WorldWideScience

Sample records for surface-flawed pipe based

  1. Evaluating empirical/analytical techniques to predict structural integrity of pipe containing surface flaws

    International Nuclear Information System (INIS)

    Reuter, W.G.; Server, W.L.

    1982-01-01

    Data from flat-plate specimens containing either triangular-, ellipsoidal- or rectangular-shaped surface flaws were evaluated by several potential analytical techniques. These techniques were modified as needed to predict conditions for initiation of subcritical crack growth, for the defect to penetrate the 6.4 mm (0.25 in.) wall thickness, and for instability (plastic or unstable). The modified analytical techniques developed from the plate specimens were then used to make predictions which are compared with test results obtained from pipe specimens containing triangular-shaped surface flaws

  2. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  3. Analysis of the failure performance of internally pressurized piping with surface flaws

    International Nuclear Information System (INIS)

    Iorio, A.F; Crespi, J.C.

    1987-01-01

    Due to frequent failures an Atucha I PHWR moderator circuit branch piping, made of stainless steel type AISI 347 (DIN 1.4550), studies have been made, involving the application of several fracture mechanics criteria, in order to determine the conditions of leak-before-break (L.BB) and the critical crack length of the piping. These studies lead to the conclusions that, for a straight pipe of outer diameter of 219 mm and 16 mm wall thickness, with a circumferential flaw and the principal stress being in the bending, the L.BB criteria are satisfied, being the critical crack length of the order of 400 mm. A better mechanical finishing and heat treatment was suggested in order to improve the resistance to crack initiation. (Author)

  4. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  5. Nondestructive detection of surface flaws in materials by infrared thermography

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Eto, Motokuni; Hoshiya, Taiji; Okamoto, Yoshizo

    1999-01-01

    Infrared thermography is one of the useful remote sensing techniques applied to the nondestructive detection of surface flaws in materials. Radiation temperatures of the specimen surface and surrounding walls as well as the difference in them are crucial factors to detect surface flaws from thermal images, and it is essential that these factors be properly evaluated beforehand in order to detect the flaws by infrared thermography. In this study, the radiation temperature of nuclear graphite specimens heated uniformly was measured by infrared thermography to evaluate the radiation characteristics such as emissivity, radiosity coefficient and variation of radiation temperature. The influence of the temperature difference between the test specimen and its surroundings on the limit of detection of pinhole flaws was discussed on the basis of the thermal images of graphite specimen with surface flaws. It was found that the thermal image of a small flaw was clearly visible with increase in the temperature difference. (author)

  6. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  7. Estimation of Back-Surface Flaw Depth by Laminated Piezoelectric Highpolymer Film

    Directory of Open Access Journals (Sweden)

    Akinobu YAMAMOTO

    2009-08-01

    Full Text Available Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the location and the shape of the flaw. Such surface strain distribution can be transformed into the electric potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly estimated by the peak height of the electric potential distribution.

  8. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Zahoor, A.; Ghassemi, B.B.

    1991-01-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.)

  9. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Ghassemi, B.B. (NOVETECH Corp., Rockville, MD (USA))

    1991-04-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.).

  10. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  11. Base-plate effects on pipe-support stiffness

    International Nuclear Information System (INIS)

    Winkel, B.V.; LaSalle, F.R.

    1981-01-01

    Present nuclear power plant design methods require that pipe support spring rates be considered in the seismic design of piping systems. Base plate flexibility can have a significant effect on the spring rates of these support structures. This paper describes the field inspection, test, and analytical techniques used to identify and correct excessively flexible base plates on the Fast Flux Test Facility pipe support structures

  12. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  13. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    Science.gov (United States)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  14. Study of a risk-based piping inspection guideline system.

    Science.gov (United States)

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  15. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  16. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  17. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    International Nuclear Information System (INIS)

    Ware, A.G.; Wesley, D.A.

    1993-01-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures

  18. Reliability-based assessment of polyethylene pipe creep lifetime

    International Nuclear Information System (INIS)

    Khelif, Rabia; Chateauneuf, Alaa; Chaoui, Kamel

    2007-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature

  19. Reliability-based assessment of polyethylene pipe creep lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Khelif, Rabia [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere Cedex (France); LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: rabia.khelif@ifma.fr; Chateauneuf, Alaa [LGC-University Blaise Pascal, Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)], E-mail: alaa.chateauneuf@polytech.univ-bpclermont.fr; Chaoui, Kamel [LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: chaoui@univ-annaba.org

    2007-12-15

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature.

  20. Piping support load data base for nuclear plants

    International Nuclear Information System (INIS)

    Childress, G.G.

    1991-01-01

    Nuclear Station Modifications are continuous through the life of a Nuclear Power Plant. The NSM often impacts an existing piping system and its supports. Prior to implementation of the NSM, the modified piping system is qualified and the qualification documented. This manual review process is tedious and an obvious bottleneck to engineering productivity. Collectively, over 100,000 piping supports exist at Duke Power Company's Nuclear Stations. Engineering support must maintain proper documentation of all data for each support. Duke Power Company has designed and developed a mainframe based system that: directly uses Support Load Summary data generated by a piping analysis computer program; streamlines the pipe support evaluation process; easily retrieves As-Built and NSM information for any pipe support from an NSM or AS-BUILT data base; and generated documentation for easy traceability of data to the information source. This paper discusses the design considerations for development of Support Loads Database System (SLDB) and reviews the program functionality through the user menus

  1. Some Comments on the Entropy-Based Criteria for Piping

    Directory of Open Access Journals (Sweden)

    Emöke Imre

    2015-04-01

    Full Text Available This paper is an extension of previous work which characterises soil behaviours using the grading entropy diagram. The present work looks at the piping process in granular soils, by considering some new data from flood-protection dikes. The piping process is divided into three parts here: particle movement at the micro scale to segregate free water; sand boil development (which is the initiation of the pipe, and pipe growth. In the first part of the process, which occurs during the rising flood, the increase in shear stress along the dike base may cause segregation of water into micro pipes if the subsoil in the dike base is relatively loose. This occurs at the maximum dike base shear stress level (ratio of shear stress and strength zone which is close to the toe. In the second part of the process, the shear strain increment causes a sudden, asymmetric slide and cracking of the dike leading to the localized excess pore pressure, liquefaction and the formation of a sand boil. In the third part of the process, the soil erosion initiated through the sand boil continues, and the pipe grows. The piping in the Hungarian dikes often occurs in a two-layer system; where the base layer is coarser with higher permeability and the cover layer is finer with lower permeability. The new data presented here show that the soils ejected from the sand boils are generally silty sands and sands, which are prone to both erosion (on the basis of the entropy criterion and liquefaction. They originate from the cover layer which is basically identical to the soil used in the Dutch backward erosion experiments.

  2. Experimental investigations of piping phenomena in bentonite based buffer material

    International Nuclear Information System (INIS)

    Suzuki, K.; Asano, H.; Kobayashi, I.; Sellin, P.; Svemar, C.; Holmqvist, M.

    2012-01-01

    Document available in extended abstract form only. Formation of channels in a clay based buffer material is often referred to as 'piping'. Piping is likely to occur in bentonite based buffer materials in a fractured host rock during the early evolution of the repository when strong hydraulic gradients are present. After water saturation of the repository and reestablishment of the hydraulic gradients piping will not be an issue. However, piping in the early phase may still have implications for long-term performance: 1. if the pipes fail to close there may be remaining conductive pathways in the engineered barrier, and 2. piping may lead to erosion or redistribution of material which needs to be taken into account in the long-term performance assessment. This means that the piping process may affect requirements on rock characterization, water inflow and water management during the installation phase, buffer material properties and buffer installation methodology. As a part of the 'Bentonite re-saturation' program, RWMC has initiated and performed studies of the piping process. The main objectives of the studies are to answer: 1. Under what conditions can pipes form? 2. How do pipes evolve with time? 3. When and how do pipes close/reseal? 4. How does piping affect the buffer properties? 5. How much mass can be lost by erosion? The answers will be used in the development of the requirements stated above as well as input to long term performance assessments. overview of the experiment Test apparatuses were manufactured for investigation of the piping phenomena, see Figure 1. The apparatuses have drainage gutter to prevent clogging to take place with eroded material, and to keep an advection field around specimens. There is also a storage chamber for eroded material on the apparatuses. In the investigation, specimens of bentonite block and pellets were used. The block specimen consisted of a mixture of Japanese Na type bentonite, termed Kunigel V1, and 30 wt% silica

  3. Development of piping support structure design software based on PDMS

    International Nuclear Information System (INIS)

    Tang Yongtao; Guan Hui; Su Rongfu; Huang Wei; Mao Huihui

    2014-01-01

    In order to enhance the efficiency of nuclear power process system piping support design, the veracity of interface with support, piping and anchor, and decrease the clash between supports and other disciplines, developed piping support structure design software NPHS based on PDMS independently. That achieved the seamless integration of PDMS and NPHS by method of embedded development, reduce the size of program code, improve the running efficiency; That predigested the 3D modeling and information storage for support parts, that increased the support database opening and maintenance using the special mechanism and configuration of database. The support modeling efficiency due to setting of the connection key point of support parts is improved. Practices in several real nuclear power projects proved that NPHS software is provided with such outstanding performances: quick running, strong stability, accurate data, easy to operate and maintain, and output results satisfied the engineering requirements. (authors)

  4. Model-Based Detection of Pipe Leakage at Joints

    International Nuclear Information System (INIS)

    Kim, Taejin; Youn, Byeng D.; Woo, Sihyong

    2015-01-01

    Time domain reflectometry (TDR) is widely used for wire failure detection. It transmits a pulse that is reflected at the boundaries of different characteristic impedances. By analyzing the reflected signal, TDR makes it possible to locate the failure. In this study, TDR was used to detect the water leakage at a pipe joint. A wire attached to the pipe surface was soaked by water when a leak occurred, which affected the characteristic impedance of the wet part, resulting in a change in the reflected signal. To infer the leakage from the TDR signal, we first developed a finite difference time domain-based forward model that provided the output of the TDR signal given the configuration of the transmission line. Then, by solving the inverse problem, the locations of the leaks were found

  5. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  6. Elastic-plastic fracture mechanics analysis of a pressure vessel with an axial outer surface flaw. Pt. 2

    International Nuclear Information System (INIS)

    Brocks, W.; Kuenecke, G.

    1989-06-01

    Continuing preceding investigations, a further elastic-plastic finite element analysis of a test vessel with a semi-elliptical axial outer surface crack has been performed. The variations of J and CTOD along the crack front and the stress state in the vicinity of the crack are presented. The applicability of analytical approaches to determine J is examined. The FE results are used to analyze the experimental data with respect to the validity of J-controlled crack growth. Local J R -curves of the surface flaw are compared with J R -curves of various specimens of different geometries. Again, it became evident that the local ductile crack growth and, especially, the developing 'canoe shape' of the surface crack cannot be described by a single resistance curve which is assumed to be a material property. A method described in a previous report to predict the ductile crack growth by using local J R -curves which depend on the triaxiality of the stress state did not result in a satisfactory outcome, in the present case. The presumed reasons will be discussed. (orig.) [de

  7. Risk based service life prediction of underground cast iron pipes subjected to corrosion

    International Nuclear Information System (INIS)

    Li, C.Q.; Mahmoodian, M.

    2013-01-01

    Aging and deterioration of underground cast iron pipes is inevitable after their long time in service, with corrosion being the most predominant mechanism for pipe failures. Although considerable research has been undertaken in the past few decades, more is on the effects of corrosion on structural capacity of pipes than that on the prediction of their service life. This paper presents a methodology to quantitatively assess the risk of pipe collapse and predict its remaining service life using a time-dependent reliability theory. The concept of stress intensity in fracture mechanics is employed to establish the failure criterion of pipe collapse. An empirical model is derived for maximum pit growth of corrosion from the available data based on mathematical regressions. An example is provided to illustrate the application of the proposed method. It is found in the paper that the risk of pipe collapse increases with an increase in the diameter of the pipe for both external and internal corrosion. It is also found that the tougher the pipe is, the smaller the risk of its collapse. The paper concludes that a time-dependent reliability method is a very useful tool to predict the risk of pipe collapse and its remaining service life. The proposed method can help the water industry develop rehabilitation or replacement strategy for existing pipe networks with a view for better management of the pipe asset

  8. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  9. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  10. Finite element limit analysis based plastic limit pressure solutions for cracked pipes

    International Nuclear Information System (INIS)

    Shim, Do Jun; Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2002-01-01

    Based on detailed FE limit analyses, the present paper provides tractable approximations for plastic limit pressure solutions for axial through-wall cracked pipe; axial (inner) surface cracked pipe; circumferential through-wall cracked pipe; and circumferential (inner) surface cracked pipe. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach

  11. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2015-01-01

    Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence

  12. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  13. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  14. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  15. Risk-based replacement strategies for redundant deteriorating reinforced concrete pipe networks

    International Nuclear Information System (INIS)

    Adey, B.; Bernard, O.; Gerard, B.

    2003-01-01

    This paper gives an example of how predictive models of the deterioration of reinforced concrete pipes and the consequences of failure can be used to develop risk-based replacement strategies for redundant reinforced concrete pipe networks. It also shows how an accurate deterioration prediction can lead to a reduction of agency costs, and illustrates the limitation of the incremental intervention step algorithm. The main conclusion is that the use of predictive models, such as those developed by Oxand S.A., in the determination of replacement strategies for redundant reinforced concrete pipe networks can lead to a significant reduction in overall costs for the owner of the structure. (author)

  16. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

    Directory of Open Access Journals (Sweden)

    Y. Bakhshan

    2014-09-01

    Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

  17. In service inspection of pipes based on risk methods

    International Nuclear Information System (INIS)

    Mendoza G, G.; Viais J, J.; Carmona C, M.

    2006-01-01

    The politics of the Nuclear Regulatory Commission (by its initials in English NRC) of the United States of America on the use of the Probabilistic Safety Analysis (PSA) in activities of nuclear regulation it foments the use of this analysis technique to improve the decisions making, to reduce the unnecessary work in maintenance aspects, inspection and tests and to improve the regulatory efficiency. The inspection programs in service (ISI by its initials in English) developed by the American Society of Mechanical Engineers (by its initials in English ASME) it has been the one primary mechanism to prove the mechanical equipment in plants of nuclear energy, these programs indeed have been carried out in plants of nuclear energy by more of two decades. Their purpose is to identify the conditions, such as indications of cracks that are precursory of flights and ruptures which violate the integrity principles of the pressure frontier. The inspection in service activities include ultrasonic tests, surface tests and penetrating liquids test, also activities that include the scaffolds construction, removal of insulations and welding polishing. The inspections in service every 18 months during the times outside of service are executed. One of the objectives is to lower the costs of the inspections during the times outside of service and to reduce the exposure to the radiation by part of the personnel during these times out for inspections, while it is increased or it maintains the personnel's safety and the reliability. As part of the methodology a pipe segment is selected for which a fault in any point has the same consequences, being calculated the fault probability of the tube using the dimensions of the segment. In this work the inspection in service methodology is applied based on risk to an aspersion system of low pressure of the Laguna Verde Nucleo electric Central. For this system a reduction in the number of welding to inspect of 103 to only 15 is obtained

  18. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  19. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  20. Porous Foam Based Wick Structures for Loop Heat Pipes

    Science.gov (United States)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  1. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  2. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  3. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  4. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  5. Development of reliability-based load and resistance factor design methods for piping

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.; Hill, Ralph S. III; Balkey, Kenneth R.

    2003-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The American Institute of Steel Construction and the American Concrete Institute, among other organizations, have incorporated probabilistic methodologies into their design codes. ASME nuclear codes and standards could benefit from developing a probabilistic, reliability-based, design methodology. This paper provides a plan to develop the technical basis for reliability-based, load and resistance factor design of ASME Section III, Class 2/3 piping for primary loading, i.e., pressure, deadweight and seismic. The plan provides a proof of concept in that LRFD can be used in the design of piping, and could achieve consistent reliability levels. Also, the results from future projects in this area could form the basis for code cases, and additional research for piping secondary loads. (author)

  6. Risk-based optimization of pipe inspections in large underground networks with imprecise information

    International Nuclear Information System (INIS)

    Mancuso, A.; Compare, M.; Salo, A.; Zio, E.; Laakso, T.

    2016-01-01

    In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland. - Highlights: • Risk-based approach to optimize pipe inspections on large underground networks. • Reasonable computational effort to select efficient inspection portfolios. • Possibility to accommodate imprecise expert information. • Feasibility of the approach shown by Espoo water system case study.

  7. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  8. Advanced management of pipe wall thinning based on prediction-monitor fusion

    International Nuclear Information System (INIS)

    Kojima, Fumio; Uchida, Shunsuke

    2012-01-01

    This article is concerned with pipe wall thinning management system by means of hybrid use of simulation and monitoring. First, the computer-aided simulation for predicting wear rate of piping system is developed based on elucidation of thinning mechanism such as flow-accelerated corrosion (FAC). The accurate prediction of wear rate allows us the useful information on region of interest of inspection. Secondly, several monitoring methods are considered in accordance with interest of inspection. Thirdly, probability of detection (POD) is considered for the reliability of inspection data. The final part of this article is devoted to how to improve safety performance under the hybrid use of predicting and monitoring on the proposed pipe wall management. (author)

  9. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...

  10. Fracture mechanics assessment of thermal aged nuclear piping based on the Leak-Before-Break concept

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya, E-mail: chenmingya@cgnpc.com.cn [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen PSI (Switzerland); Wang, Rongshan; Lu, Feng; Zhang, Guodong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Suzhou, Jiangsu Province (China)

    2016-05-15

    Highlights: • The effects of thermal aging on crack unstable tearing are studied. • The critical size of crack unstable tearing is calculated by different methods. • The critical failure models are compared. • The conservatism of J–T diagram is shown. - Abstract: The Leak-Before-Break (LBB) concept has been accepted to design the primary piping system of the pressurized water reactor (PWR). Due to thermal aging of long term operation, the cast stainless steels (CSSs) which are used for the primary piping of PWR, suffer a significant loss of fracture toughness, and as a consequence the safety margin of the thermal aged pipe decreases. Therefore, the aged piping should be analyzed and validated by the LBB concept. In this paper, elastic–plastic fracture mechanics (EPFM) assessments of the thermal aged piping are presented according to the LBB concept. The critical break size of crack unstable tearing is calculated by the EPFM method. The crack driving force diagram (J–a diagram), the stability assessment diagram (J–T diagram) and a numerical method are applied to calculate the critical crack size of crack break. The effects of thermal aging on the plastic limit load, J–T diagram, critical crack size of the EPFM and the critical failure mode are studied. The results show that the thermal aging effect decreases the maximum allowed J-integral at a certain ductile tearing modulus by more than 50% and it increases the flow stress and plastic limit load by 11.78%. The results based on the J–T diagram are about 40% conservative than those based on the direct numerical method for the high loading case. For the thermal aged piping, it is important to consider the competition failure modes between plastic collapse and unstable ductile tearing.

  11. OCA-II, a code for calculating the behavior of 2-D and 3-D surface flaws in a pressure vessel subjected to temperature and pressure transients

    International Nuclear Information System (INIS)

    Ball, D.G.; Drake, J.B.; Cheverton, R.D.; Iskander, S.K.

    1984-02-01

    The OCA-II computer code, like its predecessor OCA-I, performs the thermal, stress, and linear elastic fracture-mechanics analysis for long flaws on the surface of a cylinder that is subjected to thermal and pressure transients. OCA-II represents a revised and expanded version of OCA-I and includes as new features (1) cladding as a discrete region, (2) a finite-element subroutine for calculating the stresses, and (3) the ability to calculate stress intensity factors for certain three-dimensional flaws, for two-dimensional circumferential flaws on the inner surface, and for both axial and circumferential flaws on the outer surface. OCA-I considered only inner-surface flaws. An option is included in OCA-II that permits a search for critical values of fluence or nil-ductility reference temperature corresponding to a specified failure criterion. These and other features of OCA-II are described in the report, which also includes user instructions for the code

  12. Proposal of reference stress for a surface flaw on a cylindrical component from a review-with-comparison of the local metal loss assessment rule between API 579-1 and the p-M diagram method

    International Nuclear Information System (INIS)

    Oyamada, Kenji; Konosu, Shinji; Ohno, Takashi

    2011-01-01

    The Remaining Strength Factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 is an assessment method for a cylindrical component with a local metal loss based on surface correction factors. Also, reference stress solutions that are applied in the Failure Assessment Diagram (FAD) method for a cylindrical component with a crack-like flaw are provided in Annex D using surface correction factors. In the recently-developed p-M diagram method, the reference stress solution for local metal loss evaluation in a cylindrical component is derived using bulging factors, which are similar but not identical to the surface correction factors used in API 579-1/ASME FFS-1. This paper describes the results of a comparative study among the RSF approach, reference stress solutions for the FAD method, and the p-M diagram method, in terms of plastic collapse evaluation of a cylindrical component. These results were compared with the FEA and experimental results to confirm how these estimated stresses could be validated. This study also involves recommended reference stress solutions for a cylindrical component with a crack-like flaw or a local metal loss, which should be adopted as fitness-for-service rules, and a discussion on the influence of the design margin of the construction code on allowable flaw depth. - Highlights: → We compared local metal loss assessment rule between API 579-1 and the p-M method. → Experiments and FEA verified the p-M estimate stress state around a flaw accurate. → API 579-1 for local metal loss may underestimate stress state for certain conditions. → Existing reference stresses for crack-like flaws may underestimate stress state too. → We propose the reference stress for a surface flaw subjected to pressure and moment.

  13. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  14. A parametric study of residual stresses in multipass butt-welded stainless steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B. [SAQ Inspection Ltd., Stockholm (Sweden); Josefson, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Solid Mechanics

    1996-06-01

    Multipass circumferential butt-welding of stainless steel pipes is simulated numerically in a non-linear thermo-mechanical FE-analysis. In particular, the through-thickness variation at the weld and heat affected zone, of the axial and hoop stresses and their sensitivity to variation in weld parameters are studied. Recommendations are given for the through thickness variation of the axial and hoop stresses to be used when assessing the growth of surface flaws at circumferential butt welds in nuclear piping system. 31 refs, 12 tabs, 54 figs.

  15. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  16. A new computational scheme on quantitative inner pipe boundary identification based on the estimation of effective thermal conductivity

    International Nuclear Information System (INIS)

    Fan Chunli; Sun Fengrui; Yang Li

    2008-01-01

    In the paper, the irregular configuration of the inner pipe boundary is identified based on the estimation of the circumferential distribution of the effective thermal conductivity of pipe wall. In order to simulate the true temperature measurement in the numerical examples, the finite element method is used to calculate the temperature distribution at the outer pipe surface based on the irregular shaped inner pipe boundary to be determined. Then based on this simulated temperature distribution the inverse identification work is conducted by employing the modified one-dimensional correction method, along with the finite volume method, to estimate the circumferential distribution of the effective thermal conductivity of the pipe wall. Thereafter, the inner pipe boundary shape is calculated based on the conductivity estimation result. A series of numerical experiments with different temperature measurement errors and different thermal conductivities of pipe wall have certified the effectiveness of the method. It is proved that the method is a simple, fast and accurate one for this inverse heat conduction problem.

  17. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  18. Pipe break prediction based on evolutionary data-driven methods with brief recorded data

    International Nuclear Information System (INIS)

    Xu Qiang; Chen Qiuwen; Li Weifeng; Ma Jinfeng

    2011-01-01

    Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.

  19. Low Cost and Pipe Conformable Microwave-Based Water-Cut Sensor

    KAUST Repository

    Karimi, Muhammad Akram

    2016-08-11

    Efficient oil production and refining processes require the precise measurement of water content in oil. This paper presents a novel planar microwave sensor for entirely non-intrusive in situ water cut (WC) sensing over the full range of operation, i.e., 0%-100%. A planar configuration has enabled the direct implementation of WC sensor on the pipe surface using low cost method, i.e., screen printing using 3D printed mask. Modified ground plane-based T-resonator design makes this WC sensor usable for the wide range of pipe sizes present in the oil industry. The viability of this sensor has been confirmed through electromagnetic simulations as well as through a prototype characterization. Two cases of oil and water mixtures, namely, separate phases and homogeneous mix, have been studied. Measurements performed over two independently built prototypes show the root mean square variation in results of only 0.1%.

  20. Design of cylindrical pipe automatic welding control system based on STM32

    Science.gov (United States)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  1. Quality assurance in the production of pipe fittings by automatic laser-based material identification

    Science.gov (United States)

    Moench, Ingo; Peter, Laszlo; Priem, Roland; Sturm, Volker; Noll, Reinhard

    1999-09-01

    In plants of the chemical, nuclear and off-shore industry, application specific high-alloyed steels are used for pipe fittings. Mixing of different steel grades can lead to corrosion with severe consequential damages. Growing quality requirements and environmental responsibilities demand a 100% material control in the production of the pipe fittings. Therefore, LIFT, an automatic inspection machine, was developed to insure against any mix of material grades. LIFT is able to identify more than 30 different steel grades. The inspection method is based on Laser-Induced Breakdown Spectrometry (LIBS). An expert system, which can be easily trained and recalibrated, was developed for the data evaluation. The result of the material inspection is transferred to an external handling system via a PLC interface. The duration of the inspection process is 2 seconds. The graphical user interface was developed with respect to the requirements of an unskilled operator. The software is based on a realtime operating system and provides a safe and reliable operation. An interface for the remote maintenance by modem enables a fast operational support. Logged data are retrieved and evaluated. This is the basis for an adaptive improvement of the configuration of LIFT with respect to changing requirements in the production line. Within the first six months of routine operation, about 50000 pipe fittings were inspected.

  2. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  3. Laser fluorescent method for monitoring leaks from petrol pipes based on the neural network algorithm

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2014-01-01

    Full Text Available Current systems for monitoring leaks from petrol pipes can detect large leaks only, and their sensitivity limit is about 1% of the whole petrol pipe’s capacity. In this paper, a problem of remote detection of small leaks (less than 1% from petrol pipes was considered. One of possible variations of such a system is a monitoring system of oil pollution at the earth surface along the petrol pipe. In this paper experimentally obtained data such as fluorescence spectra of oil products (crude oil, light-end oil products, heavy oil products, various earth surfaces (soil, vegetation, water, asphalt and oil products spilled over various earth's surface were used for the excitation wavelength of 266 nm. It was shown that use of the laser method based on detection of fluorescence radiation within three narrow spectral bands and a neural network algorithm of measured data processing allowed one to detect oil pollution on the earth surface with a probability of correct classification close to 1 and low probability of false alarm.

  4. Reliability based code calibration of fatigue design criteria of nuclear Class-1 piping

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.; Chellapandi, P.

    2016-01-01

    Fatigue design of Class-l piping of NPP is carried out using Section-III of American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel code. The fatigue design criteria of ASME are based on the concept of safety factor, which does not provide means for the management of uncertainties for consistently reliable and economical designs. In this regards, a work is taken up to estimate the implicit reliability level associated with fatigue design criteria of Class-l piping specified by ASME Section III, NB-3650. As ASME fatigue curve is not in the form of analytical expression, the reliability level of pipeline fittings and joints is evaluated using the mean fatigue curve developed by Argonne National Laboratory (ANL). The methodology employed for reliability evaluation is FORM, HORSM and MCS. The limit state function for fatigue damage is found to be sensitive to eight parameters, which are systematically modelled as stochastic variables during reliability estimation. In conclusion a number of important aspects related to reliability of various piping product and joints are discussed. A computational example illustrates the developed procedure for a typical pipeline. (author)

  5. Leak-Before-Break assessment of a welded piping based on 3D finite element method

    International Nuclear Information System (INIS)

    Chen, Mingya; Yu, Weiwei; Chen, Zhilin; Qian, Guian; Lu, Feng; Xue, Fei

    2017-01-01

    Highlights: • The effects of load reduction, strength match, welding width, load level, crack size and constraint are studied. • The results show that the LBB margin is dependent on the load level. • The results show that higher strength-match of WPJs will have higher crack-front constraints. • The results show that the engineering method has a high precision only if the width of weld is comparable to the crack depth. - Abstract: The paper studies the effects of the load reduction (discrepancy between designing and real loadings), strength match of the welded piping joint (WPJ), welding width, crack size and crack tip constraint on the Leak-Before-Break (LBB) assessment of a welded piping. The 3D finite element (FE) method is used in the study of a surge line of the steam generator in a nuclear power plant. It is demonstrated that the LBB margin is dependent on the loading level and the load reduction effect should be considered. When the loading is high enough, there is a quite large deviation between the J-integral calculated based on the real material property of WPJ and that calculated based on the engineering method, e.g. Zahoor handbook of Electric Power Research Institute (EPRI). The engineering method assumes that the whole piping is made of the unique welding material in the calculation. As the influence of the strength matching and welding width is ignored in the engineering method for J-integral calculation, the engineering method has a sufficient precision only if the width of welding is comparable to the crack depth. Narrower welding width leads to higher constraint of the plastic deformation in the welding and larger high stress areas in the base for the low strength-match WPJ. Higher strength matching of WPJs has higher crack-front constraints.

  6. Assessment of LWR piping design loading based on plant operating experience

    International Nuclear Information System (INIS)

    Svensson, P.O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading

  7. RIMAP demonstration project. Pat. 1: Risk based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Puck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic

    2003-01-01

    In the framework of EU project RIMAP [1] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM - Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: development (RTD), demonstration (DEMO) and thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: identification of critical components, application of a multilevel risk analysis (..from ''screening'' to ''detailed analysis''), determination of PoF - Probability of Failure, determination of COF - Consequence of Failure and optimation of inspection and maintenance plan. (orig.)

  8. Structural design of vacuum bulkheads in piping penetration for the cryostat base of JT-60SA

    International Nuclear Information System (INIS)

    Nakamura, Shigetoshi; Shibama, Yusuke K.; Masaki, Kei

    2016-11-01

    This study examined the structure of the boundary box that is capable of installing the cryostat base of JT-60SA in a narrow space. Since other devices stand close in the neighborhood, it was designed to fit within a limited space to avoid interference. Spatial limitation and generated stress caused by each load were used as design conditions. From the calculation results of the generated stress with respect to each load, the maximum stress is generated by the displacement of the pipeline associated with the displacement of the vacuum container at the time of earthquake and 200degC baking, so bellows were designed to absorb the displacement of the piping. It was confirmed through 3-D finite element analysis that this generated stress is less than the allowable stress and there is no problem in structural integrity. This paper explained the composition of major equipment of JT-60SA and the structure of cryostat base. In the structural analysis of the boundary box, consideration was given to the pressure difference during vacuum closure or abnormal events, temperature distribution, pipe displacement associated with the deformation of vacuum vessel, and seismic load. As a result of finite element analysis, it was confirmed that the displacement amount and temperature distribution during plasma operation and baking were within the allowable range. In addition, the maximum stress during cryostat helium leak was also within the allowable range. (A.O.)

  9. Finite element-based limit load of piping branch junctions under combined loadings

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Li Peining

    2004-01-01

    The limit load is an important input parameter in engineering defect-assessment procedures and strength design. In the present work, a total of 100 different piping branch junction models for the limit load calculation were performed under combined internal pressure and moments in use of non-linear finite element (FE) method. Three different existing accumulation rules for limit load, i.e., linear equation, parabolic equation and quadratic equation were discussed on the basis of FE results. A novel limit load solution was developed based on detailed three-dimensional FE limit analyses which accommodated the geometrical parameter influence, together with analytical solutions based on equilibrium stress fields. Finally, six experimental results were provided to justify the presented equation. According to the FE limit analysis, limit load interaction of the piping tees under combined pressure and moments has a relationship with the geometrical parameters, especially with the diameter ratio d/D. The predicted limit loads from the presented formula are very close to the experimental data. The resulting limit load solution is given in a closed form, and thus can be easily used in practice

  10. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  11. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Buck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic, M.

    2004-01-01

    In the framework of EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM, Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: - development (RTD); - demonstration (DEMO): - thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: - identification of critical components; - application of a multilevel risk analysis (...from 'screening' to 'detailed analysis'); - determination of PoF (Probability of Failure); - determination of CoF (Consequence of Failure); - optimation of inspection and maintenance plan. From our experience with the application of the RIMAP methodology the following conclusions can be drawn: The use of risk-based methods in inspection and maintenance of piping systems in power plants gives transparency to the decision making process and gives an optimized maintenance policy based on current state of the components. The results of the work clearly show the power of the proposed method for concentration on critical items: out of 64 monitored components 5 were selected for intermediate analysis and only 1 for the detailed analysis (probabilistic high temperature fracture mechanics)

  12. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates

    Science.gov (United States)

    Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.

    2013-04-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.

  13. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  14. Ductile failure analysis of defective API X65 pipes based on stress-modified fracture strain criterion

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Baek, Jong Hyun; Kim, Young Pyo; Kim, Woo Sik

    2006-01-01

    A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure for API X65 pipes with gouge defects

  15. Bases of regulations and analysis methods for nuclear and industrial pipes in case of seism

    International Nuclear Information System (INIS)

    Sollogoub, P.

    1986-01-01

    In a first step, after a brief presentation of individual piping system, the paper shows the regulatory requirements for the seismic analysis of hose system and their origin. Then, some points specific to the seismic analysis of piping are presented. The presentation concludes on evolutions than can be observed in this area [fr

  16. Multilayer polymer pipes failure assessment based on a fracture mechanics approach

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Zouhar, Michal; Náhlík, Luboš; Ševčík, Martin; Máša, Bohuslav

    2013-01-01

    Roč. 33, OCT (2013), s. 151-162 ISSN 1350-6307 R&D Projects: GA ČR(CZ) GAP108/12/1560 Institutional support: RVO:68081723 Keywords : Multilayer pipes * Generalised stress intensity factor * Material interface * Slow crack growth * Polyolefin pipes Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.130, year: 2013

  17. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  18. Research on the ITOC based scheduling system for ship piping production

    Science.gov (United States)

    Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro

    2010-12-01

    Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.

  19. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  20. Development and application of proposed ASME Section XI Code changes for risk-based inspection of piping

    International Nuclear Information System (INIS)

    West, R.A.

    1996-01-01

    This synopsis has been written to describe a perspective on the development and application of ASME Section XI Code changes for risk-based inspection of piping. The content is specifically related to the use of risk-based technology for Inservice Inspection (ISI) of piping and efforts made to support the ASME Research/Westinghouse Owners Group/Millstone Unit 3 approach for use of this technology. The opinions contained herein may or may not reflect those of the ASME Codes and Standards Committees responsible for these activities. In order to take such a detailed technical subject and put it into an understandable format, the author has chosen to provide an analogy to simplify what is actually taking place. Risk-based technology in the ISI of piping can be likened to the process of making and using specifically ground prescription glasses to allow for better vision. It provides a process to develop and use these uniquely ground glasses that will dynamically focus on all the locations and obstacles within a plant's piping systems that could cause that plant to trip and fall; more importantly it identifies the locations where the fall could possibly hurt someone else. In this way, Nuclear Safety is being addressed

  1. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  2. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  3. A New Method Based on Laplace Transform and Its Application to Stability of Pipe Conveying Fluid

    Directory of Open Access Journals (Sweden)

    H. B. Wen

    2017-01-01

    Full Text Available A new differential transformation method is developed in this paper and is applied for free vibration problem of pipes conveying fluid. The natural frequencies, critical flow velocities, and vibration mode functions of such pipes with several typical boundary conditions are obtained and compared with the results predicted by Galerkin method and finite element method (FEM and with other results archived. The results show that the present method is of high precision and can serve as an analytical method for the vibration of pipes conveying fluid.

  4. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  5. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  6. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  7. Generation of Cardiomyocytes in Pipe-Based Microbioreactor Under Segmented Flow

    Directory of Open Access Journals (Sweden)

    Dimitry Spitkovsky

    2016-05-01

    Full Text Available Background/Aims: Embryonic stem (ES cells have got a broad range differentiation potential. The differentiation is initiated via aggregation of non-differentiated ES cells into embryoid body (EB capable of multi-lineage development. However experimental variables present in standard differentiation techniques lead to high EB heterogeneity, affecting development into the cells of desired lineage, and do not support the process automatization and scalability. Methods: Here we present a novel pipe based microbioreactor (PBM setup based on segmented flow, designed for spatial maintenance of temperature, nutrition supply, gas supply and sterility. Results: We verified PBM feasibility for continuous process generating cardiac cells starting from single ES cell suspension followed by EB formation for up to 10 days. The ES cells used in the study were genetically modified for cardiac-specific EGFP expression allowing optical monitoring of cardiomyocytes while EBs remained within PBM for up to 10 days. Efficiency of cardiac cells formation within PBM was similar compared to a standard hanging drop based protocol. Conclusion: Our findings ensure further development of microfluidic bioreactor technology to enable robust cardiomyocytes production for needs of drug screening, tissue engineering and other applications.

  8. A risk-based approach to sanitary sewer pipe asset management.

    Science.gov (United States)

    Baah, Kelly; Dubey, Brajesh; Harvey, Richard; McBean, Edward

    2015-02-01

    Wastewater collection systems are an important component of proper management of wastewater to prevent environmental and human health implications from mismanagement of anthropogenic waste. Due to aging and inadequate asset management practices, the wastewater collection assets of many cities around the globe are in a state of rapid decline and in need of urgent attention. Risk management is a tool which can help prioritize resources to better manage and rehabilitate wastewater collection systems. In this study, a risk matrix and a weighted sum multi-criteria decision-matrix are used to assess the consequence and risk of sewer pipe failure for a mid-sized city, using ArcGIS. The methodology shows that six percent of the uninspected sewer pipe assets of the case study have a high consequence of failure while four percent of the assets have a high risk of failure and hence provide priorities for inspection. A map incorporating risk of sewer pipe failure and consequence is developed to facilitate future planning, rehabilitation and maintenance programs. The consequence of failure assessment also includes a novel failure impact factor which captures the effect of structurally defective stormwater pipes on the failure assessment. The methodology recommended in this study can serve as a basis for future planning and decision making and has the potential to be universally applied by municipal sewer pipe asset managers globally to effectively manage the sanitary sewer pipe infrastructure within their jurisdiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pipe connector

    International Nuclear Information System (INIS)

    Sullivan, T.E.; Pardini, J.A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated

  10. Numerical analysis of pulsating heat pipe based on separated flow model

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Im, Yong Bin; Bui, Ngoc Hung

    2005-01-01

    The examination on the operating mechanism of a Pulsating Heat Pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3 mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased

  11. Low-noise cooling system for PC on the base of loop heat pipes

    International Nuclear Information System (INIS)

    Pastukhov, Vladimir G.; Maydanik, Yury F.

    2007-01-01

    The problem of current importance connected with a wide use of personal computers (PC) and a rapid growth of their performance is a decrease in the noise level created at the operation of cooling system fans. One of the possible ways of solving this problem may be the creation of passive or semi-passive systems on the base of loop heat pipes (LHPs) in which the heat sink is an external radiator cooled by natural and/or forced air convection. The paper presents the results of development and tests of several variants of such systems, which are capable of sustaining an operating temperature of 72-78 deg. C on the heat source thermal interface which dissipates 100 W at an ambient temperature of 22 deg. C. It is also shown that the use of additional means of active cooling in combination with LHPs allows to increase the value of dissipated heat up to 180 W and to decrease the system thermal resistance down to 0.29 deg. C/W

  12. Risk based lifetime assessment of piping under creep-fatigue conditions

    International Nuclear Information System (INIS)

    Bielak, O.; Bina, V.; Korous, J.

    2003-01-01

    The analysis of the steam pipeline lifetime is based on: (i) technical procedures supplied by Nuclear Electric R5; (ii) random interpretation of material damage accumulation laws for creep and fatigue; (iii) a stochastic model of the creep process (creep rupture strength, deformation characteristics); (iv) probabilistic description of geometrical quantities of the steam pipeline. The probabilistic procedure results in the calculation of the crack initiation risks both for the critical localities and for the steam pipeline as a whole (its subsystems, if need be). The residual lifetime was calculated from the conditional (a posteriori) probabilities. The risks of crack initiation was calculated for different operating periods (inspection frequency), and the periods were optimised to meet (i) the minimum risk of crack initiation and (2) the operation and economy criteria. The method also involves calculation of the residual lifetime from the updated data (material properties, dimensions). In the standard service-life calculations there is no difference between the weld and BM, the justification being that the weld is exposed to axial stress caused by internal pressure, which is one half of the hoop stress. Thus, the low creep resistant properties of the weld were ignored, as well as the uneven state of stress and its redistribution. In a number of cases it is the welds that are a weak point and therefore should receive considerable attention. The probabilistic method of lifetime and reliability assessment was verified on over 29 piping systems in power and petrochemical plants

  13. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

    Science.gov (United States)

    Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.

    2015-06-01

    Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

  14. Simplified pipe gun

    International Nuclear Information System (INIS)

    Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-01-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar

  15. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  16. Application of BP neural network for LRAD-based alpha contamination monitoring inside pipes

    International Nuclear Information System (INIS)

    Wu Xuemei; Li Zhe; Zhang Jinzhao; Li Pingchuan; Su Jilong; Tuo Xianguo; Liu Mingzhe

    2012-01-01

    Factors of airspeed, flux, activity, source position, pipe length and pipe diameter affect nonlinearly source activity readout of the Long Range Alpha Detection (LRAD). In this paper, multiparameter influence experiment is carried out using variable-control method, aiming at studying relationships between the readout and each of the factors. The back propagation (BP) neural network model is established to overcome the nonlinear effects of the factors on the readout, with the readout and the multiparameters being the input, and the source activity being the output. Experiment data of 948 groups are used for BP neural network forecasting, with an average relative error of 3.4218×10 -4 . And in a 100-group test, an average relative error of 2.217×10 -2 is obtained. It shows that with this method source radioactivity in pipes can be simulated. (authors)

  17. Team collaborative innovation management based on primary pipes automatic welding project

    International Nuclear Information System (INIS)

    Li Jing; Wang Dong; Zhang Ke

    2012-01-01

    The welding quality of primary pipe directly affects the safe operation of nuclear power plants. Primary pipe automatic welding, first of its kind in China, is a complex systematic project involving many facets, such as design, manufacturing, material, and on-site construction. A R and D team was formed by China Guangdong Nuclear Power Engineering Co., Ltd. (CNPEC) together with other domestic nuclear power design institutes, and manufacturing and construction enterprises. According to the characteristics of nuclear power plant construction, and adopting team collaborative innovation management mode, through project co-ordination, resources allocation and building production, education and research collaborative innovation platform, CNPEC successfully developed the primary pipe automatic welding technique which has been widely applied to the construction of nuclear power plant, creating considerable economic benefits. (authors)

  18. Research on the Lift-off Effect of Receiving Longitudinal Mode Guided Waves in Pipes Based on the Villari Effect

    Directory of Open Access Journals (Sweden)

    Jiang Xu

    2016-09-01

    Full Text Available The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to the electromagnetic energy. In the existing magnetomechanical models, the change of the magnetic field in the air gap was ignored since the permeability of the rod is much greater than that of air. The lift-off distance of the receiving coil will not affect the receiving signals based on these models. However, the experimental phenomenon is in contradiction with these models. To solve the contradiction, the lift-off effect of receiving the longitudinal mode guided waves in pipes is investigated based on the Villari effect. A finite element model of receiving longitudinal guided waves in pipes is obtained based on the Villari effect, which takes into account the magnetic field in the pipe wall and the air zone at the same time. The relation between the amplitude of the induced signals and the radius (lift-off distance of the receiving coil is obtained, which is verified by experiment. The coupling efficiency of the receiver is a monotonic decline with the lift-off distance increasing. The decay rate of the low frequency wave is slower than the high frequency wave. Additionally, the results show that the rate of change of the magnetic flux in the air zone and in the pipe wall is the same order of magnitude, but opposite. However, the experimental results show that the error of the model in the large lift-off distance is obvious due to the diffusion of the magnetic field in the air, especially for the high frequency guided waves.

  19. Development of non-destructive diagnosis technology for pipe internal in thermal power plants based on robotics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung

    2011-11-15

    The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.

  20. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components

    International Nuclear Information System (INIS)

    Dobre, Tanase; Parvulescu, Oana Cristina; Stoica, Anicuta; Iavorschi, Gustav

    2010-01-01

    The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.

  1. A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material

    International Nuclear Information System (INIS)

    Cataldo, A; Cannazza, G; De Benedetto, E; Giaquinto, N

    2012-01-01

    In this paper, a time domain reflectometry-based system for locating leaks in underground pipes (made of any material) is presented. The proposed system simply requires that a biwire should be attached to the pipe (all along its length), at the time of installation. Basically, the biwire acts as a permanent sensing element that can be connected to the measurement instrument whenever it is necessary to check for the presence of leaks. It is worth emphasizing that such a simple and low-cost system could tremendously facilitate leak detection not only in water distribution systems but also in wastewater/sewer pipelines. The proposed system was validated through measurements on a newly installed pilot plant, in which a leak was intentionally provoked. (paper)

  2. IPM Pipe

    Science.gov (United States)

    Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login

  3. The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes

    International Nuclear Information System (INIS)

    Khairnasov, S.M.; Zaripov, V.K.; Passamakin, B.M. et al.

    2013-01-01

    This paper presents the results of studies into the heat-engineering characteristics of a flat heat solar collector based on aluminum heat pipes that is designed to be used in building facades. The principle of work and the structure of the solar collector are considered; the results of its comparison with a traditional flat solar collector are presented. The studies were performed at a heat carrier temperature range of +10 - +30 degree C and at a solar heat flow density of 400 - 1000 W/m 2 . The obtained experimental heat-engineering characteristics of the collector based on heat pipes show that they are at a level of traditional flow solar collectors; for example, its efficiency is 0.65 - 0.73. Meanwhile, the hydraulic resistance of the structure with heat pipes is by a factor of 2 - 2.4 smaller and ensures a high level of scalability, reliability, and maintainability, which is important when using it as an element of facade constructions of solar heat systems. (author)

  4. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  5. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  6. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  7. Technical report on the fatigue crack Growth Benchmark based on CEA pipe bending tests

    International Nuclear Information System (INIS)

    2001-07-01

    In order to improve the estimation methods of surface crack propagation through the thickness of components, CEA has proposed a benchmark to members of the IAGE WG, sub-group on Integrity of metal components and structures. The subject is a simple configuration of a pipe containing an axisymmetric notch and submitted to a cyclic bending load. An experimental data-set form CEA was used to validate three issues in the topic of Leak Before Break. - Crack initiation, - Crack propagation through the thickness, - Crack penetration. All material and geometrical data which are necessary for the simulation were given in the proposal, including experimental results. Due to the peculiar complexity of the problem, it was decided to focus the work on methodologies comparison so as to allow participants to tune up parameters and adjust their models and tools. This report presents all estimations performed by the participants and collected by CEA. They are compared to the experimental results. An analysis of the used procedures is also proposed. This, associated with the study of the accuracy of different methodologies, leads to comments and recommendations on the analysis of fatigue crack growth. The participation in the first step was important: nine participants have proposed analyses, sometimes parametric analysis to estimate crack growth. Results sorted out three estimation methods groups that give results in accordance with experimental ones (these three groups are based on a strain range evaluation and the fatigue curve of the material): - The use of an elastic stress at the notch tip and a fatigue notch concentration factor to determine the strain range. - The use of a KI (or elastic F.E. calculation) and a Neuber rule for the estimation of the strain range at a characteristic distance from the crack tip. - The direct calculation of the strain range at the characteristic distance by an elastic plastic F.E. calculation. Only 4 participants have proposed an estimate of the

  8. Potential change in flaw geometry of an initially shallow finite-length surface flaw during a pressurized-thermal-shock transient

    International Nuclear Information System (INIS)

    Shum, D.K.; Bryson, J.W.; Merkle, J.G.

    1993-09-01

    This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions

  9. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  10. Surface flaw detection by means of infrared radiometer. Part 3. ; Detection limit influenced by an environment temperature. Sekigai hoshakei ni yoru hyomen kekkan no kenshutsu. 3. ; Shuhen ondo ni yoru kenshutsu genkai no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, U; Kaminaga, F [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Ishii, T [Ibaraki University, Ibaraki (Japan); Eto, M; Ooka, N; Kanaya, K; Eto, Y [Japan Atomic Energy Research Institute, Ibaraki (Japan); Kurokawa, T [Nippon Denki Sanei Ltd. Co., Tokyo (Japan)

    1990-12-20

    Measuring a radiation energy distribution around surface flaw by means of a infrared rediometer can detect fine flaw on the surface. The characteristics were examined using a light quantum type radiation thermometer consisted of Hg-Cd-Te as a sensor. A surrounding wall consisted of a black body wall was installed between the sensor and test piece, and by thus maintaining the surrounding wall temperature constant, reflection energy from the test piece surface was maintained constant for stabilized measurement. The measurement values are the sum of energies from emission and reflection, or the so-called radiosity values. To avoid effects from the reflection to reduce variance in the emissivity, it is necessary to keep the surrounding wall temperatures lower by more than 20 {degree}C than the test piece radiation temperatures. Emissivity can be calculated from the rediositivity (sum of the radiation and the reflection), the surrounding wall temperatures, and the test piece radiation temperatures. If the surface is rough, variance in the measurements increases. The larger the difference in the test piece and surrounding wall temperatures, the thermo image of the defects on the test piece surface becomes more distinctive, thus the detection limit can be enhanced. 7 refs., 13 figs.

  11. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  12. Pipe support program at Pickering

    International Nuclear Information System (INIS)

    Sahazizian, L.A.; Jazic, Z.

    1997-01-01

    This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)

  13. Design and Development of Vision Based Blockage Clearance Robot for Sewer Pipes

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Nesaian

    2012-03-01

    Full Text Available Robotic technology is one of the advanced technologies, which is capable of completing tasks at situations where humans are unable to reach, see or survive. The underground sewer pipelines are the major tools for the transportation of effluent water. A lot of troubles caused by blockage in sewer pipe will lead to overflow of effluent water, sanitation problems. So robotic vehicle that is capable of traveling at underneath effluent water determining blockage using ultrasonic sensors and clearing by means of drilling mechanism is done. In addition to that wireless camera is fixed which acts as a robot vision by which we can monitor video and capture images using MATLAB tool. Thus in this project a prototype model of underground sewer pipe blockage clearance robot with drilling type will be developed

  14. A low cost and pipe conformable microwave-based water-cut sensor

    KAUST Repository

    Karimi, Muhammad Akram

    2016-08-15

    Efficient oil production and refining processes require the precise measurement of water content in oil (i.e., water-cut [WC]) which is extracted during oil production as a by-product. Traditional laboratory water fraction measurements are precise but incapable of providing real-time information, while recently reported inline WC measurements are either incapable of sensing the full WC range (0-100%), restricted to a limited selection of pipe sizes, bulky, intrusive or extremely expensive. This work presents a novel planar microwave sensor for entirely non-intrusive in situ WC sensing over the full range of operation. Its planar configuration has enabled the direct implementation of this sensor on the pipe surface using two low cost methods i.e. copper tape and 3D printed mask. The innovative ground plane design makes this WC sensor usable for the wide range of pipe sizes present in the oil industry. The viability of this sensor has been confirmed through EM simulations as well as through characterization of two types of prototype. The proposed design offers very fine resolution due to its wide sensing range (>110%) in the frequency band of 90-190MHz and repeatability of 0.1%.

  15. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  16. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  17. Effect of reference loads on fracture mechanics analysis of surface cracked pipe based on reference stress method

    International Nuclear Information System (INIS)

    Shim, Do Jun; Son, Beom Goo; Kim, Young Jin; Kim, Yun Jae

    2004-01-01

    To investigate relevance of the definition of the reference stress to estimate J and C * for surface crack problems, this paper compares FE J and C * results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (I) the local limit load, (II) the global limit load, (III) the global limit load determined from the FE limit analysis, and (IV) the optimised reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and C * . Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and C * . The use of the FE global limit load gives overall non-conservative estimates of J and C * . The reference stress based on the optimised reference load gives overall accurate estimates of J and C * , compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given

  18. South African performance based standards (PBS) vehicle to transport steel pipes

    CSIR Research Space (South Africa)

    Dessein, T

    2010-03-01

    Full Text Available measures the vehicle?s rollover stability. Rearward Amplification (RA) ? Measures the degree to which the lateral accelerations experienced by trailing units are amplified in comparison to that of the towing unit in a high speed evasive single lane...-speed 90? turn high-speed travel along a 1.0km long straight road with uneven road surface a pulse-steer test HVTT11: A South African PBS Vehicle to Transport Pipes 10 a constant radius turn at slowly increasing speed an evasive lane change...

  19. Air injection evaluation in open steam discharge pipes based on ejector equipment theory

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Tenescu, M.

    2005-01-01

    The paper starts from the finding that the calculation method proposed by ANSI B31.1 for open steam discharge pipes (normative 'ANSI/ASMF B31.1-1980 appendix II Non-Mandatory rules for the design of safety valve installation') shows an air injection in steam system without making a quantitative evaluation of this process of air injection in the exhaust steam. For this it is proposed an assimilation of process with an ejection process in which either steam or air is the ejected fluid. The reason of using opened exhaust systems instead of closed exhaust systems is the fact that expansions and especially shock load from discharge valves and especially in exhaust elbow, are not conducted over the pipe system (ventilation tube). In order to estimate the quantity of air flow which enters through the ejection effect the present paper makes use of gas-gas ejectors. The interest for optimal operating of the system is that the air mixture have a value low in comparison with steam flow (i.e. 2-3% or upmost 5-7%). These percents of mixture lead to properly choosing of the ratio of the two pipe diameters (ventilation tube D/ exhaust elbow d). The results show that optimum ratio is between D/d = 1.10 to 1.15 and in extreme cases 1.20. A lower value of ratio is not acceptable because the pipes come in direct contact when expansion and/or hydraulic hammer occur and stresses from exhaust elbow of safety valve are propagated towards ventilation tube. A higher value of the ratio D/d leads to great air injection in ventilation tube and so to an unjustified large diameter of ventilation tube. It must be mention that the optimal ratio is obtained at sub critical flow of ejected air with Mach number lower then unity, at a static pressure between 0.6 to 1.0 bar in mixture zone of the two fluids. (authors)

  20. Air injection evaluation in open steam discharge pipes based on ejector equipment theory

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Tenescu, M.

    2005-01-01

    Full text: The paper starts from the finding that the calculation method proposed by ANSI B31.1 for open steam discharge pipes (normative 'ANSI/ASMF B31.1-1980 appendix II Non-Mandatory rules for the design of safety valve installation') shows an air injection in steam system without making a quantitative evaluation of this process of air injection in the exhaust steam. For this it is proposed an assimilation of process with an ejection process in which either steam or air is the ejected fluid. The reason of using opened exhaust systems instead of closed exhaust systems is the fact that expansions and especially shock load from discharge valves and especially in exhaust elbow, are not conducted over the pipe system (ventilation tube). In order to estimate the quantity of air flow which enters through the ejection effect the present paper makes use of gas-gas ejectors. The interest for optimal operating of the system is that the air mixture have a value low in comparison with steam flow (i.e. 2-3% or upmost 5-7%). These percents of mixture lead to properly choosing of the ratio of the two pipe diameters (ventilation tube D/ exhaust elbow d). The results show that optimum ratio is between D/d = 1.10 to 1.15 and in extreme cases 1.20. A lower value of ratio is not acceptable because the pipes come in direct contact when expansion and/or hydraulic hammer occur and stresses from exhaust elbow of safety valve are propagated towards ventilation tube. A higher value of the ratio D/d leads to great air injection in ventilation tube and so to an unjustified large diameter of ventilation tube. It must be mention that the optimal ratio is obtained at sub critical flow of ejected air with Mach number lower then unity, at a static pressure between 0.6 to 1.0 bar in mixture zone of the two fluids

  1. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  2. Incrustations detection system for petroleum transport pipes based on gamma transmission

    International Nuclear Information System (INIS)

    Soares, Milton

    2014-01-01

    The scale formed over the inner walls of the ducts conveying the extracted product from offshore oil wheels is a major cause of losses to companies and in some cases even the safety is affected. The consequence of such fouling is the duct's square section reduction that causes extraction flow decrease and can also cause an increase in pressure inside the wheel, with serious consequences for safety. The objective of this work is to propose a mobile inspection system, which can be transported by underwater robots to inspect the lines of ducts in the outputs of the oil wheels. The measurement method to be adopted will be the gamma rays' beam attenuation at a predetermined position of the pipe. This transmission value compared to a clear pipe reading will show if the thickness of the inlay is larger or smaller than an assumed thickness. To carry out the measurements it was designed and built an electronic system comprising power supply, amplifier, single channel analyzer and a counter timer that was connected to a CsI scintillator detector coupled to a PIN photodiode. The system was set up to perform measurements with constant accuracy of ±1%. Tests during the study demonstrated the effectiveness of the proposed method with the obtained results with a carbon steel duct section of 270 mm diameter, removed from the field, with asymmetric BaSO4 inlay. (author)

  3. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  4. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  5. A Time-Variant Reliability Model for Copper Bending Pipe under Seawater-Active Corrosion Based on the Stochastic Degradation Process

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2018-03-01

    Full Text Available In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion.

  6. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste

  7. Evaluation of piping reliability and failure data for use in risk-based inspections of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, V. de; Soares, W.A.; Costa, A.C.L. da; Rabello, E.G.; Marques, R.O., E-mail: vasconv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    During operation of industrial facilities, components and systems can deteriorate over time, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) involves inspection planning based on information about risks, through assessing of probability and consequence of failures. In-service inspections are used in nuclear power plants, in order to ensure reliable and safe operation. Traditional deterministic inspection approaches investigate generic degradation mechanisms on all systems. However, operating experience indicates that degradation occurs where there are favorable conditions for developing a specific mechanism. Inspections should be prioritized at these places. Risk-Informed In-service Inspections (RI-ISI) are types of RBI that use Probabilistic Safety Assessment results, increasing reliability and plant safety, and reducing radiation exposure. These assessments use both available generic reliability and failure data, as well as plant specific information. This paper proposes a method for evaluating piping reliability and failure data important for RI-ISI programs, as well as the techniques involved. (author)

  8. Evaluation of piping reliability and failure data for use in risk-based inspections of nuclear power plants

    International Nuclear Information System (INIS)

    Vasconcelos, V. de; Soares, W.A.; Costa, A.C.L. da; Rabello, E.G.; Marques, R.O.

    2016-01-01

    During operation of industrial facilities, components and systems can deteriorate over time, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) involves inspection planning based on information about risks, through assessing of probability and consequence of failures. In-service inspections are used in nuclear power plants, in order to ensure reliable and safe operation. Traditional deterministic inspection approaches investigate generic degradation mechanisms on all systems. However, operating experience indicates that degradation occurs where there are favorable conditions for developing a specific mechanism. Inspections should be prioritized at these places. Risk-Informed In-service Inspections (RI-ISI) are types of RBI that use Probabilistic Safety Assessment results, increasing reliability and plant safety, and reducing radiation exposure. These assessments use both available generic reliability and failure data, as well as plant specific information. This paper proposes a method for evaluating piping reliability and failure data important for RI-ISI programs, as well as the techniques involved. (author)

  9. Method of vertically and horizontally cutting steel pipe piles and removing them based on the development of a steel pipe pile vertically cutting machine; Kokanko tatehoko setsudanki no kaihatsu ni yoru kochi chubu no juo setsudan tekkyo koho

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takeshita, A.; Kobayashi, K.

    1997-07-25

    A machine for vertically cutting steel pipe piles has newly been developed for the purpose of removing the end portions the shore protection steel pipe piles which interfere with the shield tunneling work in the Ohokagawa River tunneling section on the Minato Mirai 21 Line. This paper reports the development of the machine for vertically cutting steel pipe piles, and a method of cutting the shield tunneling work hindering piles under the ground by using this machine. The obstacle-constituting portions of the piles are removed by destroying the copings, excavating the interior of the piles to make the same hollow so that a cutting machine can be inserted, and cutting the piles vertically and horizontally. The basic structure of the cutting machine comprises a lower cutting unit for making forward and backward and upward and downward movements of a cutter, and an upper movable unit for controlling the rotation of the cutting unit. The cutting of a pile is done by projecting the cutter by a cylinder the base of which is joined to a cutter driver, and then moving the rotating cutter upward. The amounts of movements of these parts are detected by sensors, and an arbitrary range of the underground portion of a pile can be cut by a remote control operation. 10 figs., 1 tab.

  10. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  11. Reliability-based load and resistance factor design for piping: an exploratory case study

    International Nuclear Information System (INIS)

    Gupta, Abhinav; Choi, Byounghoan

    2003-01-01

    This paper presents an exploratory case study on the application of Load and Resistance Factor Design (LRFD) approach to the Section III of ASME Boiler and Pressure Vessel code for piping design. The failure criterion for defining the performance function is considered as plastic instability. Presently used design equation is calibrated by evaluating the minimum reliability levels associated with it. If the target reliability in the LRFD approach is same as that evaluated for the presently used design equation, it is shown that the total safety factors for the two design equations are identical. It is observed that the load and resistance factors are not dependent upon the diameter to thickness ratio. A sensitivity analysis is also conducted to study the variations in the load and resistance factors due to changes in (a) coefficients of variation for pressure, moment, and ultimate stress, (b) ratio of mean design pressure to mean design moment, (c) distribution types used for characterizing the random variables, and (d) statistical correlation between random variables. It is observed that characterization of random variables by log-normal distribution is reasonable. Consideration of statistical correlation between the ultimate stress and section modulus gives higher values of the load factor for pressure but lower value for the moment than the corresponding values obtained by considering the variables to be uncorrelated. Since the effect of statistical correlation on the load and resistance factors is relatively insignificant for target reliability values of practical interest, the effect of correlated variables may be neglected

  12. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  13. Technical considerations for flexible piping design in nuclear power plants

    International Nuclear Information System (INIS)

    Lu, S.C.; Chou, C.K.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. A couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design were investigated. It was concluded that these changes substantially reduce calculated piping responses and allows piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements

  14. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongbing, E-mail: liuhb07@mails.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Du, Dong, E-mail: dudong@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Huang, An; Chang, Baohua; Han, Zandong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); He, Ayada [Shanghai Electric Power Generation Group Shanghai Generator Works, Shanghai 200240 (China)

    2016-08-15

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  15. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Huang, An; Chang, Baohua; Han, Zandong; He, Ayada

    2016-01-01

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  16. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  17. Water quality implications of culvert repair options : vinyl ester based and ultraviolet cured-in-place pipe liners.

    Science.gov (United States)

    2012-11-01

    Specifications of the Virginia Department of Transportation (VDOT) allow for the use of several trenchless pipe or : culvert repair technologies whereby existing underground culverts are repaired in place rather than by the use of the conventio...

  18. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  19. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models

    Science.gov (United States)

    Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.

    2018-05-01

    The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.

  20. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  1. Piping reliability model development, validation and its applications to light water reactor piping

    International Nuclear Information System (INIS)

    Woo, H.H.

    1983-01-01

    A brief description is provided of a three-year effort undertaken by the Lawrence Livermore National Laboratory for the piping reliability project. The ultimate goal of this project is to provide guidance for nuclear piping design so that high-reliability piping systems can be built. Based on the results studied so far, it is concluded that the reliability approach can undoubtedly help in understanding not only how to assess and improve the safety of the piping systems but also how to design more reliable piping systems

  2. Contributions to the initial development of a microelectromechanical loop heat pipe, which is based on coherent porous silicon

    Science.gov (United States)

    Cytrynowicz, Debra G.

    The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research

  3. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  4. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  5. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  6. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  7. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  8. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  9. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  10. Analysis of pipe stress using CAESAR II code

    International Nuclear Information System (INIS)

    Sitandung, Y.B.; Bandriyana, B.

    2002-01-01

    Analysis of this piping stress with the purpose of knowing stress distribution piping system in order to determine pipe supports configuration. As an example of analysis, Gas Exchanger to Warm Separator Line was chosen with, input data was firstly prepared in a document, i.e. piping analysis specification that its content named as pipe characteristics, material properties, operation conditions, guide equipment's and so on. Analysis result such as stress, load, displacement and the use support type were verified based on requirements in the code, standard, and regularities were suitable with piping system condition analyzed. As the proof that piping system is in safety condition, it can be indicated from analysis results (actual loads) which still under allowable load. From the analysis steps that have been done CAESAR II code fulfill requirements to be used as a tool of piping stress analysis as well as nuclear and non nuclear installation piping system

  11. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection.

    Science.gov (United States)

    Rostami, Javad; Tse, Peter W T; Fang, Zhou

    2017-06-06

    Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for

  12. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection

    Directory of Open Access Journals (Sweden)

    Javad Rostami

    2017-06-01

    Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the

  13. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    International Nuclear Information System (INIS)

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-01-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies

  14. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  15. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  16. PCA-based ANN approach to leak classification in the main pipes of VVER-1000

    International Nuclear Information System (INIS)

    Hadad, Kamal; Jabbari, Masoud; Tabadar, Z.; Hashemi-Tilehnoee, Mehdi

    2012-01-01

    This paper presents a neural network based fault diagnosing approach which allows dynamic crack and leaks fault identification. The method utilizes the Principal Component Analysis (PCA) technique to reduce the problem dimension. Such a dimension reduction approach leads to faster diagnosing and allows a better graphic presentation of the results. To show the effectiveness of the proposed approach, two methodologies are used to train the neural network (NN). At first, a training matrix composed of 14 variables is used to train a Multilayer Perceptron neural network (MLP) with Resilient Backpropagation (RBP) algorithm. Employing the proposed method, a more accurate and simpler network is designed where the input size is reduced from 14 to 6 variables for training the NN. In short, the application of PCA highly reduces the network topology and allows employing more efficient training algorithms. The accuracy, generalization ability, and reliability of the designed networks are verified using 10 simulated events data from a VVER-1000 simulation using DINAMIKA-97 code. Noise is added to the data to evaluate the robustness of the method and the method again shows to be effective and powerful. (orig.)

  17. Detection of surface cracking in steel pipes based on vibration data using a multi-class support vector machine classifier

    Science.gov (United States)

    Mustapha, S.; Braytee, A.; Ye, L.

    2017-04-01

    In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.

  18. Origin and evolution of Sariñena Lake (central Ebro Basin): A piping-based model

    Science.gov (United States)

    Castañeda, Carmen; Javier Gracia, F.; Rodríguez-Ochoa, Rafael; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; Desir, Gloria

    2017-08-01

    The origin and nature of the numerous lakes in the central Ebro Basin have been interpreted according to the prevailing arid or semiarid conditions, the easily-eroded materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic substratum, involving important dissolution (karstic) and/or aeolian deflation. However, the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown since the typical lake-generating processes in the region are not applicable. This work provides significant clues to the genesis and evolution of Sariñena Lake in a regional context. The combination of geomorphological mapping and high resolution LiDAR data together with sedimentological observations, the characterisation of soils and sediments around the lake, and the application of high-resolution geophysical techniques suggest that piping is the major genetic process driving the evolution of the Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the most important erosive process in the region, generating significant collapse and surface lowering. Sariñena Lake is located within a deep endorheic depression excavated from Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-originated palustrine area had developed, the progressive lowering of the regional water table linked to regional fluvial incision favoured the establishment of a hydrological gradient high enough to trigger piping processes within the claystones and siltstones underlying the original palustrine area. The Quaternary evolution of the Sariñena lacustrine basin was then controlled by successive water table fluctuations, linked to different phases of incision and alluvial deposition in the surrounding fluvial systems. All the evidence supporting a piping-related origin for this lake, together with examples of lakes generated by similar processes in different contexts, is used to propose a new genetic type of

  19. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)

  20. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  1. In service inspection of pipes based on risk methods; Inspeccion en servicio de tuberias basada en metodos de riesgo

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza G, G.; Viais J, J.; Carmona C, M. [ININ, Centro Nuclear ' Dr. Nabor Carrillo Flores' , Carretera Mexico Toluca, S/N. La Marquesa, Ocoyoacac, Mexico, C. P. 52750 (Mexico)]. e-mail: gmg@nuclear.inin.mx

    2006-07-01

    The politics of the Nuclear Regulatory Commission (by its initials in English NRC) of the United States of America on the use of the Probabilistic Safety Analysis (PSA) in activities of nuclear regulation it foments the use of this analysis technique to improve the decisions making, to reduce the unnecessary work in maintenance aspects, inspection and tests and to improve the regulatory efficiency. The inspection programs in service (ISI by its initials in English) developed by the American Society of Mechanical Engineers (by its initials in English ASME) it has been the one primary mechanism to prove the mechanical equipment in plants of nuclear energy, these programs indeed have been carried out in plants of nuclear energy by more of two decades. Their purpose is to identify the conditions, such as indications of cracks that are precursory of flights and ruptures which violate the integrity principles of the pressure frontier. The inspection in service activities include ultrasonic tests, surface tests and penetrating liquids test, also activities that include the scaffolds construction, removal of insulations and welding polishing. The inspections in service every 18 months during the times outside of service are executed. One of the objectives is to lower the costs of the inspections during the times outside of service and to reduce the exposure to the radiation by part of the personnel during these times out for inspections, while it is increased or it maintains the personnel's safety and the reliability. As part of the methodology a pipe segment is selected for which a fault in any point has the same consequences, being calculated the fault probability of the tube using the dimensions of the segment. In this work the inspection in service methodology is applied based on risk to an aspersion system of low pressure of the Laguna Verde Nucleo electric Central. For this system a reduction in the number of welding to inspect of 103 to only 15 is obtained

  2. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  3. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  4. O Programa Inovativo da Pequena Empresa (PIPE da FAPESP como indutor do desenvolvimento de micro e pequenas empresas de base tecnológica

    Directory of Open Access Journals (Sweden)

    Victor Wolowski Kenski

    2017-09-01

    Full Text Available Resumo Este texto analisa a relevância do apoio ao desenvolvimento de micro e pequenas empresas de base tecnológica na forma de um “pacote” de recursos e capacidades estratégicos incorporados em um curto espaço de tempo, por meio do programa PIPE da FAPESP. A abordagem adotada foi a da Visão Baseada em Recursos (VBR dado o foco do estudo. Adotou-se a metodologia qualitativa com a aplicação da análise de conteúdo. Os dados foram levantados com base em entrevistas com um roteiro estruturado com perguntas abertas junto aos sócios/gestores de 10 empresas de base tecnológica divididas em dois grupos, um deles constituído por empresas beneficiadas pelo PIPE e o outro por aquelas que utilizaram recursos próprios. A intenção foi comparar a sua evolução. Os resultados do estudo indicaram que o apoio do PIPE foi decisivo para favorecer o desenvolvimento das empresas beneficiadas por ele. Um dos ganhos relevantes foi o encurtamento do tempo do caminho percorrido para a disponibilização dos recursos complementares, como decorrência da combinação produtiva dos recursos e capacidades pré-existentes nas empresas com aqueles obtidos por meio do programa. Uma constatação importante foi que, para as empresas terem crescido no mercado de base tecnológica, independentemente da ajuda do PIPE, foi decisivo possuírem inicialmente uma tecnologia diferenciada, os sócios/gestores terem uma visão clara dos seus mercados e voltados à criação de valor para os seus produtos e serviços. A limitação da pesquisa está na seleção de pequenas empresas de base tecnológica com produtos muito distintos dificultando comparações sobre sucessos.

  5. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  6. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  7. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  8. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  9. Riser pipe elevator

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.; Jimenez, A.F.

    1987-09-08

    This patent describes a method for storing and retrieving a riser pipe, comprising the steps of: providing an upright annular magazine comprised of an inside annular wall and an outside annular wall, the magazine having an open top; storing the riser pipe in a substantially vertically oriented position within the annular magazine; and moving the riser pipe upwardly through the open top of the annular magazine at an angle to the vertical along at least a portion of the length of the riser pipe.

  10. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  11. Piping equipment; Materiel petrole

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)

  12. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  13. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su

    2015-01-01

    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  14. Rotating optical geometry sensor for inner pipe-surface reconstruction

    Science.gov (United States)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  15. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  16. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  17. These Pipes Are "Happening"

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  18. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  19. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  20. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  1. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  2. Seismic analysis of piping with nonlinear supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Huang, S.N.; Severud, L.K.

    1980-01-01

    The modeling and results of nonlinear time-history seismic analyses for three sizes of pipelines restrained by mechanical snubbes are presented. Numerous parametric analyses were conducted to obtain sensitivity information which identifies relative importance of the model and analysis ingredients. Special considerations for modeling the pipe clamps and the mechanical snubbers based on experimental characterization data are discussed. Comparisions are also given of seismic responses, loads and pipe stresses predicted by standard response spectra methods and the nonlinear time-history methods

  3. A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds: Part II – A shell theory based implementation

    International Nuclear Information System (INIS)

    Song, Shaopin; Dong, Pingsha; Pei, Xianjun

    2015-01-01

    With the two key controlling parameters identified and their effectiveness demonstrated in Part I of this study series for constructing a continuous residual stress profile at weld region, a classical shell theory based model is proposed in this paper (Part II) for describing through-thickness residual stress distributions of both axial and hoop components at any axial location beyond weld region. The shell theory based model is analytically constructed through an assembly of two parts: One represents weld region and the other represents the remaining component section away from weld. The final assembly of the two parts leads to a closed form solution to both axial and hoop residual stress components as a function of axial distance from weld toe position. The effectiveness of the full-field residual stress estimation scheme is demonstrated by comparing with a series of finite element modeling results over a broad range of pipe weld geometries and welding conditions. The present development should provide a consistent and effective means for estimating through-thickness residual stress profile as a continuous function of pipe geometry, welding heat input, as well as material characteristics. - Highlights: • A shell theory based two-part assembly model is developed for generalizing residual stress distributions. • A full-field estimation of through-thickness residual stress profiles can be achieved. • The proposed estimation scheme offers both consistency and mechanics basis in residual stress profile generation. • An estimation scheme for welding-induced plastic zone size is proposed and validated. • The shell theory based estimation scheme can also provide a reasonable estimate on distortion in radial direction

  4. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  5. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  6. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  7. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  8. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  9. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed; Alsolami, Fawaz; Chikalov, Igor; Algharbi, Salem; Aboudi, Faisal; Khudiri, Musab

    2016-01-01

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  10. MORPHOTECTONIC ANALYSIS AT TANIMBAR TRENCH AS A BASE FOR GAS PIPE LAYING BETWEEN MASELA BLOCK AND SELARU ISLAND, MOLUCCAS PROVINCE

    Directory of Open Access Journals (Sweden)

    Ediar Usman

    2017-07-01

    Full Text Available The study area is located at Masela Block and its surrounding, Moluccas Province. Result of the deep sea measurement and global data conversion provide description of three dimensions around the track lines area. This result is overlay with seismic data, that can give morphotectonic implication between Asian and Australian Plates. Track lines of MGI-2010-MSL-1, 2 and 3 show that the profile of the sea floor, form the high morphology which represents the volcanic islands. It forms west – east direction of fold-thrust belt non-volcanic outer Banda arc. The southern part trench of the Australian Continent reflected the platform system and undulation morphology. The sea floor profile ( VE 1:5 show that the slope profile ranges between 0º and 8º. Furthermore, the morphology of the sea floor can be classified as a relatively flat slope. Due to this condition, this area may be used for gas pipe laying along 146 km distance, between the Well of Abadi 1 at the Masela Block and Selaru Island at south Tanimbar Islands.

  11. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  12. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  13. Analysis of a piping system for requalification

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Tang, Yu.

    1992-01-01

    This paper discusses the global stress analysis required for the seismic/structural requalification of a reactor secondary piping system in which minor defects (flaws) were discovered during a detailed inspection. The flaws in question consisted of weld imperfections. Specifically, it was necessary to establish that the stresses at the flawed sections did not exceed the allowables and that the fatigue life remained within acceptable limits. At the same time the piping system had to be qualified for higher earthquake loads than those used in the original design. To accomplish these objectives the nominal stress distributions in the piping system under the various loads (dead load, thermal load, wind load and seismic load) were determined. First a best estimate finite element model was developed and calculations were performed using the piping analysis modules of the ANSYS Computer Code. Parameter studies were then performed to assess the effect of physically reasonable variations in material, structural, and boundary condition characteristics. The nominal stresses and forces so determined, provided input for more detailed analyses of the flawed sections. Based on the reevaluation, the piping flaws were judged to be benign, i.e., the piping safety margins were acceptable inspite of the increased seismic demand. 13 refs

  14. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  15. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  16. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  17. Nonlinear dynamic analysis of high energy line pipe whip

    International Nuclear Information System (INIS)

    Hsu, L.C.; Kuo, A.Y.; Tang, H.T.

    1983-01-01

    To facilitate potential cost savings in pipe whip protection design, TVA conducted a 1'' high pressure line break test to investigate the pipe whip behavior. The test results are available to EPRI as a data base for a generic study on nonlinear dynamic behavior of piping systems and pipe whip phenomena. This paper describes a nonlinear dynamic analysis of the TVA high energy line tests using ABAQUS-EPGEN code. The analysis considers the effects of large deformation and high strain rate on resisting moment and energy absorption capability of the analyzed piping system. The numerical results of impact forces, impact velocities, and reaction forces at pipe supports are compared to the TVA test data. The pipe whip impact time and forces have also been calculated per the current NRC guidelines and compared. The calculated pipe support reaction forces prior to impact have been found to be in good agreement with the TVA test data except for some peak values at the very beginning of the pipe break. These peaks are believed to be due to stress wave propagation which cannot be addressed by the ABAQUS code. Both the effects of elbow crushing and strain rate have been approximately simulated. The results are found to be important on pipe whip impact evaluation. (orig.)

  18. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  19. Objectives, priorities, reliable knowledge, and science-based management of Missouri River interior least terns and piping plovers

    Science.gov (United States)

    Sherfy, Mark; Anteau, Michael J.; Shaffer, Terry; Sovada, Marsha; Stucker, Jennifer

    2011-01-01

    Supporting recovery of federally listed interior least tern (Sternula antillarum athalassos; tern) and piping plover (Charadrius melodus; plover) populations is a desirable goal in management of the Missouri River ecosystem. Many tools are implemented in support of this goal, including habitat management, annual monitoring, directed research, and threat mitigation. Similarly, many types of data can be used to make management decisions, evaluate system responses, and prioritize research and monitoring. The ecological importance of Missouri River recovery and the conservation status of terns and plovers place a premium on efficient and effective resource use. Efficiency is improved when a single data source informs multiple high-priority decisions, whereas effectiveness is improved when decisions are informed by reliable knowledge. Seldom will a single study design be optimal for addressing all data needs, making prioritization of needs essential. Data collection motivated by well-articulated objectives and priorities has many advantages over studies in which questions and priorities are determined retrospectively. Research and monitoring for terns and plovers have generated a wealth of data that can be interpreted in a variety of ways. The validity and strength of conclusions from analyses of these data is dependent on compatibility between the study design and the question being asked. We consider issues related to collection and interpretation of biological data, and discuss their utility for enhancing the role of science in management of Missouri River terns and plovers. A team of USGS scientists at Northern Prairie Wildlife Research Center has been conducting tern and plover research on the Missouri River since 2005. The team has had many discussions about the importance of setting objectives, identifying priorities, and obtaining reliable information to answer pertinent questions about tern and plover management on this river system. The objectives of this

  20. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  1. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  2. Fatigue crack growth rate studies on pipes and pipe welds made of austenitic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Arora, Punit; Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Pukazhendhi, D.M.; Gandhi, P.; Raghava, G.

    2011-01-01

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel and carbon steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT)/Three Point Bend (TPB) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of pipes/pipe welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K RMS ) at deepest and surface points. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K RMS ) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. (author)

  3. Seismic evaluation of piping systems using screening criteria

    International Nuclear Information System (INIS)

    Campbell, R.D.; Landers, D.F.; Minichiello, J.C.; Slagis, G.C.; Antaki, G.A.

    1994-01-01

    This document may be used by a qualified review team to identify potential sources of seismically induced failure in a piping system. Failure refers to the inability of a piping system to perform its expected function following an earthquake, as defined in Table 1. The screens may be used alone or with the Seismic Qualification Utility Group -- Generic Implementation Procedure (SQUG-GIP), depending on the piping system's required function, listed in Table 1. Features of a piping system which do not the screening criteria are called outliers. Outliers must either be resolved through further evaluations, or be considered a potential source of seismically induced failure. Outlier evaluations, which do not necessarily require the qualification of a complete piping system by stress analysis, may be based on one or more of the following: simple calculations of pipe spans, search of the test or experience data, vendor data, industry practice, etc

  4. Surface flaw evaluation by vectorized eddy current testing image

    International Nuclear Information System (INIS)

    Endo, Hisashi; Takagi, Toshiyuki

    2006-01-01

    A method of eddy current testing (ECT) data mapping for surface breaking evaluation is studied. The multicoil ECT probe utilized in this paper consists of Transmit-Receive (TR) type sensors as array elements to obtain the information on crack directions. Switching two directional scans, U- and T- modes, gives two-dimensional vector mapping as ECT images. The ECT signals of the TR type sensor also give the information on crack directions from their variation displayed on the complex number plane. Extracting a complex number component of the signals makes it possible to visualize directions of numerically simulated proximate EDM slits. (author)

  5. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  6. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  7. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  8. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  9. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  10. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  11. Pipe-to-pipe impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Bampton, M C.C.; Alzheimer, J M; Friley, J R; Simonen, F A

    1985-11-01

    Existing licensing criteria express what damage shall be assumed for various pipe sizes as a consequence of a postulated break in a high energy system. The criteria are contained in Section 3.6.2 of the Standard Review Plan, and the purpose of the program described with this paper is to evaluate the impact criteria by means of a combined experimental and analytical approach. A series of tests has been completed. Evaluation of the test showed a deficiency in the range of test parameters. These deficiencies are being remedied by a second series of tests and a more powerful impact machine. A parallel analysis capability has been developed. This capability has been used to predict the damage for the first test series. The quality of predictions has been improved by tests that establish post-crush and bending relationships. Two outputs are expected from this project: data that may, or may not, necessitate changes to the criteria after appropriate value impact evaluations and an analytic capability for rapidly evaluating the potential for pipe whip damage after a postulated break. These outputs are to be contained in a value-impact document and a program final report. (orig.).

  12. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  13. Thinned pipe management program of Korean NPPs

    International Nuclear Information System (INIS)

    Lee, S.H.; Kim, T.R.; Jeon, S.C.; Hwang, K.M.

    2003-01-01

    Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle systems in Nuclear Power Plants (NPP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain stress and consequently results in leakage or rupture. In order to minimize the possibility of excessive wall thinning, Thinned Pipe Management Program (TPMP) has been set up and being implemented to all Korean NPPs. Important elements of the TPMP include the prediction of the FAC rate for each component based on model analysis, prioritization of pipe components for inspection, thickness measurement, calculation of wear and wear rate for each component. Additionally, decision making associated with replacement or continuous service for thinned pipe components and establishment of long-term strategic management plan based on diagnosis of plant condition regarding overall wall thinning also are essential part of the TPMP. From pre-service inspection data, it has been found that initial thickness is varies, which influences wear and wear rate calculations. (author)

  14. The role of heat pipes in intensified unit operations

    International Nuclear Information System (INIS)

    Reay, David; Harvey, Adam

    2013-01-01

    Heat pipes are heat transfer devices that rely, most commonly, on the evaporation and condensation of a working fluid contained within them, with passive pumping of the condensate back to the evaporator. They are sometimes referred to as ‘thermal superconductors’ because of their exceptionally high effective thermal conductivity (substantially higher than any metal). This, together with several other characteristics make them attractive to a range of intensified unit operations, particularly reactors. The majority of modern computers deploy heat pipes for cooling of the CPU. The application areas of heat pipes come within a number of broad groups, each of which describes a property of the heat pipe. The ones particularly relevant to chemical reactors are: i. Separation of heat source and sink. ii. Temperature flattening, or isothermalisation. iii. Temperature control. Chemical reactors, as a heat pipe application area, highlight the benefits of the heat pipe based on isothermalisation/temperature flattening device and on being a highly effective heat transfer unit. Temperature control, done passively, is also of relevance. Heat pipe technology offers a number of potential benefits to reactor performance and operation. The aim of increased yield of high purity, high added value chemicals means less waste and higher profitability. Other intensified unit operations, such as those employing sorption processes, can also profit from heat pipe technology. This paper describes several variants of heat pipe and the opportunities for their use in intensified plant, and will give some current examples. -- Highlights: ► Heat pipes – thermal superconductors – can lead to improved chemical reactor performance. ► Isothermalisation within a reactor vessel is an ideal application. ► The variable conductance heat pipe can control reaction temperatures within close limits. ► Heat pipes can be beneficial in intensified reactors

  15. Round dance in pipes; Runddans i roer

    Energy Technology Data Exchange (ETDEWEB)

    Steensen, Anders J.

    2004-07-01

    On the offshore production plants, oil, water, and gas are separated from the well streams. The oil is sold on the market while the gas is in part exported, in part reinjected into the wells in large quantities to sustain the pressure in the reservoirs. The water is cleaned, some is pumped to the sea and some returned to the reservoir. Although these processes may seem straightforward, they cause a great deal of worry since there are so many complex processing and pipe systems taking up space. Pipes vibrate and make noise, most often because of pressure fluctuations created by the flowing liquid and gas. Or vortices form inside the pipe that make the whole pipe drone. In the offshore activities, these phenomena can be very annoying; on the Statfjord B platform people baulked at entering the area where the produced water treatment system was standing. A new system had to be developed since existing equipment would take up too much space. In the new system, a pipe section is installed in the pipeline that makes the gas/liquid mixture spin rapidly as in a centrifuge. The gas collects along the centre of the pipe and is tapped off. The principle can also be used to separate liquid from gas. In many gas treatment systems, liquid accumulation, or carry over, is detrimental. But gas dehydrators are usually dimensioned for a minimal content of liquid in the gas. Important features of these new pipe-based separators are that they are small, remove bottlenecks in the production, and are straightforward to install. But operators who live with the problems every day are very sceptical about the new separators and should be given the opportunity to test them on land before they are installed in the field.

  16. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Lee, Bo-Young; Kim, Jae-Seong; Lee, Sang-Yul; Kim, Yeong K.

    2012-01-01

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  17. Refined pipe theory for mechanistic modeling of wood development.

    Science.gov (United States)

    Deckmyn, Gaby; Evans, Sam P; Randle, Tim J

    2006-06-01

    We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).

  18. Crack initiation through vibration fatigue of small-diameter pipes

    International Nuclear Information System (INIS)

    Comby, R.; Thebault, Y.; Papaconstantinou, T.

    2002-01-01

    Socket welds are used extensively for small bore piping connections in nuclear power plant systems. Numerous fatigue-related failures occurred in the past ten years mainly on safeguard systems and continue to occur frequently, showing that corrective actions did not take into account all aspects of the problem. Destructive examination of cracked small bore piping connections allowed a better understanding of failure mechanisms and a prediction of crack initiation site depending on nozzle fittings such as run pipe and small bore pipe thickness. A three-dimensional finite element model confirmed the conclusions of the lab examinations. For thick run pipes, it was shown that the failure tend to initiate predominantly at the socket weld toe or at the root, depending on the respective thickness of coupling and small bore pipe. Some additional studies, based on RSE-M code, are in progress in order to determine the maximum stresses location. Lessons learned through these investigations led to optimise the in-service inspection scope and to define solutions to be carried out to prevent failure of ''susceptible'' small bore pipe connections. Since July 2000, a large program is in progress to select all ''susceptible'' small bore pipes in safety-related systems and to apply corrective measures such as piping modifications or system operational modifications. (authors)

  19. Study on pipe deflection by using numerical method

    Science.gov (United States)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  20. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  1. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  2. Performance correlations for high temperature potassium heat pipes

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1987-01-01

    Potassium heat pipes designed for operation at a nominal temperature of 775K have been developed for use in a heat pipe cooled reactor design. The heat pipes operate in a gravity assist mode with a maximum required power throughput of approximately 16 kW per heat pipe. Based on a series of sub-scale experiments with 2.12 and 3.2 cm diameter heat pipes the prototypic heat pipe diameter was set at 5.7 cm with a simple knurled wall wick used in the interests of mechanical simplicity. The performance levels required for this design had been demonstrated in prior work with gutter assisted wicks and emphasis in the present work was on the attainment of similar performance with a simplified wick structure. The wick structure used in the experiment consisted of a pattern of knurled grooves in the internal wall of the heat pipe. The knurl depth required for the planned heat pipe performance was determined by scaling of wick characteristic data from the sub-scale tests. These tests indicated that the maximum performance limits of the test heat pipes did not follow normal entrainment limit predictions for textured wall gravity assist heat pipes. Test data was therefore scaled to the prototype design based on the assumption that the performance was controlled by an entrainment parameter based on the liquid flow depth in the groove structure. This correlation provided a reasonable fit to the sub-scale test data and was used in scale up of the design from the 8.0 cm 2 cross section of the largest sub-scale heat pipe to the 25.5 cm 2 cross section prototype. Correlation of the model predictions with test data from the prototype is discussed

  3. Stress analysis of piping systems and piping supports. Documentation

    International Nuclear Information System (INIS)

    Rusitschka, Erwin

    1999-01-01

    The presentation is focused on the Computer Aided Tools and Methods used by Siemens/KWU in the engineering activities for Nuclear Power Plant Design and Service. In the multi-disciplinary environment, KWU has developed specific tools to support As-Built Documentation as well as Service Activities. A special application based on Close Range Photogrammetry (PHOCAS) has been developed to support revamp planning even in a high level radiation environment. It comprises three completely inter-compatible expansion modules - Photo Catalog, Photo Database and 3D-Model - to generate objects which offer progressively more utilization and analysis options. To support the outage planning of NPP/CAD-based tools have been developed. The presentation gives also an overview of the broad range of skills and references in: Plant Layout and Design using 3D-CAD-Tools; evaluation of Earthquake Safety (Seismic Screening); Revamps in Existing Plants; Inter-disciplinary coordination of project engineering and execution fields; Consulting and Assistance; Conceptual Studies; Stress Analysis of Piping Systems and Piping Supports; Documentation; Training and Supports in CAD-Design, etc. All activities are performed to the greatest extent possible using proven data-processing tools. (author)

  4. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  5. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  6. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The present NRC guidelines for structural damping to be used in the dynamic stress analyses of nuclear power plant piping systems are generally considered to be overly conservative. As a result, plant designers have in many instances used a considerable number of seismic supports to keep stresses calculated by large scale piping computer codes below the allowable limits. In response to this problem, the NRC and EG and G Idaho are engaged in programs to evaluate piping system damping, in order to provide more realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects is included, and both short and long range goals of the program are outlined

  7. A proposal for evaluation method of crack growth due to cyclic overload for piping materials based on an elastic-plastic fracture mechanics parameter

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshihito; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng; Sugino, Hideharu

    2011-01-01

    The magnitude of Niigata-ken Chuetsu-Oki earthquake in 2007 was beyond the assumed one provided in seismic design. Therefore it becomes an important issue to evaluate the crack growth behaviors due to the cyclic overload like large earthquake. Fatigue crack growth is usually evaluated by Paris's law using the range of stress intensity factor (ΔK). However, ΔK is inappropriate in a loading condition beyond small scale yielding. In this study, the crack growth behaviors for piping materials were investigated based on an elastic-plastic fracture mechanics parameter, J-integral. It was indicated that the crack growth due to the cyclic overload beyond small scale yielding could be the sum of fatigue and ductile crack growth. The retardation effect of excessive loading on the crack growth was observed after the loading. The modified Wheeler model using J-integral has been proposed for the prediction of retardation effect. Finally, an evaluation method for crack growth behaviors due to the cyclic overload is suggested. (author)

  8. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  9. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The NRC and EG and G Idaho are engaged in programs to evaluate piping-system damping, in order to provide realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping-system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping-system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects are included, and both short-and long-range goals of the program are outlined

  10. Current results for the NRC's short cracks in piping and piping welds research program

    International Nuclear Information System (INIS)

    Wilkowski, G.; Krishnaswamy, P. Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Marschall, C.; Rahman, S.; Rosenfield, A.; Scott, P.

    1994-01-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The program consists of 8 technical tasks as listed below. Task 1 Short through-wall-cracked (TWC) pipe evaluations. Task 2 Short surface-cracked pipe evaluations. Task 3 Bi-metallic weld crack evaluations. Task 4 Dynamic strain aging and crack instabilities. Task 5 Fracture evaluations of anisotropic pipe. Task 6 Crack-opening-area evaluations. Task 7 NRCPIPE Code improvements. Task 8 Additional efforts. Since the last WRSM meeting several additional tasks have been initiated in this program. These are discussed in Task 8. Based on results to date, the first seven tasks have also been modified as deemed necessary. The most significant accomplishments in each of these tasks since the last WRSIM meeting are discussed below. The details of all the results presented here are published in the semiannual reports from this program

  11. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  12. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  13. A Corrosion Risk Assessment Model for Underground Piping

    Science.gov (United States)

    Datta, Koushik; Fraser, Douglas R.

    2009-01-01

    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  14. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  15. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  16. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  17. Waste pipe calculus

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1978-01-01

    A rapid method is presented for calculating transport in a network of one-dimensional flow paths or ''pipes''. The method defines a Green's function for each flow path and prescribes a method of combining these Green's functions to produce an overall Green's function for the flow path network. A unique feature of the method is the use of the Laplace transform of these Green's functions to carry out most of the calculations

  18. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Niyazi Uğur TERZİ

    2009-01-01

    Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.

  19. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    Science.gov (United States)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  20. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  1. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  2. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  3. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  4. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  5. PLASTIC PIPE DEFECT DETECTION USING NONLINEAR ACOUSTIC MODULATION

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2015-02-01

    Full Text Available This project discuss about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. Nonlinaer acoustic modulations are investigated for fatigue crack detection. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. An actuator is used for frequencies generation while sensor is used for the frequencies detection. Besides that, a PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncrack specimen and cracked specimen can be distinguished.

  6. ANALYSIS OF GROUP MAINTENANCE STRATEGY -ROAD PAVEMENT AND SEWERAGE PIPES-

    Science.gov (United States)

    Tanimoto, Keishi; Sugimoto, Yasuaki; Miyamoto, Shinya; Nada, Hideki; Hosoi, Yoshihiko

    Recently, it is critical to manage deteriorating sewerage and road facilities efficiently and strategically. Since the sewerage pipes are mostly installed under road pavement, the works for the replacement of the sewerage pipes are partially common to the works for the road. This means that the replacement cost can be saved by coordinating the timing of the replacements by sewerage pipe and road pavement. The purpose of the study is to develop the model based on Markov decision process to derive the optimal group maintenance policy so as to minimize lifecycle cost. Then the model is applied to case study area and demonstrated to estimate the lifecycle cost using statistical data such as pipe replacement cost, road pavement rehabilitation cost, and state of deterioration of pipes and road pavement.

  7. MAXIMUM AIR SUCTION INTO HORIZONTAL OPEN ENDED CYLINDRICAL LOUVERED PIPE

    Directory of Open Access Journals (Sweden)

    SAMEER RANJAN SAHU

    2017-02-01

    Full Text Available The main approach behind the present numerical investigation is to estimate the mass flow rate of air sucked into a horizontal open-ended louvered pipe from the surrounding atmosphere. The present numerical investigation has been performed by solving the conservation equations for mass, momentum and energy along with two equation based k-ɛ model for a louvered horizontal cylindrical pipe by finite volume method. It has been found from the numerical investigation that mass suction rate of air into the pipe increases with increase in louvered opening area and the number of nozzles used. Keeping other parameters fixed, for a given mass flow rate there exists an optimum protrusion of nozzle for highest mass suction into the pipe. It was also found from the numerical investigation that increasing the pipe diameter the suction mass flow rate of air was increased.

  8. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Guide 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have how been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design of heavily insulated pipe systems are then recommended

  9. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Code 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have now been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design for heavily insulated pipe systems are then recommended

  10. Heats pipes for temperature homogenization: A literature review

    International Nuclear Information System (INIS)

    Blet, Nicolas; Lips, Stéphane; Sartre, Valérie

    2017-01-01

    Highlights: • This paper is a review based on more than sixty references. • The review is sorted into various application fields. • Quantitative values of thermal gradients are compared with and without heat pipes. • Specificities of mentioned heat pipes are compared to other functions of heat pipes. - Abstract: Heat pipes offer high effective heat transfer in a purely passive way. Other specific properties of heat pipes, like temperature homogenization, can be also reached. In this paper, a literature review is carried out in order to investigate the existing heat pipe systems mainly aiming the reduction of temperature gradients. The review gathering more than sixty references is sorted into various application fields, like thermal management of electronics, of storage vessels or of satellites, for which the management of the temperature uniformity differs by the isothermal surface area, temperature ranges or the targeted precision of the temperature flattening. A summary of heat pipe characteristics for this function of temperature homogenization is then performed to identify their specificities, compared to other applications of heat pipes.

  11. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  12. limit loads for wall-thinning feeder pipes under combined bending and internal pressure

    International Nuclear Information System (INIS)

    Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae

    2009-01-01

    Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.

  13. Theoretical and experimental analysis of a solar thermoelectric power generation device based on gravity-assisted heat pipes and solar irradiation

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming; Xu, Daochun

    2016-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by device is boosted from around 1 V to more than 4 V. • An output current and voltage of the device is acquired as 343 mA and 1057 mV. • The device provides output power 362.56 mW in no electricity conditions. • The economic value of device is demonstrated. - Abstract: Solar thermoelectric power generation has been widely used to solve the power supply limitation issue for low-power wireless sensors because of its light weight, high reliability, low cost, lack of noise, and environmental friendliness. A solar thermoelectric power generation system based on gravity-assisted heat pipes and solar radiation is devised in this paper, and its behavior is continuously measured in realistic outdoor circumstances. The effects of key parameters, including solar luminous flux, load resistance, a proportional coefficient, and a relative Seebeck coefficient, are analyzed. Related experimental results show that the device can output a voltage of 1057 mV and an electrical current of 343 mA, resulting in an output power of 362.56 mW. With a stable external energy conversion module under aluminous flux of 7.81 × 10"4 lx, the voltage converted from the nature solar radiation is boosted from 1057 mV to 4.40 V, which meets the rated operating voltage of low power consumption components, such as low-power wireless sensors and ZigBee modules. An economic analysis of the system shows that the solar thermoelectric power generation device is both economically and technically competitive when it is applied in a low-voltage wireless sensor network.

  14. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  15. Differential Hall-sensor Pulsed Eddy Current Probe for the Detection of Wall thinning in an Insulated Stainless Steel Pipe

    International Nuclear Information System (INIS)

    Park, D. G.; Angani, Chandra S.; Cheong, Y. M.; Kim, C. G.

    2010-01-01

    The local wall thinning is one of the most important factors to limit the life-extension of large structures, such as the pipe lines in the NPPs. The pipelines are covered with a thermal insulator for low thermal loss. The PEC testing is the promising technological approach to the NDT, and it has been principally developed for the measurement of surface flaws, subsurface flaws and corrosion. In the pulsed eddy current (PEC) technique, the excitation coil is driven by repeated pulses. According to the skin - depth relationship multiple frequency components penetrate to different depths, hence the PEC technique has the potential for bringing up deeper information about the tested sample. Because of the potential advantages of the PEC, prevalent investigations on this technique have been done. In the present study a differential probe which is used in the Pulsed Eddy Current (PEC) system has been fabricated for the detection of wall thinning of insulated pipelines in a nuclear power plant (NPP). This technique can be used as a potential tool to detect the corrosion or the wall thinning of the pipelines without removing the insulation

  16. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  17. Dynamic experiments on cracked pipes

    International Nuclear Information System (INIS)

    Petit, M.; Brunet, G.; Buland, P.

    1991-01-01

    In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system

  18. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  19. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology

    Science.gov (United States)

    Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin

    2018-04-01

    Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These

  20. The Productive Use of Rural Piped Water in Senegal

    Directory of Open Access Journals (Sweden)

    Ralph P. Hall

    2014-10-01

    Full Text Available Over the past decade there has been a growing interest in the potential benefits related to the productive use of rural piped water around the homestead. However, there is limited empirical research on the extent to which, and conditions under which, this activity occurs. Using data obtained from a comprehensive study of 47 rural piped water systems in Senegal, this paper reveals the extent of piped-water-based productive activity occurring and identifies important system-level variables associated with this activity. Three-quarters (74% of the households surveyed depend on water for their livelihoods with around one-half (54% relying on piped water. High levels of piped-water-based productive activity were found to be associated with shorter distances from a community to a city or paved road (i.e. markets, more capable water system operators and water committees, and communities that contributed to the construction of the piped water system. Further, access to electricity was associated with higher productive incomes from water-based productive activities, highlighting the role that non-water-related inputs have on the extent of productive activities undertaken. Finally, an analysis of the technical performance of piped water systems found no statistically significant association between high vs. low levels of productive activity and system performance; however, a positive relationship was found between system performance and the percentage of households engaged in productive activities.

  1. Pipe Penetrating Radar: a New Tool for the Assessment of Critical Infrastructure

    Science.gov (United States)

    Ekes, C.; Neducz, B.

    2012-04-01

    This paper describes the development of Pipe Penetrating Radar (PPR), the underground in-pipe application of GPR, a non-destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-metallic (concrete, PVC, HDPE, etc.) underground pipes. The method uses two or more high frequency GPR antennae carried by a robot into underground pipes. The radar data is transmitted to the surface via fibre optic cable and is recorded together with the output from CCTV (and optionally sonar and laser). Proprietary software analyzes the data and pinpoints defects or cavities within and outside the pipe. Thus the testing can identify existing pipe and pipe bedding symptoms that can be addressed to prevent catastrophic failure due to sinkhole development and can provide useful information about the remaining service life of the pipe. The key innovative aspect is the unique ability to map pipe wall thickness and deterioration including cracks and voids outside the pipe, enabling accurate predictability of needed intervention or the timing of replacement. This reliable non-destructive testing method significantly impacts subsurface infrastructure condition based asset management by supplying previously unattainable measurable conditions. Keywords: pipe penetrating radar (PPR), ground penetrating radar (GPR), pipe inspection, concrete deterioration, municipal engineering

  2. Identification and reduction of piping-vibrations in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, K. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  3. Identification and reduction of piping-vibrations in plants

    International Nuclear Information System (INIS)

    Kerkhof, K.

    2012-01-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  4. Modelling and performance of heat pipes with long evaporator sections

    Science.gov (United States)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-11-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling through a fan-based heat sink. Successful heat pipe operation and experimental performances are determined for seven heating configurations, considering active bottom, middle and top sections, and four orientation angles (0°, 30°, 60° and 90°). For all heating sections active, the heat pipe oriented vertically in an evaporator-down mode and a power input of 150 W, the overall thermal resistance was 0.014 K/W at a thermal gradient of 2.1 K and an average operating temperature of 50.7 °C. Vertical operation showed best results, as can be expected; horizontally the heat pipe could not be tested up to the power limit and dry-out occurred between 20 and 80 W depending on the heating configuration. Heating configurations without the bottom section active demonstrated a dynamic start-up effect, caused by heat conduction towards the liquid pool and thereafter batch-wise introducing the working fluid into the two-phase cycle. By analysing the heat pipe limitations for the intended operating conditions, a suitable heat pipe geometry was chosen. To predict the thermal performance a thermal model using a resistance network was created. The model compares well with the measurement data, especially for higher input powers. Finally, the thermal model is used for the design of a 1 kW planar system-level electronics cooling infrastructure featuring six 1 m heat pipes in parallel having a long ( 75%) evaporator section.

  5. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  6. Shape deformation of a light flash through a light pipe

    International Nuclear Information System (INIS)

    Calligaris, F.; Ciuti, P.; Gabrielli, I.; Giacomich, R.

    1976-01-01

    The propagation of a LED light pulse entering a rectangular light pipe under different angles is studied by the single-photon counting technique. A comparison with the theoretical predictions based on geometrical optics is reported. (Auth.)

  7. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  8. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  9. The stress analysis evaluation and pipe support layout for pressurizer discharge system

    International Nuclear Information System (INIS)

    Mao Qing; Wang Wei; Zhang Yixiong

    2000-01-01

    The author presents the stress analysis and evaluation of pipe layout and support adjustment process for Qinshan phase II pressurizer discharge system. Using PDL-SYSPIPE INTERFACE software, the characteristic parameters of the system are gained from 3-D CAD engineering design software PDL and outputted as the input date file format of special pipe stress analysis program SYSPIPE. Based on that, SYSPIPE program fast stress analysis function is applied in adjusting pipe layout , support layout and support types. According to RCC-M standard, the pipe stress analysis and evaluation under deadweight, internal pressure, thermal expansion, seismic, pipe rupture and discharge loads are fulfilled

  10. Qualification of PHT piping of Indian 500 MW PHWR for LBB, using R-6 method

    International Nuclear Information System (INIS)

    Rastogi, Rohit; Bhasin, V.; Kushwaha, H.S.

    1997-01-01

    This document discusses the qualification of straight pipe portion of the primary heat transport (PHT) piping of Indian 500 MWe pressurised heavy water reactor (PHWR) for leak before break (LBB). The evaluation is done using R-6 [1] method. The results presented here are: the safety margins which exist on straight pipe components of main PHT piping of 500 MWe, under leakage size crack (LSC) and design basis accident loads; the sensitivity of safety margins with respect to different analysis parameters and the qualification of PHT piping for LBB based on criterion given by NUREG-1061 [2] and TECDOC-774 [3]. (author)

  11. Fatigue strength of socket welded pipe joint

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Higuchi, M.; Nakagawa, A.

    1994-01-01

    Fully reversed four point bending fatigue tests were carried out of small diameter socket welded joints made of carbon steels. Experimental parameters are pipe diameter, thickness of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint of 50 mm diameter showed relatively low fatigue strength, 46 MPa in stress amplitude at the 10 7 cycles failure life. This value corresponds to about 1/5 of that of the smoothed base metal specimens in axial fatigue. The fatigue strength showed decrease with increasing pipe diameter, and increase with increasing the thickness of pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to the expectation, the fatigue strength of the socket welded joint without slip-on gap is higher than that of the joint with the normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10 7 cycles failure life for the 50 mm diameter socket joint. (orig.)

  12. Turbulent flow in a partially filled pipe

    Science.gov (United States)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  13. Evaluation of flawed-pipe experiments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.

    1986-11-01

    The purpose of this work was to perform elastic plastic fracture mechanics evaluations of experimental data that have become available from the NRC Degraded Pipe Program, Phase II (DPII) and other NRC and EPRI sponsored programs. These evaluations were used to assess flaw evaluation procedures for austenitic and ferritic steel piping. The results also have application to leak before break fracture mechanics analysis. An improved relationship was developed for computing the J-Integral for pipes containing throughwall flaws and loaded in pure bending. The results from several DPII experiments were compared to predictions based on new J estimation scheme solutions for circumferential, finite length part-throughwall flaws in pipes with bending loading. Comparisons of experimental maximum loads with those predicted using procedures in Paragraph IWB-3640, Section XI of the ASME Code indicate that the Code flaw evaluation procedures and allowables for austenitic steel pipe are appropriate and conservative. However, the comparisons also indicate that the base metal Code allowable loads may be about 15 to 20% high for small diameter piping (less than 8-inch diameter) at allowable a/t larger than about 0.5. The work further indicates that there is justification for reducing the conservatism in IWB-3640 allowable flaw sizes and loads for austenitic steel pipe with submerged or shielded metal arc welds.

  14. Impact analyses after pipe rupture

    International Nuclear Information System (INIS)

    Chun, R.C.; Chuang, T.Y.

    1983-01-01

    Two of the French pipe whip experiments are reproduced with the computer code WIPS. The WIPS results are in good agreement with the experimental data and the French computer code TEDEL. This justifies the use of its pipe element in conjunction with its U-bar element in a simplified method of impact analyses

  15. Mechanical Behaviour of Lined Pipe

    NARCIS (Netherlands)

    Hilberink, A.

    2011-01-01

    Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven

  16. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  17. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  18. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  19. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  20. Corrosion and deposit evaluation in large diameter pipes using radiography

    International Nuclear Information System (INIS)

    Boateng, A.

    2012-01-01

    The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk

  1. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  2. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  3. Development of prototype reactor maintenance. (2) Application to piping support of sodium-cooled reactor prototype

    International Nuclear Information System (INIS)

    Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira

    2017-01-01

    A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)

  4. Branch-pipe-routing approach for ships using improved genetic algorithm

    Science.gov (United States)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  5. Configuration analysis of pipe support for primary cooling using Ps + Caepipe code

    International Nuclear Information System (INIS)

    Sitandung, Y. B.; Pustandyo, W.; Sujalmo, S.

    1998-01-01

    Pipe stress evaluation and support loads has been analyzed on piping segment of RSG-GAS primary cooling system. This paper describes an analysis method of piping system with the use of computer Code PS + CAEPIPE Version 3.4.05.W. From the selected pipe segment, the data of pipe characteristic, material properties, operation condition, equipment and supports were used input. The final evaluation result of primary cooling pipe segment show that actual stress dead weight and seismic load are less than allowable limits (stress ratio 0.101 for deadweight 0.35 for seismic load). From the above ratio, it can be concluded that ratio of pipe support configuration to stress distribution is acceptable, and based on analysis result, the Code used by INTERATOM was sufficiently accurate

  6. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  7. Waste pipe calculus extensions

    International Nuclear Information System (INIS)

    O'Connell, W.J.

    1979-01-01

    The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems

  8. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  9. Subsea pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    Balcombe, Mark

    1988-09-22

    The Gulf of Mexico is famous today mainly for the ferocity of its hurricanes. But for anyone in the oil industry, it is also known for the vast array of oil pipelines that criss-cross its stormy waters, and for the large number of pipeline-laying barges which install them. Soon many of these vessels could be steaming to British waters - not to escape the weather, but to cash in on a bonanza of pipe-laying activity which could soon take place offshore northern Europe. The construction of new pipelines off the UK, Norway and Netherlands will, however, present a new range of challenges for pipeline designers and builders. First and foremost is the Piper Alpha platform disaster, which could saddle the UK offshore industry with a Pound 500 million-plus bill for the installation of emergency shutdown valves (ESVs) on existing lines.

  10. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  11. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  12. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  13. Heat pipes and solid sorption transformations fundamentals and practical applications

    CERN Document Server

    Vasiliev, LL

    2013-01-01

    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  14. A compound crack in a pipe under tension

    International Nuclear Information System (INIS)

    Zahoor, A.

    1992-01-01

    Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.)

  15. A compound crack in a pipe under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A. (Zenith Corp., Rockville, MD (United States))

    1992-03-01

    Limit load and J-resistance curve solutions are developed for a compound crack in a pipe subjected to axial tension. The solutions are based on thick-walled cylinder assumption and the J solution can be applied with load-displacement data from one pipe test. The J-R solution can be used to assess the effect of loading type on the material's resistance to crack extension when used with previously published solution for bending moment loading. (orig.).

  16. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  17. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility

  18. Determination of the pipe stemming load

    International Nuclear Information System (INIS)

    Cowin, S.C.

    1979-01-01

    A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given

  19. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  20. Furnace testing of electrical and pipe-penetration seals based on foamed silicone elastomer: 60, 90, and 120-minute fire ratings

    International Nuclear Information System (INIS)

    Brown, A.

    1979-03-01

    Fire tests of foamed silicone seals for electrical and pipe penetrations have been performed using a furnace with temperature control as heat source. The tests were performed in principle in accordance with the requirements of NORDTEST 5A (ISO 834). The purpose of the tests was to obtain appropriate fire ratings for different seal thicknesses. The report covers. - Description of material used to prepare the seals and method of application - Description of furnace test assembly and method of performing test - Listing of penetrating elements and of the thermocouple array used to measure temperature - Curves of thermocouple readouts and photographs of seals during and after completion of the test. (author)

  1. Calculational study on reactivity effect of pipe intersections

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Kaneko, Toshiyuki.

    1995-03-01

    A simple formulation was proposed for evaluating the increment of reactivity due to the attachment of pipes to a vessel filled with fuel solution, and its validity was checked by numerical calculations. The formulation was based on the neutron balance equation which had been applied to the criticality safety analysis code MUTUAL for multi-unit systems, and the current formulation considered further the deviation of the representative neutron source point from the center of each pipe. The formulation was validated for models of 2- and 3-dimensional fuel systems by comparison with the precise calculations using the Monte Carlo code KENO-IV. For systems of pipes attached perpendicularly to the side of a cylindrical vessel, the size and number of negligible pipes were shown that corresponded to a very small increment (e.g. 0.3% Δk/k) of the neutron multiplication factor. (author)

  2. Manufacture of piping components for nuclear power plants

    International Nuclear Information System (INIS)

    Bartecek, R.

    1983-01-01

    Hammer forging of hollow forging ingots, extrusion and elestroslag remelting may be used for the manufacture of large pipes. Technologies have been developed for the manufacture of elbows based on various types of forming. These procedures mainly include the hydraulic pressing of elbows from tubes and the pressing of symmetrical halves of elbows with subsequent welding. The hammer forging of valves, cross pieces, etc., has been replaced by forging and pressing. In order to prevent failures from occurring in the pipes during operation of nuclear power plants, pipes are being made of larger forgings, which reduces the number of welds. This improves the quality of the pipes, reduces production and assembly costs and is metal-saving. (E.S.)

  3. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  4. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  5. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  6. Pipe restraints for nuclear power plants

    International Nuclear Information System (INIS)

    Keever, R.E.; Broman, R.; Shevekov, S.

    1976-01-01

    A pipe restraint for nuclear power plants in which a support member is anchored on supporting surface is described. Formed in the support member is a semicylindrical wall. Seated on the semicylindrical wall is a ring-shaped pipe restrainer that has an inner cylindrical wall. The inner cylindrical wall of the pipe restrainer encircles the pressurized pipe. In a modification of the pipe restraint, an arched-shaped pipe restrainer is disposed to overlie a pressurized pipe. The ends of the arch-shaped pipe restrainer are fixed to support members, which are anchored in concrete or to a supporting surface. A strap depends from the arch-shaped pipe restrainer. The pressurized pipe is supported by the depending strap

  7. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  8. Mechanical assessment of local thinned pipings

    International Nuclear Information System (INIS)

    Meister, E.

    2007-01-01

    Local wall thinning is likely to be found in some piping systems of nuclear power plant under, for example, Flow Accelerated Corrosion in raw water systems or by loss of metal during the grinding of the weld seam. To assess the mechanical integrity in such situations, EDF/SEPTEN has developed calculation methods for the RSE-M (In Service Inspection Rules for the Mechanical components of PWR nuclear power islands) code. This paper focuses on the methodology used for internal pressure resistance evaluation based on limit load calculations. Beyond the Nuclear Safety classification and requirements given by the RSE-M code, this problem is general for Power Piping and the associated in service rules. (author) [fr

  9. Rainwater drained through fully filled pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, B; Koestel, P

    1989-02-01

    The conventional rainwater drainage system according to DIN 1986 always seems to be a point of problemacy in the building services as far as the occupancy of installation shafts and ducts is at stake. The excavation work and the necessary gravity lines are considered to be expensive. The consideration of the necessary slope complicates the installation additionally. Basing on those considerations, the raindraining system with fully filled pipes has been developed. DIN 1986, edition June 1988, part 1, point 6.1.1 allows to install rainwater pipes operated as planned, fully filled without slope. An enterprise specialised in building services investigated all system laws because only by a hydraulically exact balance, the function of the rainwater drainage system operated by negative and positive pressure can be insured. The results of those investigations are integrated in a computer program developed for this purpose.

  10. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  11. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  12. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  13. B Plant process piping replacement feasibility study

    International Nuclear Information System (INIS)

    Howden, G.F.

    1996-01-01

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace

  14. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    International Nuclear Information System (INIS)

    Watanabe, Shun; Yoneda, Kimitoshi

    2013-01-01

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  15. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  16. Reliability of piping system components. Volume 2: PSA LOCA data base. Review of methods for LOCA evaluation since the WASH-1400

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R.; Erixon, S. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Tomic, B. [ENCONET Consulting GmbH, Vienna (Austria); Lydell, B. [RSA Technologies, Visat, CA (United States)

    1996-09-01

    The Swedish Nuclear Power Inspectorate has undertaken a project to establish a comprehensive passive components database, validate failure rate parameter estimates and model framework for enhancement of integrating passive components failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure. Approx. 2300 failure events allowed for data exploration in Phase 2 to develop a sound basis for PSA treatment of piping system failure. In addition, a comprehensive review of the current consideration of LOCA in PSA and of all available literature in this area was undertaken. This report is devoted to identification of treatment of LOCA in PSAs. The report contains a detailed review of many programs and dozens of specific PSA studies for different reactor types. This collection and analysis of information together with information for the relational database was used to develop a matrix approach on contribution to LOCA events from different components which are part of the reactor coolant system pressure boundary. The overall conclusion of the work is that although there are some further developments in this area, there is still no significant enhancement of ways how LOCA are considered in PSAs as compared to the mid 70s, only selected studies attempted to address LOCAs in a more comprehensive way. Later phases of this project are expected to contribute to enhancement of treatment of LOCA events in PSA studies. 54 refs, 25 tabs.

  17. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  18. Incrustations detection system for petroleum transport pipes based on gamma transmission; Sistema de deteccao de incrustacoes em dutos de transporte de petroleo pela tecnica de transmissao gama

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Milton

    2014-07-01

    The scale formed over the inner walls of the ducts conveying the extracted product from offshore oil wheels is a major cause of losses to companies and in some cases even the safety is affected. The consequence of such fouling is the duct's square section reduction that causes extraction flow decrease and can also cause an increase in pressure inside the wheel, with serious consequences for safety. The objective of this work is to propose a mobile inspection system, which can be transported by underwater robots to inspect the lines of ducts in the outputs of the oil wheels. The measurement method to be adopted will be the gamma rays' beam attenuation at a predetermined position of the pipe. This transmission value compared to a clear pipe reading will show if the thickness of the inlay is larger or smaller than an assumed thickness. To carry out the measurements it was designed and built an electronic system comprising power supply, amplifier, single channel analyzer and a counter timer that was connected to a CsI scintillator detector coupled to a PIN photodiode. The system was set up to perform measurements with constant accuracy of ±1%. Tests during the study demonstrated the effectiveness of the proposed method with the obtained results with a carbon steel duct section of 270 mm diameter, removed from the field, with asymmetric BaSO4 inlay. (author)

  19. Reliability of piping system components. Volume 2: PSA LOCA data base. Review of methods for LOCA evaluation since the WASH-1400

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1996-09-01

    The Swedish Nuclear Power Inspectorate has undertaken a project to establish a comprehensive passive components database, validate failure rate parameter estimates and model framework for enhancement of integrating passive components failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure. Approx. 2300 failure events allowed for data exploration in Phase 2 to develop a sound basis for PSA treatment of piping system failure. In addition, a comprehensive review of the current consideration of LOCA in PSA and of all available literature in this area was undertaken. This report is devoted to identification of treatment of LOCA in PSAs. The report contains a detailed review of many programs and dozens of specific PSA studies for different reactor types. This collection and analysis of information together with information for the relational database was used to develop a matrix approach on contribution to LOCA events from different components which are part of the reactor coolant system pressure boundary. The overall conclusion of the work is that although there are some further developments in this area, there is still no significant enhancement of ways how LOCA are considered in PSAs as compared to the mid 70s, only selected studies attempted to address LOCAs in a more comprehensive way. Later phases of this project are expected to contribute to enhancement of treatment of LOCA events in PSA studies. 54 refs, 25 tabs

  20. On the basic research of design analysis and testing based on the failure rate for pipings and equipment under earthquake conditions

    International Nuclear Information System (INIS)

    Shibata, H.

    1980-01-01

    This paper deals with the evaluation method of the failure rate of pipings and equipment of nuclear power plants under destructive earthquakes and a new design concept in this stand point of view. These researches are supported by various studies related to this subject, which have been done by the author since 1966. In this paper, the history of the development, the summaries of these studies and their significances to the practice will be described briefly. The surveys on damages of industrial facilities caused by recent destructive earthquakes are the basical study for this subject. And the continuous response observation of model structures of a plant complex to natural earthquakes is another important basic study to know the stochastic nature and significance of response analysis for the anti-earthquake design of nuclear power plants. By having the exact knowledges on these subjects, the author has been developing the evaluation procedure of the failure rate of pipings and equipment under destructive earthquake conditions, a new design method 'counter-input design' and others. Now his effort is going towards establishing their practical procedure after finishing the basic researches. (orig.)

  1. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  2. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  3. Limit load solutions for piping branch junctions under out-of-plane bending

    International Nuclear Information System (INIS)

    Xu, Ying Hu; Lee, Kuk Hee; Jeon, Jun Young; Kim, Yun Jae

    2009-01-01

    Approximate plastic limit load solutions for piping branch junctions under out-of plane bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. Two types of bending are considered; out-of-plane bending to the branch pipe and out-of-plane bending to the run pipe. Accordingly closed-form approximations are proposed for piping branch junctions under out-of-plane bending based on the FE results. The proposed solutions are valid for the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 2.0 to 20.0. And, this study provides effects of reinforcement area on plastic limit loads.

  4. Condition Assessment for Wastewater Pipes: Method for Assessing Cracking and Surface Damage of Concrete Pipes

    OpenAIRE

    Hauge, Petter

    2013-01-01

    The objective of the Master Thesis has been to provide an improved method for condition assessment, which will give a better correlation between Condition class and actual Condition of concrete pipes with cracking and/or surface damages. Additionally improvement of the characterization of cracking (SR) and surface (KO) damages was a sub goal.Based on the findings described in my Thesis and my Specialization Project (Hauge 2012), I recommend that the Norwegian condition assessment method based...

  5. Evaluating Program about Performance of Circular Sodium Heat Pipe

    International Nuclear Information System (INIS)

    Kwak, Jae Sik; Kim, Hee Reyoung

    2014-01-01

    The superior heat transfer capability, structural simplicity, relatively inexpensive, insensitivity to the gravitational field, silence and reliability are some of its outstanding features. We study about heat transfer equation of heat pipe and program predicting performance which is considering geometrical shape of heat pipe by the related heat transfer equation of heat pipe. The operating temperature is 450 .deg. C - 950 .deg. C, working fluid is sodium, material for container is stainless steel, and type of wick is sintered metal. As a result of evaluating program about performance of circular sodium heat pipe based on MATLAB code, express correlation between radius and LHR, correlation between heat transfer length and LHR, correlation between wick and LHR, correlation between operating temperature and LHR. Generally radius values of heat pipe are proportional to LHR because of increase of mass flow which is main factor of heat flow. Heat transfer length values of heat pipe are inversely proportional to LHR and slightly inversely proportional to heat rate. Pore size is proportional to LHR. Although increase of pore size decrease capillary pressure, decrease more pressure drop in liquid phase. As a result, mass flow and heat rate are increase. But we have to do additional consideration about pore size and voidage in the aspect of safety and production technique

  6. Development of pipe wall thinning prediction software 'FALSET'

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Morita, Ryo; Inada, Fumio; Fujiwara, Kazutoshi

    2012-01-01

    Pipe wall thinning in power plants has been managed for maintaining plant integrity and safety with great importance. The target thinning phenomena are Flow Accelerated Corrosion (FAC) and Liquid Droplet Impingement Erosion (LDI). At present, the management is based on thinning rate and residual lifetime evaluation using pipe wall thickness measurement results. For the future, more safety and improvement in the management is required, and in this sense, prediction method of wall thinning is willing to be introduced. Therefore, prediction model of FAC and LDI have been constructed in CRIEPI, and to utilize these models to actual plant piping management easily, prediction software 'FALSET' is developed. FALSET has equipped with essential function for pipe wall thinning management in power plants, as follows; (1) Information and condition input of plant piping system and its component, (2) Wall thinning rate evaluation with CRIEPI's FAC/LDI prediction model, (3) Loading of wall thickness measurement data files and graphics of data trend, (4) Residual lifetime evaluation considering both measured and predicted thinning rate, (5) Statistical process and graphics of thinning rate and residual lifetime for multi-piping systems. With further verification and improvement of each function, there will be a perspective for this FALSET to be utilized as a management tool in power plants. (author)

  7. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  8. Evaluating Program about Performance of Circular Sodium Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The superior heat transfer capability, structural simplicity, relatively inexpensive, insensitivity to the gravitational field, silence and reliability are some of its outstanding features. We study about heat transfer equation of heat pipe and program predicting performance which is considering geometrical shape of heat pipe by the related heat transfer equation of heat pipe. The operating temperature is 450 .deg. C - 950 .deg. C, working fluid is sodium, material for container is stainless steel, and type of wick is sintered metal. As a result of evaluating program about performance of circular sodium heat pipe based on MATLAB code, express correlation between radius and LHR, correlation between heat transfer length and LHR, correlation between wick and LHR, correlation between operating temperature and LHR. Generally radius values of heat pipe are proportional to LHR because of increase of mass flow which is main factor of heat flow. Heat transfer length values of heat pipe are inversely proportional to LHR and slightly inversely proportional to heat rate. Pore size is proportional to LHR. Although increase of pore size decrease capillary pressure, decrease more pressure drop in liquid phase. As a result, mass flow and heat rate are increase. But we have to do additional consideration about pore size and voidage in the aspect of safety and production technique.

  9. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  10. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    International Nuclear Information System (INIS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  11. Determination of leakage areas in nuclear piping

    International Nuclear Information System (INIS)

    Keim, E.

    1997-01-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack

  12. Determination of leakage areas in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  13. Probabilistic procedure to evaluate integrity of degraded pipes under internal pressure and bending moment

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Julisch, P.; Otremba, F.; Schuler, X.

    2003-01-01

    The determination of critical crack sizes or permissible/allowable loading levels in pipes with degraded pipe sections (circumferential cracks) for the assurance of component integrity is usually based on deterministic approaches. Therefore along with numerical calculational methods (finite element (FE) analyses) limit load calculations, such as e.g. the 'Plastic limit load concept' and the 'Flow stress concept' as well as fracture mechanics approximation methods as e.g. the R-curve method or the 'Ductile fracture handbook' and the R6-Method are currently used for practical application. Numerous experimental tests on both ferritic and austenitic pipes with different pipe dimensions were investigated at MPA Stuttgart. The geometries of the pipes were comparable to actual piping systems in Nuclear Power Plants, both BWR as well as PWR. Through wall cracks and part wall through cracks on the inside surface of the pipes were considered. The results of these tests were used to determine the flow stresses used within the limit load calculations. Therefore the deterministic concepts assessing the integrity of degraded pipes are available A new post-calculation of the above mentioned tests was performed using probabilistic approaches to assure the component integrity of degraded piping systems. As a result the calculated probability of failure was compared to experimental behaviour during the pipe test. Different reliability techniques were used for the verification of the probabilistic approaches. (author)

  14. Elastic-plastic fracture analysis of carbon steel piping using the latest CEGB R6 approach

    International Nuclear Information System (INIS)

    Kanno, S.; Hasegawa, K.; Shimizu, T.; Kobayashi, H.

    1991-01-01

    The elastic-plastic fracture of carbon steel piping having various pipe diameters and circumferential crack angles and subjected to a bending moment is analyzed using the latest United Kingdom Central Electricity Generating Board R6 approach. The elastic-plastic fracture criterion must be applied instead of the plastic collapse criterion with increase of the pipe diameter and the crack angle. A simplified elastic-plastic fracture analysis procedure based on the R6 approach is proposed. (author)

  15. Seismic response and damping tests of small bore LMFBR piping and supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

    1984-01-01

    Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps

  16. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  17. Manufacturing and use of spiral welded pipes for high pressure service : state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Knoop, F.M.; Sommer, B. [Salzgitter GroBrohre GmbH, Salzgitter (Germany)

    2004-07-01

    This paper provided details of an improved helical seam 2-step (HTS) manufacturing process used to produce spiral welded large diameter pipes for high pressure transmission pipelines. During the process, pipe forming is combined with continuous tack welding and internal and external submerged arc welding at separate welding stations. The pipe forming unit consists of a 3 roll bending system with an outside roller cage used to guarantee the roundness of the pipe. The converging strip edges of the pipe are joined using a continuous shielded arc tack weld. Tack welding is done automatically with a laser-guided weld head. Run-out angles are adjusted by an automatic gap control system. The formed and tack-welded pipes are then fed to computer-controlled welding stations for final welding, where each pipe is rotated with a precise screw-like motion. The same welding materials used for the helical seam are used for the skelp end welding. The process offers more precise root gap control, as well as improved pipe geometry. Use of the process has also increased production rates and improved weld stability. The dimensions of the spiral-weld pipes are adjustable so that any diameter can be produced from a base material of the same width. The pipes can also be coated externally with fusion-bonded epoxy or 3-layer polyethylene/polypropylene. It was concluded that the process is being further refined to support the use of HTS pipes in high-pressure pipelines. New nondestructive testing techniques used to assess the performance of the line pipes were presented, as well as the results from hot and cold bending tests, field weldability trials, and tests related to the safety of spiral pipes. 16 refs., 2 tabs., 12 figs.

  18. Pipe line construction for reactor containment buildings

    International Nuclear Information System (INIS)

    Aoki, Masataka; Yoshinaga, Toshiaki

    1978-01-01

    Purpose: To prevent the missile phenomenon caused by broken fragments due to pipe whip phenomenon in a portion of pipe lines connected to a reactor containment from prevailing to other portions. Constitution: Various pipe lines connected to the pressure vessel are disposed at the outside of the containments and they are surrounded with a plurality of protection partition walls respectively independent from each other. This can eliminate the effect of missile phenomena upon pipe rupture from prevailing to the pipe lines and instruments. Furthermore this can afford sufficient spaces for the pipe lines, as well as for earthquake-proof supports. (Horiuchi, T.)

  19. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  20. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  1. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  2. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  3. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    Science.gov (United States)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  4. Research on Buckling State of Prestressed Fiber-Strengthened Steel Pipes

    Science.gov (United States)

    Wang, Ruheng; Lan, Kunchang

    2018-01-01

    The main restorative methods of damaged oil and gas pipelines include welding reinforcement, fixture reinforcement and fiber material reinforcement. Owing to the severe corrosion problems of pipes in practical use, the research on renovation and consolidation techniques of damaged pipes gains extensive attention by experts and scholars both at home and abroad. The analysis of mechanical behaviors of reinforced pressure pipelines and further studies focusing on “the critical buckling” and intensity of pressure pipeline failure are conducted in this paper, providing theoretical basis to restressed fiber-strengthened steel pipes. Deformation coordination equations and buckling control equations of steel pipes under the effect of prestress is deduced by using Rayleigh Ritz method, which is an approximation method based on potential energy stationary value theory and minimum potential energy principle. According to the deformation of prestressed steel pipes, the deflection differential equation of prestressed steel pipes is established, and the critical value of buckling under prestress is obtained.

  5. Evaluation of the plastic characteristics of piping products in relation to ASME code criteria

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1978-07-01

    Theories and test data relevant to the plastic characteristics of piping products are presented and compared with Code Equations in NB-3652 for Class 1 piping; in NC/ND-3652.2 for Class 2 and Class 3 piping. Comparisons are made for (a) straight pipe, (b) elbows, (c) branch connections, and (d) tees. The status of data (or lack of data) for other piping components is discussed. Comparisons are made between available data and the Code equations for two typical piping materials, SA106 Grade B and SA312 TP304, for Code Design Limits, and Service Limits A, B, C, and D. Conditions under which the Code Limits cannot be shown to be conservative from available data are pointed out. Based on the results of the study, recommendations for Code revisions are presented, along with recommendations for additional work

  6. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    Science.gov (United States)

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  7. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-01-01

    Full Text Available To meet the great needs for MFL (magnetic flux leakage inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  8. Bayesian analysis of heat pipe life test data for reliability demonstration testing

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Martz, H.F.

    1985-01-01

    The demonstration testing duration requirements to establish a quantitative measure of assurance of expected lifetime for heat pipes was determined. The heat pipes are candidate devices for transporting heat generated in a nuclear reactor core to thermoelectric converters for use as a space-based electric power plant. A Bayesian analysis technique is employed, utilizing a limited Delphi survey, and a geometric mean accelerated test criterion involving heat pipe power (P) and temperature (T). Resulting calculations indicate considerable test savings can be achieved by employing the method, but development testing to determine heat pipe failure mechanisms should not be circumvented

  9. The influence of gouge defects on failure pressure of steel pipes

    International Nuclear Information System (INIS)

    Alang, N A; Razak, N A; Zulfadli, M R

    2013-01-01

    Failure pressure of API X42 steel pipes with gouge defects was estimated through a nonlinear finite element (FE) analysis. The effect of gouge length on failure pressure of different pipe diameters was investigated. Stress modified critical strain (SMCS) model was applied as in predicting the failure of the pipe. The model uses strain based criteria to predict the failure. For validation of the model, the FE results were compared to experimental data in literature showing overall good agreement. The results show that the gouge length has significant influence on failure pressure. A smaller pipe diameter gives highest value of failure pressure

  10. Analysis of pipe mitred bends using beam models - by finite element method

    International Nuclear Information System (INIS)

    Salles, A.C.S.L. de.

    1984-01-01

    The formulation of a recently proposed displacement based straight pipe element for the analysis of pipe mitred bends is summarized in this work. The element kinematics includes axial, bending, torsional and ovalisation displacements, all varying cubically along the axis of the element. Interaction effects between angle adjoined straight pipe section are modeled including the appropriate additional strain terms in the stiffness matrix formulation and by using a penalty procedure to enforce continuity of pipe skin flexural rotations at the common helical edge. The element model capabilities are ilustrated in some sample analysis and the results are compared with other available experimental, analytical or more complex numerical models. (Author) [pt

  11. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    Science.gov (United States)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have

  12. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  13. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  14. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  15. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  16. Finite Element Limit Pressures for Circumferential Through-Wall Cracks in the Interface between Elbow and Pipe

    International Nuclear Information System (INIS)

    Jang, Yoon-Young; Han, Tae-Song; Huh, Nam-Su; Jeong, Jae-Uk

    2014-01-01

    Among integrity assessment method based on a fracture mechanics concept for piping system, a limit load method is one of the important way to predict a maximum load carrying capacity in the materials with high ductility in the sense that it is used to either assess directly structural integrity of pipe based on fully plastic fracture mechanics or calculate elasticplastic fracture mechanics parameters based on reference stress concept. In nuclear power plants, piping system often involves elbows welded to straight pipe. Since welded regions are vulnerable to cracking, it is important to predict an accurate limit load for pipes with a crack in the interface between elbows and attached pipes. However, although extensive works have been made for developing limit analysis methods for cracked pipes, they were mainly for straight pipes. Recently, limit moment solutions for elbow that is attached to straight pipe with a circumferential through-wall crack(TWC) in the interface were proposed, whereas limit pressure for this geometry is not suggested yet. In this context, plastic limit pressures of circumferential TWCs between elbow and straight pipe were calculated in the present study considering geometric parameters such as an elbow curvature, a pipe size and a crack length. In the present study, the FE plastic limit analyses for circumferential TWC in the interface between elbow and pipe under internal pressure were conducted based on elastic perfectly plastic assumption. Based on the present FE results, it is found that plastic limit pressures of straight pipes with circumferential TWC are not appropriate for predicting plastic limit pressures of circumferential TWC in the interface between elbow and pipe for shorter crack length

  17. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  18. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  19. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    Science.gov (United States)

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  20. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  1. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  2. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  3. Effects of swirl in turbulent pipe flows : computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Frode

    2011-07-01

    The primary objective of this doctoral thesis was to investigate the effect of swirl in steady turbulent pipe flows. The work has been carried out by a numerical approach, with direct numerical simulations as the method of choice. A key target to pursue was the effects of the swirl on the wall friction in turbulent pipe flows. The motivation came from studies of rotating pipe flows in which drag reduction was achieved. Drag reduction was reported to be due to the swirl favourably influencing the coherent turbulent structures in the near-wall region. Based on this, it was decided to investigate if similar behaviour could be obtained by inducing a swirl in a pipe with a stationary wall. To do a thorough investigation of the general three-dimensional swirl flow and particularly of the swirl effects; chosen variations of mean and turbulent flow parameters were explored together with complementary flow visualizations. Two different approaches in order to induce the swirl in the turbulent pipe flow, have been carried out. However, the present thesis might be regarded to be comprised of three parts. The first part consists of the first approach to induce the swirl. Here a prescribed circumferential force was implemented in a serial open source Navier-Stokes solver. In the second approach, the swirl was intended induced by implementing structures at the wall. Simulations of flows through a pipe with one or more helical fin(s) at the pipe wall was decided to be performed. In order to pursue this approach, it was found necessary to do a parallelization of the existing serial numerical code. The key element of this parallelization has been included as a part of the present work. Additionally, the helical fin(s) were implemented into the code by use of an immersed boundary method. A validation of this work is also documented in the thesis. The work done by parallelizing the code and implementing an immersed boundary method constitutes the second part of the present thesis. The

  4. Research program plan: piping. Volume 3

    International Nuclear Information System (INIS)

    Vagins, M.; Strosnider, J.

    1985-07-01

    Regulatory issues related to piping can be divided into the three areas of pipe cracking, postulated design basis pipe breaks, and design of piping for seismic and other dynamic loads. The first two of these issues are in the domain of the Materials Engineering Branch (MEBR), while the last of the three issues is the responsibility of the Mechanical/Structural Engineering Branch. This volume of the MEBR Research Plan defines the critical aspects of the pipe cracking and postulated design basis pipe break issues and identifies those research efforts and results necessary for their resolution. In general, the objectives of the MERB Piping Research Program are to provide experimentally validated analytic techniques and appropriate material properties characterization methods and data to support regulatory activities related to evaluating and ensuring piping integrity

  5. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  6. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  7. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  8. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  9. Laboratory exercises on oscillation modes of pipes

    Science.gov (United States)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  10. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  11. Apparatus for measuring total flow in pipes

    International Nuclear Information System (INIS)

    Matthews, H.

    1986-01-01

    To obtain a sample representative of the total flow in a pipe over a given period a Pitot tube is located in the pipe and connected to a collector outside the pipe. The collector is pressurised to a pressure substantially equal to the static head of the flow in the pipe via a line. Liquid is discharged from a collector to a container which is vented to atmosphere. (author)

  12. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  13. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  14. Development of new assessment methodology for locally corroded pipe

    International Nuclear Information System (INIS)

    Lim, Hwan; Shim, Do Jun; Kim, Yun Jae; Kim, Young Jin

    2002-01-01

    In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes is proposed. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional Finite Element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints

  15. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  16. Investigation of transient cavitating flow in viscoelastic pipes

    International Nuclear Information System (INIS)

    Keramat, A; Tijsseling, A S; Ahmadi, A

    2010-01-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  17. Crack propagation and arrest simulation of X90 gas pipe

    International Nuclear Information System (INIS)

    Yang, Fengping; Huo, Chunyong; Luo, Jinheng; Li, He; Li, Yang

    2017-01-01

    To determine whether X90 steel pipe has enough crack arrest toughness or not, a damage model was suggested as crack arrest criterion with material parameters of plastic uniform percentage elongation and damage strain energy per volume. Fracture characteristic length which characterizes fracture zone size was suggested to be the largest mesh size on expected cracking path. Plastic uniform percentage elongation, damage strain energy per volume and fracture characteristic length of X90 were obtained by five kinds of tensile tests. Based on this criterion, a length of 24 m, Φ1219 × 16.3 mm pipe segment model with 12 MPa internal gas pressure was built and computed with fluid-structure coupling method in ABAQUS. Ideal gas state equation was used to describe lean gas behavior. Euler grid was used to mesh gas zone inside the pipe while Lagrangian shell element was used to mesh pipe. Crack propagation speed and gas decompression speed were got after computation. The result shows that, when plastic uniform percentage elongation is equal to 0.054 and damage strain energy per volume is equal to 0.64 J/mm"3, crack propagation speed is less than gas decompression speed, which means the simulated X90 gas pipe with 12 MPa internal pressure can arrest cracking itself. - Highlights: • A damage model was suggested as crack arrest criterion. • Plastic uniform elongation and damage strain energy density are material parameters. • Fracture characteristic length is suggested to be largest mesh size in cracking path. • Crack propagating simulation with coupling of pipe and gas was realized in ABAQUS. • A Chinese X90 steel pipe with 12 MPa internal pressure can arrest cracking itself.

  18. Investigation of transient cavitating flow in viscoelastic pipes

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  19. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  20. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  1. 49 CFR 195.424 - Pipe movement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipe movement. 195.424 Section 195.424... PIPELINE Operation and Maintenance § 195.424 Pipe movement. (a) No operator may move any line pipe, unless... in the line section involved are joined by welding unless— (1) Movement when the pipeline does not...

  2. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  3. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  4. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report contains schematic drawings for the pipe fittings for the Hanford waste tanks. Included are the modifications to the W-025 trench number-sign 31 leachate loadout piping, and also the modifications to the tanker trailers. The piping was modified to prevent spillage to the environment. The tankers were modified for loading and unloading purposes

  5. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  6. Failure rate of piping in hydrogen sulphide systems

    International Nuclear Information System (INIS)

    Hare, M.G.

    1993-08-01

    The objective of this study is to provide information about piping failures in hydrogen sulphide service that could be used to establish failures rates for piping in 'sour service'. Information obtained from the open literature, various petrochemical industries and the Bruce Heavy Water Plant (BHWP) was used to quantify the failure analysis data. On the basis of this background information, conclusions from the study and recommendations for measures that could reduce the frequency of failures for piping systems at heavy water plants are presented. In general, BHWP staff should continue carrying out their present integrity and leak detection programmes. The failure rate used in the safety studies for the BHWP appears to be based on the rupture statistics for pipelines carrying sweet natural gas. The failure rate should be based on the rupture rate for sour gas lines, adjusted for the unique conditions at Bruce

  7. Miniaturised Optical Fibre Sensor for Dew Detection Inside Organ Pipes

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2008-01-01

    Full Text Available A new optical sensor for the continuous monitoring of the dew formation inside organ pipes was designed. This aspect is particularly critical for the conservation of organs in unheated churches since the dew formation or the condensation on the pipe surfaces can contribute to many kinds of physical and chemical disruptive mechanisms. The working principle is based on the change in the reflectivity which is observed on the surface of the fibre tip, when a water layer is formed on its distal end. Intensity changes of the order of 35% were measured, following the formation of the water layer on the distal end of a 400/430 μm optical fibre. Long-term tests carried out placing the fibre tip inside the base of an in-house-made metallic foot of an organ pipe located in an external environment revealed the consistency of the proposed system.

  8. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  9. Comparative study of approaches to estimate pipe break frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K.; Pulkkinen, U.; Talja, H.; Saarenheimo, A.; Karjalainen-Roikonen, P. [VTT Industrial Systems (Finland)

    2002-12-01

    The report describes the comparative study of two approaches to estimate pipe leak and rupture frequencies for piping. One method is based on a probabilistic fracture mechanistic (PFM) model while the other one is based on statistical estimation of rupture frequencies from a large database. In order to be able to compare the approaches and their results, the rupture frequencies of some selected welds have been estimated using both of these methods. This paper highlights the differences both in methods, input data, need and use of plant specific information and need of expert judgement. The study focuses on one specific degradation mechanism, namely the intergranular stress corrosion cracking (IGSCC). This is the major degradation mechanism in old stainless steel piping in BWR environment, and its growth is influenced by material properties, stresses and water chemistry. (au)

  10. Impacting effects of seismic loading in feeder pipes of PHWR power plants

    International Nuclear Information System (INIS)

    Kumar, R.

    1996-01-01

    The core of a pressurized heavy water reactor (PHWR) consists of a large number of fuel channels. These fuel channels are connected to the feeder pipes through which the heavy water flows and transports heat from the reactor core to the steam generators. The feeder pipes are several hundreds in number. They run close to each other with small gaps and have several bends. Thus they represent a complex piping system. Under seismic loading, the adjacent feeder pipes may impact each other. In this paper a simplified procedure has been established to assess such impacting effects. The results of the proposed analysis include bending moment and impact force, which provide the stresses due to impacting effects. These results are plotted in nondimensional form so that they could be utilized for any set of feeder pipes. The procedure used for studying the impacting effects includes seismic analysis of individual feeder pipes without impacting effects, selection of pipes for impact analysis, and estimating their maximum impact velocity. Based on the static and dynamic characteristics of the selected feeder pipes, the maximum bending moment, impact force, and stresses are obtained. The results of this study are useful for quick evaluation of the impacting effects in feeder pipes

  11. Technical report on the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-05-01

    Japan Atomic Energy Research Institute (JAERI) conducts Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan (STA) under the auspices of the special account law for electric power development promotion. The purpose of these tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the light water reactor power plants. The tests with large experimental facilities had ended already in 1990. Presently piping reliability analysis by the probabilistic fracture mechanics method is being done. Until now annual reports concerning the proving tests were produced and submitted to STA, whereas this report summarizes the test results done during these 16 years. Objectives of the piping reliability proving tests are to prove that the primary piping of the light water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location even if it ruptured suddenly. To attain these objectives (i) pipe fatigue tests, (ii) unstable pipe fracture tests, (iii) pipe rupture tests and also the analyses by computer codes were done. After carrying out these tests, it is verified that the piping is reliable throughout the service period. The authors of this report are T. Isozaki, K. Shibata, S. Ueda, R. Kurihara, K. Onizawa and A. Kohsaka. The parts they wrote are shown in contents. (author)

  12. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  13. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  14. Piping hydrodynamic loads for a PWR power up-rate with steam generator replacement

    International Nuclear Information System (INIS)

    Julie M Jarvis; Allen T Vieira; James M Gilmer

    2005-01-01

    Full text of publication follows: Pipe break hydrodynamic loads are calculated for various systems in a PWR for a Power Up-rate (PUR) with a Steam Generator Replacement (SGR). PUR with SGR can change the system pressures, mass flowrates and pipe routing/configuration. These changes can alter the steam generator piping steam/water hammer loads. This paper discusses the need to benchmark against the original design basis, the use of different modeling techniques, and lessons learned. Benchmarking for licensing in the United States is vital in consideration of 10CFR50.59 and other licensing and safety issues. RELAP5 and its force post-processor R5FORCE are used to model the transient loads for various piping systems such as main feedwater and blowdown systems. Other modeling applications, including the Bechtel GAFT program, are used to evaluate loadings in the main steam piping. Forces are calculated for main steam turbine stop valve closure, feedwater pipe breaks and subsequent check valve slam, and blowdown isolation valve closure. These PUR/SGR forces are compared with the original design basis forces. Modeling techniques discussed include proper valve closure modeling, sonic velocity changes due to pipe material changes, and two phase flow effects. Lessons learned based on analyses done for several PWR PUR with SGR are presented. Lessons learned from these analyses include choosing the optimal replacement piping size and routing to improve system performance without resulting in excessive piping loads. (authors)

  15. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  16. Spinning pipe gas lens revisited

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-01-01

    Full Text Available The graded index (GRIN-like) medium generated by gas inside a heated steel pipe when rotated about its longitudinal axis has the ability to focus a laser beam. While the effective focal length of such a system has previously been studied...

  17. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  18. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  19. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  20. Pipe Leak Detection Technology Development

    Science.gov (United States)

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  1. Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling

    Directory of Open Access Journals (Sweden)

    Zejun Chen

    2017-04-01

    Full Text Available An on-line spray water cooling (OSWC process for manufacturing electric resistance welded (ERW steel pipes is presented to enhance their mechanical properties and performances. This technique reduces the processing needed for the ERW pipe and overcomes the weakness of the conventional manufacturing technique. Industrial tests for J55 ERW steel pipe were carried out to validate the effectiveness of the OSWC process. The microstructure and mechanical properties of the J55 ERW steel pipe processed by the OSWC technology were investigated. The optimized OSWC technical parameters are presented based on the mechanical properties and impact the performance of steel pipes. The industrial tests show that the OSWC process can be used to efficiently control the microstructure, enhance mechanical properties, and improve production flexibility of steel pipes. The comprehensive mechanical properties of steel pipes processed by the OSWC are superior to those of other published J55 grade steels.

  2. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  3. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  4. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  5. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki [and others

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  6. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    International Nuclear Information System (INIS)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki

    1997-01-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program

  7. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  8. Risk analysis of in-service pressure piping containing defects

    International Nuclear Information System (INIS)

    Lin, Y.C.; Xie, Y.J.; Wang, X.H.; Luo, H.

    2004-01-01

    The reliability of pressure piping containing defects is important in engineering. The failure probability of pressure piping containing defects may be used as a guide to the most economic deployment of resources on maintenance, inspection and repair. This paper presents a probabilistic assessment methodology for in-service pressure piping containing defects, which is especially designed for programming. It is based on three assessment codes, BS 7910, R6 and SAPV-99, considering uncertainties in operating loadings, flaw sizes, material fracture toughness and flow stress. A general sampling computation method of stress intensity factor (SIF), in the form of the relationship between SIF and axial force and bending moment and torsion, is adopted. This relationship has been successfully used in developing software, Safety Assessment System of In-service Pressure Piping Containing Flaws (SAPP-2003), to assess planar and non-planar flaws. A numerical example is presented to illustrate the application of SAPP-2003 for calculating the failure probabilities of separate defects and for the assessed pressure piping

  9. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  10. System and Method for Traversing Pipes

    Science.gov (United States)

    Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)

    2017-01-01

    A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.

  11. The effect of cyclic and dynamic loads on carbon steel pipe

    International Nuclear Information System (INIS)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M.

    1996-02-01

    This report presents the results of four 152-mm (6-inch) diameter, unpressurized, circumferential through-wall-cracked, dynamic pipe experiments fabricated from STS410 carbon steel pipe manufactured in Japan. For three of these experiments, the through-wall crack was in the base metal. The displacement histories applied to these experiments were a quasi-static monotonic, dynamic monotonic, and dynamic, cyclic (R = -1) history. The through-wall crack for the third experiment was in a tungsten-inert-gas weld, fabricated in Japan, joining two lengths of STS410 pipe. The displacement history for this experiment was the same history applied to the dynamic, cyclic base metal experiment. The test temperature for each experiment was 300 C (572 F). The objective of these experiments was to compare a Japanese carbon steel pipe material with US pipe material, to ascertain whether this Japanese steel was as sensitive to dynamic and cyclic effects as US carbon steel pipe. In support of these pipe experiments, quasi-static and dynamic, tensile and fracture toughness tests were conducted. An analysis effort was performed that involved comparing experimental crack initiation and maximum moments with predictions based on available fracture prediction models, and calculating J-R curves for the pipe experiments using the η-factor method

  12. Mathematical models for two-phase stratified pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Biberg, Dag

    2005-06-01

    The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters

  13. A practical, systematic and structured approach to piping vibration assessment

    International Nuclear Information System (INIS)

    Sukaih, Naren

    2002-01-01

    The main aim of this paper is to present a systematic and structured approach to piping vibration assessment and control. Piping vibration assessment is a complex subject, since there are no general analytical methods for dealing with vibration problems. It was noted that most existing vibrating piping systems had poor or degraded support arrangements. This approach therefore focuses mainly on vibration control through assessing and improving the supporting systems. Vibration theory has not been covered in any detail. A simplified procedure is presented for the Integrity custodian to determine when a simple assessment may be carried out and when specialist/consultant services are required. The assessment techniques are based on simplifying assumptions, good rules of thumb and available literature and current practices. A typical case study is used to illustrate the use and the flexibility of the above approach. A standard sheet is proposed to record and document the assessment and recommendations

  14. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  15. Fracture properties evaluation of stainless steel piping for LBB applications

    International Nuclear Information System (INIS)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-01-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal

  16. Evaluation of piping fracture analysis method by benchmark study, 1

    International Nuclear Information System (INIS)

    Takahashi, Yukio; Kashima, Koichi; Kuwabara, Kazuo

    1987-01-01

    Importance of strength evaluation methods for cracked piping is growing with the progress of the rationalization of the nuclear piping system based on the leak-before-break concept. As an analytical tool, finite element method is principally used. To obtain the reliable solutions by the finite element programs, it is important to grasp the influences of various factors on the solutions. In this study, benchmark analysis is carried out for a stainless steel pipe with a circumferential through-wall crack subjected to four-point bending loading. Eight solutions obtained by using five finite element programs are compared with each other. Good agreement is obtained between the solutions on the deformation characteristics as well as fracture mechanics parameters. It is found through this study that the influence of the difference in the solution technique is generally small. (author)

  17. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  18. Development and testing of restraints for nuclear piping systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Skinner, M.S.

    1980-06-01

    As an alternative to current practice of pipe restraint within nuclear power plants it has been proposed to adopt restraints capable of dissipating energy in the piping system. The specific mode of energy dissipation focused upon in these studies is the plastic yielding of steels utilizing relative movement between the pipe and the base of the restraint, a general mechanism which has been proven as reliable in several allied studies. This report discusses the testing of examples of two energy-absorbing devices, the results of this testing and the conclusions drawn. This study concentrated on the specific relevant performance characteristics of hysteretic behavior and degradation with use. The testing consisted of repetitive continuous loadings well into the plastic ranges of the devices in a sinusoidal or random displacement controlled mode

  19. Fracture properties evaluation of stainless steel piping for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S. [Sung Kyun Kwan Univ., Suwon (Korea, Republic of)

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  20. Multi-mode vibration control of piping system

    International Nuclear Information System (INIS)

    Minowa, Takeshi; Seto, Kazuto; Iiyama, Fumiya; Sodeyama, Hiroshi

    1999-01-01

    In this paper, dual dynamic absorbers are applied to the piping system in order to control the multiple vibration modes. ANSYS, which is one of the software based on FEM(finite element method), is used for the design of dual dynamic absorbers as well as for the determination of their optimum installing positions. The dual dynamic absorbers designed optimally for controlling the first three vibration modes perform just like a houde damper in higher frequency and have an effect on controlling higher modes. To use this advantage, three dual dynamic absorbers are installed in positions where they influence higher modes, and not only the first three modes of the piping system but also the extensive modes are controlled. Practical experimental study has also been carried out and it is shown that a dual dynamic absorber is suitable for controlling the vibration of the piping system. (author)

  1. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  2. Piping and pipeline calculations manual construction, design fabrication and examination

    CERN Document Server

    Ellenberger, Philip

    2010-01-01

    The lack of commentary, or historical perspective, regarding the codes and standards requirements for piping design and construction is an obstacle to the designer, manufacturer, fabricator, supplier, erector, examiner, inspector, and owner who want to provide a safe and economical piping system. An intensive manual, this book will utilize hundreds of calculation and examples based on of 40 years of personal experiences of the author as both an engineer and instructor. Each example demonstrates how the code and standard has been correctly and incorrectly applied. This book is a ?no non

  3. Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels

    Science.gov (United States)

    Sikora, Małgorzata; Bohdal, Tadeusz

    2017-12-01

    Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.

  4. Study on finned pipe performance as a ground heat exchanger

    Science.gov (United States)

    Lin, Qinglong; Ma, Jinghui; Shi, Lei

    2017-08-01

    The GHEs (ground heat exchangers) is an important element that determines the thermal efficiency of the entire ground-source heat-pump system. The aim of the present study is to clarify thermal performance of a new type GHE pipe, which consists straight fins of uniform cross sectional area. In this paper, GHE model is introduced and an analytical model of new type GHE pipe is developed. The heat exchange rate of BHEs utilizing finned pips is 40.42 W/m, which is 16.3% higher than normal BHEs, based on simulation analyses.

  5. WHIPJET progress on piping restraint elimination at Beaver Valley - 2

    International Nuclear Information System (INIS)

    Server, W.L.; Szy Slow Ski, J.J.; Goldstein, N.A.

    1986-01-01

    Fracture mechanics technology has advanced to the point that an engineering approach using the concept of leak-before-break in lieu of postulating double-ended pipe rupture is now possible. An approach based upon this fracture mechanics technology, termed WHIPJET, is currently being applied to Beaver Valley Power Station, Unit 2 for Duquesne Light Company. The WHIPJET philosophy is simple, conservative, and provides defense-in-depth arguments for high energy piping throughout the balance-of-plant. Progress being made in applying WHIPJET to several lines is presented

  6. Seismic analysis of piping systems subjected to multiple support excitations

    International Nuclear Information System (INIS)

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  7. Ship Pipe Routing Design Using NSGA-II and Coevolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Wentie Niu

    2016-01-01

    Full Text Available Pipe route design plays a prominent role in ship design. Due to the complex configuration in layout space with numerous pipelines, diverse design constraints, and obstacles, it is a complicated and time-consuming process to obtain the optimal route of ship pipes. In this article, an optimized design method for branch pipe routing is proposed to improve design efficiency and to reduce human errors. By simplifying equipment and ship hull models and dividing workspace into three-dimensional grid cells, the mathematic model of layout space is constructed. Based on the proposed concept of pipe grading method, the optimization model of pipe routing is established. Then an optimization procedure is presented to deal with pipe route planning problem by combining maze algorithm (MA, nondominated sorting genetic algorithm II (NSGA-II, and cooperative coevolutionary nondominated sorting genetic algorithm II (CCNSGA-II. To improve the performance in genetic algorithm procedure, a fixed-length encoding method is presented based on improved maze algorithm and adaptive region strategy. Fuzzy set theory is employed to extract the best compromise pipeline from Pareto optimal solutions. Simulation test of branch pipe and design optimization of a fuel piping system were carried out to illustrate the design optimization procedure in detail and to verify the feasibility and effectiveness of the proposed methodology.

  8. Pipe-CUI-profiler: a portable nucleonic system for detecting corrosion under insulation (CUI) of steel pipes

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Rasif Mohd Zain; Roslan Yahya

    2003-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. A portable nucleonic system that can be used to detect CUI without the need to remove the insulation materials, has been developed. The system is based on dual-beam gamma-ray absorption technique. It is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibre-glass or calcium silicate insulation to thicknesses of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting insulated pipes. This paper describes the new nucleonic system that has been developed. This paper describes the basic principle of the system and outlines its performance. (Author)

  9. Optimum length of finned pipe for waste heat recovery

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2008-01-01

    A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system

  10. Corrosion Map for Metal Pipes in Coastal Louisiana

    Science.gov (United States)

    2017-12-01

    Transportation agencies often allow metal pipes as an option for cross drains under/along roads and highways. Metal culverts can corrode over time at various rates based on their environmental conditions (e.g., corrosive nature of coastal soils, high...

  11. Free wave propagation in continuous pipes carrying a flowing fluid

    International Nuclear Information System (INIS)

    Espindola, J.J. de; Silva, J.B. da

    1982-01-01

    The propagation constants of a periodically supported pipe are computed. Use is made of a general free wave-propagation theory, based on transfer matrices. Comparison is made with previously published results, computed through a simpler, limited scope theory. (Author) [pt

  12. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  13. Development of LBB Piping Evaluation Diagram for APR 1000 Main Steam Line Piping

    International Nuclear Information System (INIS)

    Yang, J. S.; Jeong, I. L.; Park, C. Y.; Bai, S. Y.

    2010-01-01

    This paper presents the piping evaluation diagram (PED) to assess the applicability of Leak-Before- Break(LBB) for APR 1000 main steam line piping. LBB-PED of APR 1000 main steam line piping is independent of its piping geometry and has a function of the loads applied in piping system. Also, in order to evaluate LBB applicability during construction process with only the comparative evaluation of material properties between actually used and expected, the expected changes of material properties are considered in the LBB-PED. The LBB-PED, therefore, can be used for quick LBB evaluation of APR 1000 main steam line piping of both design and construction

  14. Development of remote pipe welding tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Kono, Wataru; Ohnawa, Toshio; Matsukage, Takeshi [Toshiba Corporation, Yokohama, Kanagawa (Japan)

    2015-12-15

    Highlights: • Remote pipe welding tool accessing from inside of the pipe has been newly developed. • Cooling pipe with a jut on the edge expands the acceptable welding gap up to 0.5 mm. • Positioning accuracy of the laser beam is realized to be less than ±0.1 mm. • We have achieved robust welding for an angular misalignment of 0.5°. - Abstract: Remote pipe welding tool accessing from inside of the pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of the divertor cassette in JT-60SA. Because the space around the cooling pipe connected with the divertor cassette is very limited, the cooling pipe is to be remotely cut and welded from inside for the maintenance. A laser welding method was employed to perform circumferential welding by rotating the focusing mirror inside the pipe. However, the grooves of connection pipes are not precisely aligned for welding. The most critical issue is therefore to develop a reliable welding tool for pipe connection without a defect such as undercut weld due to a gap caused by angular and axial misalignments of grooves. In addition, an angular misalignment between two pipes due to inclination of pipe has to be taken into account for the positioning of the laser beam during welding. In this paper, the followings are proposed to solve the above issues: (1) Cooling pipe connected with the divertor is machined to have a jut on the edge so as to expand the acceptable welding gap up to 0.5 mm by filling the gap with welded jut. (2) Positioning accuracy of the laser beam for reliable welding is realized to be less than ±0.1 mm along the circumferential target for welding by a position control mechanism provided in the tool even in the case of up to angular misalignment of 0.5° between connection pipes. Based on the above proposals, we have achieved robust welding for a large gap up to 0.5 mm as well as the maximum angular misalignment of 0.5° between connection pipes

  15. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...... demonstrated that this method offers good starting values for a Newton-Raphson iteration....

  16. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  17. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit

  18. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  19. Sensitization development in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Page, R.E.; Atteridge, D.G.

    1984-10-01

    Pacific Northwest Laboratory and the Division of Engineering Technology of the US Nuclear Regulatory Commission are conducting a program to determine a method for evaluating welded and rapair-welded stainless steel piping for light-water reactor service. Validated models, based on experimental data, are being developed to predict the degree of sensitization (DOS) and the intergranular stress corrosion cracking (IGSCC) susceptibility in the heat-affected zone (HAZ) of the SS weldments. The cumulative effects of material composition, past fabrication procedures, past service exposure, weldment thermomechanical (TM) history, and projected post-repair component life are being considered. This program will measure and model the development of HAZ TM history and resultant sensitized microstructure in welded and repair-welded piping. An empirical correlation between a material's DOS and its susceptibility to SCC will be determined using slow strain rate tensile tests. Mill heat chemistries and processing/fabrication records already required in the nuclear industry will be used as input for initial DOS predictions

  20. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.; Guillou, J.

    1995-11-01

    During a recurring bench test of an operating system, high amplitude vibrations have been observed on a safety piping system of a nuclear power plant. Due to the source of the pumps, these vibrations lead to wear damage and it is therefore necessary to estimate the life time of the piping system. This paper describes the methodology used to study the dynamic behaviour and to analyze the damage of a piping system submitted to internal flow. Starting from an experimental modal analysis of the piping system when not i service, we analyse the main parameters of the mechanical behaviour. Following this analysis, we obtain a mechanical model fitting the first experimental modes. On this basis, we build a vibro-acoustical model. This model takes into account the influence of the acoustical pipe length, both above and below the mechanical part, the modelling of acoustical components, the speed of sound. We did not experimentally characterize the pumps. Therefore, we use a numerical model in order to simulate the behaviour of the pumps. This model is based on the theory of the transfer matrix and takes into account the geometric and the hydraulic characteristics of the pump.The modelling of both sources (suction and discharge) connected to the pump is formed by contributions from a source corresponding to the turbulent noise at low frequency, a source at blade passage frequency. This model has been experimentally validated in a laboratory. The final results of the modelling of the complete piping system are in a complete accord with experimental measurements. (author). 3 refs., 7 figs

  1. Development, manufacturing and testing of a gas-loaded variable conductance methanol heat pipe

    Science.gov (United States)

    Vanbuggenum, R. I. J.; Daniels, D. H. W.

    1987-02-01

    The experimental technology required to measure the performance of moderate temperature heat pipes is presented. The heat pipe manufacturing process is described. The hydrodynamic characteristics of the porous structure inside the heat pipe envelope were examined using a specially developed test rig, based upon a steady-state evaporation test. A fully automated test facility was developed and validated by testing constant conductance and variable conductance heat pipes (VCHP). Theoretical performance predictions are illustrated in terms of pressure, depicted in 3D-plots, and compared with the test results of the heat pipe performance tests. The design of the VCHP was directed towards the verification of the VCHP mathematical model. The VCHP design is validated and ready for the final testing and model verification.

  2. Captive-rearing piping plovers: Developing techniques to augment wild populations

    Science.gov (United States)

    Powell, A.N.; Cuthbert, F.J.; Wemmer, L.C.; Doolittle, A.W.; Feirer, S.T.

    1997-01-01

    Techniques for captive-rearing and releasing piping plovers (Charadrius melodus) were developed using a surrogate species, killdeer (Charadrius vociferus). We compared captive-and parent-reared killdeer, and parent-reared piping plovers and determined that growth and behavior were similar. After surrogate trials determined that captive-rearing was feasible, we used the same methods to raise piping plover chicks from salvaged eggs. For captive-reared chick of both species, survival to fledging was higher than and behaviors similar to parent-reared chicks in the wild. Rearing techniques were fine-tuned, and ten piping plover fledglings were released to the wild. Based on our results, we developed recommendations for captive-rearing piping plovers using salvaged eggs to enhance productivity of small populations. ?? 1997 Wiley-Liss, Inc.

  3. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  4. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation

    Science.gov (United States)

    Liu, Qiang; Wang, Chengen

    2012-08-01

    Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.

  5. Analytical studies of blowdown thrust force and dynamic response of pipe at pipe rupture accident

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki

    1985-01-01

    The motion of a pipe due to blowdown thrust when the pipe broke is called pipe whip. In LWR power plants, by installing restraints, the motion of a pipe when it broke is suppressed, so that the damage does not spread to neighboring equipment by pipe whip. When the pipe whip of a piping system in a LWR power plant is analyzed, blowdown thrust and the dynamic response of a pipe-restraint system are calculated with a computer. The blowdown thrust can be calculated by using such physical quantities as the pressure, flow velocity, density and so on in the system at the time of blowdown, obtained by the thermal-fluid analysis code at LOCA. The dynamic response of a piping-restraint system can be determined by the stress analysis code using finite element method taking the blowdown thrust as an external force acting on the piping. In this study, the validity of the analysis techniques was verified by comparing with the experimental results of the measurement of blowdown thrust and the pipe whip of a piping-restraint system, carried out in the Japan Atomic Energy Research Institute. Also the simplified analysis method to give the maximum strain on a pipe surface is presented. (Kako, I.)

  6. New developments in velocity profile measurement and pipe wall wear monitoring for hydrotransport lines

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Maron, R.J. [CiDRA Minerals Processing Inc., Wallingford, CT (United States); Fernald, M.; Bailey, T. [CiDRA Corporate Services, Wallingford, CT (United States); Van der Spek, A. [ZDOOR, Rotterdam (Netherlands)

    2009-07-01

    Sonar array flow measurement technology was initially developed a decade ago with the goal of non-invasively measuring multi-phase flows in the petroleum industry. The same technology was later adapted to the mineral processing industry where it has been rapidly adopted. The specific sensor technology, based on piezoelectric film sensors, provides unique measurement capabilities, including the ability to non-invasively measure localized strains in the walls of pipes. Combined with sonar array processing algorithms, an axial array of such sensors can measure flow velocities within a pipe. The sensors are useful for monitoring and managing slurry flow in horizontal pipes since they provide real-time velocity profiles measurement. The information is useful in determining the approach and onset of solid deposition on the bottom of the pipe. The sensors also provide a non-invasive measurement of pipe wear on slurry lines. Such measurements are currently made by hand-held portable ultrasonic thickness gages. The shortfalls associated with this manual method are overcome with a set of permanently or semi-permanently installed transducers clamped onto the outside of the pipe, where sensors measure the thickness of the pipe. This system and approach results in better repeatability and accuracy compared to manual methods. It also decreases inspection labor costs and pipe access requirements. It was concluded that the potential impact on personnel safety and environmental savings will be significant. 3 refs., 20 figs.

  7. Mechanism for in-pipe inspection; Dispositivo para inspecao de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Gustavo Medeiros; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    The internal inspection of pipes is becoming a routine activity thanks to their importance on transportation of substances such as oil and natural gas. This paper addresses a mechanism capable of working inside pipes of different diameters that may present extreme curves and inclinations. The mechanism is composed of modules with devices that provide adjustable contact with the duct, using wheels on the contact points. The robot moves inside the pipe creating a virtual spindle. For that, two parts are used: the first one, guided along the pipe by a set of wheels, moves parallel to the axis of the pipe; the second part is attached to a motor. The motor rotation forces the mechanism to follow a helical motion, with tilted wheels rotating about the axis of the pipe. Each adjustable contact device works like a lever, pressing the wheel against the pipe. The base of the device can be actively rotated, modifying the angle of the wheel in relation to the pipe (equivalent to the step of the spindle), permitting the motion of the system in both directions, with specific velocity. According to the applied angle, the robot changes the relation between torque and displacement velocity. (author)

  8. The behavior of welded joint in steel pipe members under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Chang, Kyong-Ho; Jang, Gab-Chul; Shin, Young-Eui; Han, Jung-Guen; Kim, Jong-Min

    2006-01-01

    Most steel pipe members are joined by welding. The residual stress and weld metal in a welded joint have the influence on the behavior of steel pipes. Therefore, to accurately predict the behavior of steel pipes with a welded joint, the influence of welding residual stress and weld metal on the behavior of steel pipe must be investigated. In this paper, the residual stress of steel pipes with a welded joint was investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis. Based on the results of monotonic and cyclic loading tests, a hysteresis model for weld metal was formulated. The hysteresis model was proposed by the authors and applied to a three-dimensional finite elements analysis. To investigate the influence of a welded joint in steel pipes under monotonic and cyclic loading, three-dimensional finite elements analysis considering the proposed model and residual stress was carried out. The influence of a welded joint on the behavior of steel pipe members was investigated by comparing the analytical result both steel pipe with a welded joint and that without a welded joint

  9. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  10. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  11. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  12. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  13. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    International Nuclear Information System (INIS)

    Wang, Zhong-Min; Liu, Yan-Zhuang

    2016-01-01

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  14. Fracture studies on stainless steel straight pipes under earthquake-type cyclic loading

    International Nuclear Information System (INIS)

    Raghava, G.; Vishnuvardhan, S.; Gandhi, P.; Vaze, K.K.

    2014-01-01

    In order to study the crack growth and cyclic fracture behaviour, which are required for realistic assessment of Leak Before Break (LBB) applicability, experimental investigations were carried out on straight pipes under quasi-crystal loading. Totally 13 pipes were tested; three were stainless steel welded (SSW) using conventional shielded metal arc welding (SMAW) technique and the remaining specimens were Narrow Gap Welded (NGW). The fracture tests were carried out under load control, displacement control and combination of the two; the pipes were subjected to different amplitudes of load or load-line displacement (LLD), which were decided based on the response of the pipes under monotonic loading. Cyclic tearing and crack growth studies on eight straight pipes of the same material reported earlier in published literature are also considered for studying the results and understanding the behaviour. Under load control, with almost equal load amplitude, the NGW pipe exhibited improved life in comparison with SMAW pipe when both are subjected to cyclic loading. The crack growth and tearing instability behaviour of the pipes were studied. The same were found to be different for load control, displacement control and combined control tests. Based in the load-controlled experimental results, material specific plot between cyclic load amplitude (as a percentage of maximum load carrying capacity of a specimen under monotonic fracture) and number of cycles to failure was obtained. The results indicate that the piping components subjected to quasi-cyclic loading may fail in very less number of cycles even when the load amplitude is sufficiently below the monotonic fracture/collapse load. These studies will be helpful in designing nuclear power plant (NPP) piping components subjected to earthquake-type cyclic loading. (author)

  15. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong-Min, E-mail: wangzhongm@xaut.edu.cn; Liu, Yan-Zhuang

    2016-03-15

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  16. Assessment of short through-wall circumferential cracks in pipes. Experiments and analysis: March 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Brust, F.W.; Scott, P.; Rahman, S. [Battelle, Columbus, OH (United States)] [and others

    1995-04-01

    This topical report summarizes the work performed for the Nuclear Regulatory Commission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC`s PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs.

  17. Assessment of short through-wall circumferential cracks in pipes. Experiments and analysis: March 1990--December 1994

    International Nuclear Information System (INIS)

    Brust, F.W.; Scott, P.; Rahman, S.

    1995-04-01

    This topical report summarizes the work performed for the Nuclear Regulatory Commission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC's PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs

  18. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be...

  19. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  20. Leak before break piping evaluation diagram

    International Nuclear Information System (INIS)

    Fabi, R.J.; Peck, D.A.

    1994-01-01

    Traditionally Leak Before Break (LBB) has been applied to the evaluation of piping in existing nuclear plants. This paper presents a simple method for evaluating piping systems for LBB during the design process. This method produces a piping evaluation diagram (PED) which defines the LBB requirements to the piping designer for use during the design process. Several sets of LBB analyses are performed for each different pipe size and material considered in the LBB application. The results of this method are independent of the actual pipe routing. Two complete LBB evaluations are performed to determine the maximum allowable stability load, one evaluation for a low normal operating load, and the other evaluation for a high normal operating load. These normal operating loads span the typical loads for the particular system being evaluated. In developing the allowable loads, the appropriate LBB margins are included in the PED preparation. The resulting LBB solutions are plotted as a set of allowable curves for the maximum design basis load, such is the seismic load versus the normal operating load. Since the required margins are already accounted for in the LBB PED, the piping designer can use the diagram directly with the results of the piping analysis and determine immediately if the current piping arrangement passes LBB. Since the LBB PED is independent of pipe routing, changes to the piping system can be evaluated using the existing PED. For a particular application, all that remains is to confirm that the actual materials and pipe sizes assumed in creating the particular design are built into the plant

  1. Experimental analytical study on heat pipes

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Liu, C.Y.; Murcia, N.

    1981-01-01

    An analytical model is developed for optimizing the thickness distribution of the porous material in heat pipes. The method was used to calculate, design and construct heat pipes with internal geometrical changes. Ordinary pipes are also constructed and tested together with the modified ones. The results showed that modified tubes are superior in performance and that the analytical model can predict their performance to within 1.5% precision. (Author) [pt

  2. Evaluation of LBB margin of nuclear piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun [Seoul Nationl Univ., Seoul (Korea, Republic of); Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-04-15

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material.

  3. Evaluation of LBB margin of nuclear piping systems

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun; Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok

    1999-04-01

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material

  4. Practical application of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1995-01-01

    The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports

  5. Piping reliability improvement through passive seismic supports

    International Nuclear Information System (INIS)

    Baltus, R.; Rubbers, A.

    1999-01-01

    The nuclear plants designed in the 1970's were equipped with large quantities of snubbers in auxiliary piping systems. The experience revealed a poor performance of snubbers during periodic inspection, while non-nuclear facility piping survived through strong earthquakes. Consequently, seismic design rules evolved towards more realistic criteria and passive dynamic supports were developed to reduce snubber quantities. These solutions improve the pipe reliability during normal operation while reducing the radiation exposure in a sample line is presented with the impact on pipe stresses compared to the results obtained with passive supports named Limit Stops. (author)

  6. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  7. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available ; and (II) the aberrations introduced to the laser are a function of the distance from the edge of the pipe, as well as the speed of the pipe spin- ning. This is because of the turbulence near the pipe wall. The speed of the pipe will be used...- merically. This work forms the basis for an extended study of the dynamics of beam propa- gation through turbulent systems, and in particular, the following aspects will be explored in future work: (I) Using the recent advances in lasers beam propagation...

  8. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  9. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  10. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  11. Asymptotic scalings of developing curved pipe flow

    Science.gov (United States)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  12. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  13. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    plants. Based on the experimentally measured maximum heat removal capacities, models predicting the operation limit (flooding limit) of the hybrid heat pipe were developed.

  14. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  15. Behavior study on Na heat pipe in passive heat removal system of new concept molten salt reactor

    International Nuclear Information System (INIS)

    Wang Chenglong; Tian Wenxi; Su Guanghui; Zhang Dalin; Wu Yingwei; Qiu Suizheng

    2013-01-01

    The high temperature Na heat pipe is an effective device for transporting heat, which is characterized by remarkable advantages in conductivity, isothermally and passively working. The application of Na heat pipe on passive heat removal system of new concept molten salt reactor (MSR) is significant. The transient performance of high temperature Na heat pipe was simulated by numerical method under the MSR accident. The model of the Na heat pipe was composed of three conjugate heat transfer zones, i.e. the vapor, wick and wall. Based on finite element method, the governing equations were solved by making use of FORTRAN to acquire the profiles of the temperature, velocity and pressure for the heat pipe transient operation. The results show that the high temperature Na heat pipe has a good performance on operating characteristics and high heat transfer efficiency from the frozen state. (authors)

  16. This is not a Pipe

    DEFF Research Database (Denmark)

    Just, Sine Nørholm

    2016-01-01

    or unwilling to listen to, let alone engage with, emotionally guided bottom-up participation. Using an illustrative case of a Danish public debate over an alleged ban on liquorice pipes, this article argues that the disconnect between invitation and participation may be explained by the fact...... that representatives of (national and European) political institutions tend to rely on a simplified version of deliberative democracy. This implies privileging rational truth claims at the expense of emotional truthfulness. Connecting invitation and participation, it is argued, requires a reconciliation of rationality...

  17. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  18. Research notes : drainage facility asset management : more than an inventory of pipes.

    Science.gov (United States)

    2007-04-01

    The primary objectives for the research project were twofold: 1) To develop and implement an Oregon-specific system for inventorying and evaluating the condition of pipes, culverts, and stormwater facilities based on the FHWA Culvert Management Syste...

  19. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid.

    KAUST Repository

    Tsai, Tsung-Han; Chien, Hsin-Tang; Chen, Ping-Hei

    2011-01-01

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon

  20. Evaluation of residual stress on pipe welded joints using laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho Seob; Na, Man Gyun; Kim, Koung Suk [Chosun University, Gwangju (Korea, Republic of)

    2014-02-15

    Residual stresses that occur during the welding process, are the main cause of failure and defects in welded structures. This paper, presents the use of an electronic processing laser speckle interferometer to measure the residual stress of a welded pipe for a nuclear power plant. A tensile testing machine was used to evaluate a welded pipe that failed in compression. The inform plane deformation and modulus of elasticity of the base metal and welds were measured using an interferometer. Varying the load on the welded pipe had a larger effect on the deformation of the base metal the other properties of the base metal and welds. The elastic moduli of the base metal and weld of the welded pipe were 202.46 and 212.14 GPa, respectively, the residual stress was measured to be 6.29 MPa.

  1. INVESTIGATIONS ON DESIGN OF HEAT STORAGE PIPE CONNECTIONS FOR SOLAR COMBISYSTEMS

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon

    2005-01-01

    This paper describes how different designed pipe connections on a tank for solar combisystems were evaluated based on experimental tests and theoretical investigations with the simulation tool TRNSYS. Measurement results from laboratory measurements were used to calibrate a TRNSYS model...

  2. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  3. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  4. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  5. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  6. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  7. Acoustic leak detection in piping systems, 4

    International Nuclear Information System (INIS)

    Kitajima, Akira; Naohara, Nobuyuki; Aihara, Akihiko

    1983-01-01

    To monitor a high-pressure piping of nuclear power plants, a possibility of acoustic leak detection method has been experimentally studied in practical field tests and laboratory tests. Characteristics of background noise in field test and the results of experiment are summarized as follows: (1) The level of background noise in primary loop (PWR) was almost constant under actual plant operation. But it is possible that it rises at the condition of the pressure in primary loop. (2) Based on many experience of laboratory tests and practical field tests. The leak monitoring system for practical field was designed and developed. To improve the reliability, a judgment of leak on this system is used three factors of noise level, duration time of phenomena and frequency spectrum of noise signal emitted from the leak point. (author)

  8. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  9. Investigation of micro-gravity effects on heat pipe thermal performance and working fluid behavior, phase B

    Science.gov (United States)

    Gier, K. D.; Smith, M. O.

    1990-01-01

    The purpose of this experiment is to develop an in-depth understanding of the behavior of heat pipes in space. Both fixed conductance heat pipes (FCHPs) with axial grooves and variable conductance heat pipes (VCHPs) with porous wicks will be investigated. This understanding will be applied to the development of improved performance heat pipes subjected to various accelerations in space, including those encountered on a lunar base or Mars mission. More efficient, reliable, and lighter weight spacecraft thermal control systems should result from these investigations.

  10. Development on methods for evaluating structure reliability of piping components

    International Nuclear Information System (INIS)

    Schimpfke, T.; Grebner, H.; Peschke, J.; Sievers, J.

    2003-01-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour, GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The development is based on the experience achieved with applications of the public available US code PRAISE 3.10 (Piping Reliability Analysis Including Seismic Events), which was supplemented by additional features regarding the statistical evaluation and the crack orientation. PROST is designed to be more flexible to changes and supplementations. Up to now it can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents a parametric study on the influence by changing the method of stress intensity factor and limit load calculation and the statistical evaluation options on the leak probability of an exemplary pipe with postulated axial crack distribution. Furthermore the resulting leak probability of an exemplary pipe with postulated circumferential crack distribution is compared with the results of the modified PRAISE computer program. The intention of this investigation is to show trends. Therefore the resulting absolute values for probabilities should not be considered as realistic evaluations. (author)

  11. Non-destructive technique to verify clearance of pipes

    Directory of Open Access Journals (Sweden)

    Savidou Anastasia

    2010-01-01

    Full Text Available A semi-empirical, non-destructive technique to evaluate the activity of gamma ray emitters in contaminated pipes is discussed. The technique is based on in-situ measurements by a portable NaI gamma ray spectrometer. The efficiency of the detector for the pipe and detector configuration was evaluated by Monte Carlo calculations performed using the MCNP code. Gamma ray detector full-energy peak efficiency was predicted assuming a homogeneous activity distribution over the internal surface of the pipe for 344 keV, 614 keV, 662 keV, and 1332 keV photons, representing Eu-152, Ag-118m, Cs-137, and Co-60 contamination, respectively. The effect of inhomogeneity on the accuracy of the technique was also examined. The model was validated against experimental measurements performed using a Cs-137 volume calibration source representing a contaminated pipe and good agreement was found between the calculated and experimental results. The technique represents a sensitive and cost-effective technology for calibrating portable gamma ray spectrometry systems and can be applied in a range of radiation protection and waste management applications.

  12. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  13. A quantitative evaluation of seismic margin of typical sodium piping

    International Nuclear Information System (INIS)

    Morishita, Masaki

    1999-05-01

    It is widely recognized that the current seismic design methods for piping involve a large amount of safety margin. From this viewpoint, a series of seismic analyses and evaluations with various design codes were made on typical LMFBR main sodium piping systems. Actual capability against seismic loads were also estimated on the piping systems. Margins contained in the current codes were quantified based on these results, and potential benefits and impacts to the piping seismic design were assessed on possible mitigation of the current code allowables. From the study, the following points were clarified; 1) A combination of inelastic time history analysis and true (without margin)strength capability allows several to twenty times as large seismic load compared with the allowable load with the current methods. 2) The new rule of the ASME is relatively compatible with the results of inelastic analysis evaluation. Hence, this new rule might be a goal for the mitigation of seismic design rule. 3) With this mitigation, seismic design accommodation such as equipping with a large number of seismic supports may become unnecessary. (author)

  14. Piping information centralized management system for nuclear plant, PIMAS

    International Nuclear Information System (INIS)

    Matsumoto, Masaru

    1977-01-01

    Piping works frequently cause many troubles in the progress of construction works, because piping is the final procedure in design and construction and is forced to suffer the problems in earlier stages. The enormous amount of data on quality control and management leads to the employment of many unskilled designers of low technical ability, and it causes confusion in installation and inspection works. In order to improve the situation, the ''piping information management system for nuclear plants (PIMAS)'' has been introduced attempting labor-saving and speed-up. Its main purposes are the mechanization of drafting works, the centralization of piping informations, labor-saving and speed-up in preparing production control data and material management. The features of the system are as follows: anyone can use the same informations whenever he requires them because the informations handled in design works are contained in a large computer; the system can be operated on-line, and the terminals are provided in the sections which require informations; and the sub-systems are completed for preparing a variety of drawings and data. Through the system, material control has become possible by using the material data in each plant, stock material data and the information on the revision of drawings in the design department. Efficiency improvement and information centralization in the manufacturing department have also been achieved because the computer has prepared many kinds of slips based on unified drawings and accurate informations. (Wakatsuki, Y.)

  15. Reducing the Impact of Electroconductivity and the Gap between the Pipe and the Transducer at Measuring Thickness of Electroconductive Pipe Walls using the Eddy-Current Method

    Directory of Open Access Journals (Sweden)

    Yakimov Evgeny

    2016-01-01

    Full Text Available The paper describes a dual-frequency method for reducing the impact of changes in the gap size between the eddy-current transducer and the pipe, as well as the pipe electrical conductivity on the eddy-current thickness gauge readings. A block-diagram of the dual-frequency eddycurrent thickness gauge is proposed for light-alloy drill pipes. The amplitude and signal phase dependencies on the wall thickness in the range from 6 to 17 mm and the gap in the range from 0 to 13.5 mm were studied, the results are presented. The digital signal processing algorithms based on the piecewise-linear approximation of low-frequency and high-frequency signal phase dependencies on the wall thickness are proposed. It is shown that the proposed correction algorithms can reduce the error caused by variations of electrical conductivity and the gap between the transducer and the pipe.

  16. Examination of the X-ray piping diagnostic system using EGS4 (measuring the thickness of a steel pipe with rust)

    International Nuclear Information System (INIS)

    Kajiwara, G.

    2001-01-01

    In a series of papers entitled 'Examination of the X-ray piping diagnostic system using EGS4' presented the proceedings of the EGS4 users' meetings, I discussed the possibility of measuring the thickness of piping walls with rust. In the present paper, I describe, based on our earlier results, how the thickness of steel pipes with rust can be measured. I conducted EGS4 simulation to measure the thickness of a combination of steel and rust and made an energy absorption diagram for this combination. The equivalent thickness of steel was obtained through experiments and the system operation. The thickness of the steel determined by using the diagram agreed well with the actual steel thickness obtained by the experiments. In the future, we will focus on how to automate this measurement procedure and how to use the same procedure to measure the thickness of pipes filled with water. (author)

  17. ANSPipe: An IBM-PC interactive code for pipe-break assessment

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Harrington, M.

    1988-01-01

    The advanced neutron source (ANS) being designed at Oak Ridge National Laboratory will be the world's highest flux neutron source and best facility for associated basic and applied research. The ANSPipe code was written as an aid for the piping configuration and material selection to enhance safety and availability. The primary calculation is based on the Thomas mode. which models pipe leak or break probabilities as proportional to the length of the segment and diameter and the inverse square of the wall thickness. This scaling, based on experience, is adjusted for radiation effects, using the Regulatory Guide 1.99 model, and for cyclic fatigue, stress corrosion, and inspection, using adaptations form the PRAISE-B code. The key to an ANSPipe analysis is the definition of the pipe segments. A pipe segment is defined as a length of pipe in which all the parameters affecting the pipe are constant or reasonably so. Thus, a segment would be a length of pipe of constant diameter, thickness, material type, internal pressure, flux distribution, stress, and submergence or nonsubmergence

  18. Evaluation of burst pressure prediction models for line pipes

    International Nuclear Information System (INIS)

    Zhu, Xian-Kui; Leis, Brian N.

    2012-01-01

    Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487–492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: ► This paper evaluates different burst pressure prediction models for line pipes. ► The existing models are categorized into two major groups of Tresca and von Mises solutions. ► Prediction quality of each model is assessed statistically using a large full-scale burst test database. ► The Zhu-Leis solution is identified as the best predictive model.

  19. Evaluation of burst pressure prediction models for line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xian-Kui, E-mail: zhux@battelle.org [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States); Leis, Brian N. [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States)

    2012-01-15

    Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487-492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: Black-Right-Pointing-Pointer This paper evaluates different burst pressure prediction models for line pipes. Black-Right-Pointing-Pointer The existing models are categorized into two major groups of Tresca and von Mises solutions. Black-Right-Pointing-Pointer Prediction quality of each model is assessed statistically using a large full-scale burst test database. Black-Right-Pointing-Pointer The Zhu-Leis solution is identified as the best predictive model.

  20. A contribution for stress analysis in bend acessories of piping systems

    International Nuclear Information System (INIS)

    Melo, F.J.M.Q. de; Castro, P.M.S.T. de

    1986-01-01

    Analytical and numerical studies of the linear elastic behavior of bend pipes, with tangent pipes or flanged ends, such as used in nuclear power plants are presented. Two analytical techniques were developed; one is based on the integration of Euler equation and the other one is based on a Fourier analysis. The results obtained using these approaches are compared with results obtained by a finite element code for 'semiloof shells. (Author) [pt