WorldWideScience

Sample records for surface-modified microfibrillated cellulose

  1. Cellulose microfibril structure: inspirations from plant diversity

    Science.gov (United States)

    Roberts, A. W.

    2018-03-01

    Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.

  2. Isolation of cellulose microfibrils - An enzymatic approach

    Directory of Open Access Journals (Sweden)

    Sain, M.

    2006-11-01

    Full Text Available Isolation methods and applications of cellulose microfibrils are expanding rapidly due to environmental benefits and specific strength properties, especially in bio-composite science. In this research, we have success-fully developed and explored a novel bio-pretreatment for wood fibre that can substantially improve the microfibril yield, in comparison to current techniques used to isolate cellulose microfibrils. Microfibrils currently are isolated in the laboratory through a combination of high shear refining and cryocrushing. A high energy requirement of these procedures is hampering momentum in the direction of microfibril isolation on a sufficiently large scale to suit potential applications. Any attempt to loosen up the microfibrils by either complete or partial destruction of the hydrogen bonds before the mechanical process would be a step forward in the quest for economical isolation of cellulose microfibrils. Bleached kraft pulp was treated with OS1, a fungus isolated from Dutch Elm trees infected with Dutch elm disease, under different treatment conditions. The percentage yield of cellulose microfibrils, based on their diameter, showed a significant shift towards a lower diameter range after the high shear refining, compared to the yield of cellulose microfibrils from untreated fibres. The overall yield of cellulose microfibrils from the treated fibres did not show any sizeable decrease.

  3. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  4. Microfibrillated cellulose and new nanocomposite materials: a review

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David

    2010-01-01

    Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject...... in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose....

  5. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane

    NARCIS (Netherlands)

    Lindeboom, J.J.; Mulder, B.; Vos, J.W.; Ketelaar, M.J.; Emons, A.M.C.

    2008-01-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose

  6. From Golgi body movement to cellulose microfibril alignment

    NARCIS (Netherlands)

    Akkerman, M.

    2012-01-01


    The shape and strength of plant cells is determined by a combination of turgor pressure and constraining cell wall. The main load bearing structures in the cell wall, cellulose microfibrils (CMFs), are deposited in highly organized textures. For more than 50 years scientists have tried to

  7. How the deposition of cellulose microfibrils builds cell wall architecture

    NARCIS (Netherlands)

    Emons, A.M.C.; Mulder, B.M.

    2000-01-01

    Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself,

  8. Structure of cellulose microfibrils in primary cell walls from Collenchyma

    Czech Academy of Sciences Publication Activity Database

    Thomas, L. H.; Forsyth, V. T.; Šturcová, Adriana; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 465-476 ISSN 0032-0889 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : primary cell wall * cellulose microfibril structure * chain packing disorder Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.394, year: 2013

  9. Microfibrillated cellulose from bamboo pulp and its properties

    International Nuclear Information System (INIS)

    Zhang, Junhua; Song, Hainong; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Liu, Shijie

    2012-01-01

    Microfibrillated cellulose (MFC) was obtained by disintegrating bleached kraft bamboo (Phyllostachys pubescens) pulp with a procedure of chemical pretreatment and high-pressure homogenization. The influences of sodium hydroxide dosage and homogenization times were evaluated by water retention value (WRV) of MFC. The properties, such as the surface morphology, rheological property and carboxyl acid content of MFC were also characterized using scanning electron microscope (SEM), rheometer and headspace gas chromatography (HS-GC) separately.

  10. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Jon [Fiberlean Technologies; Ireland, Sean [Fiberlean Technologies; Skuse, David [Imerys; Edwards, Martha [Imerys; Mclain, Leslie [Imerys; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Ozcan, Soydan [ORNL

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  11. Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin

    DEFF Research Database (Denmark)

    Plackett, David; Anturi, Harvey; Hedenqvist, Mikael

    2010-01-01

    Two types of microfibrillated cellulose (MFC) were prepared using either a sulfite pulp containing a high amount of hemicellulose (MFC 1) or a carboxymethylated dissolving pulp (MFC 2). MFC gels were then combined with amylopectin solutions to produce solvent-cast MFC-reinforced amylopectin films....... Tensile testing revealed that MFC 2-reinforced films exhibited a more ductile behavior and that MFC 1-reinforced films had higher modulus of elasticity (E-modulus) at MFC loadings of 50 wt % or higher. Pure MFC films had relatively low oxygen permeability values when data were compared with those...

  12. Preparation of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo assisted by mechanical treatment

    Science.gov (United States)

    Silviana, S.; Hadiyanto, H.

    2017-06-01

    The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.

  13. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture

    Science.gov (United States)

    Jarvis, Michael C.

    2017-12-01

    There is an emerging consensus that higher plants synthesize cellulose microfibrils that initially comprise 18 chains. However, the mean number of chains per microfibril in situ is usually greater than 18, sometimes much greater. Microfibrils from woody tissues of conifers, grasses and dicotyledonous plants, and from organs like cotton hairs, all differ in detailed structure and mean diameter. Diameters increase further when aggregated microfibrils are isolated. Because surface chains differ, the tensile properties of the cellulose may be augmented by increasing microfibril diameter. Association of microfibrils with anionic polysaccharides in primary cell walls and mucilages leads to in vivo mechanisms of disaggregation that may be relevant to the preparation of nanofibrillar cellulose products. For the preparation of nanocrystalline celluloses, the key issue is the nature and axial spacing of disordered domains at which axial scission can be initiated. These disordered domains do not, as has often been suggested, take the form of large blocks occupying much of the length of the microfibril. They are more likely to be located at chain ends or at places where the microfibril has been mechanically damaged, but their structure and the reasons for their sensitivity to acid hydrolysis need better characterization. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  14. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase1[OPEN

    Science.gov (United States)

    Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Bulone, Vincent

    2017-01-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens. Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. PMID:28768815

  15. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase.

    Science.gov (United States)

    Cho, Sung Hyun; Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Díaz-Moreno, Sara M; Bulone, Vincent; Zimmer, Jochen; Kumar, Manish; Nixon, B Tracy

    2017-09-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Extraction and characterization of cellulose microfibrils from agricultural residue –Cocos nucifera L

    International Nuclear Information System (INIS)

    Uma Maheswari, C.; Obi Reddy, K.; Muzenda, E.; Guduri, B.R.; Varada Rajulu, A.

    2012-01-01

    The aim of this study was to extract cellulose microfibrils from the agricultural residue of coconut palm leaf sheath using chlorination and alkaline extraction process. Chemical characterization of the cellulose microfibrils confirmed that the α-cellulose mass fraction increased from 0.373 kg kg −1 to 0.896 kg kg −1 after application of several treatments including dewaxing, chlorite delignification and alkaline extraction of hemicelluloses. Similarly, the crystallinity index obtained from X-ray diffraction for leaf sheath and extracted cellulose microfibrils was found to be 42.3 and 47.7 respectively. The morphology of the cellulose microfibrils was investigated by scanning electron microscopy. The cellulose microfibrils had diameters in the range of 10–15 μm. Fourier transform infrared and Nuclear magnetic resonance spectroscopy showed that the chemical treatments removed most of the hemicellulose and lignin from the leaf sheath fibers. The thermal stability of the fibers was analyzed using thermogravimetric analysis, which demonstrated that this thermal stability was enhanced noticeably for cellulose microfibrils. This work provides a new approach for more effective utilization of coconut palm leaf sheaths to examine their potential use as pulp and paper and reinforcement fibers in biocomposite applications. -- Highlights: ► Utilization of Coconut palm leaf sheath as an alternate material for cellulose extraction. ► Using an abundant natural waste for paper pulp, biofilms and composite applications. ► Cellulose microfibrils have higher cellulose content than the leaf sheath. ► FTIR and NMR were used to study fiber structural changes during several treatments. ► Thermal stability of microfibrils is higher than their respective leaf sheath.

  17. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  18. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  19. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  20. A novel method for preparing microfibrillated cellulose from bamboo fibers

    International Nuclear Information System (INIS)

    Nguyen, Huu Dat; Nguyen, Ngoc Bich; Dang, Thanh Duy; Thuy Mai, Thi Thanh; Phung Le, My Loan; Tran, Van Man; Dang, Tan Tai

    2013-01-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A and J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase. (paper)

  1. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    Science.gov (United States)

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  2. Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma1[C][W][OA

    Science.gov (United States)

    Thomas, Lynne H.; Forsyth, V. Trevor; Šturcová, Adriana; Kennedy, Craig J.; May, Roland P.; Altaner, Clemens M.; Apperley, David C.; Wess, Timothy J.; Jarvis, Michael C.

    2013-01-01

    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production. PMID:23175754

  3. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Science.gov (United States)

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  4. Surface Plasmon Resonance Imaging of the Enzymatic Degradation of Cellulose Microfibrils

    Science.gov (United States)

    Reiter, Kyle; Raegen, Adam; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    As the largest component of biomass on Earth, cellulose represents a significant potential energy reservoir. Enzymatic hydrolysis of cellulose into fermentable sugars, an integral step in the production of biofuel, is a challenging problem on an industrial scale. More efficient conversion processes may be developed by an increased understanding of the action of the cellulolytic enzymes involved in cellulose degradation. We have used our recently developed quantitative, angle-scanning surface plasmon resonance imaging (SPRi) device to study the degradation of cellulose microfibrils upon exposure to cellulosic enzymes. In particular, we have studied the action of individual enzymes, and combinations of enzymes, from the Hypocrea Jecorina cellulase system on heterogeneous, industrially-relevant cellulose substrates. This has allowed us to define a characteristic time of action for the enzymes for different degrees of surface coverage of the cellulose microfibrils.

  5. Defining Determinants and Dynamics and Cellulose Microfibril Biosynthesis, Assembly and Degredation OSP Number: 63079/A001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    The central paradigm for converting plant biomass into soluble sugars for subsequent conversion to transportation fuels involves the enzymatic depolymerization of lignocellulosic plant cell walls by microbial enzymes. Despite decades of intensive research, this is still a relatively inefficient process, due largely to the recalcitrance and enormous complexity of the substrate. A major obstacle is still insufficient understanding of the detailed structure and biosynthesis of major wall components, including cellulose. For example, although cellulose is generally depicted as rigid, insoluble, uniformly crystalline microfibrils that are resistant to enzymatic degradation, the in vivo structures of plant cellulose microfibrils are surprisingly complex. Crystallinity is frequently disrupted, for example by dislocations and areas containing chain ends, resulting in “amorphous” disordered regions. Importantly, microfibril structure and the relative proportions of crystalline and non-crystalline disordered surface regions vary substantially and yet the molecular mechanisms by which plants regulate microfibril crystallinity, and other aspects of microfibril architecture, are still entirely unknown. This obviously has a profound effect on susceptibility to enzymatic hydrolysis and so this is a critical area of research in order to characterize and optimize cellulosic biomass degradation. The entire field of cell wall assembly, as distinct from polysaccharide biosynthesis, and the degree to which they are coupled, are relatively unexplored, despite the great potential for major advances in addressing the hurdle of biomass recalcitrance. Our overarching hypothesis was that identification of the molecular machinery that determine microfibril polymerization, deposition and structure will allow the design of more effective degradative systems, and the generation of cellulosic materials with enhanced and predictable bioconversion characteristics. Our experimental framework had

  6. THE FORMATION AND CHARACTERIZATION OF SUSTAINABLE LAYERED FILMS INCORPORATING MICROFIBRILLATED CELLULOSE (MFC)

    OpenAIRE

    Galina Rodionova,; Solenne Roudot; , Øyvind Eriksen,; Ferdinand Männle,; Øyvind Gregersen

    2012-01-01

    Microfibrillated cellulose (MFC), TEMPO-pretreated MFC, and hybrid polymer/MFC mix were used for the production of layered films with interesting properties for application in food packaging. The series of samples were prepared from MFC (base layers) using a dispersion-casting method. The same procedure as well as a bar coating technique was applied to form top layers of different basis weights. The barrier properties and formation of the layered films were investigated in relationship to the...

  7. Investigation of mass transport properties of microfibrillated cellulose (MFC) films

    DEFF Research Database (Denmark)

    Minelli, Matteo; Baschetti, Marco Giacinti; Doghieri, Ferruccio

    2010-01-01

    , confirming the existence of complex structures below the film surface. In contrast, the diffusion coefficient was definitely affected by plasticization, being higher for glycerol-containing samples and showing in all cases an exponential increase when water was added to the system. Similar behavior...... the existence of complex structures in the different samples. A porous, closely packed fiber network, more homogeneous in the samples containing glycerol, was characteristic of the surface of MFC films; while film cross-sections presented a dense layered structure with no evidence of porosity. Water vapor...... sorption experiments confirmed the hydrophilic character of these cellulosic materials and showed a dual effect of glycerol which reduced the water uptake at low water activity while enhancing it at high relative humidity. The water diffusion in dry samples was remarkably slow for a porous material...

  8. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils.

    Science.gov (United States)

    Kuijk, Anke; Koppert, Remco; Versluis, Peter; van Dalen, Gerard; Remijn, Caroline; Hazekamp, Johan; Nijsse, Jaap; Velikov, Krassimir P

    2013-11-26

    We prepared dispersions from bacterial cellulose microfibrils (CMF) of a commercial Nata de Coco source. We used an ultra-high-energy mechanical deagglomeration process that is able to disperse the CMFs from the pellicle in which they are organized in an irregular network. Because of the strong attractions between the CMFs, the dispersion remained highly heterogeneous, consisting of fiber bundles, flocs, and voids spanning tens to hundreds of micrometers depending on concentration. The size of these flocs increased with CMF concentration, the size of the bundles stayed constant, and the size of the voids decreased. The observed percolation threshold in MFC dispersions is lower than the theoretical prediction, which is accounted for by the attractive interactions in the system. Because bacterial cellulose is chemically very pure, it can be used to study the interaction of attractive and highly shape-anisotropic, semiflexible fiberlike colloidal particles.

  9. Preliminary study for acetylation of cassava bagasse starch and microfibrillated cellulose of bamboo

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Bio composite matrixes have been developed from several biomaterials, such as starch. One of potential resources is starch isolated from cassava bagasse still consisting 30-50% of starch. Reinforcement material may be inserted into bio composite to tough and reduce the drawback of the starch-based bio composite or bio plastic. Microfibrillated cellulose of bamboo (MFC can be used as toughening filler for composite matrix. However, surface modification of material could be employed to alter its properties, such as acetylation of starch-based bio composite and microfibrillated cellulose. The acetylation was executed by using glacial acetic acid (GAA catalyzed with sodium hydroxide. This paper investigates optimum condition of acetylation for bagasse starch (BS and bamboo MFC in different weight ratio of GAA to BS or MFC (1:1, 2:1, 3:1, 1:2, 1:3, temperature range of 30°C to 70°C, and pH range of 7 to 11. Data were resulted from degree of susbtitution for each running. The optimum condition of acetylation of BS was obtained at temperature of 50°C (for BS and 30°C (for MFC, pH of 9, and 2:1 ratio. This acetylation was confirmed by fourier transform infrared spectroscopy and scanning electron microscope.

  10. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase

    Directory of Open Access Journals (Sweden)

    B. E. B. Uribe

    2017-01-01

    Full Text Available In this paper, a cost-effective and eco-friendly method to improve mechanical performance in continuous carbon fiber-reinforced polymer (CFRP matrix composites is presented. Unsized fiber fabric preforms are coated with self-assembling sugarcane bagasse microfibrillated cellulose, and undergo vacuum-assisted liquid epoxy resin infusion to produce solid laminates after curing at ambient temperature. Quasi-static tensile, flexural and short beam testing at room temperature indicated that the stiffness, ultimate strength and toughness at ultimate load of the brand-new two-level hierarchical composite are substantially higher than in baseline, unsized fiber-reinforced epoxy laminate. Atomic force microscopy for height and phase imaging, along with scanning electron microscopy for the fracture surface survey, revealed a 400 nm-thick fiber/matrix interphase wherein microfibrillated cellulose exerts strengthening and toughening roles in the hybrid laminate. Market expansion of this class of continuous fiber-reinforced-polymer matrix composites exhibiting remarkable mechanical performance/cost ratios is thus conceivable.

  11. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  12. Mechanical Properties of Poly(lactic acid Sheet Reinforced with Microfibrillated Cellulose from Corn Cobs

    Directory of Open Access Journals (Sweden)

    Deejam Prapatsorn

    2015-01-01

    Full Text Available In this study, cellulose was extracted from corn cobs by successive hot NaOH solution and followed by H2O2 bleaching. XRD pattern show characteristic peak of Cellulose I. Microfibrillated cellulose (MFC was successfully prepared by dissolving the extracted cellulose in NaOH/urea solution, shearing in a homogenizer and finally by freezing and thawing. To improve strength of MFC, MFC was physically crosslinked using PVA by freezing and thawing. The crosslinked MFC/PVA was added to poly(lactic acid (PLA to improve its mechanical properties. The non-crosslinked MFC/PVA was also prepared by only stirring the solution without freezing and thawing. MFC/PVA reinforced PLA films with various ratios of PLA and MFC/PVA at100:0, 99:1, 97:3 and 95:5were prepared through a solution casting method. Tensile strength and elongation at breakof PLA films increased with the addition of physically crosslinked MFC/PVA at 1%wt, whereas, the addition of non-crosslinked MFC/PVA decreased elongation at break. Crosslinking of MFC/PVA can improve tensile strength of PLA.It can render better tensile strength than that of non-crosslinked MFC/PVA. However, when MFC/PVA contents increase, tensile strength of PLA fims reinforced with non-crosslinked and crosslinked MFC/PVA decreased. Morphology of fracture surfaces reveals good dispersion and adhesion between 1% crosslinked MFC/PVA and PLA matrix.

  13. Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Hedenqvist, M.

    2011-01-01

    We produced microfibrillated cellulose by passing carboxymethylated sulfite-softwood-dissolving pulp with a relatively low hemicellulose content (4.5%) through a high-shear homogenizer. The resulting gel was subjected to as many as three additional homogenization steps and then used to prepare...... solvent-cast films. The optical, mechanical, and oxygen-barrier properties of these films were determined. A reduction in the quantity and appearance of large fiber fragments and fiber aggregates in the films as a function of increasing homogenization was illustrated with optical microscopy, atomic force...... microscopy, and scanning electron microscopy. Film opacity decreased with increasing homogenization, and the use of three additional homogenization steps after initial gel production resulted in highly transparent films. The oxygen permeability of the films was not significantly influenced by the degree...

  14. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application

    DEFF Research Database (Denmark)

    Meriçer, Çağlar; Minelli, Matteo; Angelis, Maria G De

    2016-01-01

    Fully bio-based and biodegradable materials, such as polylactic acid (PLA) and microfibrillated cellulose (MFC), are considered in order to produce a completely renewable packaging solution for oxygen barrier applications, even at medium-high relative humidity (R.H.). Thin layers of MFC were coated...... on different PLA substrates by activating film surface with an atmospheric plasma treatment, leading to the fabrication of robust and transparent multilayer composite films, which were then characterized by different experimental techniques. UV transmission measurements confirmed the transparency of multilayer...... films (60% of UV transmission rate), while SEM micrographs showed the presence of a continuous, dense and defect free layer of MFC on PLA surface. Concerning the mechanical behavior of the samples, tensile tests revealed that the multilayer films significantly improved the stress at break value of neat...

  15. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper.

    Science.gov (United States)

    Djafari Petroudy, Seyed Rahman; Syverud, Kristin; Chinga-Carrasco, Gary; Ghasemain, Ali; Resalati, Hossein

    2014-01-01

    This study explores the benefits of using bagasse microfibrillated cellulose (MFC) in bagasse paper. Two different types of MFC were produced from DED bleached soda bagasse pulp. The MFC was added to soda bagasse pulp furnishes in different amounts. Cationic polyacrylamide (C-PAM) was selected as retention aid. The results show that addition of MFC increased the strength of paper as expected. Interestingly, 1% MFC in combination with 0.1% C-PAM yielded similar drainage time as the reference pulp, which did not contain MFC. In addition, the samples containing 1% MFC and 0.1% C-PAM yielded (i) a significant increment of the tensile index, (ii) a minor decrease of opacity and (iii) preserved Gurley porosity. Hence, this study proves that small fractions of MFC in combination with adequate retention aids can have positive effects with respect to paper properties, which is most interesting from an industrial point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Preparation of micro-fibrillated cellulose from sorghum fibre through alkalization and acetylation treatments

    Science.gov (United States)

    Ismojo; Simanulang, P. H.; Zulfia, A.; Chalid, M.

    2017-07-01

    Recently, the pollution due to non-degradable materials including plastics, has led to needs on the development of environmental-friendly material. Owing to its biodegradability nature, sorghum fibres are interesting to be modified with petro-polymer as a composite. These materials are also expected to reduce the impact of environmental pollution. Surface modification of sorghum through chemical treatment was aimed to enhanced crystalline part of micro-fibrillated cellulose, thus increased compatibility to petro-polymer, as mean to improve composite properties. The experiments were conducted by alkalization process (10% NaOH) followed by acetylation with acetic acid glacial and acetic anhydride (CH3CO2)2 with additions of 1 and 2 drops of 25% H2SO4. Fourier transform infra-red (FTIR) spectroscopy, field-emission scanning electron microscope (FE-SEM) and x-ray diffraction (XRD) were used to characterize the treated and untreated fibres. The results of investigation showed that the chemical treatments have effectively produced MFC with the smallest fibre size around 5.5 - 6.5 microns and reduced lignin and hemicellulose where the highest crystalline part up to 80.64% was obtained through acetate acid treatment of 17.4 M, followed acetic anhydride with 1 drop of H2SO4 addition. Based on the current results, it is promising that the synthesized composites can be improved for their compatibilities.

  17. Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose

    Czech Academy of Sciences Publication Activity Database

    Akaraonye, E.; Filip, J.; Šafaříková, Miroslava; Salih, V.; Keshavarz, T.; Knowles, J.C.; Roy, I.

    2016-01-01

    Roč. 65, č. 7 (2016), s. 780-791 ISSN 0959-8103 Institutional support: RVO:60077344 Keywords : polyhydroxyalkanoates * poly(3-hydroxybutyrate) * bacterial cellulose * micro-fibrillated cellulose * tissue engineering scaffold * composite materials Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.070, year: 2016

  18. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation.

    Science.gov (United States)

    Roudier, François; Fernandez, Anita G; Fujita, Miki; Himmelspach, Regina; Borner, Georg H H; Schindelman, Gary; Song, Shuang; Baskin, Tobias I; Dupree, Paul; Wasteneys, Geoffrey O; Benfey, Philip N

    2005-06-01

    The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.

  19. Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites.

    Science.gov (United States)

    Zhou, Mi; Fan, Mao; Zhao, Yongsheng; Jin, Tianxiang; Fu, Qiang

    2016-04-20

    In order to prepare poly(butylene succinate)/microfibrillated cellulose composites with high performance, in this work, microfibrillated cellulose (MFC) was first treated by acetylchloride with ball-milling to improve its interfacial compatibility with poly(butylene succinate) (PBS). Then melt stretching processing was adopted to further improve the dispersion and orientation of MFC in as-spun PBS fiber. And the effect of MFC on the crystalline structure and mechanical properties were systematically investigated for the melt-spun fibers prepared with two different draw ratios. The dispersion, alignment of the MFC and interfacial crystalline structure in the composite fibers are significantly influenced by the stretching force during the melt spinning. The possible formation of nanohybrid shish kebab (NHSK) superstructure where aligned MFC as shish and PBS lamellae as kebab has been suggested via SEM and SAXS in the composite fibers prepared at the high draw ratio. Large improvement in tensile strength has been realized at the high draw ratio due to the enhanced orientation and dispersion of MFC as well as the formation of NHSK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    Science.gov (United States)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  1. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view

    Directory of Open Access Journals (Sweden)

    Chinga-Carrasco Gary

    2011-01-01

    Full Text Available Abstract During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC. In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1 nanofibrils, (2 fibrillar fines, (3 fibre fragments and (4 fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  2. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view.

    Science.gov (United States)

    Chinga-Carrasco, Gary

    2011-06-13

    During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  3. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments

    Science.gov (United States)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2017-12-01

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments.

    Science.gov (United States)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2018-02-13

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  5. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1{sup A903V} and CESA3{sup T942I} of cellulose synthase

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Darby; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana; Petti, Caroalberto; Smilgies, Detlef-M; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna; Ehrhardt, David; Somerville, Chris; Rose, Jocelyn; Hong, Mei; DeBolt, Seth

    2012-01-08

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1{sup A903V} and CESA3{sup T942I} in Arabidopsis thaliana. Using {sup 13}C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1{sup A903V} and CESA3{sup T942I} displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1{sup A903V} and CESA3{sup T942I} have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  6. Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal.

    Science.gov (United States)

    Xue, Maoqiang; Ling, Yisheng; Wu, Guisen; Liu, Xin; Ge, Dongtao; Shi, Wei

    2013-01-01

    Microporous anodic aluminum oxide (AAO) membranes were modified by 3-glycidoxypropyltrimethoxysilane to produce terminal epoxy groups. These were used to covalently link hydroxyethyl celluloses (HEC) to amplify reactive groups of AAO membrane. The hydroxyl groups of HEC-AAO composite membrane were further modified with 1,4-butanediol diglycidyl ether to link arginine as an affinity ligand. The contents of HEC and arginine of arginine-immobilized HEC-AAO membrane were 52.1 and 19.7mg/g membrane, respectively. As biomedical adsorbents, the arginine-immobilized HEC-AAO membranes were tested for bilirubin removal. The non-specific bilirubin adsorption on the unmodified HEC-AAO composite membranes was 0.8mg/g membrane. Higher bilirubin adsorption values, up to 52.6mg/g membrane, were obtained with the arginine-immobilized HEC-AAO membranes. Elution of bilirubin showed desorption ratio was up to 85% using 0.3M NaSCN solution as the desorption agent. Comparisons equilibrium and dynamic capacities showed that dynamic capacities were lower than the equilibrium capacities. In addition, the adsorption mechanism of bilirubin and the effects of temperature, initial concentration of bilirubin, albumin concentration and ionic strength on adsorption were also investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.

    Science.gov (United States)

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-11-11

    "Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan. The resulting μPAD based on the fluorescence emission distance successfully analyzed 0-4 mg mL(-1) of lactoferrin in complex human tear matrix with a lower limit of detection of 0.1 mg mL(-1) by simple visual inspection. Assay results of 18 human tear samples including ocular disease patients and healthy volunteers showed good correlation to the reference ELISA method with a slope of 0.997 and a regression coefficient of 0.948. The distance-based quantitative signal and the good batch-to-batch fabrication reproducibility relying on printing methods enable quantitative analysis by simply reading out "concentration scale marks" printed on the μPAD without performing any calibration and using any signal readout instrument.

  8. Adsorption behavior of optical brightening agent on microfibrillated cellulose studied through inverse liquid chromatography: The need to correct for axial dispersion effect.

    Science.gov (United States)

    Serroukh, Sonia; Huber, Patrick; Lallam, Abdelaziz

    2018-01-19

    Inverse liquid chromatography is a technique for studying solid/liquid interaction and most specifically for the determination of solute adsorption isotherm. For the first time, the adsorption behaviour of microfibrillated cellulose was assessed using inverse liquid chromatography. We showed that microfibrillated cellulose could adsorb 17 mg/g of tetrasulfonated optical brightening agent in typical papermaking conditions. The adsorbed amount of hexasulfonated optical brightening agent was lower (7 mg/g). The packing of the column with microfibrillated cellulose caused important axial dispersion (D a  = 5e-7 m²/s). Simulation of transport phenomena in the column showed that neglecting axial dispersion in the analysis of the chromatogram caused significant error (8%) in the determination of maximum adsorbed amount. We showed that conventional chromatogram analysis technique such as elution by characteristic point could not be used to fit our data. Using a bi-Langmuir isotherm model improved the fitting, but did not take into account axial dispersion, thus provided adsorption parameters which may have no physical significance. Using an inverse method with a single Langmuir isotherm, and fitting the transport equation to the chromatogram was shown to provide a satisfactory fitting to the chromatogram data. In general, the inverse method could be recommended to analyse inverse liquid chromatography data for column packing with significant axial dispersion (D a   > 1e-7 m²/s). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite.

    Science.gov (United States)

    Hokkanen, Sanna; Bhatnagar, Amit; Koistinen, Ari; Kangas, Teija; Lassi, Ulla; Sillanpää, Mika

    2018-04-01

    In the present study, the adsorption of sulfates of sodium sulfate (Na 2 SO 4 ) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na 2 SO 4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g -1 for sulfates of SLS and 7.35 mg g -1 for sulfates of Na 2 SO 4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich-Peterson isotherm models using five different error functions.

  10. Microfibrillated cellulose and borax as mechanical, O₂-barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP.

    Science.gov (United States)

    Cozzolino, Carlo A; Campanella, Gaetano; Türe, Hasan; Olsson, Richard T; Farris, Stefano

    2016-06-05

    Multifunctional composite coatings on bi-oriented polypropylene (BOPP) films were obtained using borax and microfibrillated cellulose (MFC) added to the main pullulan coating polymer. Spectroscopy analyses suggested that a first type of interaction occurred via hydrogen bonding between the C6OH group of pullulan and the hydroxyl groups of boric acid, while monodiol and didiol complexation represented a second mechanism. The deposition of the coatings yielded an increase in the elastic modulus of the entire plastic substrate (from ∼2GPa of the neat BOPP to ∼3.1GPa of the P/B+/MFC-coated BOPP). The addition of MFC yielded a decrease of both static and kinetic coefficients of friction of approximately 22% and 25%, respectively, as compared to the neat BOPP. All composite coatings dramatically increased the oxygen barrier performance of BOPP, especially under dry conditions. The deposition of the high hydrophilic coatings allowed to obtain highly wettable surfaces (water contact angle of ∼18°). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  12. Improvement of thermal and mechanical properties of composite based on polylactic acid and microfibrillated cellulose through chemical modification

    Science.gov (United States)

    Suryanegara, L.; Nugraha, R. A.; Achmadi, S. S.

    2017-07-01

    Polylactic acid (PLA) is the most representative sustainable and bio-based polymer environmentally friendly that has a great potential to replace petroleum-based plastics. However, brittleness, low heat resistance, and slow crystallization limit the wide application of PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to increase its compatibility with PLA in the composite formation. In this experiment, MFC was modified with partial acetylation (degree of substitution: 1) and further grafted with lactide monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of acetylation and grafting were verified by infrared spectra. Composites were prepared by mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted composites were evaluated for their mechanical and thermal properties. Thermal characterization carried out using differential scanning calorimetry measurements showed that the presence of modified MFC increased the temperature of glass transition and accelerated the crystallization of PLA. Mechanical properties measurement showed that the presence of modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified MFC could extend the application of PLA in industry.

  13. Seasonal and clonal variation in cellulose microfibril orientation during cell wall formation of tracheids in Cryptomeria japonica.

    Science.gov (United States)

    Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi

    2014-08-01

    To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions

  14. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  15. Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites

    Directory of Open Access Journals (Sweden)

    Y. F. Luo

    2012-01-01

    Full Text Available Nanocrystalline cellulose was modified by 3-aminopropyl-triethoxysilane (KH550. The modified nanocrystalline cellulose (MNCC was further investigated to partially replace silica in natural rubber (NR composites via coagulation. NR/MNCC/silica and NR/nanocrystalline cellulose (NCC/silica nanocomposites were prepared. Through the comparison of vulcanization characteristics, processing properties of compounds and mechanical properties, compression fatigue properties, dynamic mechanical performance of NR/MNCC/silica and NR/NCC/silica nanocomposites, MNCC was proved to be more efficient than NCC. MNCC could activate the vulcanization process, suppress Payne effect, increase 300% modulus, tear strength and hardness, and reduce the heat build-up and compression set. Moreover, fine MNCC dispersion and strong interfacial interaction were achieved in NR/MNCC/silica nanocomposites. The observed reinforcement effects were evaluated based on the results of apparent crosslinking density (Vr, thermo-gravimetric (TG and scanning electron microscopic (SEM analyses of NR/MNCC/silica in comparison with NR/NCC/silica nanocomposites.

  16. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  17. Mechanical reinforcement of Bioglass (R)-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Philippart, A.; Boccaccini, A. R.

    2014-01-01

    Roč. 118, MAR (2014), s. 204-207 ISSN 0167-577X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : bioactive glass * mechanical properties * scaffolds * cellulose * coatings Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.489, year: 2014

  18. Corneal stroma microfibrils.

    Science.gov (United States)

    Hanlon, Samuel D; Behzad, Ali R; Sakai, Lynn Y; Burns, Alan R

    2015-03-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10 nm diameter). Immunogold evidence clearly

  19. Corneal stroma microfibrils

    KAUST Repository

    Hanlon, Samuel D.

    2015-03-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (~10nm diameter). Immunogold evidence clearly

  20. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  1. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  2. Characterization of Cellulose Synthesis in Plant Cells

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  3. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  4. Cellulose and the Control of Growth Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  5. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  6. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  7. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  8. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Richard S. Reiner; Carlos Baez

    2016-01-01

    The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that...

  9. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

    Science.gov (United States)

    Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) re...

  10. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is

  11. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Science.gov (United States)

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  12. Development of composites of polycaprolactone with cellulose

    International Nuclear Information System (INIS)

    Aguiar, V.O.; Marques, M.F.V.

    2015-01-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  13. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    Science.gov (United States)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  14. Optimizing the Isolation of Microfibrillated Bamboo in High Pressure Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N. A. Sri Aprilia

    2015-07-01

    Full Text Available Bleached bamboo fiber was treated with a high pressure enzymatic hydrolysis (HPEH process in order to produce microfibrillated bamboo fiber (MBF. Mixture design of experiments was utilized to determine the optimal constituents of fiber, enzymes, and water for the HPEH process on the isolation yield of the MBF. Results showed the optimal combination for the maximal yield isolation of the MBF was 1 g fiber, 1 g enzyme, and 1 L water at 90 MPa and 70 °C. The influence of the reaction time of the HPEH process (6 to 48 h was also evaluated in this study. Morphological and thermal property analyses of untreated and treated bamboo fibers revealed that the HPEH process was effective for removing non-cellulosic components from the fibers. Thus, the HPEH process is an effective method for the isolation of the MBF, with the benefits of elevated crystallinity and thermal stability.

  15. Technique for the measurement of dimensional changes of natural microfibril materials under variable humidity environments

    International Nuclear Information System (INIS)

    Lee, Jung Myoung; Heitmann, John A.; Pawlak, Joel J.

    2007-01-01

    An algorithm was developed to analyze the dimensions of line scan data of step-shaped disconitunities acquired with an atomic force microscope. The effect of a number of AFM parameters on the quantitative imaging of step features was discussed. Quantitiative imaging using AFM was shown to be very reproducible as five successive scans of a standard step height grating produced less than 3% variation in measured parameters. A cellulose microfibril, called cellulose aggregate fibril (CAF), with dimensions of ∼50,000 nm x 2000 nm x 300 nm derived from papermaking fibers was scanned under cyclic relative humdity conditions with the relative humidity starting at 50% then raising to 80% followed by a decrease in the relative humidity to 28%. Changes in the width of the CAF were weakly correlated with changes in the relative humdity, while changes in the height and area of the CAF were positively correlated with the relative humdity. The length of the CAF was negatively correlated with the given relative humdity cycle. These findings have significant implications in paper dimensional stability and the engineering of cellulose micro and nano-fiber composites

  16. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  18. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Sun [Division of Undeclared Majors, Chosun University, Gwangju 501-759 (Korea, Republic of); Yoon, Doo-Soo; Sohn, Jun Youn [Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744 (Korea, Republic of); Park, Jeong-Sook, E-mail: eicosa@cnu.ac.kr [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Choi, Jin-Seok, E-mail: c34281@gmail.com [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of)

    2017-03-01

    To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24 h. Cellular uptake was studied at time intervals of 0.5, 1, and 2 h in MCF-7 cells, and cell growth inhibition study was performed for 24 h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0 ± 100.6 nm (PTX-NC), 302.0 ± 152.0 nm (Tf-PTX-NC) and 339 ± 180.6 nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24 h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition. - Highlights: • Surface modified PTX-NCs with HA and Tf are successfully prepared by adsorption method. • Enhanced cellular uptake of modified PTX-NCs compared to unmodified PTX-NC • Improved

  19. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  20. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  1. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    Science.gov (United States)

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulosemicrofibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  2. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    Richmond, P.A.; Metraux, J.P.

    1984-01-01

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  3. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  4. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  5. Non-destructive determination of moisture content and micro-fibril angle of wood using a poly-chromatic X-ray beam theoretical and experimental approach

    International Nuclear Information System (INIS)

    Baettig, R.

    2005-07-01

    Non-destructive determination of moisture content and micro-fibril angle are important stakes for the sciences of the wood because these two parameters influence strongly the macroscopic behavior of the wood. For example, the shrinkage, the mechanical properties, the thermal and acoustic conductivity are dependent on the moisture content and their anisotropic character is largely governed by the micro-fibril angle. We used the light difference between X-ray mass attenuation coefficient for the water and for the wood in transmission. Regrettably, the results show that this difference between X-ray mass attenuation coefficient is insufficient to allow the precise measurement of the moisture content.In spite of this, the coherent scattering shows sensitive effects. So, by using a poly-energetic beam and a spectrometric system, we were able to discriminate between the crystalline constituent (cellulose) of the amorphous constituent (water) in a sample of wet wood, because for a given angle these phases scatter in different energy. Besides, the device created allowed us to study the crystalline phase of the wood. We were able to confront experimental profiles of diffraction with theoretical profiles of diffraction, obtained by means of a rigorous simulation, in the objective to estimate the average micro-fibril angle and its standard deviation. (author)

  6. Structure and engineering of celluloses.

    Science.gov (United States)

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Macromolecular organization of xyloglucan and cellulose in pea epicotyls

    International Nuclear Information System (INIS)

    Hayashi, T.; Maclachlan, G.

    1984-01-01

    Xyloglucan is known to occur widely in the primary cell walls of higher plants. This polysaccharide in most dicots possesses a cellulose-like main chain with three of every four consecutive residues substituted with xylose and minor addition of other sugars. Xyloglucan and cellulose metabolism is regulated by different processes; since different enzyme systems are probably required for the synthesis of their 1,4-β-linkages. A macromolecular complex composed of xyloglucan and cellulose only was obtained from elongating regions of etiolated pea stems. It was examined by light microscopy using iodine staining, by radioautography after labeling with [ 3 H]fructose, by fluorescence microscopy using a fluorescein-lectin (fructose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ghosts, in which xyloglucan was localized both on and between the cellulose microfibrils

  8. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  9. Synthesis and Evaluation of Zeolite Surface-Modified Perlite

    Directory of Open Access Journals (Sweden)

    Kasai Makoto

    2017-01-01

    Full Text Available Perlite is volcanic glass mainly composed of amorphous aluminum silicate, mainly composed SiO2 and Al2O3 with less impurities such as heavy metals. Amorphous (glassy perlite is used in lightweight aggregate and insulation. In addition, it has also been used as a filter aid by grinding the expanded perlite. However, it has not been used as environmental cleanup materials, because the ion exchange capacity of the perlite is very low. In this study, we tried to synthesize the hybrid filter aid with chemical adsorption capacity by synthesizing the zeolite on the surface of the perlite. As a result, by using the hydrothermal synthesis method, zeolite surface modified perlite was synthesized in which the LTA type zeolites were generated on the surface of the perlite.

  10. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  11. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  12. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  13. Understanding the Role of Physical Properties of Cellulose on Its Hydrolyzability by Cellulases

    Science.gov (United States)

    O'Dell, Patrick Jonathan

    Cellulose has long been explored as a potential feedstock for biofuel, however the recalcitrance of cellulose makes its conversion into biofuel much more challenging and economically unfavorable compared to well-established processes for converting starch or sugar feedstocks into biofuel. Enzymes capable of hydrolyzing cellulose into soluble sugars, glucose and cellobiose, have been found to work processively along cellulose microfibrils starting from reducing end groups. For this study, cellulose was produced and purified in-house from Gluconacetobacter xylinum cultures, and characterized by quantifying functional groups (aldehyde, ketone, and carboxyl groups) to determine the extent of oxidation of cellulose due to the processing steps. The main goal of this study was to look at the impacts of ultrasonication on cellulose's structure and the enzymatic hydrolyzability of cellulose. A completely randomized experimental design was used to test the effect of ultrasonication time and amplitude (intensity) on changes in cellulose fibril length, degree of polymerization, and rates and extents of hydrolysis. Results indicated that sonication time does significantly impact both the fibril length and average degree of polymerization of cellulose. The impact of ultrasonication on the hydrolyzability of cellulose by commercial cellulase and beta-glucosidase preparations could not be effectively resolved due to high variability in the experimental results. These studies serve as a basis for future studies understanding the role of cellulose microstructure in the mechanism of cellulase hydrolysis of cellulose.

  14. Influence of microfibril angle on the thermal and dynamic-mechanical properties of Acacia Mangium wood using X-ray diffraction and dynamics-mechanical test

    International Nuclear Information System (INIS)

    Tabet, T.A.; Julynnie Wajir; Fauziah Abdul Aziz

    2009-01-01

    The term microfibril angle, MFA in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall, S 2 layer of fibers and tracheids and the long axis of the cell. In this study, the mean MFA of the cell walls were determined for thin samples of thickness 200.0 μm from pith and outwards, for eight ages of Acacia Mangium wood. The determination of MFA was based on a diffraction pattern arising from cellulose crystal planes of the type 002 generated by x-ray diffraction and recorded using an electronic detector. The results show an inversely relationship between MFA and age of tree in Acacia mangium wood. MFA decreased from 26.13 degree at age 3 year-old to 0.20 degree at tree of age 15 year-old for the pith region. The most significant drop occurred from 16.14 degree at age 7 year-old to 11.30 degree at age 9 year-old. an inversely relationship between MFA and storage modulus E ' was evidence in Acacia mangium at age 10 year-old. The results showed that about 76.22 % variation of loss modulus E was attributed to the MFA, while about 66.4 % of the variation of glass transition T g was explained by MFA under the same experimental conditions. (author)

  15. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  16. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  17. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  18. Dynamics of water bound to crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    O’Neill, Hugh; Pingali, Sai Venkatesh; Petridis, Loukas; He, Junhong; Mamontov, Eugene; Hong, Liang; Urban, Volker; Evans, Barbara; Langan, Paul; Smith, Jeremy C.; Davison, Brian H.

    2017-09-19

    Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction. We can unambiguously detect two populations of water associated with cellulose. The first is “non-freezing bound” water that gradually becomes mobile with increasing temperature and can be related to surface water. The second population is consistent with confined water that abruptly becomes mobile at ~260 K, and can be attributed to water that accumulates in the narrow spaces between the microfibrils. Quantitative analysis of the QENS data showed that, at 250 K, the water diffusion coefficient was 0.85 ± 0.04 × 10-10 m2sec-1 and increased to 1.77 ± 0.09 × 10-10 m2sec-1 at 265 K. MD simulations are in excellent agreement with the experiments and support the interpretation that water associated with cellulose exists in two dynamical populations. Our results provide clarity to previous work investigating the states of bound water and provide a new approach for probing water interactions with lignocellulose materials.

  19. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  20. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-12-01

    Full Text Available Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i hydrosoluble systems, (ii non-hydrosoluble systems, and (iii emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

  1. Development of composites of polycaprolactone with cellulose; Desenvolvimento de compositos de policaprolactona com celulose

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, V.O.; Marques, M.F.V., E-mail: nviny@ima.ufrj.br, E-mail: fmarques@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  2. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  3. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  4. Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids.

    Science.gov (United States)

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2017-10-25

    We study the mechanical response of cellulose and β-amyloid microfibrils to three types of deformation: tensile, indentational, and shear. The cellulose microfibrils correspond to the allomorphs Iα or Iβ whereas the β-amyloid microfibrils correspond to the polymorphs of either two- or three-fold symmetry. This response can be characterized by three elastic moduli, namely, Y L , Y T , and S. We use a structure-based coarse-grained model to analyze the deformations in a unified manner. We find that each of the moduli is almost the same for the two allomorphs of cellulose but Y L is about 20 times larger than Y T (140 GPa vs. 7 GPa), indicating the existence of significant anisotropy. For cellulose we note that the anisotropy results from the involvement of covalent bonds in stretching. For β-amyloid, the sense of anisotropy is opposite to that of cellulose. In the three-fold symmetry case, Y L is about half of Y T (3 vs. 7) whereas for two-fold symmetry the anisotropy is much larger (1.6 vs. 21 GPa). The S modulus is derived to be 1.2 GPa for three-fold symmetry and one half of it for the other symmetry and 3.0 GPa for cellulose. The values of the moduli reflect deformations in the hydrogen-bond network. Unlike in our theoretical approach, no experiment can measure all three elastic moduli with the same apparatus. However, our theoretical results are consistent with various measured values: typical Y L for cellulose Iβ ranges from 133 to 155 GPa, Y T from 2 to 25 GPa, and S from 1.8 to 3.8 GPa. For β-amyloid, the experimental values of S and Y T are about 0.3 GPa and 3.3 GPa respectively, while the value of Y L has not been reported.

  5. Fibrillar assembly of bacterial cellulose in the presence of wood-based hemicelluloses.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Sugiyama, Junji

    2017-09-01

    Composite materials mimicking the plant cell wall structure were made by culturing cellulose-producing bacteria together with secondary-wall hemicelluloses from wood. The effects of spruce galactoglucomannan (GGM) and beech xylan on the nanoscale morphology of bacterial cellulose were studied in the original, hydrated state with small-angle X-ray scattering (SAXS). The SAXS intensities were fitted with a model covering multiple levels of the hierarchical structure. Additional information on the structure of dried samples was obtained using scanning and transmission electron microscopy and infra-red spectroscopy. Both hemicelluloses induced a partial conversion of the cellulose crystal structure from I α to I β and a reduction of the cross-sectional dimensions of the cellulose microfibrils, thereby affecting also their packing into bundles. The differences were more pronounced in samples with xylan instead of GGM, and they became more significant with higher hemicellulose concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.; Unocic, Kinga A.; Bae, Tae-Hyun; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics

  7. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  8. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  9. Cellulose Perversions

    Directory of Open Access Journals (Sweden)

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  10. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi

    DEFF Research Database (Denmark)

    Howell, Caitlin; Hastrup, Anne Christine Steenkjær; Goodell, Barry

    2009-01-01

    The degradation of wood by brown rot fungi has been studied intensely for many years in order to facilitate the preservation of in-service wood. In this work we used X-ray diffraction to examine changes in wood cellulose crystallinity caused by the brown rot fungi Gloeophyllum trabeum, Coniophora...... planes in all degraded samples after roughly 20% weight loss, as well as a decrease in the average observed relative peak width at 2¿ = 22.2°. These results may indicate a disruption of the outer most semi-crystalline cellulose chains comprising the wood microfibril. X-ray diffraction analysis of wood...... subjected to biological attack by fungi may provide insight into degradative processes and wood cellulose structure....

  11. Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study

    Directory of Open Access Journals (Sweden)

    Takatsugu Endo

    2017-01-01

    Full Text Available We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate—an ionic liquid (IL—using a small angle X-ray scattering (SAXS technique over the entire concentration range (0–100 mol %. Fibril structures of cellulose disappeared at 40 mol % of cellulose, which is a significantly higher concentration than the maximum concentration of dissolution (24–28 mol % previously determined in this IL. This behavior is explained by the presence of the anion bridging, whereby an anion prefers to interact with multiple OH groups of different cellulose molecules at high concentrations, discovered in our recent work. Furthermore, we observed the emergence of two aggregated nano-structures in the concentration range of 30–80 mol %. The diameter of one structure was 12–20 nm, dependent on concentration, which is ascribed to cellulose chain entanglement. In contrast, the other with 4.1 nm diameter exhibited concentration independence and is reminiscent of a cellulose microfibril, reflecting the occurrence of nanofibrillation. These results contribute to an understanding of the dissolution mechanism of cellulose in ILs. Finally, we unexpectedly proposed a novel cellulose/IL composite: the cellulose/IL mixtures of 30–50 mol % that possess liquid crystallinity are sufficiently hard to be moldable.

  12. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    NARCIS (Netherlands)

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  13. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  14. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  15. Longitudinal and concurrent dimensional changes of cellulose aggregate fibrils during sorption stages

    International Nuclear Information System (INIS)

    Lee, Jung Myoung; Pawlak, Joel J.; Heitmann, John A.

    2010-01-01

    Atomic force microscopy (AFM) studies of the dimensional changes of cellulose microfibril materials, called cellulose aggregate fibrils (approx. 100 μm x 3 μm x 300 nm), exposed to two distinct relative humidities of 80% and 23% for 24 h and then suddenly subjected to 50% RH and 23 deg. C show that the fibrils are responsive to the surrounding environments in a nonspecific fashion. AFM images (10 μm x 10 μm) of the individual straight cellulose aggregate fibrils were taken as a function of elapsed time during both desorption and adsorption of moisture. The longitudinal distance between discrete natural defects observed on the cellulose aggregate fibrils as well as the width, cross-sectional area, and height of the cellulose aggregate fibril were measured from the AFM images. The length of the cellulose aggregate fibrils was found to have reduced after exposure to either high or low relative humidity, and then placement in ambient conditions. Over time in ambient conditions, the cellulose aggregate fibrils progressively relaxed to their original length during both desorption and adsorption of moisture. However, the relaxation rate during adsorption was faster than that during desorption. The possible explanations for this phenomenon are discussed including the sample preparation method, volume conservation, entropy elasticity, and free volume theory. The changes in the width, height, and cross-sectional area are also discussed.

  16. The variation of microfibril angle in South African grown Pinus patula ...

    African Journals Online (AJOL)

    It has been shown for some species that the microfibril angle (MFA) of the S2 layer of tracheids is strongly related to the modulus of elasticity (MOE) of wood, even more so than wood density, especially in wood formed during juvenile growth. The objectives of this study were to describe the variation in MFA in young Pinus ...

  17. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle

    Science.gov (United States)

    Lewis Jordon; Richard F. Daniels; Alexander Clark; Rechun He

    2005-01-01

    Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for modeling earlywood and latewood...

  18. 3D multiscale micromechanical model of wood: From annual rings to microfibrils

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D micromechanical analytical-computational model of softwood, which takes into account the wood microstructures at four scale levels, from microfibrils to annual rings, is developed. For the analysis of the effect of the annual rings structure on the properties of softwood, an improved rule-of...

  19. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki

    2016-01-01

    The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.

  20. Non-destructive determination of moisture content and micro-fibril angle of wood using a poly-chromatic X-ray beam theoretical and experimental approach; Exploitation d'un rayonnement X poly-energetique pour la determination de la teneur en eau et de l'angle de microfibrilles du bois: approche theorique et experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Baettig, R

    2005-07-15

    Non-destructive determination of moisture content and micro-fibril angle are important stakes for the sciences of the wood because these two parameters influence strongly the macroscopic behavior of the wood. For example, the shrinkage, the mechanical properties, the thermal and acoustic conductivity are dependent on the moisture content and their anisotropic character is largely governed by the micro-fibril angle. We used the light difference between X-ray mass attenuation coefficient for the water and for the wood in transmission. Regrettably, the results show that this difference between X-ray mass attenuation coefficient is insufficient to allow the precise measurement of the moisture content.In spite of this, the coherent scattering shows sensitive effects. So, by using a poly-energetic beam and a spectrometric system, we were able to discriminate between the crystalline constituent (cellulose) of the amorphous constituent (water) in a sample of wet wood, because for a given angle these phases scatter in different energy. Besides, the device created allowed us to study the crystalline phase of the wood. We were able to confront experimental profiles of diffraction with theoretical profiles of diffraction, obtained by means of a rigorous simulation, in the objective to estimate the average micro-fibril angle and its standard deviation. (author)

  1. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  2. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  3. Structural characterization of cellulosic materials using x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, P.

    2013-11-01

    Cellulosic biomass can be used as a feedstock for sustainable production of biofuels and various other products. A complete utilization of the raw material requires understanding on its structural aspects and their role in the various processes. In this thesis, x-ray and neutron scattering methods were applied to study the structure of various cellulosic materials and how they are affected in different processes. The obtained results were reviewed in the context of a model for the cellulose nanostructure. The dimensions of cellulose crystallites and the crystallinity were determined with wide-angle x-ray scattering (WAXS), whereas the nanoscale fibrillar structure of cellulose was characterized with small-angle x-ray and neutron scattering (SAXS and SANS). The properties determined with the small-angle scattering methods included specific surface areas and distances characteristic of the packing of cellulose microfibrils. Also other physical characterization methods, such as x-ray microtomography, infrared spectroscopy, and solid-state NMR were utilized in this work. In the analysis of the results, a comprehensive understanding of the structural changes throughout a range of length scales was aimed at. Pretreatment of birch sawdust by pressurized hot water extraction was observed to increase the crystal width of cellulose, as determined with WAXS, even though the cellulose crystallinity was slightly decreased. A denser packing of microfibrils caused by the removal of hemicelluloses and lignin in the extraction was evidenced by SAXS. This resulted in the opening of new pores between the microfibril bundles and an increase of the specific surface area. Enzymatic hydrolysis of microcrystalline cellulose (MCC) did not lead to differences in the average crystallinity or crystal size of the hydrolysis residues, which was explained to be caused by limitations due to the large size of the enzymes as compared to the pores inside the fibril aggregates. The SAXS intensities

  4. Cellulose utilization: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J A

    1975-01-01

    To summarize, the conversion of cellulose to ethanol via hydrolysis to glucose followed by fermentation appears to be highly efficient in terms of energy conservation, yield, and quality of product, especially when reasonably high quality cellulosic waste is available.

  5. Cellulose nanocrystals the next big nano-thing?

    Science.gov (United States)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the

  6. Electron holography study of the charging effect in microfibrils of sciatic nerve tissues.

    Science.gov (United States)

    Kim, Ki Hyun; Akase, Zentaro; Shindo, Daisuke; Ohno, Nobuhiko; Fujii, Yasuhisa; Terada, Nobuo; Ohno, Shinichi

    2013-08-01

    The charging effects of microfibrils of sciatic nerve tissues due to electron irradiation are investigated using electron holography. The phenomenon that the charging effects are enhanced with an increase of electron intensity is visualized through direct observations of the electric potential distribution around the specimen. The electric potential at the surface of the specimen could be quantitatively evaluated by simulation, which takes into account the reference wave modulation due to the long-range electric field.

  7. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects.

    Science.gov (United States)

    Li, Yao; Wang, Jianji; Liu, Xiaomin; Zhang, Suojiang

    2018-05-07

    Cellulose is one of the most abundant bio-renewable materials on the earth and its conversion to biofuels provides an appealing way to satisfy the increasing global energy demand. However, before carrying out the process of enzymolysis to glucose or polysaccharides, cellulose needs to be pretreated to overcome its recalcitrance. In recent years, a variety of ionic liquids (ILs) have been found to be effective solvents for cellulose, providing a new, feasible pretreatment strategy. A lot of experimental and computational studies have been carried out to investigate the dissolution mechanism. However, many details are not fully understood, which highlights the necessity to overview the current knowledge of cellulose dissolution and identify the research trend in the future. This perspective summarizes the mechanistic studies and microscopic insights of cellulose dissolution in ILs. Recent investigations of the synergistic effect of cations/anions and the distinctive structural changes of cellulose microfibril in ILs are also reviewed. Besides, understanding the factors controlling the dissolution process, such as the structure of anions/cations, viscosity of ILs, pretreatment temperature, heating rate, etc. , has been discussed from a structural and physicochemical viewpoint. At the end, the existing problems are discussed and future prospects are given. We hope this article would be helpful for deeper understanding of the cellulose dissolution process in ILs and the rational design of more efficient and recyclable ILs.

  8. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  9. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  10. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  11. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  12. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  13. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  14. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  15. Isolation and Characterization of Cellulose Nanofibers from Gigantochloa scortechinii as a Reinforcement Material

    Directory of Open Access Journals (Sweden)

    Chaturbhuj K. Saurabh

    2016-01-01

    Full Text Available Cellulose nanofibers (CNF were isolated from Gigantochloa scortechinii bamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.

  16. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    Science.gov (United States)

    2011-02-01

    PROPERTIES OF SURFACE MODIFIED TITANIUM DIOXIDE POWDERS fwn Scivrxc fa SciWcrrs Brendan G. DeLacy RESEARCH AND TECHNOLOGY DIRECTORATE David R. Redding ...NUMBER 5c PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DeLacy, Brendan G. (SAIC) Redding , David R. (ECBC); and Matthews. Joshua 5d. PROJECT NUMBER...X3,300?t>5flm* ** aJI ^-15 SEf Figure 7 - SEM Image #1 of CR-470 •i i .#1. • ^ iW i > hp ^•R^^^Ay *£ $ ^< W^# K HB8 %^ vj\\ X

  17. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    Science.gov (United States)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  18. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  19. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO{sub 3}H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 x 10{sup -2} S cm{sup -1}. In terms of the overall selectivity index ({beta} = {sigma}/P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L{sup -1}) and much better (three times) at high methanol concentration (12 mol L{sup -1}). (author)

  20. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.

    Science.gov (United States)

    Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan

    2014-09-01

    Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  2. Optimization of Phospholipase A1 Immobilization on Plasma Surface Modified Chitosan Nanofibrous Mat

    Directory of Open Access Journals (Sweden)

    Zahra Beig Mohammadi

    2016-01-01

    Full Text Available Phospholipase A1 is known as an effective catalyst for hydrolysis of various phospholipids in enzymatic vegetable oil degumming. Immobilization is one of the most efficient strategies to improve its activity, recovery and functional properties. In this study, chitosan-co-polyethylene oxide (90:10 nanofibrous mat was successfully fabricated and modified with atmospheric plasma at different times (2, 6 and 10 min to interact with enzyme molecules. Scanning electron microscopy images revealed that the membranes retained uniform nanofibrous and open porous structures before and after the treatment. PLA1 was successfully immobilized onto the membrane surfaces via covalent bonds with the functional groups of chitosan nanofibrous mat. Response surface methodology was used to optimize the immobilization conditions for reaching the maximum immobilization efficiency. Enzyme concentration, pH, and immobilization time were found to be significant key factors. Under optimum conditions (5.03 h, pH 5.63, and enzyme dosage 654.36 UI, the atmospheric plasma surface modified chitosan nanofibers reached the highest immobilization efficiency (78.50%. Fourier transform infrared spectroscopy of the control and plasma surface-modified chitosan nanofibers revealed the functional groups of nanofibers and their reaction with the enzyme. The results indicated that surface modification by atmospheric plasma induced an increase in PLA1 loading on the membrane surfaces.

  3. Preparation and characterization of Bioglass®-based scaffolds reinforced bypoly-vinyl alcohol/microfibrillated cellulose composite coating

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Boccaccini, A. R.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3379-3387 ISSN 0955-2219. [Fractography of Advanced Ceramics IV. Smolenice Castle Congres Center, Smolenice SAS, 29.09.13-02.10.13] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : bioceramcs * bioglass (R) scaffolds * porous materials * polymer coating * composite coating Subject RIV: JI - Composite Materials Impact factor: 2.947, year: 2014 http://www.imr.saske.sk/confer/fac2013/publication.htm

  4. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  5. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  6. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  7. Bacterial Cellulose Ionogels as Chemosensory Supports.

    Science.gov (United States)

    Smith, Chip J; Wagle, Durgesh V; O'Neill, Hugh M; Evans, Barbara R; Baker, Sheila N; Baker, Gary A

    2017-11-01

    To fully leverage the advantages of ionic liquids for many applications, it is necessary to immobilize or encapsulate the fluids within an inert, robust, quasi-solid-state format that does not disrupt their many desirable, inherent features. The formation of ionogels represents a promising approach; however, many earlier approaches suffer from solvent/matrix incompatibility, optical opacity, embrittlement, matrix-limited thermal stability, and/or inadequate ionic liquid loading. We offer a solution to these limitations by demonstrating a straightforward and effective strategy toward flexible and durable ionogels comprising bacterial cellulose supports hosting in excess of 99% ionic liquid by total weight. Termed bacterial cellulose ionogels (BCIGs), these gels are prepared using a facile solvent-exchange process equally amenable to water-miscible and water-immiscible ionic liquids. A suite of characterization tools were used to study the preliminary (thermo)physical and structural properties of BCIGs, including no-deuterium nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. Our analyses reveal that the weblike structure and high crystallinity of the host bacterial cellulose microfibrils are retained within the BCIG. Notably, not only can BCIGs be tailored in terms of shape, thickness, and choice of ionic liquid, they can also be designed to host virtually any desired active, functional species, including fluorescent probes, nanoparticles (e.g., quantum dots, carbon nanotubes), and gas-capture reagents. In this paper, we also present results for fluorescent designer BCIG chemosensor films responsive to ammonia or hydrogen sulfide vapors on the basis of incorporating selective fluorogenic probes within the ionogels. Additionally, a thermometric BCIG hosting the excimer-forming fluorophore 1,3-bis(1-pyrenyl)propane was devised which exhibited a ratiometric (two

  8. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance1[OPEN

    Science.gov (United States)

    Wang, Tuo; Park, Yong Bum; Hong, Mei

    2015-01-01

    The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary wall of Arabidopsis (Arabidopsis thaliana), indicating subnanometer contacts between the two polysaccharides. This result was unexpected because stable pectin-cellulose interactions are not predicted by in vitro binding assays and prevailing cell wall models. To investigate whether the spatial contacts that give rise to the cross peaks are artifacts of sample preparation, we now compare never-dried Arabidopsis primary walls with dehydrated and rehydrated samples. One-dimensional 13C spectra, two-dimensional 13C-13C correlation spectra, water-polysaccharide correlation spectra, and dynamics data all indicate that the structure, mobility, and intermolecular contacts of the polysaccharides are indistinguishable between never-dried and rehydrated walls. Moreover, a partially depectinated cell wall in which 40% of homogalacturonan is extracted retains cellulose-pectin cross peaks, indicating that the cellulose-pectin contacts are not due to molecular crowding. The cross peaks are observed both at −20°C and at ambient temperature, thus ruling out freezing as a cause of spatial contacts. These results indicate that rhamnogalacturonan I and a portion of homogalacturonan have significant interactions with cellulose microfibrils in the native primary wall. This pectin-cellulose association may be formed during wall biosynthesis and may involve pectin entrapment in or between cellulose microfibrils, which cannot be mimicked by in vitro binding assays. PMID:26036615

  9. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  10. Titania nanotube arrays surface-modified with ZnO for enhanced photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nageri, Manoj; Kalarivalappil, Vijila; Vijayan, Baiju K.; Kumar, Viswanathan, E-mail: vkumar10@yahoo.co.in

    2016-05-15

    Highlights: • Heterostructures of TNA/ZnO synthesised through potentiostatic anodisation followed by hydrothermal method. • Evaluation of morphological features of the heterostructure with hydrothermal processing time. • Correlation of photocatalytic activity of the hetrostructure with its morphology and surface texture. - Abstract: Well ordered titanium dioxide nanotube arrays (TNA) of average diameter 129 nm and wall thickness of 25 nm were fabricated through potentiostatic anodisation of titanium (Ti) metal substrates. Such TNA were subsequently surface-modified with various amounts of zinc oxide (ZnO) nanopowders using hydrothermal technique to obtain heterogeneous TNA/ZnO nanostructures. The crystalline phase and surface microstructure of the heterostructures were determined by X-ray diffraction, Raman spectroscopy and scanning electron microscopy respectively. The morphology of the heterostructures strongly depended on the hydrothermal conditions employed. The photocatalytic activity of the heterostructures have also been investigated and correlated with their surface morphology and texture.

  11. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  12. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    Science.gov (United States)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  13. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  14. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  15. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  16. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  17. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces

    Directory of Open Access Journals (Sweden)

    Monika Szymańska-Chargot

    2017-10-01

    Full Text Available A new fractionation process was developed to achieve valorization of fruit and vegetable pomaces. The importance of the residues from fruits and vegetables is still growing; therefore; the study presents the novel route of a fractioning process for the conversion of agro-industrial biomasses, such as pomaces, into useful feedstocks with potential application in the fields of fuels, chemicals, and polymers. Hence, the biorefinery process is expected to convert them into various by-products offering a great diversity of low-cost materials. The final product of the process is the cellulose of the biofuel importance. The study presents the novel route of the fractioning process for the conversion of agro-industrial biomasses, such as pomaces, into useful feedstocks with a potential application in the fields of fuels, chemicals, and polymers. Therefore the aim of this paper was to present the novel route of the pomaces fraction and the characterization of residuals. Pomaces from apple, cucumber, carrot, and tomato were treated sequentially with water, acidic solution, alkali solution, and oxidative reagent in order to obtain fractions reach in sugars, pectic polysaccharides, hemicellulose, cellulose, and lignin. Pomaces were characterized by dry matter content, neutral detergent solubles, hemicellulose, cellulose, and lignin. Obtained fractions were characterized by the content of pectins expressed as galacturonic acid equivalent and hemicelluloses expressed as a xyloglucan equivalent. The last fraction and residue was cellulose characterized by crystallinity degree by X-ray diffractometer (XRD, microfibril diameter by atomic force microscope (AFM, and overall morphology by scanning electron microscope (SEM. The hemicelluloses content was similar in all pomaces. Moreover, all the materials were characterized by the high pectins level in extracts evaluated as galacturonic acid content. The lignins content compared with other plant biomasses was on a

  18. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    Science.gov (United States)

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  20. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  1. Microfibril Associated Protein 4 (MFAP4) as a biomarker of emphysema

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Roberts, Nassim Bazeghi; Schlosser, Anders

    Background To enhance accuracy in evaluating prognosis and target therapy, there is a need for biomarkers in COPD. Yet, there are no reliable biomarkers that can differentiate between phenotypes of COPD. MFAP4 is a glycoprotein, co-localized with elastin and microfibrils in elastic fibres. We...... hypothesized that circulating MFAP4 reflects elastin degradation and thereby emphysema in COPD patients. Methods Plasma levels of MFAP4 (pMFAP4) were determined by ELISA in 74 Danish COPD patients from the multicentre ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) study...

  2. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  4. Isolation and Characteristics of Cellulose and Nanocellulose from Lotus Leaf Stalk Agro-wastes

    Directory of Open Access Journals (Sweden)

    Yandan Chen

    2014-12-01

    Full Text Available Valorization of lotus leaf stalks (LLS produced as an abundantly available agro-waste was achieved through the extraction of value-added nanocellulose. Nanofibrillated cellulose (NFC was successfully prepared from LLS by using chemical pretreatment combined with high-intensity ultrasonication. The morphological characteristics of the chemically purified LLS cellulose microfibrils were characterized by optical microscopy and MorFi fiber analysis. Fourier transform infrared (FTIR spectroscopy indicated the extensive removal of non-cellulosic components after chemical pretreatment. The transmission electron microscopy (TEM results revealed agglomeration of the developed individual NFC, with a width of 20 ± 5 nm and length on a micron scale, into a network-like feature. X-ray diffraction results showed that the resulting NFC had a cellulose I crystal structure with a high crystallinity (70%. The NFC started to degrade at around 217 °C, and the peak rate of degradation occurred at 344 °C. Nanofibrils obtained from LLS have great potential as reinforcement agents in nanocomposites.

  5. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    Directory of Open Access Journals (Sweden)

    Ireana Yusra A. Fatah

    2014-10-01

    Full Text Available The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC. The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR and X-ray diffraction (XRD. The morphology and thermal stability were investigated by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric (TGA analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC, but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

  6. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    Science.gov (United States)

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  7. Type VI collagen is associated with microfibrils and oxytalan fibers in the extracellular matrix of periodontium, mesenterium and periosteum

    NARCIS (Netherlands)

    Everts, V.; Niehof, A.; Jansen, D.; Beertsen, W.

    1998-01-01

    Type VI collagen was immunolocalized in several soft connective tissues at the light and electron microscopic level. Positive labeling was found in all tissues examined, periodontal ligament, gingiva, mesenterium and periosteum. The labeled structures could be divided into 2 categories: microfibrils

  8. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Science.gov (United States)

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  9. Application of near-infrared spectroscopy to predict microfibril angle of 14-year-old Pinus patula

    CSIR Research Space (South Africa)

    Zbonak, A

    2006-09-01

    Full Text Available An investigation was conducted to test the feasibility of near infrared spectroscopy (NIR) as a tool for predicting the microfibril angle (MFA) of solid wood samples of Pinus patula. Thirty 14 year-old trees were selected from three compartments...

  10. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC.

    Science.gov (United States)

    Asadinezhad, Ahmad; Novák, Igor; Lehocký, Marián; Sedlarík, Vladimir; Vesel, Alenka; Junkar, Ita; Sáha, Petr; Chodák, Ivan

    2010-06-01

    Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Corrosion Behavior of a Surface Modified Inconel 713LC in a Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Lim, Jong Ho; Seo, Chung Seok; Jung, Ki Jung; Park, Seoung Won

    2005-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of the lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside a remote hot cell nuclear facility to prevent an unwanted Li oxidation and fires during the handling of the chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance the process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of the metals in a LiCl-Li 2 O molten salt under an oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of a surface modified Inconel 713LC have been studied in the molten salt of LiCl-Li 2 O under an oxidation condition

  12. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Li, Yan, E-mail: liyan@buaa.edu.cn; Jiang, Chengbao

    2017-05-01

    Highlights: • Fe{sub 2}O{sub 3}/ZnO oxides were formed on the surface of Zn implanted pure Fe samples. • The corrosion rate of the pure Fe in SBF was increased after Zn implantation. • Cytocompatibility of the pure Fe was improved by Zn ion implantation. - Abstract: Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40–60 nm and Fe{sub 2}O{sub 3}/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (E{sub corr}) and a 10-fold increase in the corrosion current density (i{sub corr}) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  13. Transport and retention of strontium in surface-modified quartz sand with different wettability

    International Nuclear Information System (INIS)

    Yifei Li; Shuaihui Tian; Tianwei Qian

    2011-01-01

    Instead of radioactive 90 Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr 2+ ) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr 2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr 2+ in these media were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region mobile-immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr 2+ , and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr 2+ . Although TRM model could not fit the Sr 2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr 2+ in these kind of sand is non-equilibrium processes. (author)

  14. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  15. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  16. [Study on preparation and physicochemical properties of surface modified sintered bone].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  17. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Carbon monoxide oxidation on a Au(111 surface modified by spontaneously deposited Ru

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-04-01

    Full Text Available The spontaneous deposition of Ru on Au(111 was performed in 10-3 M RuCl3 + 0.5 M H2SO4 solution. The obtained surface was characterized by STM under potential control in 0.5 M H2SO4 solution. The coverage of the Au(111 terraces by deposited Ru was estimated by STM to be 0.02 ML. Step decoration could be noticed in the STM images, which indicates that the steps, as lined defects, are active sites for the nucleation of Ru monolayer islands, while the random distribution of Ru nuclei, observed on the terraces indicates point defects as active sites. The electrocatalytic activity of Au(111 surface modified by spontaneously deposited Ru was studied towards CO oxidation. The significant enhancement in the reaction rate compared to CO oxidation on a pure Au(111 surface, indicated that the edges of the deposited Ru islands were the active sites for the reaction.

  19. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  20. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    International Nuclear Information System (INIS)

    Diao Huaxin; Si Yunfeng; Zhu Aiping; Ji Lijun; Shi Hongchan

    2012-01-01

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: ► Dodecyl alcohol modifies HA nanoparticles via esterification reaction. ► The modified HA results in good dispersibility in PLA matrix. ► The interfacial interactions are improved because of the modified HA. ► The addition of HA and mHA results in good cell affinity and biocompatibility.

  1. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    Science.gov (United States)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  3. Surface-modified polymeric pads for enhanced performance during chemical mechanical planarization

    International Nuclear Information System (INIS)

    Deshpande, S.; Dakshinamurthy, S.; Kuiry, S.C.; Vaidyanathan, R.; Obeng, Y.S.; Seal, S.

    2005-01-01

    The chemical mechanical planarization (CMP) process occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in their successful implementation. Polyurethane is a commonly used polymer in the manufacturing of CMP pads. These pads are incompatible with some chemicals present in the CMP slurries, such as hydrogen peroxide. To overcome these problems, Psiloquest has developed new Application Specific Pads (ASP). Surface of such pads has been modified by depositing a thin film of tetraethyl orthosilicate using plasma-enhanced chemical vapor deposition (PECVD) process. In the present study, mechanical properties of such coated pads have been investigated using nanoindentation. The surface morphology and the chemistry of the ASP were studied using scanning electron microcopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy techniques. It was observed that mechanical and chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD-treated pads are found to be hydrophilic and do not require storage in aqueous media during the not-in-use period. The metal removal rate using such surface-modified polishing pads was found to increase linearly with the PECVD coating time

  4. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  5. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  6. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  7. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  8. Surface modification of cellulose isolated from Sesamun indicum underutilized seed: A means of enhancing cellulose hydrophobicity

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2017-09-01

    Full Text Available Cellulose (SC isolated from sesame seed (SS was surface modified with the introduction of an ester functional group via a simple reaction to produce the modified product (SA. SS, SC and SA were characterized using Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TG, particle size distribution (PSD, zeta potential and scanning electron microscopy (SEM. SC and SA were evaluated for their water holding capacity (WC, oil holding capacity (OC, swelling capacity (SW and their ability to adsorb heavy metals. The FTIR revealed peaks corresponding to the formation of the ester functional group at the surface of SA. The crystallinity of SC was 28.02% but after the modification, it increased to 77.03% in SA. The PSD of SC and SA was both monomodal with sizes of 10.1305 μm in SC and 10.2511 μm in SA. The adsorption capacity of SC towards Pb (II and Cu (II ions was higher than that of SA. However, SA was unable to adsorb Cu (II ions. SA exhibited the lower WC and SW values as compared to SC which suggested an improved hydrophobicity after the modification. This study has shown that hydrophobicity can be improved in cellulose via surface modification.

  9. Method of saccharifying cellulose

    Science.gov (United States)

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  10. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  11. Improving the thermal properties of fluoroelastomer (Viton GF-600S using acidic surface modified carbon nanotube

    Directory of Open Access Journals (Sweden)

    Javad Heidarian

    2015-08-01

    Full Text Available AbstractAcid surface modified carbon nanotube (MCNT-, Carbon nanotube (CNT-filled fluoroelastomer (FE and unfilled-FE were prepared (MCNT/FE, CNT/FE and FE. The compounds were subjected to thermogravimetric analysis (TGA and heat air aging, and characterized by Energy Dispersive X-Ray (EDX. Results showed that MCNT improved the thermal properties of FE, resulting in a larger amount of FE and char remaining in the temperature range of 400-900 °C relative to unfilled FE and CNT/FE. The MCNT/FE TGA curve shifted towards higher temperatures compared to CNT/FE and FE. The same results also revealed that higher percentages of FE were undegraded or less degraded especially near MCNT in the temperature range of 400-540 °C. Energy Dispersive X-Ray (EDX results indicated that the percentage of carbon and fluorine in the residue of TGA scans, up to 560 °C, of MCNT/FE were the same as CNT/FE, and were higher than FE. EDX results of TGA residue (run up to 900 °C showed that most of the undegraded FE, which was not degraded at temperatures below 560 °C, was degraded from 560 °C to 900 °C in both MCNT/FE and CNT/FE, with the char in MCNT/FE being more than that in CNT/FE. EDX analysis of thermal aged specimens under air showed that, with increasing aging time, a greater percentage of C, O and F was lost from the surface of filler/FE and FE. The order of element loss after 24 hour aging time was: MCNT/FE > FE > CNT/FE.

  12. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  13. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  15. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  16. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane

    International Nuclear Information System (INIS)

    Santos, Frirllei Cardozo dos

    2016-01-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H_2SO_4 was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by AFM and SEM

  17. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma.

    Science.gov (United States)

    White, Tomas L; Lewis, Philip N; Young, Robert D; Kitazawa, Koji; Inatomi, Tsutomu; Kinoshita, Shigeru; Meek, Keith M

    2017-06-01

    The optical and biomechanical properties of the cornea are largely governed by the collagen-rich stroma, a layer that represents approximately 90% of the total thickness. Within the stroma, the specific arrangement of superimposed lamellae provides the tissue with tensile strength, whilst the spatial arrangement of individual collagen fibrils within the lamellae confers transparency. In keratoconus, this precise stromal arrangement is lost, resulting in ectasia and visual impairment. In the normal cornea, we previously characterised the three-dimensional arrangement of an elastic fiber network spanning the posterior stroma from limbus-to-limbus. In the peripheral cornea/limbus there are elastin-containing sheets or broad fibers, most of which become microfibril bundles (MBs) with little or no elastin component when reaching the central cornea. The purpose of the current study was to compare this network with the elastic fiber distribution in post-surgical keratoconic corneal buttons, using serial block face scanning electron microscopy and transmission electron microscopy. We have demonstrated that the MB distribution is very different in keratoconus. MBs are absent from a region of stroma anterior to Descemet's membrane, an area that is densely populated in normal cornea, whilst being concentrated below the epithelium, an area in which they are absent in normal cornea. We contend that these latter microfibrils are produced as a biomechanical response to provide additional strength to the anterior stroma in order to prevent tissue rupture at the apex of the cone. A lack of MBs anterior to Descemet's membrane in keratoconus would alter the biomechanical properties of the tissue, potentially contributing to the pathogenesis of the disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mild and modular surface modification of cellulose via hetero Diels-Alder (HDA) cycloaddition.

    Science.gov (United States)

    Goldmann, Anja S; Tischer, Thomas; Barner, Leonie; Bruns, Michael; Barner-Kowollik, Christopher

    2011-04-11

    A combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and hetero Diels-Alder (HDA) cycloaddition was used to effect, under mild (T ≈ 20 °C), fast, and modular conditions, the grafting of poly(isobornyl acrylate) (M(n) = 9800 g mol(-1), PDI = 1.19) onto a solid cellulose substrate. The active hydroxyl groups expressed on the cellulose fibers were converted to tosylate leaving groups, which were subsequently substituted by a highly reactive cyclopentadienyl functionality (Cp). By employing the reactive Cp-functionality as a diene, thiocarbonyl thio-capped poly(isobornyl acrylate) synthesized via RAFT polymerization (mediated by benzyl pyridine-2-yldithioformiate (BPDF)) was attached to the surface under ambient conditions by an HDA cycloaddition (reaction time: 15 h). The surface-modified cellulose samples were analyzed in-depth by X-ray photoelectron spectroscopy, scanning electron microscopy, elemental analysis, Fourier transform infrared (FT-IR) spectroscopy as well as Fourier transform infrared microscopy employing a focal plane array detector for imaging purposes. The analytical results provide strong evidence that the reaction of suitable dienophiles with Cp-functional cellulose proceeds under mild reaction conditions (T ≈ 20 °C) in an efficient fashion. In particular, the visualization of individual modified cellulose fibers via high-resolution FT-IR microscopy corroborates the homogeneous distribution of the polymer film on the cellulose fibers.

  19. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    USER

    2016-06-15

    Jun 15, 2016 ... The extraction method of algae cellulose was a modification of ... triplicate. Characterization of cellulose. Analysis of ... The current analysis of the cellulose extracted .... Cellulose nanomaterials review: structure, properties and.

  20. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  1. Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Qin, Xiaopeng; Li, Cairong [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Liu, Mingxian; Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-03-30

    Highlights: • The grafted PLLA chain on the surface of g-MgO whisker was ruled out by FTIR spectroscopy and TG/DTG analyses. • The excellent dispersion of g-MgO whiskers and the strong interfacial adhesion of g-MgO whiskers/PLLA composite were proved by FSEM. • Comparing to MgO particles and MgO whiskers, fibrous-like g-MgO whiskers are the most effective reinforcing and toughening fillers for PLLA. - Abstract: To improve both the strength and toughness of poly(L-lactide) (PLLA), fibrous-like MgO whiskers with diameters of 0.15–1 μm and lengths of 15–110 μm were prepared, and subsequently surface modified with L-lactide to obtain grafted MgO whiskers (g-MgO whiskers). The structures and properties of MgO whiskers and g-MgO whiskers were studied. Then, a series of MgO whiskers/PLLA and g-MgO whiskers/PLLA composites were prepared by solution casting method, for comparison, MgO particles/PLLA composite was prepared too. The resulting composites were evaluated in terms of hydrophilicity, crystallinity, dispersion of whiskers, interfacial adhesion and mechanical performance by means of polarized optical microscopy (POM), contact angle measurement, field emission scanning electron microscope (FSEM), transmission electron microscopy (TEM) and tensile testing. The results revealed that the crystallization rate and hydrophilicity of PLLA were improved by the introduction of MgO whiskers and g-MgO whiskers. The g-MgO whiskers can disperse more uniformly in and show stronger interfacial adhesion with the matrix than MgO whiskers as a result of the surface modification. Due to the bridge effect of the whiskers and the excellent interfacial adhesion between g-MgO whiskers and PLLA, g-MgO whiskers/PLLA composites exhibited remarkably higher strength, modulus and toughness compared to the pristine PLLA, MgO particles/PLLA and MgO whiskers/PLLA composites.

  2. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta.

    Science.gov (United States)

    Quiroz-Castañeda, Rosa E; Martínez-Anaya, Claudia; Cuervo-Soto, Laura I; Segovia, Lorenzo; Folch-Mallol, Jorge L

    2011-02-11

    Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  3. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Segovia Lorenzo

    2011-02-01

    Full Text Available Abstract Background Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields. Results Here we describe a new type of expansin-related fungal protein that we have called loosenin. Its corresponding gene, loos1, from the basidiomycete Bjerkandera adusta, was cloned and heterologously expressed in Saccharomyces cerevisiae. LOOS1 is distantly related to plant expansins through the shared presence of a DPBB domain, however domain II found in plant expansins is absent. LOOS1 binds tightly to cellulose and chitin, and we demonstrate that cotton fibers become susceptible to the action of a commercial cellulase following treatment with LOOS1. Natural fibers of Agave tequilana also become susceptible to hydrolysis by cellulases after loosenin treatment. Conclusions LOOS1 is a new type of protein with disrupting activity on cellulose. LOOS1 binds polysaccharides, and given its enhancing properties on the action of hydrolytic enzymes, LOOS1 represents a potential additive in the production of fermentable sugars from lignocellulose.

  4. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  5. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  6. Photoluminescence investigation of ZnO quantum dots surface modified with silane coupling agent as a capping agent

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, E., E-mail: e.moghaddam@merc.ac.ir; Youzbashi, A.A; Kazemzadeh, A.; Eshraghi, M.J.

    2015-12-15

    This report presents the luminescence measurement results of surface modified zinc oxide quantum dots (ZnO QDs) performed with different concentrations of 3-aminopropyltriethoxysilane (APTES) as a capping agent. Surface modification was performed by an in situ procedure on the surface of ZnO QDs in a sol gel solution route. The modified samples were characterized by various analytical techniques such as XRD, TEM, FT-IR, and UV–vis spectroscopy. Surface modification efficiency was experimentally investigated by variation of the photoluminescence) PL (emission intensities observed by changing the capping agent concentration. In order to investigate the effectiveness of the capping agent on the stability of the QDs, The PL spectra of the surface modified ZnO QDs were compared with that of unmodified ZnO QDs. Molecular layer of this type and similar silane based molecules with a variety of surface terminations that have the same molecular attachment schemes should enable interface engineering in optimizing the chemical selectivity of ZnO biosensors or electrical and optical properties of ZnO-polymer hybrid films. - Highlights: • Surface modification of ZnO QDs resulted in the small- size QDs (around 2 nm). • Surface modification resulted in the enhancement of the UV emission upon quenching the visible emission. • Surface modification efficiency was decreased with reduction of the QD size • Intensified stability of the surface modified ZnO QDs was obtained from surface modification.

  7. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  8. EMILIN2 (Elastin microfibril interface located protein, potential modifier of thrombosis

    Directory of Open Access Journals (Sweden)

    Hoover-Plow Jane L

    2011-05-01

    Full Text Available Abstract Background Elastin microfibril interface located protein 2 (EMILIN2 is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis. Results EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation. Conclusions These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.

  9. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  10. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  11. Glucose production for cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Karube, I

    1977-04-16

    Glucose was produced from cellulose by passing a cellulose solution through a column of an immobilized cellulase which was prepared by coating an inorganic carrier such as macadam or stainless steel beads with collagen containing the cellulase. Thus, 4 mL of 5% cellulase T-AP (60,000 units/g) solution was dissolved in 100 g of 0.9% collagen solution and the solution mixed with 60 g of macadam (diam. = 0.5 to 1.5 mm) and stirred for 10 min. The treated beads were dried in air at 10/sup 0/ to yield an immobilized enzyme retaining 64% of its activity. Through a column (0.8 x 20 cm) packed with 3 g of the immobilized enzyme, 100 mL of 0.33% Avicel SF solution was circulated at 26.4 mL/min at 30/sup 0/ for 60 h. The Avicel SF conversion to glucose was 23%.

  12. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  13. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels

    Science.gov (United States)

    Smith, Chip J.; Gehrke, Sascha; Hollóczki, Oldamur; Wagle, Durgesh V.; Heitz, Mark P.; Baker, Gary A.

    2018-05-01

    Bacterial cellulose ionogels (BCIGs) represent a new class of material comprising a significant content of entrapped ionic liquid (IL) within a porous network formed from crystalline cellulose microfibrils. BCIGs suggest unique opportunities in separations, optically active materials, solid electrolytes, and drug delivery due to the fact that they can contain as much as 99% of an IL phase by weight, coupled with an inherent flexibility, high optical transparency, and the ability to control ionogel cross-sectional shape and size. To allow for the tailoring of BCIGs for a multitude of applications, it is necessary to better understand the underlying principles of the mesoscopic confinement within these ionogels. Toward this, we present a study of the structural, relaxation, and diffusional properties of the ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpy][Tf2N]), using 1H and 19F NMR T1 relaxation times, rotational correlation times, and diffusion ordered spectroscopy (DOSY) diffusion coefficients, accompanied by molecular dynamics (MD) simulations. We observed that the cation methyl groups in both ILs were primary points of interaction with the cellulose chains and, while the pore size in cellulose is rather large, [emim]+ diffusion was slowed by ˜2-fold, whereas [Tf2N]- diffusion was unencumbered by incorporation in the ionogel. While MD simulations of [bmpy][Tf2N] confinement at the interface showed a diffusion coefficient decrease roughly 3-fold compared to the bulk liquid, DOSY measurements did not reveal any significant changes in diffusion. This suggests that the [bmpy][Tf2N] alkyl chains dominate diffusion through formation of apolar domains. This is in contrast to [emim][Tf2N] where delocalized charge appears to preclude apolar domain formation, allowing interfacial effects to be manifested at a longer range in [emim][Tf2N].

  14. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  15. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    Science.gov (United States)

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  17. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  18. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    Science.gov (United States)

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2018-01-01

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  19. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  20. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Investigation of age-related decline of microfibril-associated glycoprotein-1 in human skin through immunohistochemistry study

    Directory of Open Access Journals (Sweden)

    Zheng Q

    2013-12-01

    Full Text Available Qian Zheng, Siming Chen, Ying Chen, John Lyga, Russell Wyborski, Uma SanthanamGlobal Research and Development, Avon Products Inc., Suffern, New York, USAAbstract: During aging, the reduction of elastic and collagen fibers in dermis can lead to skin atrophy, fragility, and aged appearance, such as increased facial wrinkling and sagging. Microfibril-associated glycoprotein-1 (MAGP-1 is an extracellular matrix protein critical for elastic fiber assembly. It integrates and stabilizes the microfibril and elastin matrix network that helps the skin to endure mechanical stretch and recoil. However, the observation of MAGP-1 during skin aging and its function in the dermis has not been established. To better understand age-related changes in the dermis, we investigated MAGP-1 during skin aging and photoaging, using a combination of in vitro and in vivo studies. Gene expression by microarray was performed using human skin biopsies from young and aged female donors. In addition, immunofluorescence analysis on the MAGP-1 protein was performed in dermal fibroblast cultures and in human skin biopsies. Specific antibodies against MAGP-1 and fibrillin-1 were used to examine protein expression and extracellular matrix structure in the dermis via biopsies from donors of multiple age groups. A reduction of the MAGP-1 gene and protein levels were observed in human skin with increasing age and photoexposure, indicating a loss of the functional MAGP-1 fiber network and a lack of structural support in the dermis. Loss of MAGP-1 around the hair follicle/pore areas was also observed, suggesting a possible correlation between MAGP-1 loss and enlarged pores in aged skin. Our findings demonstrate that a critical “pre-elasticity” component, MAGP-1, declines with aging and photoaging. Such changes may contribute to age-related loss of dermal integrity and perifollicular structural support, which may lead to skin fragility, sagging, and enlarged pores

  2. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  3. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  4. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    Science.gov (United States)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  5. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  6. Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene

    International Nuclear Information System (INIS)

    Guenes, Serap; Marjanovic, Nenad; Nedeljkovic, Jovan M; Sariciftci, Niyazi Serdar

    2008-01-01

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO 2 as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO 2 nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM).

  7. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  8. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    International Nuclear Information System (INIS)

    Bayram, Cem; Denkbas, Emir Baki; Mizrak, Alpay Koray; Aktuerk, Selcuk; Kursaklioglu, Hurkan; Iyisoy, Atila; Ifran, Ahmet

    2010-01-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  9. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  11. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  12. Saccharification of cellulose by acetolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  13. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  14. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  15. Evaluation of microcrystalline cellulose modifed from alpha ...

    African Journals Online (AJOL)

    Alpha cellulose was obtained from Costus afer and part of it was modified to microcrystalline cellulose (CAMCC). The physicochemical properties of the microcrystalline cellulose were determined and compared with those of commercial microcrystalline cellulose (Avicel 101). The swelling capacity, hydration capacity, loss ...

  16. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  17. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  18. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid electrospun fibrous scaffold for bone regeneration

    Directory of Open Access Journals (Sweden)

    Chen SJ

    2015-06-01

    Full Text Available Shijie Chen,1,* Zhiyuan Jian,2,* Linsheng Huang,2,* Wei Xu,3,* Shaohua Liu,4 Dajiang Song,3 Zongmiao Wan,3 Amanda Vaughn,5 Ruisen Zhan,1 Chaoyue Zhang,1 Song Wu,1 Minghua Hu,6 Jinsong Li1 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People’s Republic of China; 3Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 4Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 5Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; 6Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People’s Republic of China *These authors contributed equally to this work Abstract: A mesoporous bioactive glass (MBG surface modified with poly(lactic-co-glycolic acid (PLGA electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds

  20. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  1. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    NARCIS (Netherlands)

    Sieberer, B.; Kieft, H.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Vos, J.W.

    2009-01-01

    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g.

  2. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials

    Directory of Open Access Journals (Sweden)

    Hongxiang Xie

    2018-01-01

    Full Text Available The recent strategies in preparation of cellulose nanocrystals (CNCs and cellulose nanofibrils (CNFs were described. CNCs and CNFs are two types of nanocelluloses (NCs, and they possess various superior properties, such as large specific surface area, high tensile strength and stiffness, low density, and low thermal expansion coefficient. Due to various applications in biomedical engineering, food, sensor, packaging, and so on, there are many studies conducted on CNCs and CNFs. In this review, various methods of preparation of CNCs and CNFs are summarized, including mechanical, chemical, and biological methods. The methods of pretreatment of cellulose are described in view of the benefits to fibrillation.

  3. WOOD CELLULOSE ACETATE MEMBRANE 179

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... 1988), cosmetics and food additives or pharmaceutical applications (Wellisch .... displaced by sample. Determination of percent α-, β- and γ–cellulose ..... addition, the smaller pore diameter would lead to a greater exclusion of ...

  4. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-01-01

    (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome

  5. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  6. Effect of Surface-Modified Paclitaxel Nanowires on U937 Cells In Vitro: A Novel Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abumaree

    2012-01-01

    Full Text Available We have fabricated surface-modified paclitaxel nanowires (SM-PNs with a precise diameter and an average length of 50 μm. The surface of these nanowires is coated with a monolayer of octadecylsiloxane (ODS, which prevents aggregation and enhances dispersivity in aqueous media. This system constitutes a novel drug delivery vehicle based on one-dimensional (1D nanostructures with a large drug to vehicle ratio. We assayed the cytotoxicity of different diameter SM-PNs (200, 80, 35, and 18 nm with U937 cells and compared their activity to microcrystalline paclitaxel. SM-PNs reduced U937 cell proliferation in culture followed by cell death. For the same amount of paclitaxel, different diameter SM-PNs displayed different cytotoxic effect at the same incubation time period. SM-PNs with 35 nm diameters were the most efficient in completely halting cell proliferation following the first 24 hours of treatment, associated with 42% cell death. SM-PNs with 18 nm diameters were least effective. These SM-PNs can be tailored to fit a certain treatment protocol by simply choosing the appropriate diameter.

  7. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  8. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  9. Novel surface-modified nanostructured lipid carriers with partially deacetylated water-soluble chitosan for efficient ocular delivery.

    Science.gov (United States)

    Tian, Baocheng; Luo, Qiuhua; Song, Shuangshuang; Liu, Dandan; Pan, Hao; Zhang, Wenji; He, Ling; Ma, Shilin; Yang, Xinggang; Pan, Weisan

    2012-03-01

    The objective of this study was to propose novel surface-modified nanostructured lipid carriers with partially deacetylated water-soluble chitosan (NLC-PDSC) as an efficient ocular delivery system to improve its transcorneal penetration and precorneal retention. PDSC with a deacetylation degree of around 50% was synthesized using an improved method. NLC loaded with flurbiprofen (FB) were prepared by melt emulsification method. They presented spherical morphology under both transmission electron microscope and scanning electron microscope. After coating with 0.15% (w/v) PDSC solution, the NLC showed a core-shell structure and a reversed zeta potential. The enhanced transcorneal penetration of the coated NLC was evaluated using isolated rabbit corneas, with significantly increased apparent permeability coefficient being 1.40- and 1.75-fold of the NLC and FB phosphate solution (FB-sol; p < 0.05), respectively. Precorneal retention assessed by gamma scintigraphy in vivo showed that the area under the remaining activity-time curve of the PDSC-coated formulation was 1.3-fold of the NLC and 2.4-fold of FB-sol. Moreover, in vivo ocular tolerance study indicated that there was no difference in irritation between the coated and noncoated NLC. In conclusion, novel NLC demonstrate high potential for ocular drug delivery. Copyright © 2011 Wiley Periodicals, Inc.

  10. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu, E-mail: tycheng@shnu.edu.cn; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH = 7.0 phosphate buffered saline (PBS) solution without 365 nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH = 5.0 PBS) and 365 nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. - Highlights: • A pH and light-dual controlled cargo release system exhibiting AND logic is developed. • The delivery system can release the cargo in small potions by controlling the opening/closing of the gate. • The delivery system realizes the controlled release in zebrafish.

  11. Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine

    International Nuclear Information System (INIS)

    Negi, Devendra P S; Chanu, T Inakhunbi

    2008-01-01

    We present a novel method for the selective detection of cysteine, a sulfur-containing amino acid, which plays a crucial role in many important biological functions such as protein folding. Surface-modified colloidal CdS nanoparticles have been used as a fluorescent probe to selectively detect cysteine in the presence of other amino acids in the micromolar concentration range. Cysteine quenches the emission of CdS in the 0.5-10 μM concentration range, whereas the other amino acids do not affect its emission. Among the other amino acids, histidine is most efficient in quenching the emission of the CdS nanoparticles. The sulfur atom of cysteine plays a crucial role in the quenching process in the 0.5-10 μM concentration range. Cysteine is believed to quench the emission of the CdS nanoparticles by binding to their surface via its negatively charged sulfur atom. This method can potentially be applied for its detection in biological samples.

  12. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  13. Preparation of Magnetic Sorbent with Surface Modified by C18for Removal of Selected Organic Pollutants from Aqueous Samples

    Science.gov (United States)

    Kuráň, Pavel; Pilnaj, Dominik; Ciencialová, Lucie; Pšenička, Martin

    2017-12-01

    Magnetic sorbents have great potential in environmental applications due to their simple synthesis and separation in magnetic field, usability in heterogeneous systems and low toxicity. Possible syntheses, surface modifications and characteristics were described by Li et al 2013. This type of solid-phase extraction is being successfully used in various fields as health care, microbiology, biotechnologies or sample preconcentration in analytical chemistry. In this preliminary study we report on the preparation and application of magnetically separable sorbent with surface modified by C18 alkyl chain for purification of water contaminated by environmentally hazardous organic compounds. Magnetic cores were co-precipitated from Fe2+ and Fe3+ chlorides in alkalic aqueous solution. Surface of synthetized Fe3O4 was modified with SiO2 by tetraethylorthosilicate to assure physico-chemical stability. Furthermore, Fe3O4/SiO2 complex has been treated by C18 functional group, which provides good affinity towards hydrophobic substances in water. Efficiency of sorption under various conditions has been examined on benzene, toluene, ethylbenzene and xylenes (BTEX), compounds found in petroleum products which contaminate air, soil and groundwater near of store tanks. Sorption kinetics was followed by gas chromatography with mass spectrometry. The preliminary sorption kinetics data and efficiency of BTEX removal point at the possible application of prepared magnetic sorbent for BTEX removal, especially for ethylbenzene and xylenes.

  14. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: II. Performance characterization under contaminated feed conditions

    KAUST Repository

    Ward, Jason K.

    2011-07-01

    Mixed matrix membranes (MMMs) composed of the crosslinkable polyimide PDMC and surface modified (SM) SSZ-13 have recently been shown to enhance carbon dioxide permeability and carbon dioxide/methane selectivity versus neat PDMC films by as much as 47% and 13%, respectively (Part I). The previous film characterization, however, was performed using ideal, clean mixed gas feeds. In this paper, PDMC/SSZ-13 MMMs are further characterized using more realistic mixed gases containing low concentrations (500 or 1000. ppm) of toluene as a model contaminant. Mixed matrix membranes are shown to outperform pure PDMC films in the presence of toluene with 43% greater carbon dioxide permeability and 12% greater carbon dioxide/selectivity at 35 °C and 700 psia feed pressure. These results suggest that MMMs-in addition to exhibiting enhanced transport properties-may mitigate performance degradation due to antiplasticization effects. Moreover, the analyses presented here show that the reduction in separation performance by trace contaminant-accelerated physical aging can be suppressed greatly with MMMs. © 2011 Elsevier B.V.

  15. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results

    KAUST Repository

    Ward, Jason K.

    2011-07-01

    Dense film mixed matrix membranes (MMMs) comprised of SSZ-13 dispersed in a crosslinkable polyimide (PDMC) were fabricated and evaluated for carbon dioxide/methane separations. MMMs containing 25% (w/w) as-received (AR) SSZ-13 exhibited a carbon dioxide permeability of 153 Barrers with a carbon dioxide/methane ideal selectivity of 34.7 at 65. psia and 35 °C. This represents a permeability enhancement of 129% and a decline in selectivity of 4.7% over neat PDMC (PCO2=66.9 Barrers, αCO2/CH4=36.4). A sieve surface modification procedure was developed with the aim of improving SSZ-13/PDMC MMM transport properties. MMMs containing 25% (w/w) surface modified (SM) SSZ-13 exhibited a carbon dioxide permeability of 148 Barrers and carbon dioxide/methane selectivity of 38.9 at 65. psia and 35 °C, representing enhancements in both permeability and selectivity of 121% and 6.9%, respectively. Mixed gas permeation analyses of MMMs containing SM-SSZ-13 using a 10% carbon dioxide/90% methane mixture shows that permeability and selectivity enhancements of 47% and 13%, respectively, over neat PDMC are possible at 700. psia and 35 °C. © 2011 Elsevier B.V.

  16. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  17. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  18. Palladium mixed-metal surface-modified AB5-type intermetallides enhance hydrogen sorption kinetics

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2010-09-01

    Full Text Available Surface engineering approaches were adopted in the preparation of advanced hydrogen sorption materials, based on ‘low-temperature’, AB5-type intermetallides. The approaches investigated included micro-encapsulation with palladium and mixed-metal mantles using electroless plating. The influence of micro-encapsulation on the surface morphology and kinetics of hydrogen charging were investigated. It was found that palladium-nickel (Pd-Ni co-deposition by electroless plating significantly improved the kinetics of hydrogen charging of the AB5-type intermetallides at low hydrogen pressure and temperature, after long-term pre-exposure to air. The improvement in the kinetics of hydrogen charging was credited to a synergistic effect between the palladium and nickel atoms in the catalytic mantle and the formation of an ‘interfacial bridge’ for hydrogen diffusion by the nickel atoms in the deposited layer. The developed surface-modified materials may find application in highly selective hydrogen extraction, purification, and storage from impure hydrogen feeds.

  19. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    OpenAIRE

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  20. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  1. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  2. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  3. Surface modified MXene Ti_3C_2 multilayers by aryl diazonium salts leading to large-scale delamination

    International Nuclear Information System (INIS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-01-01

    Highlights: • A novel and simple method to delaminate MXene Ti_3C_2 multilayers. • Surface modification using aryl diazonium salts induced swelling that conversely weakened the bonds between MXene layers. • The grafting of phenylsulfonic acid groups on MXene surfaces resulted in excellent water dispersibility. - Abstract: Herein we report a simple and facile method to delaminate MXene Ti_3C_2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti_3AlC_2 and the exfoliation of Ti_3AlC_2 into Ti_3C_2 multilayers, followed by Na"+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti_3C_2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti_3C_2 sheets disperse well in water and the solutions obey Lambert–Beer’s law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti_3C_2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti_3C_2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  4. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.

    Science.gov (United States)

    Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D

    2015-08-01

    Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.

  5. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  6. Investigation of γ-(2,3-Epoxypropoxypropyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt

    Directory of Open Access Journals (Sweden)

    Canlin Zhang

    2017-01-01

    Full Text Available γ-(2,3-Epoxypropoxypropyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM, which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (ΔS of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus (G’’ of asphalt significantly reduced, and correspondingly, the elastic modulus (G’ and rutting factor (G*/sin δ rapidly increased. Moreover, the asphaltene increased and the amount of “bee-like” structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  7. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  8. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  9. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara; Li, Z.; Behzad, Ali Reza; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2015-01-01

    and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions

  10. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  11. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  12. Raman spectroscopy in the analysis of cellulose nanomaterials

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    Cellulose nanomaterials (CNs) are new types of materials derived from celluloses and offer unique challenges and opportunities for Raman spectroscopic investigations. CNs can be classified into the categories of cellulose nanocrystals (CNCs, also known as cellulose whisker) and cellulose nanofibrils (CNFs, also known as nanofibrillated cellulose or NFCs) which when...

  13. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  14. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liuyun, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Xiong Chengdong; Chen Dongliang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Jiang Lixin [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China); Pang Xiubing [Zhejiang Apeloa Medical Technology Co. Ltd, Jinhua 322118 (China)

    2012-10-15

    microscope(SEM), comparing with PLGA. The results showed that the n-HA/PLGA composite with the n-HA surface modified by combining stearic acid and surface-grafting L-lactic had the highest bending strength and the best dispersion and interfacial adhesion among the three different modification methods, suggesting the surface modification of combining stearic acid and surface-grafting L-lactic was the most ideal method in this study, which has a great deal of enhancement of bending strength than PLGA, and it would be potential to be used in the field of bone fracture internal fixation in future.

  15. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  16. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

    International Nuclear Information System (INIS)

    Kanel, Sushil Raj; Nepal, Dhriti; Manning, Bruce; Choi, Heechul

    2007-01-01

    The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2-10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe 0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min -1 ) containing 0.2, 0.5 and 1.0 mg L -1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min -1 ) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III)

  17. Electrochromic coatings made of surface modified rutile and anatase pigments: Influence of trisilanol POSS dispersant on electrochromic effect

    Energy Technology Data Exchange (ETDEWEB)

    Mihelčič, Mohor [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Francetič, Vojmir [Faculty of Chemistry and Chemical Technology, University of Ljubljani, Aškerčeva cesta 5, 1000 Ljubljana (Slovenia); Pori, Pavli [Chemcolor Sevnica d.o.o., Dolenje Brezovo 35, 8290 Sevnica (Slovenia); Gradišar, Helena [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Kovač, Janez [Jožef Stefan Institute., Jamova 39, SI-1000 Ljubljana (Slovenia); Orel, Boris, E-mail: boris.orel@ki.si [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); CO-NOT, Hajdrihova 19, Ljubljana (Slovenia)

    2014-09-15

    Graphical abstract: - Highlights: • Transparent pigmented coatings were deposited from titania dispersions. • Trisilanol POSS was used as dispersant. • Surface modification of pigment particles was established from TEM, TG and IR. • IR spectra studies revealed covalent and H-bond dispersant/pigment interactions. • Electrochromic properties of titanina pigment coatings were shown and discussed. - Abstract: Polyhedral oligomeric silsesqioxanes (POSS) compounds consisting of [RSiO{sub 3/2}]{sub n} groups organized in the form of various polyhedra (T{sub n}, n = 3, 6, 8, 10, 12, ….) have not often been used as pigment surface modifiers. Their interactions with pigments are not known in detail and coatings deposited from pigments modified by POSS dispersants are rare. Identification of interactions between a dispersant and the surface of pigments is important from the point of view of obtaining stable pigment dispersions enabling the deposition of optical coatings with high pigment loading, low haze and mechanical integrity. Thin TiO{sub 2} (anatase) pigment coatings (70–260 nm) were deposited from pigment dispersions prepared by milling metatitanic acid (mTiA) powder agglomerates with trisilanol heptaisobutyl silsesquioxane dispersant (trisilanol POSS) in butanol and hexane. The results of TEM, EDAX and TG measurements confirmed the influence of trisilanol POSS dispersant on the formation of a dispersion with a uniform distribution of mTiA and rutile (mTiR) nanoparticles with a size of about 30 ± 5.0 nm and 90 ± 5.0 nm, respectively, as determined from dynamic light scattering (DLS) measurements. The mTiA/trisilanol POSS dispersions with added titanium tetraisopropoxide were deposited on fluorine-doped tin oxide (FTO) coated glass (spin-coating) and indium tin oxide coated polymeric substrate (ITO PET) (coil-coating) and thermally treated at 150 °C. UV–vis spectra, AFM and SEM results showed that the pigment coatings exhibited low haze (up to 6

  18. Electrochromic coatings made of surface modified rutile and anatase pigments: Influence of trisilanol POSS dispersant on electrochromic effect

    International Nuclear Information System (INIS)

    Mihelčič, Mohor; Francetič, Vojmir; Pori, Pavli; Gradišar, Helena; Kovač, Janez; Orel, Boris

    2014-01-01

    Graphical abstract: - Highlights: • Transparent pigmented coatings were deposited from titania dispersions. • Trisilanol POSS was used as dispersant. • Surface modification of pigment particles was established from TEM, TG and IR. • IR spectra studies revealed covalent and H-bond dispersant/pigment interactions. • Electrochromic properties of titanina pigment coatings were shown and discussed. - Abstract: Polyhedral oligomeric silsesqioxanes (POSS) compounds consisting of [RSiO 3/2 ] n groups organized in the form of various polyhedra (T n , n = 3, 6, 8, 10, 12, ….) have not often been used as pigment surface modifiers. Their interactions with pigments are not known in detail and coatings deposited from pigments modified by POSS dispersants are rare. Identification of interactions between a dispersant and the surface of pigments is important from the point of view of obtaining stable pigment dispersions enabling the deposition of optical coatings with high pigment loading, low haze and mechanical integrity. Thin TiO 2 (anatase) pigment coatings (70–260 nm) were deposited from pigment dispersions prepared by milling metatitanic acid (mTiA) powder agglomerates with trisilanol heptaisobutyl silsesquioxane dispersant (trisilanol POSS) in butanol and hexane. The results of TEM, EDAX and TG measurements confirmed the influence of trisilanol POSS dispersant on the formation of a dispersion with a uniform distribution of mTiA and rutile (mTiR) nanoparticles with a size of about 30 ± 5.0 nm and 90 ± 5.0 nm, respectively, as determined from dynamic light scattering (DLS) measurements. The mTiA/trisilanol POSS dispersions with added titanium tetraisopropoxide were deposited on fluorine-doped tin oxide (FTO) coated glass (spin-coating) and indium tin oxide coated polymeric substrate (ITO PET) (coil-coating) and thermally treated at 150 °C. UV–vis spectra, AFM and SEM results showed that the pigment coatings exhibited low haze (up to 6%), low surface

  19. Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-10-01

    Full Text Available Yu Zhang,1 Jun Zhou,1 Dajing Guo,1 Meng Ao,2 Yuanyi Zheng,2 Zhigang Wang21Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 2Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaAbstract: Thrombotic disease is a leading cause of death and disability worldwide. The development of magnetic resonance molecular imaging provides potential promise for early disease diagnosis. In this study, we explore the preparation and characterization of gadolinium (Gd-loaded poly (lactic-co-glycolic acid (PLGA particles surface modified with the Arg-Gly-Asp-Ser (RGDS peptide for the detection of thrombus. PLGA was employed as the carrier-delivery system, and a double emulsion solvent-evaporation method (water in oil in water was used to prepare PLGA particles encapsulating the magnetic resonance contrast agent Gd diethylenetriaminepentaacetic acid (DTPA. To synthesize the Gd-PLGA/chitosan (CS-RGDS particles, carbodiimide-mediated amide bond formation was used to graft the RGDS peptide to CS to form a CS-RGDS film that coated the surface of the PLGA particles. Blank PLGA, Gd-PLGA, and Gd-PLGA/CS particles were fabricated using the same water in oil in water method. Our results indicated that the RGDS peptide successfully coated the surface of the Gd-PLGA/CS-RGDS particles. The particles had a regular shape, smooth surface, relatively uniform size, and did not aggregate. The high electron density of the Gd-loaded particles and a translucent film around the particles coated with the CS and CS-RGDS films could be observed by transmission electron microscopy. In vitro experiments demonstrated that the Gd-PLGA/CS-RGDS particles could target thrombi and could be imaged using a clinical magnetic resonance scanner. Compared with the Gd-DTPA solution, the longitudinal relaxation time of

  20. Properties of microcrystalline cellulose obtained from coconut ...

    African Journals Online (AJOL)

    The study revealed that the cellulose material compares favourably with Avicel PH 101 as well as official requirement specified in the British Pharmacopoeia 1993 for microcrystalline cellulose. Keywords: Coconut fruit fibre, microcrystalline cellulose, powder properties. Journal of Pharmacy and Bioresources Vol. 3 (1) 2006: ...

  1. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  2. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  3. Regioselective Synthesis of Cellulose Ester Homopolymers

    Science.gov (United States)

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  4. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except standardized foods that do not provide for such use, in...

  5. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  6. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.

    Science.gov (United States)

    Satyamurthy, P; Vigneshwaran, N

    2013-01-10

    Degradation of cellulose by anaerobic microbial consortium is brought about either by an exocellular process or by secretion of extracellular enzymes. In this work, a novel route for synthesis of nanocellulose is described where in an anaerobic microbial consortium enriched for cellulase producers is used for hydrolysis. Microcrystalline cellulose derived from cotton fibers was subjected to controlled hydrolysis by the anaerobic microbial consortium and the resultant nanocellulose was purified by differential centrifugation technique. The nanocellulose had a bimodal size distribution (43±13 and 119±9 nm) as revealed by atomic force microscopy. A maximum nanocellulose yield of 12.3% was achieved in a span of 7 days. While the conventional process of nanocellulose preparation using 63.5% (w/w) sulfuric acid resulted in the formation of whisker shaped nanocellulose with surface modified by sulfation, controlled hydrolysis by anaerobic microbial consortium yielded spherical nanocellulose also referred to as nano crystalline cellulose (NCC) without any surface modification as evidenced from Fourier transform infrared spectroscopy. Also, it scores over chemo-mechanical production of nanofibrillated cellulose by consuming less energy due to enzyme (cellulase) assisted catalysis. This implies the scope for use of microbial prepared nanocellulose in drug delivery and bio-medical applications requiring bio-compatibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  8. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  9. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P. Azubuike

    2012-09-01

    Full Text Available α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for the pharmaceutical industry, desirable physical (flow properties were investigated. α–Cellulose (GCN was extracted from groundnut shell (an agricultural waste product using a non-dissolving method based on inorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2N hydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN. The physical, spectroscopic and thermal properties of the derived α-cellulose and microcrystalline cellulose powders were compared with Avicel® PH 101, a commercial brand of microcrystalline cellulose (MCCA, using standard methods. X-ray diffraction and infrared spectroscopy analysis showed that the α-cellulose had lower crystallinity. This suggested that treatment with 2N hydrochloric acid led to an increase in the crystallinity index. Thermogravimetric analysis showed quite similar thermal behavior for all cellulose samples, although the α-cellulose had a somewhat lower stability. A comparison of the physical properties between the microcrystalline celluloses and the α-cellulose suggests that microcrystalline cellulose (MCGN and MCCA might have better flow properties. In almost all cases, MCGN and MCCA had similar characteristics. Since groundnut shells are agricultural waste products, its utilization as a source of microcrystalline cellulose might be a good low-cost alternative to the more expensive commercial brand.

  10. Preparation and tribological properties of surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin, E-mail: gych@gdut.edu.cn [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhang Lin; Ye Fei; Sun Ming; Cheng Xiaoling; Diao Guiqiang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Nano-Y{sub 2}O{sub 3} was for the first time used as lubricant additive in liquid paraffin. Black-Right-Pointing-Pointer The nano-Y{sub 2}O{sub 3} modified by a coupling-grafting method shows good dispersibility in liquid paraffin. Black-Right-Pointing-Pointer The surface-modified nano-Y{sub 2}O{sub 3} considerably improves the tribological performances of liquid paraffin. - Abstract: Surface-modified nano-Y{sub 2}O{sub 3} was prepared by a coupling-grafting method with vinyl methylerichlorosilane and methyl methacrylate as the coupling agent and grafting agent, respectively. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron micrograph (TEM) and thermal gravimetric analysis (TGA). The tribological properties of the surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin were evaluated with a four-ball tester. The results show that the nano-Y{sub 2}O{sub 3} keeps its original crystalline structure after surface modification, and the modified nano-Y{sub 2}O{sub 3} forms a core-shell structure with an average particle size of 24.5 nm. The maximum non-seizure load (P{sub B} value) and sintered load (P{sub D} value) increase by 25% and 26.9%, respectively, when compared with those of liquid paraffin, and the wear scar diameter (WSD) also decrease by 21% when 0.10% surface-modified nano-Y{sub 2}O{sub 3} was added. The protective inorganic-organic film formed by nano-Y{sub 2}O{sub 3} and organic modifiers plays an important role in the improved tribological properties of liquid paraffin.

  11. Electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate elastomer composites with surface modified BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingyi; Xie Liyuan; Jiang Pingkai; Wang Genlin; Liu Fei, E-mail: xyhuang@sjtu.edu.c, E-mail: pkjiang@sjtu.edu.c [Shanghai Key Lab of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-12-21

    In this study, we investigated the influence of the surface modified BaTiO{sub 3} nanoparticles on the electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate (EVM) vulcanizates. Gamma-aminopropyl triethoxysilane was used as a silane coupling agent for the surface treatment of the BaTiO{sub 3} nanoparticles. It was found that the incorporation of surface modified BaTiO{sub 3} nanoparticles into the EVM matrix not only increased the permittivity, thermal conductivity and the mechanical strength but also showed a comparative dielectric loss tangent with pure EVM vulcanizates. In particular, the nanocomposites exhibit relatively high dielectric strength and good ductility even at the loading level of 50 vol%. The improved properties not only originate from the homogeneous dispersion of BaTiO{sub 3} nanoparticles but also should be ascribed to the strong interfacial interaction between the surface modified BaTiO{sub 3} nanoparticles and EVM matrix. We also investigated the dielectric relaxation behaviour of the BaTiO{sub 3} filled EVM nanocomposites by using Jonscher's theory of universal dielectric response.

  12. Advancing cellulose-based nanotechnology

    Science.gov (United States)

    Theodore H. Wegner; Philip E. Jones

    2006-01-01

    Nanotechnology has applications across most economic sectors and allows the development of new enabling science with broad commercial potential. Cellulose and lignocellulose have great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. To...

  13. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  14. Polyvinyl alcohol–cellulose composite

    Indian Academy of Sciences (India)

    We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of ...

  15. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  16. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  17. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  18. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    Atalla, R.H.

    1984-01-01

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13 C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13 C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13 C-NMR investigations

  19. Cellulose Triacetate Synthesis from Cellulosic Wastes by Heterogeneous Reactions

    Directory of Open Access Journals (Sweden)

    Sherif Shawki Z. Hindi

    2015-06-01

    Full Text Available Cellulosic fibers from cotton fibers (CF, recycled writing papers (RWP, recycled newspapers (RN, and macerated woody fibers of Leucaena leucocephala (MWFL were acetylated by heterogeneous reactions with glacial acetic acid, concentrated H2SO4, and acetic anhydride. The resultant cellulose triacetate (CTA was characterized for yield and solubility as well as by using 1H-NMR spectroscopy and SEM. The acetylated product (AP yields for CF, RWP, RN, and MWFL were 112, 94, 84, and 73%, respectively. After isolation of pure CTA from the AP, the CTA yields were 87, 80, 68, and 54%. The solubility test for the CTA’s showed a clear solubility in chloroform, as well as mixture of chloroform and methanol (9:1v/v and vice versa for acetone. The degree of substitution (DS values for the CTA’s produced were nearly identical and confirmed the presence of CTA. In addition, the pore diameter of the CTA skeleton ranged from 0.072 to 0.239 µm for RWP and RN, and within the dimension scale of the CTA pinholes confirm the synthesis of CTA. Accordingly, pouring of the AP liquor at 25 °C in distilled water at the end of the acetylation and filtration did not hydrolyze the CTA to cellulose diacetate.

  20. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  1. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  2. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  3. Glycerine Treated Nanofibrillated Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Esra Erbas Kiziltas

    2016-01-01

    Full Text Available Glycerine treated nanofibrillated cellulose (GNFC was prepared by mixing aqueous nanofibrillated cellulose (NFC suspensions with glycerine. Styrene maleic anhydride (SMA copolymer composites with different loadings of GNFC were prepared by melt compounding followed by injection molding. The incorporation of GNFC increased tensile and flexural modulus of elasticity of the composites. Thermogravimetric analysis showed that as GNFC loading increased, the thermal stability of the composites decreased marginally. The incorporation of GNFC into the SMA copolymer matrix resulted in higher elastic modulus (G′ and shear viscosities than the neat SMA copolymer, especially at low frequencies. The orientation of rigid GNFC particles in the composites induced a strong shear thinning behavior with an increase in GNFC loading. The decrease in the slope of elastic modulus with increasing GNFC loading suggested that the microstructural changes of the polymer matrix can be attributed to the incorporation of GNFC. Scanning electron microscopy (SEM images of fracture surfaces show areas of GNFC agglomerates in the SMA matrix.

  4. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  5. Process Intensification for Cellulosic Biorefineries.

    Science.gov (United States)

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Utilization of agricultural cellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  7. Biochemistry of cellulose degradation and cellulose utilization for feeds and for protein

    Energy Technology Data Exchange (ETDEWEB)

    Sadara, J C; Lachke, A H; Shewale, J G

    1979-01-01

    A review discussing production of single-cell protein, fuel, and glucose from cellulose decomposition; surface or solid fermentations of single-cell protein; production of cellulases; and the biochemistry of cellulose degradation was presented.

  8. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  9. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor

    2018-01-01

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration

  10. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  11. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  12. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  13. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Directory of Open Access Journals (Sweden)

    Andrea F. S. Costa

    2017-10-01

    Full Text Available Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL]. A jeans laundry was also tested. None of the tested sources (beside CSL worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film

  14. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  15. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  16. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  17. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  18. Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Chang-Sam; Kwon, Soon-Ho; Yoon, Jong-Won

    2014-01-01

    Graphical abstract: -- Highlights: • Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method. • The surface-modified layer was observed at a scale of several nanometers on LiMn 2 O 4 . • The ITO-coated LiMn 2 O 4 shows better capacity retention at 30 and 55 °C than pristine LiMn 2 O 4 . -- Abstract: Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method in an attempt to improve its electrochemical performance at elevated temperatures. The surface-modified LiMn 2 O 4 is characterized via XRD, FE-SEM, TEM, Auger electron spectroscopy (AES) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The surface layer modified by substitution with indium was observed at a scale of several nanometers near the surface on LiMn 2 O 4 . The concentration of ITO for electrochemical performance was varied from 0.3 wt% to 0.8 wt%. The 0.5 wt% ITO coated LiMn 2 O 4 showed the best electrochemical performance. This enhancement in electrochemical performance is mainly attributed to the effect of the surface layer modified through ITO, which could suppress Mn dissolution and reduce the charge transfer resistance at the solid electrolyte interface

  19. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  20. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers.

  1. Recent Development in Spectroscopic and Chemical Characterization of Cellulose

    Science.gov (United States)

    2005-01-01

    specific to the reducing end groups of the polysaccharides , confirmed the parallel alignment of molecular chains within the microfibrils in native...they include primary, secondary, and tertiary structures. And indeed, crystallographic studies of the monosaccharides and of related structures...Two approaches were adopted for this purpose. The first was based on examining the Raman spectra of polysaccharide polymers and oligomers that

  2. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Water absorption and maintenance of nanofiber cellulose ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-17

    May 17, 2012 ... Physiochemical properties of bacterial cellulose producing by Gluconacetobacter rhaeticus TL-2C was ... shape of the mold (Czaja et al., 2006). ... impurity, and then it was freeze-dried and ground to a fine ... Figure 1. Microstructure and chemical structure of bacterial cellulose producing G. rhaeticus TL-2C.

  4. Characterization of cellulose nanofibrillation by micro grinding

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  5. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  6. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  7. Isolation and characterization of microcrystalline cellulose obtained ...

    African Journals Online (AJOL)

    In this study, microcrystalline cellulose, coded MCC-PNF, was obtained from palm nut (Elaeis guineensis) fibres. MCC-PNF was examined for its physicochemical and powder properties. The powder properties of MCC-PNF were compared to those of the best commercial microcrystalline cellulose grade, Avicel PH 101.

  8. Some Physical Characteristics of Microcrystalline Cellulose ...

    African Journals Online (AJOL)

    Purpose: The microcrystalline cellulose is an important ingredient in pharmaceutical, food, cosmetic and other industries. This study aimed at evaluating the physical characteristics of microcrystalline cellulose (CP-MCC), obtained from the raw cotton of Cochlospermum planchonii. Methods: CP-MCC was obtained from the ...

  9. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  10. Radiation pretreatment of cellulose for energy production

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Dela Mines, A.S.; Banzon, R.B.; Simbul-Nuguid, Z.F.

    1983-01-01

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulose material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism. (author)

  11. Biofunctional Paper via Covalent Modification of Cellulose

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  12. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  13. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  14. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  15. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  16. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    Science.gov (United States)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  17. Photovoltaic characterization of hybrid solar cells using surface modified TiO{sub 2} nanoparticles and poly(3-hexyl)thiophene

    Energy Technology Data Exchange (ETDEWEB)

    Guenes, Serap [Yildiz Technical University, Faculty of Arts and Science, Department of Physics, Davutpasa Campus, 34220, Esenler, Istanbul (Turkey); Marjanovic, Nenad [Plastic electronic GmbH, Rappetsederweg 28, A-4040 Linz (Austria); Nedeljkovic, Jovan M [Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia); Sariciftci, Niyazi Serdar [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040, Linz (Austria)], E-mail: sgunes@yildiz.edu.tr

    2008-10-22

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO{sub 2} as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO{sub 2} nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM)

  18. H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells

    Science.gov (United States)

    Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2018-05-01

    Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).

  19. UV-assisted synthesis of surface modified mesoporous TiO{sub 2}/G microspheres and its electrochemical performances in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xiaoling; Zeng, Min, E-mail: zengmin@swust.edu.cn; Li, Jing; Li, Fuyun

    2017-01-15

    Highlights: • We synthesize the surface modified mesoporous TiO{sub 2}/G microspheres, which possess high surface area with 258 m{sup 2} g{sup −1} and narrow pore size at about 7.8 nm. • The surface reaction mechanism of the UV-assisted synthesis mesoporous TiO{sub 2}/G microspheres has been explored. • The as-made TiO{sub 2}/G microspheres exhibit excellent electrochemical performances and deliver a capacity of 141 mAh g{sup −1} upon 100 cycles even at 1 C. - Abstract: Three-dimensional mesoporous TiO{sub 2}/graphene (TiO{sub 2}/G) microspheres have been successfully synthesized through a simple UV-assisted method of reduced graphene oxide with hydrazine. The as-made surface modified mesoporous TiO{sub 2}/G microspheres possess large surface area and exhibit a high initial discharge capacity of 220 mAh g{sup −1} and retain 84% (∼185 mAh g{sup −1}) of reversible capacity over 100 cycles at a rate of 0.2C. In addition, TiO{sub 2}/G microspheres display improved cyclic performance, excellent rate capability and enhanced electrical conductivity, which are superior to the bare TiO{sub 2} microspheres. Furthermore, TiO{sub 2}/G microspheres can achieve a reversible capacity of 141 mAh g{sup −1} upon 100 cycles even at the 1C rate. We believe that the mesoporous TiO{sub 2}/G microspheres are expected to be a promising high performance anode material for the next generation lithium ion batteries.

  20. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancement of Cellulose Degradation by Cattle Saliva

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  2. Enzymatic Cellulose Palmitate Synthesis Using Immobilized Lipase

    Directory of Open Access Journals (Sweden)

    Anna Roosdiana

    2017-06-01

    Full Text Available Bacterial cellulose can be modified by esterification using palmitic acid and Mucor miehei  lipase  as catalyst. The purpose of this research was to determine the optimum conditions of esterification reaction of cellulose and palmitic acid . The esterification reaction was carried out at the time variation  of  6, 12, 18, 24 and 30 hours and the mass ratio of cellulose: palmitic acid (1: 11: 2, 1: 3, 1: 4, 1: 5,1:6 at 50 °C. The   cellulose palmitate  was examined  its  physical and chemical properties by using FTIR spectrophotometer, XRD, bubble point test and saponification  apparatus. The results showed that the optimum reaction time of esterification reaction of cellulose and palmitic acid occurred within 24 hours and the mass ratio of cellulose: palmitic acid was 1: 3 resulting in DS of  0.376 with  swelling index of 187 %, crystallinity index of 61.95%,  and Φ porous of 2.40 μm. Identification of functional groups using FTIR spectrophotometer showed that C=O ester group  was observed at 1737.74 cm-1 and strengthened  by  the appearance of C-O ester peak at 1280 cm-1. The conclusion of this study is reaction time and reactant ratio influence significantly the DS of cellulose ester.

  3. Model films of cellulose. I. Method development and initial results

    NARCIS (Netherlands)

    Gunnars, S.; Wågberg, L.; Cohen Stuart, M.A.

    2002-01-01

    This report presents a new method for the preparation of thin cellulose films. NMMO (N- methylmorpholine- N-oxide) was used to dissolve cellulose and addition of DMSO (dimethyl sulfoxide) was used to control viscosity of the cellulose solution. A thin layer of the cellulose solution is spin- coated

  4. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Science.gov (United States)

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  5. Prevalence and trends of cellulosics in pharmaceutical dosage forms.

    Science.gov (United States)

    Mastropietro, David J; Omidian, Hossein

    2013-02-01

    Many studies have shown that cellulose derivatives (cellulosics) can provide various benefits when used in virtually all types of dosage forms. Nevertheless, the popularity of their use in approved drug products is rather unknown. This research reports the current prevalence and trends of use for 15 common cellulosics in prescription drug products. The cellulosics were powdered and microcrystalline cellulose (MCC), ethyl cellulose, hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hypromellose (HPMC), HPMC phthalate, HPMC acetate succinate, cellulose acetate (CA), CA phthalate, sodium (Na) and calcium (Ca) carboxymethylcellulose (CMC), croscarmellose sodium (XCMCNa), methyl cellulose, and low substituted HPC. The number of brand drug products utilizing each cellulosics was determined using the online drug index Rxlist. A total of 607 brand products were identified having one or more of the cellulosics as an active or inactive ingredient. An array of various dosage forms was identified and revealed HPMC and MCC to be the most utilized cellulosics in all products followed by XCMCNa and HPC. Many products contained two or more cellulosics in the formulation (42% containing two, 23% containing three, and 4% containing 4-5). The largest combination occurrence was HPMC with MCC. The use of certain cellulosics within different dosage form types was found to contain specific trends. All injectables utilized only CMCNa, and the same with all ophthalmic solutions utilizing HPMC, and otic suspensions utilizing HEC. Popularity and trends regarding cellulosics use may occur based on many factors including functionality, safety, availability, stability, and ease of manufacturing.

  6. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    Science.gov (United States)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  7. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases

    Energy Technology Data Exchange (ETDEWEB)

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K.; Cosgrove, Daniel J.; Anderson, Charles T.; Roberts, Alison W.; Haigler, Candace H.

    2015-12-08

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure–function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.

  8. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  9. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  10. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis; Pinho, Maria Noberta de; Silva, Maria Lucia Caetano Pinto da

    2010-01-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  11. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  12. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  13. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  14. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  15. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  16. Reaction mechanisms in cellulose pyrolysis: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  17. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85

    OpenAIRE

    Maglione, G.; Russell, J. B.; Wilson, D. B.

    1997-01-01

    Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and...

  18. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Pang, Zengyuan; Yang, Jie; Huang, Fenglin; Cai, Yibing; Wei, Qufu

    2015-01-01

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  19. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  20. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  1. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available Understanding the structure of cellulose is of utmost importance in order to enhance its accessibility and reactivity to chemical processing. Therefore, the aim of this study was to evaluate the effect of ultrasound pretreatment on the structure...

  2. diffusion of metronidazole released through cellulose membrane

    African Journals Online (AJOL)

    prof kokwaro

    was determined using dialyzing cellulose membrane in a dissolution tester. Glycerin, a permeation ... An attempt has been made in the present ... Materials. Metronidazole USP was donated by Cosmos. Pharmaceutical Ltd., Nairobi, Kenya.

  3. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  4. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  5. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  6. Cellulose: To depolymerize… or not to?

    Science.gov (United States)

    Coseri, Sergiu

    Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH 2 OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary

  7. Corneal stroma microfibrils

    KAUST Repository

    Hanlon, Samuel D.; Behzad, Ali Reza; Sakai, Lynn Y.; Burns, Alan R.

    2015-01-01

    these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (~10nm diameter). Immunogold evidence clearly identified these fibrils as fibrillin EFMBs

  8. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  9. Alcohol for cellulosic material using plural ferments

    Energy Technology Data Exchange (ETDEWEB)

    Hoge, W H

    1977-02-22

    A process is described for producing ethanol (EtOH) from cellulosic materials by first hydrolyzing the material to sugars and then converting the sugars to alcohol by digestion and fermentation. Thus, fibrous cellulosic material obtained from municipal waste slurry was sterilized by autoclaving, followed by inoculation with Trichoderma viride cellulase and Saccharomyces cerevisiae. From 100 g of raw material, 25 mL of 95% EtOH was produced by this method.

  10. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  11. Current characterization methods for cellulose nanomaterials.

    Science.gov (United States)

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  12. Microfibril-associated Protein 4 Binds to Surfactant Protein A (SP-A) and Colocalizes with SP-A in the Extracellular Matrix of the Lung

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa H.; Shipley, J. Michael

    2006-01-01

    for phagocytes. Here we describe the molecular interaction between the extracellular matrix protein microfibril-associated protein 4 (MFAP4) and SP-A. MFAP4 is a collagen-binding molecule containing a C-terminal fibrinogen-like domain and a N-terminal located integrin-binding motif. We produced recombinant MFAP4......-A composed of the neck region and carbohydrate recognition domain of SP-A indicating that the interaction between MFAP4 and SP-A is mediated via the collagen domain of SP-A. Monoclonal antibodies directed against MFAP4 and SP-A were used for immunohistochemical analysis, which demonstrates that the two...... molecules colocalize both on the elastic fibres in the interalveolar septum and in elastic lamina of pulmonary arteries of chronically inflamed lung tissue. We conclude, that MFAP4 interacts with SP-A via the collagen region in vitro, and that MFAP4 and SP-A colocates in different lung compartments...

  13. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane; Nanocomposito de acetato de celulose com nanocelulose obtida a partir do bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Frirllei Cardozo dos

    2016-07-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H{sub 2}SO{sub 4} was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by

  14. Surface Modifier-Free Organic-Inorganic Hybridization To Produce Optically Transparent and Highly Refractive Bulk Materials Composed of Epoxy Resins and ZrO2 Nanoparticles.

    Science.gov (United States)

    Enomoto, Kazushi; Kikuchi, Moriya; Narumi, Atsushi; Kawaguchi, Seigou

    2018-04-25

    Surface modifier-free hybridization of ZrO 2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO 2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A diglycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC), are used to produce transparent viscous dispersions. The resulting ZrO 2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and solid-state 13 C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO 2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid-state 13 C CP/MAS NMR measurements. Epoxy-based hybrid materials with high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO 2 NPs and methylhexahydrophthalic anhydride in the presence of a phosphoric catalyst. The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO 2 in the epoxy networks. The refractive index at 594 nm ( n 594 ) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization

  15. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution

    NARCIS (Netherlands)

    Soykeabkaew, N.; Nishino, T.; Peijs, Ton

    2009-01-01

    All-cellulose composites of Lyocell and high modulus/strength cellulose fibres were successfully prepared using a surface selective dissolution method. The effect of immersion time of the fibres in the solvent during composite's preparation and the effect of the starting fibre's structure on their

  16. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  17. Effects of Crystal Orientation on Cellulose Nanocrystals−Cellulose Acetate Nanocomposite Fibers Prepared by Dry Spinning

    Science.gov (United States)

    Si Chen; Greg Schueneman; R. Byron Pipes; Jeffrey Youngblood; Robert J. Moon

    2014-01-01

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the...

  18. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  19. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  20. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui [Chonnam National University, Bio-Energy Research Institute, Gwangju (Korea, Republic of)

    2010-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  1. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  2. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui

    2010-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  3. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    International Nuclear Information System (INIS)

    Arif, S.; Kautek, W.

    2013-01-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  4. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-10-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  5. Optical, thermal and combustion properties of self-colored polyamide nanocomposites reinforced with azo dye surface modified ZnO nanoparticles

    Science.gov (United States)

    Hajibeygi, Mohsen; Shabanian, Meisam; Omidi-Ghallemohamadi, Mehrdad; Khonakdar, Hossein Ali

    2017-09-01

    New self-colored aromatic-polyamide (PA) nanocomposites containing azo and naphthalene chromophores were prepared with azo-dye surface-modified ZnO nanoparticles (SMZnO) using solution method in dimethylformamide. The X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results showed the uniform distribution for ZnO nanoparticles in the PA matrix. The UV-vis spectra of PA/ZnO nanocomposites (PANC) showed a blue shift as well as reduction in absorbance intensities and the photoluminescence studies revealed that the increasing intensities of the violet emission in SMZnO loading. From thermo gravimetric analysis (TGA), the temperature at 10% mass loss (T10) increased from 291.8 °C to 387.6 °C for PANC containing 8 mass% of SMZnO, as well as the char yield enhanced significantly, which was about 23.5% higher than the neat PA. The peak heat release rate resulted from microscale combustion calorimeter (MCC), by 8 mass% loading of SMZnO, decreased about 56.9% lower than the neat PA.

  6. A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO3 nanocomposites

    Science.gov (United States)

    Yaqoob, Usman; Uddin, A. S. M. Iftekhar; Chung, Gwiy-Sang

    2017-05-01

    The fabrication and characterization of a novel tri-layer piezoelectric nanogenerator (PNG) based on poly(vinylidene fluoride) (PVDF), barium titanate (BTO), and surface-modified n- type graphene (n-Gr) have been investigated. The n-Gr, with its majority of negative charge carriers, plays a vital role in enhancing the energy-harvesting performance by aligning the dipoles in one direction. The tri-layer structure obtains by stacking two layers of PVDF-BTO nanocomposite films, one on each side of the n-Gr layer. The fabricated tri-layer PNG shows a maximum output voltage of 10 V (pk-pk) along with a current of 2.5 μA (pk-pk) at an applied force of 2 N. Furthermore, the PNG Exhibits 5.8 μW instantaneous power at 1 MΩ load resistance. Moreover, the fabricated device demonstrated good stability even after 1000 pressing-releasing cycles. This novel tri-layer PNG structure can opens a promising avenue for future piezoelectric generating technologies.

  7. Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Chongfu; Xiang, Kaixiong; Zhu, Yirong; Chen, Xianhong; Zhou, Wei; Chen, Han

    2017-01-01

    Highlights: •The acid pretreatment for CNTs is a key factor to fabricate nanocable-like Nb 2 O 5 /SMCNTs composites. •The polar functional groups can induce the symmetrical growth of Nb 2 O 5 nanoparticitles on the surface of SMCNTs. •SMCNTs can provide sufficient conductive contacts for composites and abundant active sites for electrochemical reaction. -- Abstract: Uniform nanocable-like Nb 2 O 5 /surface-modified carbon nanotubes (SMCNTs) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. It was indicated that Nb 2 O 5 nanoparticles were tightly and uniformly cultivated on carbon nanotubes when CNTs were pretreated with concentrated H 2 SO 4 . As a result, Nb 2 O 5 /SMCNTs composite materials showed remarkable electrochemical performance as anode materials for lithium-ion batteries. It delivered a high reversible capacity of 441 mA h g −1 cycled at the current density of 40 mA g −1 after 100 cycles and an excellent rate capacity of 185 mA h g −1 at the high current density of 5000 mA g −1 after 200 cycles.

  8. Charge-Discharge Properties of the Surface-Modified ZrNi Alloy Electrode with Different Degrees of Boiling Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Akihiro Matsuyama

    2016-09-01

    Full Text Available Charge-discharge properties of the surface-modified ZrNi negative electrodes with different degrees of boiling alkaline treatment were investigated. The boiling alkaline treatment was performed by immersing the ZrNi electrode in a boiling 6 M KOH aqueous solution for 2 h or 4 h. The initial discharge capacity for the untreated ZrNi negative electrode was 21 mAh·g−1, but it was increased to 114 mAh·g−1 and 308 mAh·g−1 after the boiling alkaline treatments for 2 h and 4 h, respectively. The discharge capacity for the ZrNi negative electrode after the treatment for 2 h steadily increased with repeating charge-discharge cycles as well as that of the untreated electrode, whereas that for the ZrNi negative electrode after the 4 h treatment greatly decreased. The high rate of dischargeability was improved with an increase in the treatment period of time, and the charge-transfer resistance was drastically decreased. Scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy demonstrated the ZrO2 passive layer on the ZrNi alloy surface was removed by the boiling alkaline treatment to form a porous morphology containing Ni(OH2, which can be reduced to Ni during charging, leading to the reduction of a barrier for the charge-discharge reactions.

  9. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus.

    Science.gov (United States)

    Shah, Alok Girish; Shetty, Pradeep Chandra; Ramachandra, C S; Bhat, N Sham; Laxmikanth, S M

    2011-11-01

    To assess the antiadherent and antibacterial properties of surface modified stainless steel orthodontic brackets with photocatalytic titanium oxide (TiO(2)) against Lactobacillus acidophilus. This study was done on 120 specimens of stainless steel preadjusted edgewise appliance (PEA) orthodontic brackets. The specimens were divided into four test groups. Each group consisted of 30 specimens. Groups containing uncoated brackets acted as a control group for their respective experimental group containing coated brackets. Surface modification of brackets was carried out by the radiofrequency (RF) magnetron sputtering method with photocatalytic TiO(2). Brackets then were subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of photocatalytic TiO(2) coating against L acidophilus. Orthodontic brackets coated with photocatalytic TiO(2) showed an antiadherent effect against L acidophilus compared with uncoated brackets. The bacterial mass that was bound to the TiO(2)-coated brackets was less when compared with the uncoated brackets. Furthermore, TiO(2)-coated brackets had a bactericidal effect on L acidophilus, which causes dental caries. Surface modification of orthodontic brackets with photocatalytic TiO(2) can be used to prevent the accumulation of dental plaque and the development of dental caries during orthodontic treatment.

  10. Ascorbic acid surface modified TiO₂-thin layers as a fully integrated analysis system for visual simultaneous detection of organophosphorus pesticides.

    Science.gov (United States)

    Li, Shunxing; Liang, Wenjie; Zheng, Fengying; Lin, Xiaofeng; Cai, Jiabai

    2014-11-06

    TiO₂ photocatalysis and colorimetric detection are coupled with thin layer chromatography (TLC) for the first time to develop a fully integrated analysis system. Titania@polystyrene hybrid microspheres were surface modified with ascorbic acid, denoted AA-TiO₂@PS, and used as the stationary phase for TLC. Because the affinity between AA-TiO₂@PS and organophosphorus pesticides (OPs) was different for different species of OPs (including chlopyrifos, malathion, parathion, parathion-methyl, and methamidophos), OPs could be separated simultaneously by the mobile phase in 12.0 min with different Rf values. After surface modification, the UV-vis wavelength response range of AA-TiO₂@PS was expanded to 650 nm. Under visible-light irradiation, all of the OPs could be photodegraded to PO₄(3-) in 25.0 min. Based on the chromogenic reaction between PO₄(3-) and chromogenic agents (ammonium molybdate and ascorbic acid), OPs were quantified from color intensity images using a scanner in conjunction with image processing software. So, AA-TiO₂@PS was respectively used as the stationary phase of TLC for efficient separation of OPs, as a photocatalyst for species transformation of phosphorus, and as a colorimetric probe for on-field simultaneous visual detection of OPs in natural water. Linear calibration curves for each OP ranged from 19.3 nmol P L(-1) to 2.30 μmol P L(-1). This integrated analysis system was simple, inexpensive, easy to operate, and sensitive.

  11. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    International Nuclear Information System (INIS)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-01-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  12. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Dan

    2014-08-01

    Full Text Available The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (chromium plating, TiAlN coating, surface polishing and nitriding treatment were applied to the H13 surfaces. Taking the coefficient of friction (CoF and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature (from room temperature to 500 °C, while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction.

  13. Electrochemical hydrogen storage of Ti-V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles

    International Nuclear Information System (INIS)

    Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.

    2005-01-01

    A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries

  14. Human procollagen type I surface-modified PHB-based non-woven textile scaffolds for cell growth: preparation and short-term biological tests

    International Nuclear Information System (INIS)

    Kawalec, Michał; Sobota, Michał; Kurcok, Piotr; Sitkowska, Anna; Sieroń, Aleksander L; Komar, Patrycja

    2014-01-01

    3D fine porous structures obtained by electrospinning a poly[(R,S)-3-hydroxybutyrate] (aPHB)/ poly[(R)-3-hydroxybutyrate] (PHB) (85/15 w/w) blend were successfully modified with human procollagen type I by simple immersion of the polyester scaffold in an aqueous solution of the protein. Effective modification of the scaffold with human procollagen I was confirmed by an immunodetection test, which revealed the presence of the procollagen type I as an outer layer even on inner structures of the porous matrixes. Biological tests of 3D fabrics made of the PHB blend provide support for the adhesion and proliferation of human fibroblasts, while their modification with procollagen type I increased the biocompatibility of the final scaffolds significantly, as shown by the notable increase in the number of attached cells during the early hours of their incubation. Based on these findings, human procollagen type I surface-modified aPHB/PHB scaffolds should be considered a promising material in regenerative medicine. (paper)

  15. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    Science.gov (United States)

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  16. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  17. Natural cellulose fiber as substrate for supercapacitor.

    Science.gov (United States)

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  18. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  19. Experimental study on the liquefaction of cellulose in supercritical ethanol

    Science.gov (United States)

    Peng, Jinxing; Liu, Xinyuan; Bao, Zhenbo

    2018-03-01

    Cellulose is the major composition of solid waste for producing biofuel; cellulose liquefaction is helpful for realizing biomass supercritical liquefaction process. This paper is taking supercritical ethanol as the medium, liquefied cellulose with the intermittence installation of high press cauldron. Experiments have studied technical condition and the technology parameter of cellulose liquefaction in supercritical ethanol, and the pyrolysis mechanism was analysed based on the pyrolysis product. Results show that cellulose can be liquefied, can get good effect through appropriate technology condition. Under not catalyst, highest liquefaction rate of cellulose can reach 73.5%. The composition of the pyrolysis product was determined by GC-MS.

  20. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  1. Natural cellulose ionogels for soft artificial muscles.

    Science.gov (United States)

    Nevstrueva, Daria; Murashko, Kirill; Vunder, Veiko; Aabloo, Alvo; Pihlajamäki, Arto; Mänttäri, Mika; Pyrhönen, Juha; Koiranen, Tuomas; Torop, Janno

    2018-01-01

    Rapid development of soft micromanipulation techniques for human friendly electronics has raised the demand for the devices to be able to carry out mechanical work on a micro- and macroscale. The natural cellulose-based ionogels (CEL-iGEL) hold a great potential for soft artificial muscle application, due to its flexibility, low driving voltage and biocompatibility. The CEL-iGEL composites undergo reversible bending already at ±500mV step-voltage values. A fast response to the voltage applied and high ionic conductivity of membranous actuator is achieved by a complete dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate [EMIm][OAc]. The CEL-iGEL supported cellulose actuator films were cast out of cellulose-[EMIm][OAc] solution via phase inversion in H 2 O. The facile preparation method ensured uniform morphology along the layers and stand for the high ionic-liquid loading in a porous cellulose scaffold. During the electromechanical characterization, the CEL-iGEL actuators showed exponential dependence to the voltage applied with the max strain difference values reaching up to 0.6% at 2 V. Electrochemical analysis confirmed the good stability of CEL-iGEL actuators and determined the safe working voltage value to be below 2.5V. To predict and estimate the deformation for various step input voltages, a mathematical model was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  3. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  4. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  5. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers...

  7. Paper actuators made with cellulose and hybrid materials.

    Science.gov (United States)

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.

  8. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Science.gov (United States)

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  9. Radiation-induced transformations of cellulose ethers

    International Nuclear Information System (INIS)

    Nud'ga, L.A.; Petropavlovskii, G.S.; Plisko, E.A.; Isakova, O.V.; Ershov, B.G.

    1988-01-01

    The purpose of this investigation was to study the transformation which take place under the action of γ-radiation in a number of cellulose ethers containing both saturated (carboxymethyl, hydroxyethyl) and unsaturated (allyl, methacryloyl) groups. Irradiation was carried out on a 60 Co unit in air at 77 and 300 K; the dose rate was 37 and 50 kGy/h respectively. The EPR spectra of γ-irradiated hydroxyethyl- and allylhydroxyethylcelluloses are identical. Under the action of γ-radiation extensive changes took place in cellulose ethers which are exhibited in degradation or the formation of three-dimensional structures and are accompanied by a change in the functional composition. The efficiency in the formation of radicals and their localization are determined by the nature and number of substituents in the cellulose ethers

  10. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  11. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  12. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  13. Ascorbic acid surface modified TiO2-thin layers as a fully integrated analysis system for visual simultaneous detection of organophosphorus pesticides

    Science.gov (United States)

    Li, Shunxing; Liang, Wenjie; Zheng, Fengying; Lin, Xiaofeng; Cai, Jiabai

    2014-11-01

    TiO2 photocatalysis and colorimetric detection are coupled with thin layer chromatography (TLC) for the first time to develop a fully integrated analysis system. Titania@polystyrene hybrid microspheres were surface modified with ascorbic acid, denoted AA-TiO2@PS, and used as the stationary phase for TLC. Because the affinity between AA-TiO2@PS and organophosphorus pesticides (OPs) was different for different species of OPs (including chlopyrifos, malathion, parathion, parathion-methyl, and methamidophos), OPs could be separated simultaneously by the mobile phase in 12.0 min with different Rf values. After surface modification, the UV-vis wavelength response range of AA-TiO2@PS was expanded to 650 nm. Under visible-light irradiation, all of the OPs could be photodegraded to PO43- in 25.0 min. Based on the chromogenic reaction between PO43- and chromogenic agents (ammonium molybdate and ascorbic acid), OPs were quantified from color intensity images using a scanner in conjunction with image processing software. So, AA-TiO2@PS was respectively used as the stationary phase of TLC for efficient separation of OPs, as a photocatalyst for species transformation of phosphorus, and as a colorimetric probe for on-field simultaneous visual detection of OPs in natural water. Linear calibration curves for each OP ranged from 19.3 nmol P L-1 to 2.30 μmol P L-1. This integrated analysis system was simple, inexpensive, easy to operate, and sensitive.TiO2 photocatalysis and colorimetric detection are coupled with thin layer chromatography (TLC) for the first time to develop a fully integrated analysis system. Titania@polystyrene hybrid microspheres were surface modified with ascorbic acid, denoted AA-TiO2@PS, and used as the stationary phase for TLC. Because the affinity between AA-TiO2@PS and organophosphorus pesticides (OPs) was different for different species of OPs (including chlopyrifos, malathion, parathion, parathion-methyl, and methamidophos), OPs could be separated

  14. Surface modified MXene Ti{sub 3}C{sub 2} multilayers by aryl diazonium salts leading to large-scale delamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongbing [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, Jiangsu Province 211167 (China); Zhang, Jianfeng, E-mail: jfzhang_sic@163.com [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China)

    2016-10-30

    Highlights: • A novel and simple method to delaminate MXene Ti{sub 3}C{sub 2} multilayers. • Surface modification using aryl diazonium salts induced swelling that conversely weakened the bonds between MXene layers. • The grafting of phenylsulfonic acid groups on MXene surfaces resulted in excellent water dispersibility. - Abstract: Herein we report a simple and facile method to delaminate MXene Ti{sub 3}C{sub 2} multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti{sub 3}AlC{sub 2} and the exfoliation of Ti{sub 3}AlC{sub 2} into Ti{sub 3}C{sub 2} multilayers, followed by Na{sup +} intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti{sub 3}C{sub 2} flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti{sub 3}C{sub 2} sheets disperse well in water and the solutions obey Lambert–Beer’s law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti{sub 3}C{sub 2} flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti{sub 3}C{sub 2}via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  15. Paper Actuators Made with Cellulose and Hybrid Materials

    OpenAIRE

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K.; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPa...

  16. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  17. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  18. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    Science.gov (United States)

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  20. Accumulation of noncrystalline cellulose in Physarum microplasmodia

    OpenAIRE

    Ogawa, Kyoko; Maki, Hisae; Sato, Mamiko; Ashihara, Hiroshi; Kaneko, Takako S.

    2013-01-01

    Physarum plasmodium lives as a slimy mass of protoplast in the dark fragments into small multinucleated microplasmodia (mPL) in a liquid medium. When mPL are exposed to several unfavorable environments, they transform into ?spherules? with a cell wall. Using a synchronous spherule-induction system for mPL, we examined the effect of 2,6-dichlorobenzonitrile on the synthesis of cellulose in mPL, by observing mPL under a fluorescence microscope, and isolated cellulose from mPL to identify them m...

  1. New thermophilic anaerobes that decompose crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Taya, M; Hinoki, H; Suzuki, Y; Yagi, T; Yap, M G.S.; Kobayashi, T

    1985-01-01

    Two strains (designated as 25A and 3B) of cellulolytic, thermophilic, anaerobic, spore-forming bacteria were newly isolated from an alkaline hot spring through enrichment cultures at 60/sup 0/C. Though strain 25A was nearly identical to Clostridium thermocellum ATCC 27405 as a reference strain, strain 3B had some characteristics different from the reference; no flagellation, alkalophilic growth property (optimum pH of 7.5-8) and orange-colored pigmentation of the cell mass. Strain 3B effectively decomposed micro-crystalline cellulose (Avicel) and raw cellulosics (rice straw, newspaper, and bagasse) without physical or chemical pretreatments. 20 references, 2 figures, 2 tables.

  2. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  3. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  4. Cyanobacterial cellulose synthesis in the light of the photanol concept

    NARCIS (Netherlands)

    Schuurmans, R.M.; Matthijs, H.C.P.; Stal, L.J.; Hellingwerf, K.J.; Sharma, N.K.; Rai, A.K.; Stal, L.J.

    2014-01-01

    The detailed knowledge already available about cellulose synthases and their regulation, plus emerging insights into the process of cellulose secretion in cyanobacteria make cellulose an attractive polymer for the application of the photanol concept in an economically viable production process. By

  5. Structural differences of xylans affect their interaction with cellulose

    NARCIS (Netherlands)

    Kabel, M.A.; Borne, van den H.; Vincken, J.P.; Voragen, A.G.J.; Schols, H.A.

    2007-01-01

    The affinity of xylan to cellulose is an important aspect of many industrial processes, e.g. production of cellulose, paper making and bio-ethanol production. However, little is known about the adsorption of structurally different xylans to cellulose. Therefore, the adsorption of various xylans to

  6. Tritium transfer studies in cellulose-HTO system

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Misra, B.M.

    1986-01-01

    This paper describes some aspects of studies on transfer of tritium to cellulose from tritiated water at six different specific activities and discusses the generalized tritiation pattern. Cellulose was irradiated in steps to 10 M Rads and the tritium transfer was determined at each stage. Experimental results signify substantial increase of tritiation in cellulose at higher dose of irradiation. (author). 8 refs

  7. Surface chemistry of cellulose : from natural fibres to model surfaces

    NARCIS (Netherlands)

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  8. Formation of Irreversible H-bonds in Cellulose Materials

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  9. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  10. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as

  11. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of this...

  12. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  13. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  14. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Science.gov (United States)

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  15. Chapter 2.1 Integrated Production of Cellulose Nanofibrils and Cellulosic Biofuel by Enzymatic Hydrolysis of wood Fibers

    Science.gov (United States)

    Ronald Sabo; J.Y. Zhu

    2013-01-01

    One key barrier to converting woody biomass to biofuel through the sugar platform is the low efficiency of enzymatic cellulose saccharification due to the strong recalcitrance of the crystalline cellulose. Significant past research efforts in cellulosic biofuels have focused on overcoming the recalcitrance of lignocelluloses to enhance the saccharification of...

  16. The productive cellulase binding capacity of cellulosic substrates.

    Science.gov (United States)

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-05-01

    Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents. In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics. Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes. Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes

  18. Adsorption of cationic amylopectin on microcrystalline cellulose.

    NARCIS (Netherlands)

    Steeg, van de H.G.M.; Keizer, de A.; Cohen Stuart, M.A.; Bijsterbosch, B.H.

    1993-01-01

    The effects of electrolyte concentration and pH on the adsorption of cationic amylopectin on microcrystalline cellulose were investigated. The adsorbed amount in the pseudo-plateau of the isotherm showed a maximum as a function of the electrolyte concentration. We compared the data with a recent

  19. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Methacrylate hydrogels reinforced with bacterial cellulose

    Czech Academy of Sciences Publication Activity Database

    Hobzová, Radka; Dušková-Smrčková, Miroslava; Michálek, Jiří; Karpushkin, Evgeny; Gatenholm, P.

    2012-01-01

    Roč. 61, č. 7 (2012), s. 1193-1201 ISSN 0959-8103 R&D Projects: GA AV ČR KJB400500902 Institutional research plan: CEZ:AV0Z40500505 Keywords : bacterial cellulose * methacrylate hydrogel * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  1. Chemistry, Technology and Aplications of Oxidized Celluloses

    Czech Academy of Sciences Publication Activity Database

    Havelka, P.; Sopuch, T.; Hnatowicz, Vladimír; Suchý, P.; Masteikova, R.; Bajerová, M.; Gajdziok, J.; Milichovský, M.; Švorčík, V.

    2010-01-01

    Roč. 2010, C (2010), s. 205-245. ISBN 978-1-608-76-388-7 Institutional support: RVO:61389005 Keywords : oxidation * cellulose * in-vitro Subject RIV: BO - Biophysics https://www.novapublishers.com/catalog/product_info.php? products _id=14049

  2. Degradation of cellulose by basidiomycetous fungi

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Valášková, Vendula

    2008-01-01

    Roč. 32, č. 3 (2008), s. 501-521 ISSN 0168-6445 R&D Projects: GA MŠk LC06066; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : cellobiohydrolase * cellulose dehydrogenase * basidiomycetes Subject RIV: EE - Microbiology, Virology Impact factor: 7.963, year: 2008

  3. Atomic force microscopy characterization of cellulose nanocrystals

    Science.gov (United States)

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  4. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  5. Saccharification of cellulosics by Microbispora bispora

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Jr, C R; Eveleigh, D E

    1986-09-01

    The saccharification efficiency of cellulase from the thermophilic actinomycete Microbispora bispora was evaluated using commercially available feedstocks. The enzyme preparation was effective against refuse derived cellulose with 30% being converted to glucose in a 24 hour period. Pretreatment of the refuse with cadoxen resulted in an increase in saccharification efficiency to 70%.

  6. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  7. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  8. Isolation and characterization of cellulose hydrolysing ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... A ruminant is any animal that digests its food in two steps, first by eating the raw ... within which the digestion of cellulose and other plant polysaccharides ... and adheres loosely to the plant cells wall, while. Pseudomonas and ...

  9. Characterization of cellulose nanowhiskers; Caracterizacao do nanowhiskers de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia, E-mail: 25nareis@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2015-07-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  10. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  11. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    Science.gov (United States)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  12. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.

    Science.gov (United States)

    Abu-Danso, Emmanuel; Srivastava, Varsha; Sillanpää, Mika; Bhatnagar, Amit

    2017-09-01

    In this work, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were synthesized from absorbent cotton. Two pretreatments viz. dewaxing and bleaching with mild alkali were applied to the precursor (cotton). Acid hydrolysis was conducted with H 2 SO 4 and dissolution of cotton was achieved with a mixture of NaOH-thiourea-urea-H 2 O at -3°C. Synthesized cellulose samples were characterized using FTIR, XRD, SEM, BET, and zeta potential. It seems that synthesis conditions contributed to negative surface charge on cellulose samples and CNCs had the higher negative surface charge compared to CNFs. Furthermore, BET surface area, pore volume and pore diameter of CNCs were found to be higher as compared to CNFs. The dewaxed cellulose nanofibers (CNF D) had a slightly higher BET surface area (0.47m 2 /g) and bigger pore diameter (59.87Å) from attenuated contraction compared to waxed cellulose nanofibers (CNFW) (0.38m 2 /g and 44.89Å). The XRD of CNCs revealed a semi-crystalline structure and the dissolution agents influenced the crystallinity of CNFs. SEM images showed the porous nature of CNFs, the flaky nature and the nano-sized width of CNCs. Synthesized CNF D showed a better potential as an adsorbent with an average lead removal efficiency of 91.49% from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of the way of synthesis of poly(methyl methacrylate in the presence of surface modified TiO2 nanoparticles on the properties of obtained nanocomposites

    Directory of Open Access Journals (Sweden)

    Džunuzović Enis S.

    2010-01-01

    Full Text Available Incorporation of inorganic nanoparticles can significantly affect the properties of the polymer matrix. The properties of polymer nanocomposites depend on the type of incorporated nanoparticles, their size and shape, their concentration, and interactions with the polymer matrix. Homogeneity of polymer nanocomposites is influenced very much by the preparation method. In this study, TiO2 nanoparticles surface modified with 6-palmitate ascorbic acid (6-PAA were incapsulated in poly(methyl methacrylate (PMMA by in situ radical polymerization of methyl methacrylate initiated by 2,2'-azobisisobutyronitrile (AIBN. The surface modification of the TiO2 nanoparticles was achieved by the formation of a charge transfer complex between TiO2 nanoparticles and 6-palmitate ascorbic acid. The radical polymerization of MMA in the presence of TiO2-PAA nanoparticles was conducted in solution (PMMA/TiO2-PAA-R, in bulk (PMMA/TiO2-PAA-M or in suspension (PMMA/TiO2-PAA-S. The main purpose of this study was to investigate the influence of the preparation method on the molar masses and thermal properties of PMMA/TiO2-PAA nanocomposite. It was obtained that molar masses of PMMA extracted from the composites had smaller values compared to molar masses of pure PMMA synthesized in the same manner, which indicated that TiO2-PAA nanoparticles affected the reaction of termination. Thermal properties were investigated by DSC and TGA. The values of glass transition temperature, Tg, were influenced by the way the radical polymerization was conducted, even in the case of the pure PMMA. The Tg of composite samples was always smaller than the value of the corresponding PMMA sample and the smallest value was obtained for PMMA/TiO2-PAA-M since they contained the largest amount of low molar mass residue. The TGA results showed that thermal and thermooxidative stability of polymer composites obtained in solution and in suspension was better than for the pure PMMA obtained in the same way.

  14. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    International Nuclear Information System (INIS)

    Wolny-Marszalek, M.

    2007-10-01

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  15. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Wolny-Marszalek, M [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego str., 31-342, Cracow (Poland)

    2007-10-15

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  16. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  17. Assessing nano cellulose developments using science and technology indicators

    International Nuclear Information System (INIS)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues

    2013-01-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  18. Assessing nano cellulose developments using science and technology indicators

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues, E-mail: douglasmilanez@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Nucleo de Informacao Tecnologica em Materiais. Dept. de Engenharia de Materiais

    2013-11-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  19. Morphology and physical-chemical properties of celluloses obtained by different methods

    Science.gov (United States)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  20. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2013-05-01

    Full Text Available High-grade cellulose (97% α-cellulose content of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4 generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.

  1. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  2. Isolation of cellulose fibers from kenaf using electron beam

    International Nuclear Information System (INIS)

    Shin, Hye Kyoung; Pyo Jeun, Joon; Bin Kim, Hyun; Hyun Kang, Phil

    2012-01-01

    Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber. - Highlights: ► This study was to provide a progressive and convenient cellulose isolation process. ► Using an electron beam irradiation, we can obtain cellulose fibers using only water without chemicals during cooking process. ► We think that this cellulose isolation method will have an effect on enormous environmental and economic benefits.

  3. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  4. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  5. Nanofibrillated Cellulose Surface Modification: A Review

    Directory of Open Access Journals (Sweden)

    Julien Bras

    2013-05-01

    Full Text Available Interest in nanofibrillated cellulose (NFC has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting.

  6. Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl alcohol) fiber paper.

    Science.gov (United States)

    Cha, Ruitao; Wang, Chengyu; Cheng, Shaoling; He, Zhibin; Jiang, Xingyu

    2014-09-22

    Specialty paper (e.g. cigarette paper and battery diaphragm paper) requires extremely high strength properties. The addition of strength agents plays an important role in increasing strength properties of paper. Nanocrystalline cellulose (NCC), or cellulose whiskers, has the potential to enhance the strength properties of paper via improving inter-fibers bonding. This paper was to determine the potential of using carboxylated nanocrystalline cellulose (CNCC) to improve the strength properties of paper made of cellulosic fiber or poly (vinyl alcohol) (PVA) fiber. The results indicated that the addition of CNCC can effectively improve the strength properties. At a CNCC dosage of 0.7%, the tear index and tensile index of the cellulosic paper reached the maximum of 12.8 mN m2/g and 100.7 Nm/g, respectively. More importantly, when increasing the CNCC dosage from 0.1 to 1.0%, the tear index and tensile index of PVA fiber paper were increased by 67.29%, 22.55%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hydrophilic/hydrophobic character of grafted cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, E., E-mail: takacs@iki.kfki.h [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Borsa, J. [Budapest University of Technology and Economics (Hungary); Racz, I. [Bay Zoltan Institute for Materials Science and Technology, Budapest (Hungary)

    2010-04-15

    Vinyl monomers with long paraffin chains were grafted onto two kinds of cellulose (cotton and cotton linter) by direct irradiation grafting technique. The effect of dose, monomer structure and concentration, as well as homopolymer suppressor (styrene) concentration on the grafting yield was studied and the optimal grafting conditions were established. Grafting decreased the swelling of the samples in water and increased their polymer compatibility in polypropylene matrix.

  8. Enzyme hydrolysis of waste cellulose. [Aspergillus awamori

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A; Nybergh, P; Hatakka, A

    1976-01-01

    Hydrolysis of brewers' spent grain and of wastes from the furfural process was investigated with culture filtrates from Trichoderma viride and Aspergillus awamori. The furfural process is evidently a good pretreatment for cellulose, and no further pretreatment is needed. Syrups containing 5% reducing sugars and 3-4% glucose were obtained from furfural process wastes and hydrolyzates containing 1.5% reducing sugars and 0.7% glucose were obtained from brewers' spent grains.

  9. Cellulose triacetate, thin film dielectric capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  10. Production of ethanol from cellulose (sawdust)

    OpenAIRE

    Otulugbu, Kingsley

    2012-01-01

    The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous...

  11. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  13. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  14. Cellulose conversion of corn pericarp without pretreatment.

    Science.gov (United States)

    Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R

    2017-12-01

    We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K [Idaho National Laboratory; Jacobson, Jacob Jordan [Idaho National Laboratory; Cafferty, Kara Grace [Idaho National Laboratory; Lamers, Patrick [Idaho National Laboratory; Roni, MD S [Idaho National Laboratory

    2015-03-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  16. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K.; Jacobson, Jacob J.; Cafferty, Kara G.; Lamers, Patrick; Roni, Mohammad S.

    2015-07-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  17. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  18. One-step Fabrication of Cellulose/Graphene Conductive Paper

    Institute of Scientific and Technical Information of China (English)

    KaiWen Mou; LuMing Yang; HuangWei Xiong; RuiTao Cha

    2017-01-01

    In this study,a straightforward,one-step wet-end formation process was employed to prepare cellulose/graphene conductive paper for antistatic packing materials.Cationic polyacrylamide was introduced into the cellulose/graphene slurry to improve the graphene loading on the surfaces of the cellulose fibers.The effect of the super calender process on the properties of the cellulose/graphene conductive paper was investigated.When 55 wt% graphene was added,the volume resistivity of the cellulose/graphene conductive paper was 94.70 Ω·cm,decreasing to 35.46 Ω·cm after the super calender process.The cellulose/graphene conductive paper possessed excellent anti-static ability and could be used as an anti-static material.

  19. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    Science.gov (United States)

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  20. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  1. Cellulose-Based Bio- and Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2011-01-01

    Full Text Available Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

  2. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  3. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Science.gov (United States)

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    Science.gov (United States)

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  5. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate in soil

    Directory of Open Access Journals (Sweden)

    Suellen Brasil Schröpfer

    2015-04-01

    Full Text Available In recent years, the inappropriate disposal of polymeric materials has increased due to industrial development and increase of population consumption. This problem may be minimized by using biodegradable polymers, such as bacterial cellulose and poly(hydroxybutyrate, from renewable resources. This work was aimed at monitoring and evaluating degradation of bacterial cellulose, vegetable cellulose and poly(3-hydroxybutyrate using Thermogravimetric Analysis and Scanning Electron Microscopy. Controlled mass polymer samples were buried in pots containing soil. Samples were removed in 30 day intervals up to 180 days. The results show that the mass of the polymer increased in the first month when in contact with the soil but then it was degraded as evidenced by mass loss and changes on the sample surface.

  6. USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    N. G. Kul’neva

    2015-01-01

    Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is

  7. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.

    Science.gov (United States)

    Larsson, Per A; Berglund, Lars A; Wågberg, Lars

    2014-06-09

    Cellulosic materials have many desirable properties such as high mechanical strength and low oxygen permeability and will be an important component in a sustainable biomaterial-based society, but unfortunately they often lack the ductility and formability offered by petroleum-based materials. This paper describes the fabrication and characterization of nanocomposite films made of core-shell modified cellulose nanofibrils (CNFs) surrounded by a shell of ductile dialcohol cellulose, created by heterogeneous periodate oxidation followed by borohydride reduction of the native cellulose in the external parts of the individual fibrils. The oxidation with periodate selectively produces dialdehyde cellulose, and the process does not increase the charge density of the material. Yet the modified cellulose fibers could easily be homogenized to CNFs. Prior to film fabrication, the CNF was shown by atomic force microscopy to be 0.5-2 μm long and 4-10 nm wide. The films were fabricated by filtration, and besides uniaxial tensile testing at different relative humidities, they were characterized by scanning electron microscopy and oxygen permeability. The strength-at-break at 23 °C and 50% RH was 175 MPa, and the films could, before rupture, be strained, mainly by plastic deformation, to about 15% and 37% at 50% RH and 90% RH, respectively. This moisture plasticization was further utilized to form a demonstrator consisting of a double-curved structure with a nominal strain of 24% over the curvature. At a relative humidity of 80%, the films still acted as a good oxygen barrier, having an oxygen permeability of 5.5 mL·μL/(m(2)·24 h·kPa). These properties indicate that this new material has a potential for use as a barrier in complex-shaped structures and hence ultimately reduce the need for petroleum-based plastics.

  8. Production and Properties of Carbon Nanotube/Cellulose Composite Paper

    OpenAIRE

    Maria, Kazi Hanium; Mieno, Tetsu

    2017-01-01

    Multiwalled carbon nanotube/cellulose composite papers have been prepared by mixing the cellulose with MWNT/gelatin solution and drying at room temperature. The CNTs form an interconnected network on the cellulose paper and as a result CNT paper sheet exhibits enhanced electrical properties and thermal stabilities. It is found that both sides of CNT paper sheet have the uniform electrical conductivities. The sheet exhibits strong microwave absorption in the microwave range of 10.5 GHz. The CN...

  9. Evaluation of ethanol productivity from cellulose by Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Kurose, N; Yagyu, J; Miyazaki, T; Uchida, M; Hanai, S; Obayashi, A

    1986-01-01

    Clostridium thermocellum, a thermophilic anaerobe, directly converts cellulose to EtOH. To estimate its EtOH production from cellulose, we used a new method based on material balance by which the efficiencies of the enzymes that convert cellulose to ethanol were calculated. Using this method, the maximum efficiency of ethanol production of two strains of C. thermocellum was estimated to be 0.05, with 0.67 as the theoretical maximum. 3 references.

  10. A multiscale crack-bridging model of cellulose nanopaper

    Science.gov (United States)

    Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao

    2017-06-01

    The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.

  11. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  12. Graft Copolymerization Of Methyl Methacrylate Onto Agave Cellulose

    International Nuclear Information System (INIS)

    Noor Afizah Rosli; Ishak Ahmad; Ibrahim Abdullah; Farah Hannan Anuar

    2014-01-01

    The grafting polymerization of methyl methacrylate (MMA) and Agave cellulose was prepared and the grafting reaction conditions were optimized by varying the reaction time and temperature, and ratio of monomer to cellulose. The resulting graft copolymers were characterized by Fourier transform infrared, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy (SEM). The experimental results showed that the optimal conditions were at a temperature of 45 degree Celsius for 90 min with ratio monomer to cellulose at 1:1 (g/ g). An additional peak at 1738 cm -1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted cellulose, respectively. Grafting of MMA onto cellulose enhanced its thermal stability and SEM observation further furnished evidence of grafting MMA onto Agave cellulose with increasing cellulose diameter and surface roughness. (author)

  13. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  14. Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2,3-di-O-PCL-cellulose by a new route

    Directory of Open Access Journals (Sweden)

    K. L. Wang

    2017-12-01

    Full Text Available A new and convenient route to the regiocontrolled synthesis of a cellulose-based derivate copolymer (2,3-di-O-polycaprolactone-cellulose grafting ε-caprolactone (ε-CL from α-cellulose, cellulose-graft-polycaprolactone (cellulose-g-PCL, by a classical ring-opening polymerization (ROP reaction, using stannous octoate (Sn(Oct2 as catalyst, in 68% concentration of zinc chloride aqueous solution at 120 °C was presented. By controlling the hydroxyl of cellulose/ε-CL, catalyst/monomer ratio and the reaction time, the molecular architecture of the copolymers can be altered. The solubility of cellulose in zinc chloride aqueous was indicated by UV/VIS spectrometer and rheological measurements. The structures and thermal properties of cellulose-g-polycaprolactone copolymers were characterized using Fourier Transform Infrared (FT-IR, Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR, X-ray Diffraction (XRD, Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES. The interesting results confirm that zinc chloride solution can break the intra-molecular hydrogen bonds of cellulose selectively (not only O3H···O5, but also O2H···O6, and has no effect on the inter-molecular hydrogen bonds (O6H···O3. And the grafting reactivity of hydroxyl on cellulose is C2–OH > C3–OH >> C6–OH in zinc chloride solution, and this is clearly different from other researches. Most importantly, this work confirms that the method to regiocontrolled synthesis cellulose-based derivative polymers by regiobreaking hydrogen bonds is feasible. It is strongly believed that the new discovery may give a novel, environmental, simple and inexpensive method to modify cellulose chemically with various side chains grafted on a given hydroxyl, through liberating hydroxyl as reactive group from hydrogen bonds broken selectively by different solvents.

  15. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  16. Preparation and Evaluation of Dexamethasone (DEX/Growth and Differentiation Factor-5 (GDF-5 Surface-Modified Titanium Using β-Cyclodextrin-Conjugated Heparin (CD-Hep for Enhanced Osteogenic Activity In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Dae Hyeok Yang

    2017-08-01

    Full Text Available The most ideal implant models in the dental and orthopedic fields to minimize the failure rate of implantation involve the improvement of osseointegration with host bone. Therefore, a focus of this study is the preparation of surface-modified titanium (Ti samples of disc and screw types using dexamethasone (DEX and/or growth and differentiation factor-5 (GDF-5, as well as the evaluation of their efficacies on bone formation in vitro and in vivo. X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and contact angle measurement were used to evaluate the surface chemical composition, surface morphology and wettability, respectively. The results showed that implant surfaces were successfully modified with DEX and/or GDF-5, and had rough surfaces along with hydrophilicity. DEX, GDF-5 or DEX/GDF-5 on the surface-modified samples were rapidly released within one day and released for 28 days in a sustained manner. The proliferation and bone formation of MC3T3-E1 cells cultured on pristine and surface-modified implants in vitro were examined by cell counting kit-8 (CCK-8 assay, as well as the measurements of alkaline phosphatase (ALP activity and calcium deposition, respectively. MC3T3-E1 cells cultured on DEX/GDF-5–Ti showed noticeable ALP activity and calcium deposition in vitro. Active bone formation and strong osseointegration occurred at the interface between DEX/GDF-5–Ti and host bone, as evaluated by micro computed-tomography (micro CT analysis. Surface modification using DEX/GDF-5 could be a good method for advanced implants for orthopaedic and dental applications.

  17. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  18. Extraction of cellulose microcrystalline from galam wood for biopolymer

    Science.gov (United States)

    Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky

    2018-04-01

    Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.

  19. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Kovářová, Jana; Pfleger, Jiří; Stejskal, Jaroslav; Trchová, Miroslava; Novák, I.; Berek, D.

    2016-01-01

    Roč. 109, November (2016), s. 836-842 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cellulose * carbon * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.337, year: 2016

  20. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder

    Science.gov (United States)

    Chuanshuang Hu; Yu Zhao; Kecheng Li; J.Y. Zhu; Roland Gleisner

    2015-01-01

    The fibrillation of a bleached kraft eucalyptus pulp was investigated by means of a laboratory-scale disk grinder for the production of cellulose nanofibrils (CNF), while the parameters disk rotating speed, solid loading, and fibrillation duration were varied. The cumulative energy consumption was monitored during fibrillation. The degree of polymerization (DP) and...