanoparticles were silver (0) with peaks at 368.4 and 374.4 eV, respectively. The formation of silver (0) without the addition of reductants was due to the self-polymerization of dopamine, which can reduce the silver cation into neutral metal. The polyelectrolyte multilayer coating enhanced the wettability of titanium alloy and promoted the fibroblast proliferation significantly, which could be attributed to the excellent biocompatibility of DAL/CHI. Despite the slight fall of L929 cell activity after AgNP incorporation, AgNP-DAL/CHI multilayer inhibited the growth of both Escherichia coli and Staphylococcus aureus. The above results demonstrate that dopamine decoration is a simple and effective way to induce the in-situ formation of AgNP within polyelectrolyte multilayer. Furthermore, the AgNP-containing multilayer considerably enhances the antibacterial activity of titanium alloy. The fabrication of AgNP-DAL/CHI multilayer on the surface of titanium implant might have great potential in orthopedic use. - Highlights: • Polyelectrolyte multilayer was fabricated through layer-by-layer assembly. • AgNP was formed in-situ and embedded within polyelectrolyte multilayer. • Surface of titanium was modified by AgNP-DAL/CHI multilayer with a facile method. • AgNP-DAL/CHI multilayer enhanced antibacterial activity of titanium alloy.


    Directory of Open Access Journals (Sweden)

    Ashwini Rajendra


    Full Text Available Recent years there has been greater utilization of natural polymers in the development of delivery systems. The present work is an effort towards development of matrix tablets using polyelectrolyte complex formed between the oppositely charged natural polymers like okra mucilage obtained from pods of Abelmoschus esculentus and chitosan. The effect of pH and polymer volume ratio on yield of polyelectrolyte complex was studied. It was observed that the yield was maximum (96.45% at pH 5 and at polymer volume ratio of 9:1 between okra mucilage and chitosan. The prepared polyelectrolyte complex was also characterised by conductimetry, FTIR, DSC. The results confirmed the formation of polyelectrolyte complex between the natural polymers. The matrix tablets were formulated for model drug diclofenac sodium using the best polyelectrolyte complex at different drug to polymer ratios and compared with formulations containing individual polymers as well as marketed formulation. The prepared formulations showed satisfactory physical parameters. Formulations F2 and F3 extended the drug release for more than 8 h with (83.87± 0.8321% and (77.125± 0.125% drug release respectively in 8 h. The formulations F2 and F3 followed zero order kinetics with anomalous diffusion mechanism. The mean dissolution times were 3.6042 and 3.5935 hrs and the % dissolution efficiency were 54.9467 and 55.7203 % for formulations F2 and F3 respectively. The similarity factor f2 for formulation F2 was 61.6751 and for formulation F3, it was found to be 60.5025.The formulations were found to be stable.

  12. DNA Polymer Brush Patterning through Photocontrollable Surface-Initiated DNA Hybridization Chain Reaction. (United States)

    Huang, Fujian; Zhou, Xiang; Yao, Dongbao; Xiao, Shiyan; Liang, Haojun


    The fabrication of DNA polymer brushes with spatial resolution onto a solid surface is a crucial step for biochip research and related applications, cell-free gene expression study, and even artificial cell fabrication. Here, for the first time, a DNA polymer brush patterning method is reported based on the photoactivation of an ortho-nitrobenzyl linker-embedded DNA hairpin structure and a subsequent surface-initiated DNA hybridization chain reaction (HCR). Inert DNA hairpins are exposed to ultraviolet light irradiation to generate DNA duplexes with two active sticky ends (toeholds) in a programmable manner. These activated DNA duplexes can initiate DNA HCR to generate multifunctional patterned DNA polymer brushes with complex geometrical shapes. Different multifunctional DNA polymer brush patterns can be fabricated on certain areas of the same solid surface using this method. Moreover, the patterned DNA brush surface can be used to capture target molecules in a desired manner.

  13. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays (United States)

    Yang, Zhi; Zhu, Xingzhong; Huang, Xiaolu; Cheng, Yingwu; Liu, Yun; Geng, Huijuan; Wu, Yue; Su, Yanjie; Wei, Hao; Zhang, Yafei


    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.

  14. Development and Application of a Brush-Spray Derived from a Calligraphy-Brush-Style Synthetic Hair Pen for Use in ESI/MS. (United States)

    Liu, Jen-Ying; Chen, Pei-Chun; Liou, Yea-Wenn; Chang, Kai-Yin; Lin, Cheng-Huang


    The development of a novel type of a sampling/ionization kit for use in electrospray ionization/mass spectrometry is reported. Using a small calligraphy-brush-style synthetic hair pen (nylon-brush), and analogous to paper-spray mass spectrometry, the analytes can be collected, elution/desorption and then ionized from the surface of the nylon-brush. The body of the kit was produced by means of a commercial 3D-printer, in which ABS (acrylonitrile butadiene styrene) was used as the starting material. Meanwhile, a small nylon-brush was embedded inside a 3D-printed plastic cell, in which a solvent was supplied to rinse the brush by means of capillary action. The size and weight of the kit were 1 g and 4 cm, respectively. The kit is disposable and it has various functions, including non-invasive sampling, sample-evaporation and ionization. As a result, when a type of pesticide was selected as the test sample (dimethoate; C5H12NO3PS2), the limit of detection was determined to be 0.1 μg/mL. Collecting the pesticide from a leaf-surface (lettuce) was also successful. The process for fabricating the nylon-brush kit and the optimized experimental conditions are reported herein.

  15. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes. (United States)

    He, Ke; Duan, Haoran; Chen, George Y; Liu, Xiaokong; Yang, Wensheng; Wang, Dayang


    Herein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly

  16. Comparison between observed children's tooth brushing habits and those reported by mothers

    Directory of Open Access Journals (Sweden)

    Pordeus Isabela A


    Full Text Available Abstract Background Information bias can occur in epidemiological studies and compromise scientific outcomes, especially when evaluating information given by a patient regarding their own health. The oral habits of children reported by their mothers are commonly used to evaluate tooth brushing practices and to estimate fluoride intake by children. The aim of the present study was to compare observed tooth-brushing habits of young children using fluoridated toothpaste with those reported by mothers. Methods A sample of 201 mothers and their children (aged 24-48 months from Montes Claros, Brazil, took part in a cross-sectional study. At day-care centres, the mothers answered a self-administered questionnaire on their child's tooth-brushing habits. The structured questionnaire had six items with two to three possible answers. An appointment was then made with each mother/child pair at day-care centres. The participants were asked to demonstrate the tooth-brushing practice as usually performed at home. A trained examiner observed and documented the procedure. Observed tooth brushing and that reported by mothers were compared for overall agreement using Cohen's Kappa coefficient and the McNemar test. Results Cohen's Kappa values comparing mothers' reports and tooth brushing observed by the examiner ranged from poor-to-good (0.00-0.75. There were statistically significant differences between observed tooth brushing habits and those reported by mothers (p Conclusions In general, there was low agreement between observed tooth brushing and mothers' reports. Moreover, the different methods of estimation resulted in differences in the frequencies of tooth brushing habits, indicative of reporting bias. Data regarding children's tooth-brushing habits as reported by mothers should be considered with caution in epidemiological surveys on fluoridated dentifrice use and the risk of dental fluorosis.

  17. Rangeland Brush Estimation Toolbox (RaBET): An Approach for Evaluating Brush Management Conservation Efforts in Western Grazing Lands (United States)

    Holifield Collins, C.; Kautz, M. A.; Skirvin, S. M.; Metz, L. J.


    There are over 180 million hectares of rangelands and grazed forests in the central and western United States. Due to the loss of perennial grasses and subsequent increased runoff and erosion that can degrade the system, woody cover species cannot be allowed to proliferate unchecked. The USDA-Natural Resources Conservation Service (NRCS) has allocated extensive resources to employ brush management (removal) as a conservation practice to control woody species encroachment. The Rangeland-Conservation Effects Assessment Project (CEAP) has been tasked with determining how effective the practice has been, however their land managers lack a cost-effective means to conduct these assessments at the necessary scale. An ArcGIS toolbox for generating large-scale, Landsat-based, spatial maps of woody cover on grazing lands in the western United States was developed through a collaboration with NRCS Rangeland-CEAP. The toolbox contains two main components of operation, image generation and temporal analysis, and utilizes simple interfaces requiring minimum user inputs. The image generation tool utilizes geographically specific algorithms developed from combining moderate-resolution (30-m) Landsat imagery and high-resolution (1-m) National Agricultural Imagery Program (NAIP) aerial photography to produce the woody cover scenes at the Major Land Resource (MLRA) scale. The temporal analysis tool can be used on these scenes to assess treatment effectiveness and monitor woody cover reemergence. RaBET provides rangeland managers an operational, inexpensive decision support tool to aid in the application of brush removal treatments and assessing their effectiveness.

  18. Layer-by-layer self-assembly of composite polyelectrolyte-Nafion membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S.P.; Liu, Z.; Tian, Z.Q. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)


    A novel composite polyelectrolyte/Nafion membrane is demonstrated that is fabricated using the layer-by-layer self-assembly of oppositely charged polyelectrolytes. A direct methanol fuel cell based on such a membrane is shown to achieve a significant reduction in methanol crossover and an increase in power density of 42 %, in comparison to that which uses a pristine Nafion membrane. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. Influence of Layer-by-Layer Polyelectrolyte Deposition and EDC/NHS Activated Heparin Immobilization onto Silk Fibroin Fabric


    M. Fazley Elahi; Guoping Guan; Lu Wang; Martin W. King


    To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl...

  20. Sensitivity of protein adsorption to architectural variations in a protein-resistant polymer brush containing engineered nanoscale adhesive sites. (United States)

    Gon, Saugata; Santore, Maria M


    Patchy polymer brushes contain nanoscale (5-15 nm) adhesive elements, such as polymer coils or nanoparticles, embedded at their base at random positions on the surface. The competition between the brush's steric (protein resistant) repulsions and the attractions from the discrete adhesive elements provides a precise means to control bioadhesion. This differs from the classical approach, where functionality is placed on the brush's periphery. The current study demonstrates the impact of poly(etheylene glycol) (PEG) brush architecture and ionic strength on fibrinogen adsorption on brushes containing embedded poly-l-lysine (PLL, 20K MW) coils or "patches". The consistent appearance of a fibrinogen adsorption threshold, a minimum loading of patches on the surface, below which protein adsorption does not occur, suggests multivalent protein capture: Adsorbing proteins simultaneously engage several patches. The surface composition (patch loading) at the threshold is extremely sensitive to the brush height and ionic strength, varying up to a factor of 5 in the surface loading of the PLL patches (~50% of the range of possible surfaces). Variations in ionic strength have a similar effect, with the smallest thresholds seen for the largest Debye lengths. While trends with brush height were the clearest and most dominant, consideration of the PEG loading within the brush or its persistence length did not reveal a critical brush parameter for the onset of adsorption. The lack of straightforward correlation on brush physics was likely a result of multivalent binding, (producing an additional dependence on patch loading), and might be resolved for univalent adsorption onto more strongly binding patches. While studies with similar brushes placed uniformly on a surface revealed that the PEG loading within the brush is the best indicator of protein resistance, the current results suggest that brush height is more important for patchy brushes. Likely the interactions producing brush

  1. Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization

    CERN Document Server

    Alarcón, F; Goicochea, A Gama


    The influence of the chain degree of ionization on the adsorption of weak polyelectrolytes on neutral and on oppositely and likely charged surfaces is investigated for the first time, by means of Monte Carlo simulations with the mesoscopic interaction model known as dissipative particle dynamics. The electrostatic interactions are calculated using the three-dimensional Ewald sum method, with an appropriate modification for confined systems. Effective wall forces confine the linear polyelectrolytes, and electric charges on the surfaces are included. The solvent is included explicitly also and it is modeled as an athermal solvent for the polyelectrolytes. The number of solvent particles is allowed to fluctuate. The results show that the polyelectrolytes adsorb both onto neutral and charged surfaces, with the adsorption regulated by the chain degree of ionization, being larger at lower ionization degrees, where polyelectrolytes are less charged. Furthermore, polyelectrolyte adsorption is strongly modulated by th...

  2. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Directory of Open Access Journals (Sweden)

    N. P. Subiramaniyam


    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  3. Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. (United States)

    Qu, Zhenyuan; Xu, Hong; Xu, Ping; Chen, Kaimin; Mu, Rong; Fu, Jianping; Gu, Hongchen


    Improving the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is of utmost importance for meeting the demand of early disease diagnosis. Herein we report an ultrasensitive ELISA system using horseradish peroxidase (HRP)-loaded nanospherical poly(acrylic acid) brushes (SPAABs) as labels. HRP was covalently immobilized in SPAABs with high capacity and activity via an efficient "chemical conjugation after electrostatic entrapment" (CCEE) process, thus endowing SPAABs with high amplification capability as labels. The periphery of SPAAB-HRP was further utilized to bind a layer of antibody with high density for efficient capture of analytes owing to the three-dimensional architecture of SPAABs. Using human chorionic gonadotrophin (hCG) as a model analyte, the SPAAB-amplified system drastically boosted the detection limit of ELISA to 0.012 mIU mL(-1), a 267-fold improvement as compared to conventional ELISA systems.

  4. The effectivity of toothpick tooth brushing method on plaque control

    Directory of Open Access Journals (Sweden)

    Chiquita Prahasanti


    Full Text Available Background: Periodontal diseases are associated with bacteria species which present in biofilms that colonize on dental surfaces. Several tooth brushing methods had been known and proved to be effective in maintaining oral hygiene. Among them, tooth pick technique was a relatively new method and its superiority in removing interproximal plaque was better than other methods. Purpose: The purpose of this study was to examine the effectivity of toothpick tooth brushing method to conventional method on periodontal health. Methods: This research was designed as an analytical observational study. Thirty samples selected from five hundred and twelve males Indonesian Air-force members in Malang, aged 18–40 yrs, with periodontal pockets (≤ 5 mm in upper or lower teeth, without crowding, gingival index minimal > 1 (moderate gingivitis, OHI-S score minimal ≥ 1.3 (moderate, without systemic diseases, do not undergone medical therapy/drug prescriptions, without using mouth rinse during study, and without prosthesis. There were thirty samples in this research and devided to two groups, fifteen samples easch. The groups were toothpick tooth brusing method and conventional method (control group. In this study oral hygiene index simplified (OHI-S, gingival index (GI, bleeding on probing (BOP and pocket depth were examined. Results: There were significant differences (p = .001 in OHI-S, GI, BOP, and PD before and after conducting each toothbrushing method, as well as differences between means (quarrel means, that were p = .003; p = .001; p = .001 and p = .001 consecutively. Conclusion: Toothpick brushing method was more effective in plaque control compared to conventional method.Latar belakang: Penyakit periodontal berhubungan dengan bakteri yang berkoloni dalam biofilm yang terdapat di permukaan gigi. Saat ini telah dikenal berbagai macam metode menyikat gigi tetapi masih belum ada penelitian tentang efek metode tersebut terhadap OHI-S. Penelitian in ingin

  5. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact. (United States)

    Szczepanowicz, Krzysztof; Bazylińska, Urszula; Pietkiewicz, Jadwiga; Szyk-Warszyńska, Lilianna; Wilk, Kazimiera A; Warszyński, Piotr


    It has been generally expected that the most applicable drug delivery system (DDS) should be biodegradable, biocompatible and with incidental adverse effects. Among many micellar aggregates and their mediated polymeric systems, polyelectrolyte oil-core nanocarriers have been found to successfully encapsulate hydrophobic drugs in order to target cells and avoid drug degradation and toxicity as well as to improve drug efficacy, its stability, and better intracellular penetration. This paper reviews recent developments in the formation of polyelectrolyte oil-core nanocarriers by subsequent multilayer adsorption at micellar structures, their imaging, physical state and stability, drug encapsulation and applications, in vitro release profiles and in vitro biological evaluation (cellular uptake and internalization, biocompatibility). We summarize the recent results concerning polyelectrolyte/surfactant interactions at interfaces, fundamental to understand the mechanisms of formation of stable polyelectrolyte layered structures on liquid cores. The fabrication of emulsion droplets stabilized by synergetic surfactant/polyelectrolyte complexes, properties, and potential applications of each type of polyelectrolyte oil-core nanocarriers, including stealth nanocapsules with pegylated shell, are discussed and evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets (United States)

    Shen, Jianfeng; Pei, Yu; Dong, Pei; Ji, Jin; Cui, Zheng; Yuan, Junhua; Baines, Robert; Ajayan, Pulickel M.; Ye, Mingxin


    Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems.Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems. Electronic supplementary information (ESI) available: SEM, AFM and TEM characterization of PAA-MoS2 and PAM-MoS2 nanocomposites. More characterization and electrochemical properties of LBL films

  7. Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory. (United States)

    Gong, Kai; Marshall, Bennett D; Chapman, Walter G


    We study the lower critical solution temperature (LCST) behavior of associating polymer brushes (i.e., poly(N-isopropylacrylamide)) using classical density functional theory. Without using any empirical or temperature-dependent parameters, we find the phase transition of polymer brushes from extended to collapsed structure with increasing temperature, indicating the LCST behavior of polymer brushes. The LCST behavior of associating polymer brushes is attributed to the interplay of hydrogen bonding interactions and Lennard-Jones attractions in the system. The effect of grafting density and molecular weight on the phase behavior of associating polymer brushes has been also investigated. We find no LCST behavior at low grafting density or molecular weight. Moreover, increasing grafting density decreases the LCST and swelling ratio of polymer brushes. Similarly, increasing molecular weight decreases the LCST but increases the swelling ratio. At very high grafting density, a partial collapsed structure appears near the LCST. Qualitatively consistent with experiments, our results provide insight into the molecular mechanism of LCST behavior of associating polymer brushes.

  8. Tooth brushing skills for the children aged 3-11 years

    Directory of Open Access Journals (Sweden)

    Das U


    Full Text Available Objectives: The objective of this study was to evaluate tooth brushing management and ability of children in relation to age and gender. Materials and Methods: The study population consisted of 45 children, who attended Department of Pedodontics and Preventive Dentistry at V.S Dental College and Hospital Bangalore. Children were divided into three groups according to age: Group I: 3-5 years, Group II: 6-8 years, and Group III: 9-11 years. Each child selected his/her favorite toothbrush and brushed his/her teeth under supervision of one instructor. The grip type during tooth brushing was recorded on a videotape and duration of tooth brushing also was noted. The data were analyzed in relation to the age and gender using the chi-square test. ANOVA was used to find if there is any significant difference between the mean brushing times in the different groups. Results: The results of statistical analysis showed that in all cases P> 0.05 for grip preferences and P < 0.001 between age groups 3-5 years and 9-11 years with respect to the mean brushing time. Conclusion: The required manual dexterity for tooth brushing was present in younger age groups.

  9. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. (United States)

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen


    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  10. Polyelectrolyte Conformation, Interactions and Hydrodynamics as Studied by Light Scattering. (United States)

    Ghosh, Snehasish

    Polyelectrolyte conformation, interactions and hydrodynamics show a marked dependence on the ionic strength (C_{rm s}) of the medium, the concentration (C_{rm p}) of the polymer itself and their charge density (xi). The apparent electrostatic persistence length obtained from static light scattering varied approximately as the inverse square root of C _{rm s} for highly pure, high molecular weight hyaluronate (HA) as well as for variably ionized acrylamide/sodium acrylate copolymers (NaPAA), and linearly with xi. The experimental values of persistence length and second virial coefficient (A_2) are compared to predictions from theories based on the Debye-Huckel approximation for the Poisson-Boltzmann equation and on excluded-volume. Although the mean square radius of gyration () depended strongly on C _{rm s}. decreasing with increasing C_{rm s} for both HA and NaPAA indicating clear evidence of polyion expansion, dynamic light scattering values of the translational diffusion coefficient (D) remains constant when extrapolated to infinite polymer concentration for both the polymers. The behavior of D is compared to predictions from coupled mode theory in the linear limit. The effects of NaOH on the conformations, interactions, diffusion and hydrolysis rates of HA are characterized in detail using static, dynamic and time-dependent light scattering supplemented by size exclusion chromatography (SEC). For the HA , A_2 and the hydrolysis rates all resemble superposing titration curves, while the D remains independent of both the concentration of NaOH, and the contraction of . The indication is that the interactions, conformations and the hydrolysis rates are all controlled by the titration of the HA hydroxyl groups by the NaOH to yield -O ^-, which (i) destroys single strand hydrogen bonds, leading to de-stiffening and contraction of the HA coil and a large decrease in intermolecular interaction, and (ii) slowly depolymerizes HA. The experimental results of HA

  11. Assessment in vitro of brushing on dental surface roughness alteration by laser interferometry

    Directory of Open Access Journals (Sweden)

    Alessandra Miranda de Azevedo


    Full Text Available Noncarious cervical lesions (NCCLs are considered to be of multifactorial origin, normally associated with inadequate brushing. This study assessed the influence in vitro of simulated brushing on NCCL formation. Fifteen human premolars were submitted to brushing in the cementoenamel junction region, using hard-, medium- and soft-bristled brushes associated with a toothpaste of medium abrasiveness under a 200 g load, at a speed of 356 rpm for 100 minutes. The surface topography of the region was analyzed before and after brushing, by means of a laser interferometer, using "cut-off" values of 0.25 and considering roughness values in mm. The initial roughness (mm results for dentin (D / bristle consistency: 1 - soft, 2 - medium and 3 - hard were as follows: (D1 1.25 ± 0.45; (D2 1.12 ± 0.44; (D3 1.05 ± 0.41. For enamel (E / bristle consistency: 1 - soft, 2 - medium and 3 - hard, the initial results were: (E1 1.18 ± 0.35; (E2 1.32 ± 0.25; (E3 1.50 ± 0.38. After brushing, the following were the values for dentin: (D1 2.32 ± 1.99; (D2 3.30 ± 0.96; (D3 Over 500. For enamel, the values after brushing were: (E1 1.37 ± 0.31; (E2 2.15 ± 0.90; (E3 1.22 ± 0.47. Based on the results of the ANOVA and Tukey statistical analyses (a = .05 it was concluded that soft, medium and hard brushes are not capable of abrading enamel, whereas dentin showed changes in surface roughness by the action of medium- and hard-bristled brushes.

  12. Features of Running Brush Motors in Dry Nitrogen Environment When Using in Electrohydraulic Actuators

    Directory of Open Access Journals (Sweden)

    Y. A. Petrov


    Full Text Available The work concerns the constructive characteristics optimization of brushless D.C. (direct current motors used in electromechanical spacecraft drives.The spacecraft electromechanical drives and units use rather widely the brushless D.C. motors in which a motor commutator is replaced with more reliable semiconductor commutator controlled by the rotor position sensors. However, these motors are of low power.Electrohydraulic actuators (EHA use simple permanent-magnet motors (PMM of rather high power and commutator motors with graphite brush variable contacts.High reliability of brush motors, and, therefore a reliability of EHA in general, substantially depends on the quality of motor commutator operation. There are different reasons for a possible impact on the normal motor commutator operation. One of them is brush wear. Sparking brushes and burning commutator bars are possible in case brushes are poorly grinded to fit, brushes cannot freely move true in the brush holder box, and in case an incorrect force to clamp brushes to the commutator is chosen.It is established that drive wear resistance and operability depends on the gas environment composition being under sealed motor housing. In dry nitrogen environment brush wear suddenly raises because of the changing tribological performances of the commutator thus leading to essentially falling isolation resistance and no motor start.It is recommended to fill a space under sealed motor housing with air. Positive experience of operating spacecraft device containers with mobile electromechanical couples allowed us to find that in this case a dew point of filled air must be minus 20˚C.The paper offers an electromechanical alternative of design to the electrohydraulic actuators, with a ball-screw gear of the actuation mechanism, possessing a number of advantages.

  13. Comparison between observed children's tooth brushing habits and those reported by mothers (United States)


    Background Information bias can occur in epidemiological studies and compromise scientific outcomes, especially when evaluating information given by a patient regarding their own health. The oral habits of children reported by their mothers are commonly used to evaluate tooth brushing practices and to estimate fluoride intake by children. The aim of the present study was to compare observed tooth-brushing habits of young children using fluoridated toothpaste with those reported by mothers. Methods A sample of 201 mothers and their children (aged 24-48 months) from Montes Claros, Brazil, took part in a cross-sectional study. At day-care centres, the mothers answered a self-administered questionnaire on their child's tooth-brushing habits. The structured questionnaire had six items with two to three possible answers. An appointment was then made with each mother/child pair at day-care centres. The participants were asked to demonstrate the tooth-brushing practice as usually performed at home. A trained examiner observed and documented the procedure. Observed tooth brushing and that reported by mothers were compared for overall agreement using Cohen's Kappa coefficient and the McNemar test. Results Cohen's Kappa values comparing mothers' reports and tooth brushing observed by the examiner ranged from poor-to-good (0.00-0.75). There were statistically significant differences between observed tooth brushing habits and those reported by mothers (p dentifrice dispersed on all bristles (35.9%), children who brushed their teeth alone (33.8%) and those who did not rinse their mouths during brushing (42.0%) were higher than those reported by the mothers (12.1%, 18.9% and 6.5%, respectively; p dentifrice use and the risk of dental fluorosis. PMID:21888664

  14. Factors Affecting Oral Hygiene and Tooth Brushing in Preschool Children, Shiraz/Iran

    Directory of Open Access Journals (Sweden)

    Shaghaghian S


    Full Text Available Abstract Statement of Problem: Inadequate tooth brushing and inappropriate oral hygiene can lead to dental caries, the most common chronic diseases of childhood with several side effects. Objectives: To evaluate factors affecting on preschool children’s oral hygiene and tooth brushing in Shiraz, Iran Materials and Methods: In this cross-sectional study, we selected 453 children registered in Shiraz kindergartens in 2013 by randomized cluster sampling. The children’s tooth brushing and oral hygiene were assessed using a reliable and valid questionnaire and Simplified Debris Index (DI-S, respectively. A dental student examined all the children in each kindergarten to determine their DI-S. The relationship between the children’s demographic variables and their oral hygiene and tooth brushing status were evaluated. Results: Tooth brushing for 272 children (71.2% had been started after the age of 2 years. The teeth in 96 children (24.2% had been brushed lower than once daily. The mean of the children’s DI-S was 1.19 ± (0.77. The DI-S of only 126 children (31.8% was found to be good and very good. After controlling the effect of confounding factors, we found that the children’s tooth brushing frequency was significantly associated with the number of children in the family and mothers’ employment status. The age at which tooth brushing had been started was significantly associated with the fathers’ education. Furthermore, the DI-S was associated with children’s age, number of the children in the family, and their mothers’ education. Conclusions: Oral hygiene and tooth brushing of the preschool children were not in a desirable status. Interventional procedures, especially educational programs, are recommended for children and their parents. These programs seem to be more necessary for older children, low socioeconomic families, and families with more than one child.

  15. Compression induced phase transition of nematic brush: A mean-field theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiuzhou [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Xinghua, E-mail: [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Yan, Dadong, E-mail: [Department of Physics, Beijing Normal University, Beijing 100875 (China)


    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.

  16. Complex polymer brush gradients based on nanolithography and surface-initiated polymerization. (United States)

    Lin, Xiankun; He, Qiang; Li, Junbai


    Confined surface gradients consisting of polymer brushes have great potential in various applications such as microfluidic devices, sensors, and biophysical research. Among the available fabrication approaches, nanolithographies combined with self-assembled monolayers and surface-initiated polymerization have became powerful tools to engineer confined gradients or predefined complex gradients on the nanometre size. In this tutorial review, we mainly highlight the research progress of the fabrication of confined polymer brush gradients by using electron beam, laser, and probe-based nanolithographies and the physical base for these approaches. The application of these polymer brush gradients in biomedical research is also addressed.

  17. A sequence of calculation of the modes of dimensional combined processing by an electrode brush (United States)

    Ryazantsev, A. Yu; Kirillov, O. N.; Smolentsev, V. P.; Totay, A. V.


    In the article the way of calculation of the modes of dimensional processing by an electrode brush is considered. The choice of a liquid working environment is presented. A calculation of tension in electrodes and forces of the technological current realized during processing is given. A choice of a clip of wire bunches in a processing zone, feeding an electrode brush to a non-rigid work piece. The recommended technological indicators of the process of the finishing combined treatment by an electrode brush are presented.

  18. Study on Microstructures and Properties of Electro Brush-plating Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUZhuo-ming; HUANGWan-juan


    In this paper, composite coatings were prepared using improved electro brush plating, and the possibility and feasibility of obtaining of composite coatings with various hard dispersion paticles (Cr2O3, SiC, ZrO, Al2O3 etc.) were studied.The microstructure, constitution, microhardness and wear resistance w, ere examined. The results show that.electro brush-plating composite coatings have finner microstruetures and higher microhardness and wear-resistance than ordinary electro brush-plating coatings.The research results can he used in repairing and surface strengthening of worn machine parts,and have practical uses.

  19. Study on Microstructures and Properties of Electro Brush-plating Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GU Zhuo-ming; HUANG Wan-juan


    In this paper, composite coatings were prepared using improved electro brush-plating, and the possibility and feasibility of obtaining of composite coatings with various hard dispersion paticles (Cr2O3, SiC, ZrO, Al2O3 etc.) were studied.The microstructure, constitution, microhardness and wear resistance were examined. The results show that,electro brush-plating composite coatings have firner microstructures and higher microhardness and wear-resistance than ordinary electro brush-plating coatings.The research results can be used in repairing and surface strengthening of worn machine parts,and have practical uses.

  20. Daylong Effect of Tooth Brushing or Combination Tooth Brushing and Tongue Cleaning Using Antiplaque®Toothpaste on Volatile Sulphur Compound Levels

    Directory of Open Access Journals (Sweden)

    Indriasti Indah Wardhany


    Full Text Available Objective: to determine the daylong effect of Antiplaque® toothpaste active copound and the effect of tooth brushing or combination of tooth brushing and tongue cleaning on Volatile Sulphur Compounds (VSC levels. Methods: Clinical experimental double blinded microbiological and clinical examination. Subjects mainly from dental faculty student with or without a chief complain of halitosis. One hundred and twenty subjects were divided into four groups that consist of thirty samples each group. Two group are treatment subjects were divided into four groups that consist thirty samples each group. Two groups are treatment groups using Antiplaque® toothpaste and two groups are control groups using placebo toothpaste. The daylong effects of VSC levels are measured by Halimeter and organoleptic. The intraoral status were measured including periodontal status and tongue index. Result: There are a reduction of VSC levels in both treatment and control group, but the reduction only significant in group using Antiplaque® toothpaste (Wilcoxon signed rank test, p<0.05. There are a reduction of VSC levels in both treatment using Antiplaque® toothpaste, but the combination of tooth brushing and tongue cleaning reduced VSC levels significantly lower than tooth brushing treatment (Mann Whitney U test, P,0.05. Conclusion: Tooth brushing and tongue cleaning using Antiplaque® toothpaste significantly reduced VSC levels.DOI: 10.14693/jdi.v16i2.95

  1. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi


    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  2. Persistence length of a polyelectrolyte in salty water: Monte Carlo study. (United States)

    Nguyen, T T; Shklovskii, B I


    We address the long standing problem of the dependence of the electrostatic persistence length l(e) of a flexible polyelectrolyte (PE) on the screening length r(s) of the solution within the linear Debye-Hückel theory. The standard Odijk, Skolnick, and Fixman (OSF) theory suggests l(e) proportional, variant r(2)s, while some variational theories and some computer simulations suggest l(e) proportional, variant r(s). In this paper, we use Monte Carlo simulations to study the conformation of a simple polyelectrolyte. Using four times longer PEs than in previous simulations and refined methods for the treatment of the simulation data, we show that the results are consistent with the OSF dependence l(e) proportional, variant r(2)s. The linear charge density of the PE, which enters in the coefficient of this dependence is properly renormalized to take into account local fluctuations.

  3. Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Jue Lu


    Full Text Available Exfoliated graphite nanoplatelets (xGnPs with an average thickness of 1–10 nm present an inexpensive alternative to carbon nanotubes in many applications. In this paper, stable aqueous suspension of xGnP was achieved by noncovalent functionalization of xGnP with polyelectrolytes. The surfactants and polyelectrolytes were compared with respect to their ability to suspend graphite nanoplatelets. The surface charge of the nanoplatelets was characterized with zeta potential measurements, and the bonding strength of the polymer chains to the surface of xGnP was characterized with Raman spectroscopy. This robust method opens up the possibility of using this inexpensive nanomaterial in many applications, including electrochemical devices, and leads to simple processing techniques such as layer-by-layer deposition. Therefore, the formation of xGnP conductive coatings using layer-by-layer deposition was also demonstrated.

  4. Characterization of polyelectrolyte behavior of the polysaccharides chitosan, heparin, and hyaluronan, by light scattering and viscometry. (United States)

    Boddohi, Soheil; Yonemura, Susan; Kipper, Matt


    This study on the polyelectrolyte behavior of polysaccharides in solution is motivated by our recent work in development of nanostructured polysaccharide-based surface coatings. Chitosan behaves as a weak polycation, and hyaluronan behaves as a weak polyanion, while heparin behaves as a strong polyanion. The ability to control the conformation of these polysaccharides in solution, by changing the solution ionic strength and pH may offer the opportunity to further tune the nanoscale features of polysaccharide-based surface coatings assembled from solution. In the work reported here, the solution conformation of these polymers is determined from gel permeation chromatography coupled to differential refractive index, light scattering, and viscometry detection. These results are related to the nanostructure of chitosan-heparin and chitosan-hyaluronan surface coatings based on polyelectrolyte multilayers.

  5. Interest of Polyelectrolyte Multilayer thin Films in Tissue Engineering:Application to Vascular Allograft

    Institute of Scientific and Technical Information of China (English)

    Halima KERDJOUDJ; Cedric BOURA; Vanessa MOBY; Dominique DUMAS; Luc MARCHAL; Jean-Claude VOEGEL; Jean-Fran(c)ois STOLTZ; Patrick MENU


    @@ 1 Introduction Obstructive atherosclerosis vascular disease remains one of the greatest public health threats in the world. Surgical treatment to replace diseased blood vessels is usually done using major human allografts (veins or arteries) or synthetic prosthesis ( PTFE, Dacron). However, these substitutes have not a good pateney, because of the lack of endothelial cells (ECs) layer, which prevents thrombus formation. The challenge of tissue engineering vessels is to build-up blood/substitute interface near native vessels.In order to improve ECs adhesion, it is necessary to precoat the intra-luminal vessel. Recently, a new surface modification technique arose, based on the alternate adsorption of oppositely charged polyelectrolytes. Our objective was to favour the endothelialization of the cryo-preserved allografts, treated with a thin polyelectrolyte multilayered film, made of PSS (poly (sodium-4-styrenesulfonate) ) or PAH (poly (allylamine hydrochloride) ).

  6. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  7. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. (United States)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki


    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilonpolymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  8. Cell adhesive behavior on thin polyelectrolyte multilayers: cells attempt to achieve homeostasis of its adhesion energy. (United States)

    Mehrotra, Sumit; Hunley, S Christopher; Pawelec, Kendell M; Zhang, Linxia; Lee, Ilsoon; Baek, Seungik; Chan, Christina


    Linearly growing ultrathin polyelectrolyte multilayer (PEM) films of strong polyelectrolytes, poly(diallyldimethylammonium chloride) (PDAC), and sulfonated polystyrene, sodium salt (SPS) exhibit a gradual shift from cytophilic to cytophobic behavior, with increasing thickness for films of less than 100 nm. Previous explanations based on film hydration, swelling, and changes in the elastic modulus cannot account for the cytophobicity observed with these thin films as the number of bilayers increases. We implemented a finite element analysis to help elucidate the observed trends in cell spreading. The simulation results suggest that cells maintain a constant level of energy consumption (energy homeostasis) during active probing and thus respond to changes in the film stiffness as the film thickness increases by adjusting their morphology and the number of focal adhesions recruited and thereby their attachment to a substrate.

  9. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge : a direct measurement

    CERN Document Server

    Gummel, Jérémie; Boué, François


    Though often considered as one of the main driving process of the complexation of species of opposite charges, the release of counterions has never been experimentally directly measured on polyelectrolyte/proteins complexes. We present here the first structural determination of such a release by Small Angle Neutron Scattering in complexes made of lysozyme, a positively charged protein and of PSS, a negatively charged polyelectrolyte. Both components have the same neutron density length, so their scattering can be switched off simultaneously in an appropriate "matching" solvent; this enables determination of the spatial distribution of the single counterions within the complexes. The counterions (including the one subjected to Manning condensation) are expelled from the cores where the species are at electrostatic stoichiometry.

  10. Local pH and effective pKA of weak polyelectrolytes - insights from computer simulations. (United States)

    Nová, Lucie; Uhlík, Filip; Košovan, Peter


    In this work we study the titration behavior of weak polyelectrolytes by computer simulations. We analyze the local pH near the chains at various conditions and provide molecular-level insight which complements the recent experimental determination of this quantity. Next, we analyze the non-ideal titration behaviour of weak polyelectrolytes in solution, calculate the effective ionization constant and compare the simulation results with theoretical predictions. In contrast with the universal behaviour with respect to chain length, we find non-universality and deviations from theory with respect to polymer concentration and permittivity of the solvent. The latter we explain in terms of counterion condensation and ion correlation effects, which lead to reversal of the non-ideal titration behaviour at very low permittivities. We discuss the impact of these findings on the interpretation of experimental results.

  11. Suitability of polyelectrolyte shells modified with fullerene derivate for immunoisolation of cells. Experimental study. (United States)

    Borkowska, M; Godlewska, E; Antosiak-Iwańska, M; Kinasiewicz, J; Strawski, M; Szklarczyk, M; Granicka, L H


    The polymeric permiselective membranes application for immunoisolation of cells separating the transplanted cells from the host immunological system may eliminate immunosuppressive therapy during transplantation. The suitability of polyelectrolyte modified nanocoatings for immunoisolation of cells was assessed. The polymeric shells modified with incorporated fullerene derivate were applied for encapsulation of human T-lymphocyte cell line Jurkat or rat pancreatic islets of Langerhans using layer-by-layer technique. Hydroxylated fullerene was incorporated to the polyelectrolyte shell for hydrophility increase as well as for layer stability improvement. Evaluation with AFM, FTIR, fluorescence microscopy confirmed the nanocoating presence on the encapsulated cells. It was observed that polylysine-polyethyleneimine membrane with incorporated fullerenol allowed for encapsulated cells functioning in vitro. Membrane conformation applied for encapsulation of pancreatic rat islets allowed for glucose level decline during xenotransplantation into mice. The elaborated nanocoating may be recommended as the possible alternative to the space consuming microencapsulation for biomedical purposes.

  12. Langmuir and langmuir-blodgett films of metallosupramolecular polyelectrolyte-amphiphile complexes. (United States)

    Lehmann, Pit; Symietz, Christian; Brezesinski, Gerald; Krass, Henning; Kurth, Dirk G


    A detailed analysis of a metallosupramolecular polyelectrolyte-amphiphile complex (PAC) at the air-water interface is presented. Langmuir isotherms, Brewster angle microscopy, and X-ray reflectance and diffraction methods are employed to investigate the structure of the Langmuir monolayers. The PAC is self-assembled from 1,3-bis[4'-oxa-(2,2':6',2' '-terpyridinyl)]propane, iron acetate, and dihexadecyl phosphate (DHP). Spreading the PAC at the air-water interface results in a monolayer that consists of two strata. DHP forms a monolayer at the top of the interface, while the metallosupramolecular polyelectrolyte is immersed in the aqueous subphase. Both strata are coupled to each other through electrostatic interactions. The monolayers can be transferred onto solid substrates, resulting in well-ordered multilayers. Such multilayers are model systems for well-ordered metal ions in two dimensions.

  13. Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications


    Belluzo, M. Soledad; Medina, Lara F.; Cortizo, Ana María; Cortizo, María Susana


    In recent years, there has been an increasing interest in the design of biomaterials for cartilage tissue engineering. This type of materials must meet several requirements. In this study, we apply ultrasound to prepare a compatibilized blend of polyelectrolyte complexes (PEC) based on carboxymethyl cellulose (CMC) and chitosan (CHI), in order to improve stability and mechanical properties through the interpolymer macroradicals coupling produced by sonochemical reaction. We study the kinetic ...

  14. Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. (United States)

    Ouerghemmi, Safa; Degoutin, Stéphanie; Tabary, Nicolas; Cazaux, Frédéric; Maton, Mickaël; Gaucher, Valérie; Janus, Ludovic; Neut, Christel; Chai, Feng; Blanchemain, Nicolas; Martel, Bernard


    This work focuses on the relevance of antibacterial nanofibers based on a polyelectrolyte complex formed between positively charged chitosan (CHT) and an anionic hydroxypropyl betacyclodextrin (CD)-citric acid polymer (PCD) complexing triclosan (TCL). The study of PCD/TCL inclusion complex and its release in dynamic conditions, a cytocompatibility study, and finally the antibacterial activity assessment were studied. The fibers were obtained by electrospinning a solution containing chitosan mixed with PCD/TCL inclusion complex. CHT/TCL and CHT-CD/TCL were also prepared as control samples. The TCL loaded nanofibers were analyzed by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD). Nanofibers stability and swelling behavior in aqueous medium were pH and CHT:PCD weight ratio dependent. Such results confirmed that CHT and PCD interacted through ionic interactions, forming a polyelectrolyte complex. A high PCD content in addition to a thermal post treatment at 90°C were necessary to reach a nanofibers stability during 15days in soft acidic conditions, at pH=5.5. In dynamic conditions (USP IV system), a prolonged release of TCL with a reduced burst effect was observed on CHT-PCD polyelectrolyte complex based fibers compared to CHT-CD nanofibers. These results were confirmed by a microbiology study showing prolonged antibacterial activity of the nanofibers against Escherichia coli and Staphylococcus aureus. Such results could be explained by the fact that the stability of the polyelectrolyte CHT-PCD complex in the nanofibers matrix prevented the diffusion of the PCD/triclosan inclusion complex in the supernatant, on the contrary of the similar system including cyclodextrin in its monomeric form.

  15. Charge regulation of weak polyelectrolytes at low- and high-dielectric-constant substrates

    CERN Document Server

    Netz, R R


    As is well known, the effective charge of weak polyelectrolytes (PEs) decreases with decreasing salt concentration due to the electrostatic repulsion between dissociated charges. Close to dielectric boundaries, image-charge effects influence the dissociation equilibrium. At low-dielectric-constant substrates, one finds a further charge decrease and repulsion from the interface, while at high-dielectric-constant (e.g. metallic) substrates, the effective charge increases and the PE is attracted to the interface.

  16. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    Directory of Open Access Journals (Sweden)

    Lim CM


    Full Text Available Chaemin Lim,1,* Yu Seok Youn,2,* Kyung Soo Lee,1 Ngoc Ha Hoang,1 Taehoon Sim,1 Eun Seong Lee,3 Kyung Taek Oh1 1Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, 2Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, 3Division of Biotechnology, The Catholic University of Korea, Gyeonggi-do, South Korea *These authors contributed equally to this work Abstract: A polyelectrolyte ionomer complex (PIC composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol–poly(lactic acid–poly(ethylene imine triblock copolymer (PEG–PLA–PEI and a poly(aspartic acid (P[Asp] homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp blocks (C/A ratio. The doxorubicin (dox-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8 increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. Keywords: polyelectrolyte ionomer complex, PEG–PLA–PEI, nanomedicine, pH-sensitive, animal imaging

  17. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. (United States)

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko


    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics.

  18. Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient (United States)

    Kwak, Su Hong; Kwon, Seung-Ryong; Baek, Seol; Lim, Seung-Min; Joo, Young-Chang; Chung, Taek Dong


    We devised anodized aluminium oxide (AAO) frame-supported polyelectrolytic ion-exchange membranes for the application of electrical power generation systems where salinity differences are present. A series of polyelectrolytic AAO membranes (PAMs) were fabricated as a function of concentration of monomers and cross-linkers. Of the ion-selective PAMs as made, the membranes from the most concentrated monomers and cross-linkers, C-PAM100 and A-PAM100, showed the highest area resistances and permselectivities (the resistances were 4.9 and 2.9 Ω · cm2, the permseletivities for C-PAM100 and A-PAM100 were 99 and 89%, respectively). The measured resistances and permselectivities allowed the power density to be estimated for C-PAM100 and A-PAM100, 3.5 W/m2, and experimentally obtained power density using a reverse electrodialysis (RED) stack was 17.3 mW/m2. In addition, we investigated the influence of an AAO framework on a membrane resistance by comparing the PAMs with polyelectrolyte-stuffed capillaries, revealing that the resistance of the PAM has plenty of potential to be further reduced by optimizing the AAO pore spaces.

  19. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems. (United States)

    Comert, Fatih; Dubin, Paul L


    The coacervation of systems containing colloids (e.g. proteins or micelles) and polyelectrolytes (notably ionic polysaccharides) is often accompanied by precipitation. This can introduce inhomogeneity, irreversibility and irreproducible kinetics in applications in food science and bioengineering, with negative impact on texture and stability of food products, and unpredictable delivery of active "payloads." The relationship between coacervation and precipitation is obscure in that coacervates might be intermediates in the formation of precipitates, or else the two phenomena might proceed by different but possibly simultaneous mechanisms. This review will summarize the recent literature on coacervation/precipitation in protein-polyelectrolyte systems for which reports are most abundant, particularly in the context of food science. We present current findings and opinions about the relationship between the two types of phase separation. Results vary considerably depending not only on the protein-polyelectrolyte pairs chosen, but also on conditions including macromolecular concentrations and ionic strength. Nevertheless, we offer some general approaches that could explain a variety of observations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.


    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  1. Molecular-dynamics simulations and x-ray analysis of dye precipitates in the polyelectrolyte microcapsules (United States)

    Saphiannikova, Marina; Radtchenko, Igor; Sukhorukov, Gleb; Shchukin, Dmitri; Yakimansky, Alexander; Ilnytskyi, Jaroslav


    The precipitate of the Disperse Red-1 dye in bulk and in confined microsized volumes was investigated by x-ray powder diffraction and molecular-dynamics simulations. The diffraction patterns exhibited two different precipitation regimes: In bulk when dye molecules form a distinct crystallite structure and inside polyelectrolyte capsules with a diameter up to 8 μm when the precipitate presumably represents a very fine polycrystalline powder. The latter result was further supported by molecular-dynamics simulations carried out for up to 640 dye molecules in the NVT ensemble. Calculations have also shown that effects of confined geometry and steric restrictions arising due to encapsulated polyelectrolyte molecules can not prohibit dye nucleation and subsequent crystallization. However, nonspecific interactions between Disperse Red-1 and encapsulated polyelectrolyte could cause the onset of heterogeneous nucleation resulting in formation of a fine polycrystalline powder. The formation process was directly observed building configuration snapshots and calculating the Gay-Berne orientational order parameter and radial distribution function resolved parallel and perpendicular to the director. Comparison of powder diagrams derived from simulation data indicates that it is nearly impossible to distinguish a fine polycrystalline powder from the isotropic system.

  2. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge. (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet


    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  3. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger


    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.


    Institute of Scientific and Technical Information of China (English)

    Hui-dan Liu; Takahiro Sato


    The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry,static and electrophoretic light scattering,and elementary analysis.Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion,and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation.Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities,all the four combinations PA-PVA,PA-Chts,Hep-PVA,and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex.The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture,and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio.The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.

  5. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)


    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  6. Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient (United States)

    Kwak, Su Hong; Kwon, Seung-Ryong; Baek, Seol; Lim, Seung-Min; Joo, Young-Chang; Chung, Taek Dong


    We devised anodized aluminium oxide (AAO) frame-supported polyelectrolytic ion-exchange membranes for the application of electrical power generation systems where salinity differences are present. A series of polyelectrolytic AAO membranes (PAMs) were fabricated as a function of concentration of monomers and cross-linkers. Of the ion-selective PAMs as made, the membranes from the most concentrated monomers and cross-linkers, C-PAM100 and A-PAM100, showed the highest area resistances and permselectivities (the resistances were 4.9 and 2.9 Ω · cm2, the permseletivities for C-PAM100 and A-PAM100 were 99 and 89%, respectively). The measured resistances and permselectivities allowed the power density to be estimated for C-PAM100 and A-PAM100, 3.5 W/m2, and experimentally obtained power density using a reverse electrodialysis (RED) stack was 17.3 mW/m2. In addition, we investigated the influence of an AAO framework on a membrane resistance by comparing the PAMs with polyelectrolyte-stuffed capillaries, revealing that the resistance of the PAM has plenty of potential to be further reduced by optimizing the AAO pore spaces. PMID:27194475

  7. Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates (United States)

    Delaney, Kris T.; Fredrickson, Glenn H.


    The complexation of mixtures of cationic and anionic polymers to produce complex-coacervate phases is a subject of fundamental importance to colloid and polymer science as well as to applications including drug delivery, sensing technologies, and bio-inspired adhesives. Unfortunately the theoretical underpinnings of complex coacervation are widely misunderstood and conceptual mistakes have propagated in the literature. Here, a simple symmetric polyelectrolyte mixture model in the absence of salt is used to discuss the salient features of the phase diagram, including the location of the critical point, binodals, and spinodals. It is argued that charge compensation by dimerization in the dilute region renders the phase diagram of an oppositely charged polyelectrolyte mixture qualitatively and quantitatively similar to that of a single-component symmetric diblock polyampholyte solution, a system capable of "self-coacervation." The theoretical predictions are verified using fully fluctuating field-theoretic simulations for corresponding polyelectrolyte and diblock polyampholyte models. These represent the first comprehensive, approximation-free phase diagrams for coacervate and self-coacervate systems to appear in the literature.

  8. CaSO4 and cationic polyelectrolyte as possible pectin precipitants in sugar beet juice clarification

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana


    Full Text Available Three pectin preparations were isolated from fresh sugar beet pulp during the 150 minutes of extraction, at pH values of 1, 3.5 and 8.5. CaSO4 precipitant was added to 100 cm3 of 0.1% (wt solution of pectin. Studies were performed with 9 different concentrations of CaSO4 solution (50-450 mg dm-3 with the addition of a cationic polyelectrolyte (cationic PAM in concentrations of 3 and 5 mg dm-3. The efficiency of pectin precipitation was monitored by measuring the zeta potential of pectin preparations. Optimal amounts of precipitant CaSO4, without the use of a cationic polyelectrolyte, were as follows: 490-678 mg CaSO4/g pectin. After the use of a cationic polyelectrolyte, the optimal amounts of CaSO4 were smaller (353-512 mg/g pectin. These quantities are significantly lower than the average amount of CaO used in the conventional clarification process of sugar beet juice (about 9 g/g pectin of sugar beet juice. [Projekat Ministarstva nauke Republike Srbije, br. TR -31055

  9. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion? (United States)

    Groehn, Franziska


    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  10. Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetitecontaining polyelectrolyte microcapsules (United States)

    Minaeva, O. V.; Brodovskaya, E. P.; Pyataev, M. A.; Gerasimov, M. V.; Zharkov, M. N.; Yurlov, I. A.; Kulikov, O. A.; Kotlyarov, A. A.; Balykova, L. A.; Kokorev, A. V.; Zaborovskiy, A. V.; Pyataev, N. A.; Sukhorukov, G. B.


    The cytotoxicity of magnetite nanoparticles (MNP) stabilized with citrate acidand polyelectrolyte multilayer microcapsules containing these particles in the shell is analyzed. Microcapsules were prepared by co-precipitation of iron (II) and (III) chlorides. Polyelectrolyte microcapsules synthesized by the layer-by-layer method from biodegradable polymers polyarginine and dextran sulfate. Cytotoxicity of the synthesized objects was studied on the L929 cells culture and human leucocytes. It was also investigated the phagocytic activity of leukocytes for the MNP and magnetite containing polyelectrolyte microcapsules (MCPM). A set of tests (MTT assay, neutral red uptake assay, lactate dehydrogenase release assay) was used to study the cytotoxicity in vitro. All the tests have shown that the magnetic nanoparticles have a greater cytotoxicity in comparison with microcapsules containing an equivalent amount of magnetite. In contrast to the mouse fibroblast culture, human leukocytes were more resistant to the toxic effects of magnetite. At the concentrations used in our studies no significant reduction in the viability of leukocytes has been registered. Both MNP and MCPM undergo phagocytosis, however, the phagocytic activity of leukocytes for these particles was lower than for the standard objects (latex microparticles).

  11. Metallosupramolecular coordination polyelectrolytes: potential building blocks for molecular-based devices. (United States)

    Kurth, Dirk G


    Metal-ion-induced self-assembly of ditopic ligands, based on bisterpyridines, and transition metal ions result in formation of metallosupramolecular coordination polyelectrolytes (MEPE). The positive charge of MEPE can be utilized in several ways to process highly ordered architectures. Alternating adsorption of MEPE and oppositely charged polyelectrolytes on solid substrates results in multilayers. The sequential nature of this process allows combining MEPEs with other functional components. This process permits nanometer thickness control, is readily adapted for automated processing, and is applicable to two-dimensional substrates as well as to colloidal templates. The surface chemical properties of MEPE are readily controlled by complexing MEPE with negatively charged amphiphiles. The resulting polyelectrolyte-amphiphile complexes (PAC) are soluble in organic solvents and form liquid crystalline phases. The PAC also spreads at the air-water interface as Langmuir monolayer, which can be transferred onto solid substrates. The resulting Langmuir-Blodgett multilayers are highly ordered and anisotropic. Materials with transition metal ions possess many interesting properties, including spin transitions, magnetism, as well as photochemical assets that are relevant for the construction of functional devices and materials. The presented approach combines principles of supramolecular and colloidal chemistry as well as surface science, is highly modular in nature, and provides extensive control of structure and function from molecular to macroscopic levels.

  12. Gene brushes on a chip: From crowding and the search problem to synthetic systems (United States)

    Bar-Ziv, Roy


    We assemble DNA polymer brushes coding for entire genes on a surface by means of a new photolithographic approach. The gene density can be controlled from dilute to high density where the local concentration -- Megabase pairs per micron cubed -- is comparable to that in a bacterium. The gene brush, therefore, emulates the crowded medium of the cell, allowing us to study DNA transactions in vitro under native conditions. We find that transcription/translation from these gene brushes is highly sensitive to DNA density, orientation and composition. As a step towards multi-gene synthetic systems, we integrated on a chip two spatially separated gene brushes, and implemented a two-stage transcription/translation cascade.

  13. Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications (United States)


    A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red–green–blue arrays to yield white emission. PMID:28691078

  14. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA) (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan


    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  15. Dermal Exposure during Filling, Loading and Brushing with Products Containing 2-(2-Butoxyethoxy)ethanol

    NARCIS (Netherlands)

    Gijsbers, J.H.J.; Tielemans, E.; Brouwer, D.H.; Hemmen, J.J. van


    Introduction: Limited quantitative information is available on dermal exposure to chemicals during various industrial activities. Therefore, within the scope of the EU-funded RISKOFDERM project, potential dermal exposure was measured during three different tasks: filling, loading and brushing. DEGBE

  16. Brushes and picks used on nails during the surgical scrub to reduce bacteria: a randomised trial. (United States)

    Tanner, J; Khan, D; Walsh, S; Chernova, J; Lamont, S; Laurent, T


    Though brushes are no longer used on the hands and forearms during the surgical scrub, they are still widely used on the nails. The aim of this study was to determine whether nail picks and nail brushes are effective in providing additional decontamination during a surgical hand scrub. A total of 164 operating department staff were randomised to undertake one of the following three surgical hand-scrub protocols: chlorhexidine only; chlorhexidine and a nail pick; or chlorhexidine and a nail brush. Bacterial hand sampling was conducted before and 1h after scrubbing using a modified version of the glove juice method. No statistically significant differences in bacterial numbers were found between any two of the three intervention groups. Nail brushes and nail picks used during surgical hand scrubs do not decrease bacterial numbers and are unnecessary.

  17. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko


    process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside...... of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...... substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery....

  18. Brushing with a potassium nitrate dentifrice to reduce bleaching sensitivity. (United States)

    Haywood, Van B; Cordero, Rafael; Wright, Kellie; Gendreau, Linda; Rupp, Ronald; Kotler, Mitchell; Littlejohn, Sonya; Fabyanski, Joyce; Smith, Stuart


    This research systematically evaluated the use of a clinically proven desensitizing dentifrice prior to a bleaching regimen in a randomized, multi-center, parallel group, open label clinical study following Good Clinical Practice guidelines. Fourteen dental offices in West Palm Beach, Florida participated in the study during April/May 2004. Fourteen days prior to bleaching, impressions and oral soft tissue assessments were performed, and patients were randomized to either a KNO3 plus fluoride dentifrice (Sensodyne Fresh Mint), or a standard fluoride dentifrice (Crest Regular), brushing 2x per day. On Day 14, patients returned to the dental office for their custom tray and the dispensation of a bleaching kit (Day White Excel 3; 9.5% hydrogen peroxide and KNO3). This was used daily according to the manufacturer's instructions for 30 minutes, and normal oral hygiene continued to be performed using the assigned toothbrush and dentifrice, brushing 2x per day. At the end of each bleaching day, patients answered diary questions about the occurrence and intensity of sensitivity. At the conclusion of the 14-day bleaching period (Day 28), patients returned to their dental office for re-examination, returning all products and diaries. Within seven days of completing the study, patients answered a telephone patient satisfaction survey. A total of 202 patients in fourteen (14) dental offices completed all aspects of the study and were used for the analysis. The professionally dispensed bleaching product provided an improvement of approximately 4.4 Vita shades, regardless of whether it was used with the KNO3 plus fluoride (Sensodyne) or a standard fluoride (Crest) dentifrice. The patient perception of increased sensitivity caused by the bleaching treatment was low but measurable. In the first week of the bleaching, significantly more patients using the KNO3 plus fluoride dentifrice were free from sensitivity (58%) than the standard fluoride dentifrice group (42%). During the 14

  19. Everybody Brush! Consumer Satisfaction with a Tooth Decay Prevention Program

    Directory of Open Access Journals (Sweden)

    Joana Cunha-Cruz


    Full Text Available IntroductionTwice-daily caregiver-supervised toothbrushing with fluoridated toothpaste is an effective and widely recommended strategy to prevent tooth decay in children. Qualitative research suggests that low-income caregivers know the recommendation but would benefit from toothbrushing supplies and advice about how to introduce this health behavior especially as the child becomes older and asserts autonomy to do it “myself.” Our objective is to assess consumer satisfaction with the evidence-based theory-informed campaign and usefulness of materials that were home delivered. The focus of the evaluation was families with children <36 months of age because of the high incidence of disease in this population.MethodsA dental care organization designed and implemented Everybody Brush! in three counties of Central Oregon. Participants were families of Medicaid-insured children <21 years of age. Participants were randomly assigned to one of the three study groups: test (supplies, voice/printed messages, telephone support, active (supplies, and a waitlist control. Program materials were in English and Spanish. Caregivers of children <36 months were interviewed at the beginning and end of the program.ResultsA total of 83,148 toothbrushing kits were mailed to 21,743 families. In addition, 93,766 printed messages and 110,367 recorded messages were sent to half of the families. Caregivers were highly satisfied. On a global rating scale from 0 to 10 (worst to best program possible, they rated the program 9.5 on average (median: 10, SD 0.9. On a scale from 0 to 10 (not at all to very useful, mean ratings for usefulness of the toothbrushing supplies was 9.5 (SD = 1.5, for the printed postcard messages was 7.2 (SD 3.6, and for the voice telephone messages was 6.5 (SD 3.9.DiscussionA dental care organization carried out a complex community intervention designed to address excess tooth decay among low-income children. Caregivers were highly

  20. Flow and transport in brush-coated capillaries: A molecular dynamics simulation (United States)

    Dimitrov, D. I.; Klushin, L. I.; Milchev, A.; Binder, K.


    We apply an efficient method of forced imbibition to (nano-)capillaries, coated internally with a polymer brush, to derive the change in permeability and suction force, corresponding to different grafting densities and lengths of the polymer chains. While the fluid is modeled by simple point particles interacting with Lennard-Jones forces, the (end-grafted, fully flexible) polymers, which form the brush coating, are described by a standard bead-spring model. Our computer experiments reveal a significant increase in the suction force (by a factor of 4, as compared to the case of a capillary with bare walls) when the brush width approaches the tube radius. A similar growth in the suction force is found when the grafting density of the brush is systematically increased. Even though the permeability of the tube is found to decline with both growing brush width and grafting density, the combined effect on the overall fluid influx into the capillary turns out to be weak, i.e., the total fluid uptake under spontaneous imbibition decreases only moderately. Thus we demonstrate that one may transport the fluid in vertical brush-coated capillaries to a much larger height than in an equivalent capillary with bare walls. Eventually, we also study the spreading of tracer particles transported by the uptaking fluid in brush-coated capillaries with regard to the grafting density of the brush and the length of the polymers. The observed characteristic asymmetric concentration profiles of the tracers and their evolution with elapsed time are interpreted in terms of a drift-diffusion equation with a reflecting boundary that moves with the fluid front. The resulting theoretical density profiles of the tracer particles are found to be in good agreement with those observed in the computer experiment.

  1. Treatment with various ultrasonic scaler tips affects efficiency of brushing of SLA titanium discs. (United States)

    Park, Jun-Beom; Jang, Yun Ji; Choi, Bong-Kyu; Kim, Kack-Kyun; Ko, Youngkyung


    The dental implant surface will be colonized by bacteria once it is exposed to the oral cavity. It is necessary to keep the titanium surface clean to prevent peri-implant diseases. Mechanical instrumentation is widely used, but this may cause damage to the implant surfaces. There is limited information whether surface change resulting from instrumentation influences the adherence of bacteria to the implant surface or influences the ease of removal of bacteria from the titanium surface by daily brushing. Therefore, this in vitro study was performed (1) to evaluate removal of Porphyromonas gingivalis from sand-blasted and acid-etched (SLA) titanium discs after the discs were instrumented by various ultrasonic scaler tips or brushed with a toothbrush with dentifrice using crystal violet assay and scanning electron microscopy (SEM), and (2) to assess the change of surface roughness after the treated discs were brushed with a toothbrush with dentifrice. SLA discs were treated with various ultrasonic scaler tips and a toothbrush. The titanium discs were incubated with P. gingivalis for 2 days after treatment (ultrasonic scales tips and brush) and then the disc surfaces were brushed for total of 40 seconds (20 seconds, two cycles) with a toothbrush with dentifrice. Differences in adhering bacteria were evaluated using crystal violet assay and SEM. Surface roughness of the treated discs after brushing with dentifrice was measured using confocal microscopy. The change of surface structure was observed after different treatment modalities. Removal of bacteria was increased with the longer time of brushing, and the ultrasonic metal tip group displayed a significantly lower number of bacteria after brushing when compared to other groups. Within the limits of this study, it may be suggested that when SLA surface is exposed to the oral cavity, it should firstly be treated with metal tips to smoothen the rough surface and thereby reduce attachment of bacteria and facilitate the

  2. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization

    KAUST Repository

    Zhang, Hefeng


    A novel strategy using polyhomologation and ring opening metathesis polymerization (ROMP) has been developed for the synthesis of well-defined polyethylene (PE) molecular brushes. Polyhomologation was used to afford an OH-terminated PE, which after transformation to the norbornyl PE macromonomer was subjected to ROMP. Kinetics of ROMP of the PE macromonomer was studied by in situ1H NMR monitoring. The brush structure was proved from HT-GPC, 1H NMR and DSC results.

  3. Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients. (United States)

    Otten, Marieke P T; Busscher, Henk J; Abbas, Frank; van der Mei, Henny C; van Hoogmoed, Chris G


    Plaque is never fully removed by brushing and may act as a reservoir for antibacterial ingredients, contributing to their substantive action. This study investigates the contribution of plaque-left-behind and saliva towards substantivity of three antibacterial toothpastes versus a control paste without antibacterial claims. First, volunteers brushed 2 weeks with a control or antibacterial toothpaste. Next, plaque and saliva samples were collected 6 and 12 h after brushing and bacterial concentrations and viabilities were measured. The contributions of plaque and saliva towards substantivity were determined by combining control plaques with experimental plaque or saliva samples and subsequently assessing their viabilities. Bacterial compositions in the various plaque and saliva samples were compared using denaturing gradient gel electrophoresis. The viabilities of plaques after brushing with Colgate-Total® and Crest-Pro-Health® were smaller than of control plaques and up to 12 h after brushing with Crest-Pro-Health® plaques still contained effective, residual antibacterial activity against control plaques. No effective, residual antibacterial activity could be measured in saliva samples after brushing. There was no significant difference in bacterial composition of plaque or saliva after brushing with the different toothpastes. Plaque-left-behind after mechanical cleaning contributes to the substantive action of an antibacterial toothpaste containing stannous fluoride (Crest-Pro-Health®). The absorptive capacity of plaque-left-behind after brushing is of utmost clinical importance, since plaque is predominantly left behind in places where its removal and effective killing matter most. Therewith this study demonstrates a clear and new beneficial effect of the use of antibacterial toothpastes.

  4. Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients


    Otten, Marieke P. T.; Busscher, Henk J.; Abbas, Frank; Mei, Henny C. van der; van Hoogmoed, Chris G.


    Objectives Plaque is never fully removed by brushing and may act as a reservoir for antibacterial ingredients, contributing to their substantive action. This study investigates the contribution of plaque-left-behind and saliva towards substantivity of three antibacterial toothpastes versus a control paste without antibacterial claims. Materials and methods First, volunteers brushed 2 weeks with a control or antibacterial toothpaste. Next, plaque and saliva samples were collected 6 and 12 h af...

  5. Comparison of bronchial washing, brushing and biopsy for diagnosis of pulmonary tuberculosis. (United States)

    Palenque, E; Amor, E; Bernaldo de Quiros, J C


    The diagnostic yields of bronchial washings, bronchial brushings and lung biopsy specimens were compared in 50 patients with positive Mycobacterium tuberculosis cultures. The number of positive results obtained with cultures of bronchial brushings was significantly higher than that with bronchial washings (p less than 0.001). The histological study of biopsy lung material improved the rate of immediate or rapid diagnosis of tuberculosis (p less than 0.001).

  6. Applications of functional polymer brushes for nanoparticle uptake and prevention of protein adsorption (United States)

    Arifuzzaman, Shafi M.

    The central theme of this Ph.D. dissertation is to develop novel multifunctional polymer coatings for understanding partition of proteins and nanoparticles on polymers grafted to flat surfaces (so-called brushes). Systematic investigation of the adsorption phenomena is accomplished by utilizing surface-anchored assemblies comprising grafted polymers with variation in physical properties (i.e., length or/and grafting density) and chemical functionality. The chemical composition of the brush is tailored by either "chemical coloring" of a parent homopolymer brush with selective chemical moieties or by sequential growth of two chemically dissimilar polymer blocks. We present preparation of two types of tailor-made, surface-grafted copolymers: (1) those composed of hydrophilic and hydrophobic blocks (so-called amphiphilic polymer brushes), and (2) those comprising of anionic and cationic polymer segments (so-called polyampholyte brushes). We describe the organization of functionality in the grafted polymer brushes and the partitioning of proteins and nanoparticles using a battery of complementary analytical probes. Specifically, we address how varying the molecular weight, grafting density, and chemical composition of the brush affects adsorbtion and desorbtion of model proteins and gold nanoparticles. Our observations indicate densely-populated responsive amphiphilic polymers are very efficient in suppressing protein adsorption. In addition, we have established that the length of poly(ethylene glycol) spacers attached to a parent homopolymer brush is a key factor governing uptake of gold nanoparticles. Both grafting density and molecular weight of the coating are important in controlling the kinetics and thermodynamics of protein adsorption on surfaces. Our findings and methodologies can lead to the development of next generation environmentally friendly antifouling surfaces and will find application in medical devices, antifouling coatings and anti reflection finishes.

  7. Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients


    Otten, Marieke P. T.; Busscher, Henk J.; Abbas, Frank; van der Mei, Henny C.; van Hoogmoed, Chris G.


    Objectives Plaque is never fully removed by brushing and may act as a reservoir for antibacterial ingredients, contributing to their substantive action. This study investigates the contribution of plaque-left-behind and saliva towards substantivity of three antibacterial toothpastes versus a control paste without antibacterial claims. Materials and methods First, volunteers brushed 2 weeks with a control or antibacterial toothpaste. Next, plaque and saliva samples were collected 6 and 12 h af...

  8. Degradable Polycaprolactone and Polylactide Homopolymer and Block Copolymer Brushes Prepared by Surface-Initiated Polymerization with Triazabicyclodecene and Zirconium Catalysts. (United States)

    Grubbs, Joe B; Arnold, Rachelle M; Roy, Anandi; Brooks, Karson; Bilbrey, Jenna A; Gao, Jing; Locklin, Jason


    Surface-initiated ring-opening polymerization (SI-ROP) of polycaprolactone (PCL) and polylactide (PLA) polymer brushes with controlled degradation rates were prepared on oxide substrates. PCL brushes were polymerized from hydroxyl-terminated monolayers utilizing triazabicyclodecene (TBD) as the polymerization catalyst. A consistent brush thickness of 40 nm could be achieved with a reproducible unique crystalline morphology. The organocatalyzed PCL brushes were chain extended using lactide in the presence of zirconium n-butoxide to successfully grow PCL/PLA block copolymer (PCL-b-PLA) brushes with a final thickness of 55 nm. The degradation properties of "grafted from" PCL brush and the PCL-b-PLA brush were compared to "grafted to" PCL brushes, and we observed that the brush density plays a major role in degradation kinetics. Solutions of methanol/water at pH 14 were used to better solvate the brushes and increase the kinetics of degradation. This framework enables a control of degradation that allows for the precise removal of these coatings.

  9. Effects of brushing in a classifying machine on the cuticles of Fuji and Gala apples

    Directory of Open Access Journals (Sweden)

    Renar João Bender


    Full Text Available The cuticle, a layer that covers the fruit epidermis, has a protective function against environmental stresses such as wind, temperature, chemicals and drought, not only when the fruit is attached to the plant, but also after harvest. Some postharvest procedures may influence the external layers of the fruit, like the cuticle. The objective of this work was to evaluate the effects of brushing in a classifying machine on the cuticles of apples under scanning electron microscopy (SEM. Two experiments were conducted to test brushing on the cultivars Fuji and Gala using heavy and smooth brushes. The experiments consisted of three replicates of three apples each, with three samples taken from the equatorial area of the fruit to be analyzed under SEM. The brushes of the classifying machine altered the cuticular layer, dragging it, modifying the structure and removing crystalloids of the cuticular wax layer, and forming cracks. There were no differences between the effects of the two types of brushes tested on the cuticles of the apples. The classifying machine used commercially is capable of producing similar effects to those encountered in the brushing experiments conducted on the prototype in the laboratory, removing partially the protective wax content of the apple’s cuticle.

  10. Evaluation of tablet PC as a tool for teaching tooth brushing to children. (United States)

    Salama, F; Abobakr, I; Al-Khodair, N; Al-Wakeel, M


    This study evaluated the effect of a single time tooth brushing instruction using video on a tablet PC (Apple iPad) compared to operator presentation using jaw model for plaque removal. This cross-sectional study included a convenience sample of 100 children divided into two groups. For Group 1 brushing was demonstrated to the child by the operator with the use of a jaw model. This demonstration was videotaped for subsequent use in Group 2 using a tablet PC (Apple iPad). Plaque index was recorded before and after demonstration of the assigned method of teaching tooth brushing. The results showed a significant difference using the two methods. The difference between the mean plaque index values with the jaw model and tablet PC at baseline and after tooth brushing represented 17.27% (50% improvement) and 11.56% (34% improvement) respectively. Boys showed a 18.3%. higher improvement in tooth brushing compared to girls. Seventy-five percent of the children reported using tablet computers in their daily life. CONCLUSION Teaching children by using a jaw model was more effective in improving plaque index score than using video on tablet PC by 16%. Both methods of tooth brushing teaching were fully accepted by all children.

  11. Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in biliary brush cytology (United States)

    Keane, Margaret G; Huggett, Matthew T; Chapman, Michael H; Johnson, Gavin J; Webster, George J; Thorburn, Douglas; Mackay, James; Pereira, Stephen P


    Background: Biliary brush cytology is the standard method of evaluating biliary strictures, but is insensitive at detecting malignancy. In pancreaticobiliary cancer minichromosome maintenance replication proteins (MCM 2–7) are dysregulated in the biliary epithelium and MCM5 levels are elevated in bile samples. This study aimed to validate an immunocolorimetric ELISA assay for MCM5 as a pancreaticobiliary cancer biomarker in biliary brush samples. Methods: Biliary brush specimens were collected prospectively at ERCP from patients with a biliary stricture. Collected samples were frozen at −80 °C. The supernatant was washed and lysed cells incubated with HRP-labelled anti-MCM5 mouse monoclonal antibody. Test positivity was determined by optical density absorbance. Patients underwent biliary brush cytology or additional investigations as per clinical routine. Results: Ninety-seven patients were included in the study; 50 had malignant strictures. Median age was 65 years (range 21–94) and 51 were male. Compared with final diagnosis the MCM5 assay had a sensitivity for malignancy of 65.4% compared with 25.0% for cytology. In the 72 patients with paired MCM5 assay and biliary brush cytology, MCM5 demonstrated an improved sensitivity (55.6% vs 25.0% P=0.0002) for the detection of malignancy. Conclusions: Minichromosome maintenance replication protein5 is a more sensitive indicator of pancreaticobiliary malignancy than standard biliary brush cytology. PMID:28081547

  12. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes (United States)

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan


    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  13. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips (United States)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song


    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  14. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes. (United States)

    Delcroix, M F; Laurent, S; Huet, G L; Dupont-Gillain, C C


    Adsorption of proteins on surfaces placed in biological fluids is a ubiquitous and mostly irreversible phenomenon, desirable or not, but often uncontrolled. Adsorption of most proteins on poly(ethylene oxide) (PEO) brushes is very limited, while the amount of proteins adsorbed on poly(acrylic acid) (PAA) brushes varies with the pH and ionic strength (I) of the protein solution. Mixed brushes of PEO and PAA are designed here to reversibly adsorb and desorb albumin, lysozyme, collagen and immunoglobulin G, four very different proteins in terms of size, solubility and isoelectric point. Protein adsorption and desorption are monitored using X-ray photoelectron spectroscopy, as well as with quartz crystal microbalance for in situ and real-time measurements. Large amounts of protein are adsorbed and then nearly completely desorbed on mixed PEO/PAA brushes by a simple pH and I trigger. The mixed brushes thus nicely combine the properties of pure PAA and pure PEO brushes. These adsorption/desorption cycles are shown to be repeated with high efficiency. The high-performance smart substrates created here could find applications in domains as diverse as biosensors, drug delivery and nanotransport.

  15. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Andreas Weber; Claus van Weyhern; Falko Fend; Jochen Schneider; Bruno Neu; Alexander Meining; Hans Weidenbach; Roland M Schmid; Christian Prinz


    AIM:To evaluate the sensitivity of brush cytology and forceps biopsy in a homogeneous patient group with hilar cholangiocarcinoma.METHODS:Brush cytology and forceps biopsy were routinely performed in patients with suspected malignant biliary strictures.Fifty-eight consecutive patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) including forceps biopsy and brush cytology in patients with hilar cholangiocarcinoma between 1995-2005.RESULTS:Positive results for malignancy were obtained in 24/58 patients (41.4%) by brush cytology and in 31/58 patients (53.4%) by forceps biopsy.The combination of both techniques brush cytology and forceps biopsy resulted only in a minor increase in diagnostic sensitivity to 60.3% (35/58 patients).In 20/58 patients (34.5%),diagnosis were obtained by both positive cytology and positive histology,in 11/58 (19%) by positive histology (negative cytology) and only 4/58 patients (6.9%) were confirmed by positive cytology (negative histology).CONCLUSION:Brush cytology and forceps biopsy have only limited sensitivity for the diagnosis of malignant hilar tumors.In our eyes,additional diagnostic techniques should be evaluated and should become routine in patients with negative cytological and histological findings.

  16. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes (United States)

    Henke, Helena; Posch, Sandra; Brüggemann, Oliver; Teasdale, Ian


    A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2–1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm. PMID:27027404

  17. Library of monoclonal antibodies against brush border membrane epithelial antigens

    Energy Technology Data Exchange (ETDEWEB)

    Behar, M.; Katz, A.; Silverman, M.


    A purified fraction of proximal tubule brush border membranes (BBM) was prepared from dog kidney and used to immunize mice. The standard technique of hybridoma production was followed as described by Kohler and Milstein. Production of antibodies was detected by indirect immunofluorescence on dog kidney slices and by immunodot against the purified fraction on nitrocellulose. Five hybrids exhibited anti BBM activity. These were cloned twice and yielded stable cell lines producing IgG type monoclonal antibodies against BBM. They were designated A/sub 1/, C/sub 7/, D/sub 3/, D/sub 7/ and H/sub 4/. As a family these five monoclonals have broad tissue specificity, i.e. positive staining of the surface mucosa of intestinal kidney proximal tubules. D/sub 3/ exhibits even broader specificity for epithelium reacting with bile canaliculi and choroid plexus. The authors have verified that at least 4/5 antibodies are directed against BBM protein as revealed by immunoprecipitation of solubilized BBM and detected by Coomassie blue staining or autoradiography of lactoperoxidase labelled BBM. Most interestingly all antibodies bind to the surface of LL CPK/sub 1/ cells, a continuous pig kidney cell line of undefined origin but exhibiting many characteristics of proximal tubule cells. The library of monoclonal antibodies obtained provide important probes with which to study membrane biogenesis and polarization in epithelial cells.

  18. Study of the effects of the reaction conditions on the modification of clays with polyelectrolytes and silanes. (United States)

    de la Orden, M U; Arranz, J; Lorenzo, V; Pérez, E; Martínez Urreaga, J


    New organically modified clays have been obtained from sodium montmorillonite, using either a cationic polyelectrolyte (polyethylenimine) or a novel homemade bisphenol-A silane as modifiers. The modification processes have been carried out in different reaction media, in order to study the effects on the properties of the modified clays of several reaction parameters, such as the pH of the polyethylenimine solution or the nature of the solvent used in the silanization. The obtained clays were characterized using X-ray diffraction, thermogravimetric analysis, and FTIR spectroscopy. Clays modified with polyelectrolyte or silane show significant increases in the basal spacing. The properties of polyelectrolyte-modified clays depend on the pH of the treating solution. The increase in the basal spacing of polyelectrolyte-modified clays varies only slightly with the pH; however, this reaction parameter clearly determines the total amount of polyelectrolyte introduced in the clay. The properties and applications of silane-modified clays are strongly dependent on the presence of water in the reaction media used for the silanization. These results have been explained by considering that the reaction conditions determine the nature and the amount of material intercalated into the clay.

  19. Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating. (United States)

    Xiao, Shili; Castro, Rita; Maciel, Dina; Gonçalves, Mara; Shi, Xiangyang; Rodrigues, João; Tomás, Helena


    Despite the wide research done in the field, the development of advanced drug delivery systems with improved drug delivery properties and effective anticancer capability still remains a great challenge. Based on previous work that showed the potentialities of the nanoclay Laponite as a pH-sensitive doxorubicin (Dox) delivery vehicle, herein we report a simple method to modulate its extent of drug release at different pH values. This was achieved by alternate deposition of cationic poly(allylamine) hydrochloride and anionic poly(sodium styrene sulfonate) (PAH/PSS) polyelectrolytes over the surface of Dox-loaded Laponite nanoparticles using the electrostatic layer-by-layer (LbL) self-assembly approach. The successful formation of polyelectrolyte multilayer-coated Dox/Laponite systems was confirmed by Dynamic Light Scattering and zeta potential measurements. Systematic studies were performed to evaluate their drug release profiles and anticancer efficiency. Our results showed that the presence of the polyelectrolyte multilayers improved the sustained release properties of Laponite and allowed a fine tuning of the extension of drug release at neutral and acidic pH values. The cytotoxicity presented by polyelectrolyte multilayer-coated Dox/Laponite systems towards MCF-7 cells was in accordance with the drug delivery profiles. Furthermore, cellular uptake studies revealed that polyelectrolyte multilayer-coated Dox/Laponite nanoparticles can be effectively internalized by cells conducting to Dox accumulation in cell nucleus.

  20. Efficient drug delivery mechanisms of liposomes with tethered biopolymer brushes in aqueous solution using dissipative particle dynamics simulations

    CERN Document Server

    Goicochea, A Gama; Klapp, J; Pastorino, C


    We undertake the investigation of model liposomes covered with polyethylene glycol brushes as a case study for the mechanisms of efficient drug delivery in biologically relevant situations.Extensive non- equilibrium, coarse grained dissipative particle dynamics simulations of polymer brushes of various lengths and shear rates are performed, having in mind polymer brushes covering the surfaces of drug carrying liposomes in the human circulatory system.In particular, we calculate the viscosity and the friction coefficient for polymer brushes as functions of the shear rate and polymerization degree under theta solvent conditions, and find that the liposome brushes experience considerable shear thinning at large shear rates. The viscosity is shown to obey a scaling law at high shear rate irrespective of the brushes degree of polymerization. A new general scaling relation is obtained for the viscosity at high shear rates. These results reproduce very well trends in recent drug delivering experiments.