WorldWideScience

Sample records for surface-enhanced raman spectrum

  1. Near-Ir surface-enhanced Raman spectrum of lignin

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner

    2009-01-01

    Compacted powders of commercially available nano- and microparticles of silver were used to successfully induce the surface enhanced Raman scattering (SERS) effect in spruce milled-wood lignin (MWL). For the two silver particle sizes used in this investigation, the spectra were mostly similar. Some general characteristics of the lignin SERS spectrum are described. The...

  2. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  3. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  4. Surface-enhanced Raman spectroscopy of DNA bases

    NARCIS (Netherlands)

    Otto, Cornelis; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, Jan

    1986-01-01

    A Raman microprobe has been used to measure the surface-enhanced Raman spectra of adenine, guanine, cytosine and thymine. Comparison of the SERS spectrum with solution spectra shows that some line positions are not influenced by the adsorption process while others show large shifts. In the SERS

  5. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    In Raman spectroscopy, inelastic scattering of photons from an atom or molecule in chemical entities is utilized to analyze the composition of solids, liquids and gases. However, the low cross-section limits its applications. The introduction of sur- face-enhanced Raman spectroscopy in 1974 has attracted a lot of attention ...

  6. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    near-ultraviolet range of electromagnetic spectra. The shift in energy in Raman effect gives information about the ... Raman spectroscopy is commonly used in chemistry, since vibrational information is very specific for the ... in polarizability is compatible with preservation of the center of symmetry. Thus, in a centrosymmetric ...

  7. Raman and Surface Enhanced Raman of Biological Material

    National Research Council Canada - National Science Library

    Guicheteau, Jason A; Gonser, Kristina; Christesen, Steven Dale

    2004-01-01

    .... Vibrational spectroscopic methods such as Raman and surface enhanced Raman scattering (SERS) provide rapid detailed fingerprint information about the molecular composition of biomaterial in a non-destructive manner...

  8. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  9. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  10. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  11. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  12. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, S.; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...

  13. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (1010)....

  14. Detection of explosives based on surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wackerbarth, Hainer; Salb, Christian; Gundrum, Lars; Niederkrüger, Matthias; Christou, Konstantin; Beushausen, Volker; Viöl, Wolfgang

    2010-08-10

    In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200 K increased the intensities of the TATP bands in the SERS spectrum; below 200 K, the TATP fingerprint disappeared.

  15. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  16. Directional surface enhanced Raman scattering on gold nano-gratings

    International Nuclear Information System (INIS)

    Gillibert, Raymond; Yasukuni, Ryohei; Chapelle, Marc Lamy de la; Sarkar, Mitradeep; Bryche, Jean-François; Moreau, Julien; Besbes, Mondher; Canva, Michael; Barbillon, Grégory; Bartenlian, Bernard

    2016-01-01

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size. (paper)

  17. Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization

    Directory of Open Access Journals (Sweden)

    Seda Keleştemur

    2018-01-01

    Full Text Available Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS. Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.

  18. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  19. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  20. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  1. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  2. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  3. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    magnetic properties of these nanoparticles combined with SERS provide a wide range of applications. Keywords. Surface-enhanced Raman scattering; magnetic nanoparticles; core-shell nanostructure; bio-diagnosis. 1. Introduction. In recent years, plasmonic nanostructures exhibiting novel optical properties have attracted ...

  4. Surface enhanced Raman spectra of the organic nonlinear optic ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Chemistry, University of Opole, Olesksa 48 45-052 Opole, Poland. 1. Present Address: Department of Physics, V.P.S.H.S.S. for ... co-ordination chemistry. Surface-enhanced Raman scattering (SERS), using .... numbers were calculated using analytic second de- rivatives to confirm the convergence to minima on.

  5. Asphaltene detection using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials.

  6. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    Science.gov (United States)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  7. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  8. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  9. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  10. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...... molecules adsorbed onto the substrate. The substrates were fabricated in a cleanroom process which only requires two steps to produce well controlled nano-sized high aspect ratio metal pillars. These substrates had superior chemical sensing performance in addition to a more cost effective fabrication...... process compared to existing commercial substrates. Therefore it is believed that these novel substrates will be able to make SERS more applicable in mobile explosives detection systems to be deployed in for example landmine clearance actions....

  11. Detection of explosive vapour using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Fang, X.; Ahmad, S. R.

    2009-11-01

    A commercially available nano-structured gold substrate was used for activating surface-enhanced Raman scattering (SERS). Raman spectra of the vapour of explosive material, triacetonetriperoxide (TATP), at trace concentrations produced from adsorbed molecules on such surfaces have been studied. Prominent Raman lines of the explosive molecular species were recorded at a sample temperature of ˜35°C, which is near to human body temperature. For this study, the concentration of the adsorbed TATP molecules on the nano-structured surface was varied by heating the sample to different temperatures and exposing the substrate to the sample vapour for different lengths of time. The intensities of the Raman lines have been found to increase with the increase in temperature and also with the increase in the duration of exposure for a fixed temperature. However, as expected, the Raman intensities have been found to saturate at higher temperatures and longer exposures. These saturation effects of the strengths of the Raman lines in the SERS of TATP vapour have been investigated in this paper. The results indicate that the optimisation for vapour deposition on the surface could be a crucial factor for any quantitative estimate of the concentration of the molecular species adsorbed on the nano-structured substrates.

  12. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  13. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    CERN Document Server

    McAnally, G D

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm sup - sup 1) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are ...

  14. NIR-FT Raman, FT-IR and surface-enhanced Raman scattering and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 4. NIR-FT Raman, FT-IR and surface-enhanced Raman scattering and DFT based theoretical studies on the adsorption behaviour of (S)-Phenylsuccinic acid on silver nanoparticles. D Sajan V Bena Jothy Thomas Kuruvilla I Hubert Joe. Full Papers Volume ...

  15. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  16. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    OpenAIRE

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an intense spectrum. It is proposed that complexes of adenine (dAMP) with silver generate the observed spectra. Adenine and dAMP can be distinguished spectroscopically due to various different complexe...

  17. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  18. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  19. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  20. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  1. [Terahertz-band study on surface enhanced Raman scattering of nanoparticle].

    Science.gov (United States)

    Wu, Yu-Deng; Ren, Guang-Jun; Hao, Yun; Yao, Jian-Quan

    2013-05-01

    Study on surface-enhanced Raman scattering in the terahertz-band proved in that the terahertz-band Raman enhancement also exists. By studing principles of electromagnetic enhancement of surface-enhanced Raman scattering, using the finite difference time-domain method, the electromagnetic enhancement of surface enhanced Raman scattering of nano-particles irradiated by terahertz-wave was simulated, and the enhancement effect of terahertz waves was analyzed. Simulation experiments show that using finite-difference time-domain method could obtain effectively accurate simulation result of nano-particle scattering, proving that for terahertz waves, surface-enhanced effects on the surface of the nano-particle also exist. The results for surface enhanced Raman scattering extended from the visible and infrared to terahertz-band, and provide a basis for application of the combination of surface-enhanced Raman scattering and terahertz-wave.

  2. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    Science.gov (United States)

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  3. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  4. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  5. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  6. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies.......e., the particle mode and the cavity mode. The particle mode can be hybridized via leaning of pillars. The LSPR wavelength of the cavity mode is dominant only by the diameter of the Si pillar. The presence of a substrate dramatically changes the intensities of these two LSPR modes, by introducing constructive...... displaying a very large average SERS EF of >108. From a practical point of view, the developed SERS substrates are particularity interesting, since they are easy to handle and store and the fabrication is scalable, facilitating a wide and simple use of SERS in sensing applications....

  7. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  8. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  9. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  10. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  11. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  12. Interfacing capillary electrophoresis and surface-enhanced resonance Raman spectroscopy for the determination of dye compounds

    NARCIS (Netherlands)

    Arraez Roman, D.; Efremov, E.V.; Ariese, F.; Segura Carretero, A.; Gooijer, C.

    2005-01-01

    The at-line coupling of capillary electrophoresis (CE) and surface-enhanced resonance Raman spectroscopy (SERRS) was optimized for the separation and subsequent spectroscopic identification of charged analytes (dye compounds). Raman spectra were recorded following deposition of the electropherogram

  13. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    Science.gov (United States)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  14. Plasmonic dimer antennas for surface enhanced Raman scattering.

    Science.gov (United States)

    Höflich, Katja; Becker, Michael; Leuchs, Gerd; Christiansen, Silke

    2012-05-11

    Electron beam induced deposition (EBID) has recently been developed into a method to directly write optically active three-dimensional nanostructures. For this purpose a metal-organic precursor gas (here dimethyl-gold(III)-acetylacetonate) is introduced into the vacuum chamber of a scanning electron microscope where it is cracked by the focused electron beam. Upon cracking the aforementioned precursor gas, 3D deposits are realized, consisting of gold nanocrystals embedded in a carbonaceous matrix. The carbon content in the deposits hinders direct plasmonic applications. However, it is possible to activate the deposited nanostructures for plasmonics by coating the EBID structures with a continuous silver layer of a few nanometers thickness. Within this silver layer collective motions of the free electron gas can be excited. In this way, EBID structures with their intriguing precision at the nanoscale have been arranged in arrays of free-standing dimer antenna structures with nanometer sized gaps between the antennas that face each other with an angle of 90°. These dimer antenna ensembles can constitute a reproducibly manufacturable substrate for exploiting the surface enhanced Raman effect (SERS). The achieved SERS enhancement factors are of the order of 10⁴ for the incident laser light polarized along the dimer axes. To prove the signal enhancement in a Raman experiment we used the dye methyl violet as a robust test molecule. In future applications the thickness of such a silver layer on the dimer antennas can easily be varied for tuning the plasmonic resonances of the SERS substrate to match the resonance structure of the analytes to be detected.

  15. In situ surface-enhanced raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan William; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 mu L) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC

  16. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system

  17. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  19. Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Siegel Jakub

    2011-01-01

    Full Text Available Abstract This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.

  20. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles.

    Science.gov (United States)

    Jiang, Li; Yin, Penggang; You, Tingting; Wang, Hua; Lang, Xiufeng; Guo, Lin; Yang, Shihe

    2012-12-07

    Highly reproducible surface-enhanced Raman scattering (SERS) spectra are obtained on the surface of SnO(2) octahedral nanoparticles. The spot-to-spot SERS signals show a relative standard deviation (RSD) consistently below 20 % in the intensity of the main Raman peaks of 4-mercaptobenzoic acid (4-MBA) and 4-nitrobenzenethiol (4-NBT), indicating good spatial uniformity and reproducibility. The SERS signals are believed to mainly originate from a charge-transfer (CT) mechanism. Time-dependent density functional theory (TD-DFT) is used to simulate the SERS spectrum and interpret the chemical enhancement mechanism in the experiment. The research extends the application of SERS and also establishes a new uniform SERS substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  2. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  3. Electromagnetic theories of surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ding, Song-Yuan; You, En-Ming; Tian, Zhong-Qun; Moskovits, Martin

    2017-07-07

    Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical

  4. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  5. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    Science.gov (United States)

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  6. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  7. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated γ–Fe2O3 nanoparticles for applications in surface-enhanced .... After the solvent evaporated, 2 μL of analyte of ∼1 μM concentration was ..... dry soil, and comprised of smooth, distinct, rectangular and square shaped islands, whose ...

  8. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    Science.gov (United States)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  9. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  10. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  11. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin; Rekha, T. N.

    2016-01-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  12. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  13. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes.

    Science.gov (United States)

    Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang

    2013-12-01

    This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

    Science.gov (United States)

    Schulte, Franziska; Joseph, Virginia; Panne, Ulrich; Kneipp, Janina

    In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman-based tools are being developed for the biochemical analysis of cellular processes [5-8].

  15. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    Noble metal nanostructures support localized surface plasmon (LSPR) resonances that depend on their dimensions, shapes and compositions. Particle LSPR's can be used to spatially confine the incident light and produce enormous electromagnetic (EM) field enhancement spots, i.e. hot spots. Hot spots...... have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...... experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations...

  16. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  17. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  18. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  19. Research on identification and determination of mixed pesticides in apples using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Chen; Li, Yongyu; Peng, Yankun; Xu, Tianfeng; Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei

    2015-05-01

    Residual pesticides in fruits and vegetables have become one of the major food safety concerns around the world. At present, routine analytical methods used for the determination of pesticide residue on the surface of fruits and vegetables are destructive, complex, time-consuming, high cost and not environmentally friendly. In this study, a novel Surface Enhanced Raman Spectroscopy (SERS) method with silver colloid was developed for fast and sensitive nondestructive detection of residual pesticides in fruits and vegetables by using a self-developed Raman system. SERS technology is a combination of Raman spectroscopy and nanotechnology. SERS can greatly enhance the Raman signal intensity, achieve single-molecule detection, and has a simple sample pre-treatment characteristic of high sensitivity and no damage; in recent years it has begun to be used in food safety testing research. In this study a rapid and sensitive method was developed to identify and analyze mixed pesticides of chlorpyrifos, deltamethrin and acetamiprid in apple samples by SERS. Silver colloid was used for SERS measurement by hydroxylamine hydrochloride reduced. The advantages of this method are seen in its fast preparation at room temperature, good reproducibility and immediate applicability. Raman spectrum is highly interfered by noise signals and fluorescence background, which make it too complex to get good result. In this study the noise signals and fluorescence background were removed by Savitzky-Golay filter and min-max signal adaptive zooming method. Under optimal conditions, pesticide residues in apple samples can be detected by SERS at 0.005 μg/cm2 and 0.002 μg/cm2 for individual acetamiprid and thiram, respectively. When mixing the two pesticides at low concentrations, their characteristic peaks can still be identified from the SERS spectrum of the mixture. Based on the synthesized material and its application in SERS operation, the method represents an ultrasensitive SERS performance

  20. Surface enhanced Raman optical activity as an ultra sensitive tool for ligand binding analysis

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim

    2007-01-01

    The Surface Enhanced Resonance Raman Scattering (SERRS) and Surface Enhanced Resonance Raman Optical Activity (SERROA) spectra of myoglobin and the myoglobin-azide complex were measured on very dilute samples (100 nM protein) in order to analyze the sensitivity of SERROA spectroscopy when inducing...... upon azide complexation. Application of this method allows for rapid analysis of ligand binding in metalloproteins in dilute aqueous solution and could in the future, when combined with theoretical studies, increase the obtainable structural resolution of proteins beyond that of X-ray analysis....

  1. Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, Jonas; Novikov, Sergey Mikhailovich; Albrektsen, Ole

    2009-01-01

    Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron-beam lithogra......Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron...

  2. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  3. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    Science.gov (United States)

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  5. Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina

    2014-01-01

    We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances in ...... in the 1.3–2.5 eV range identified in electron energy loss spectra....

  6. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  7. Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Jauho, Antti-Pekka

    2008-01-01

    Surface-enhanced Raman spectroscopy (SERS) allows single-molecule detection due to the strong field localization occurring at sharp bends or kinks of the metal-vacuum interface. An important question concerns the limits of the signal enhancement that can be achieved via a judicious design...

  8. Surface-enhanced resonance Raman spectroscopy as an identification tool in column liquid chromatography

    NARCIS (Netherlands)

    Seifar, R.M.; Altelaar, M.A.F.; Dijkstra, R.J.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2000-01-01

    The compatibility of ion-pair reversed-phase column liquid chromatography and surface-enhanced resonance Raman spectroscopy (SERRS) for separation and identification of anionic dyes has been investigated, with emphasis on the at-line coupling via a thin-layer chromatography (TLC) plate. SERR spectra

  9. Mathematical model for biomolecular quantification using surface-enhanced Raman spectroscopy based signal intensity distributions

    DEFF Research Database (Denmark)

    Palla, Mirko; Bosco, Filippo Giacomo; Yang, Jaeyoung

    2015-01-01

    This paper presents the development of a novel statistical method for quantifying trace amounts of biomolecules by surface-enhanced Raman spectroscopy (SERS) using a rigorous, single molecule (SM) theory based mathematical derivation. Our quantification framework could be generalized for planar...

  10. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    NARCIS (Netherlands)

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an

  11. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  12. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  13. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: a combined experimental and theoretical investigation.

    Science.gov (United States)

    Adil, D; Guha, S

    2013-07-28

    It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012)] that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm(-1) and the 1560 cm(-1) regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp(2) network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

  14. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: A combined experimental and theoretical investigation

    Science.gov (United States)

    Adil, D.; Guha, S.

    2013-07-01

    It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012)], 10.1021/jp3031804 that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm-1 and the 1560 cm-1 regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp2 network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

  15. Surface-Enhanced Raman Scattering of MEH-PPV on Gold and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Beatriz R. Moraes

    2018-01-01

    Full Text Available The interaction of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV with Au or Ag nanospheres, Au nanostars, and Ag nanoprisms was investigated using surface-enhanced Raman scattering (SERS. The SERS investigation showed that adsorption of MEH-PPV strongly depends on the nature of the nanoparticle surface. On gold nanostars that present a thick layer of capping polymer, SERS spectrum is only observed in relatively concentrated MEH-PPV solution (1 mmol L−1. On the other hand, Au and Ag nanospheres present SERS spectra down to 10−6 mol L−1 and no chemical interaction of MEH-PPV and metal surface is observed. The spectra of MEH-PPV on Ag nanoprisms with PVP as stabilizing agent suggest that the capping polymer induces a planar conformation of MEH-PPV and consequently an increase of conjugation length. These results give support for the application of MEH-PPV on optoelectronics in which interfacial effects are critical in the device efficiency and stability.

  16. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  17. Part II: surface-enhanced Raman spectroscopy investigation of methionine containing heterodipeptides adsorbed on colloidal silver.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro; Proniewicz, Leonard M

    2004-05-01

    Surface-enhanced Raman scattering (SERS) spectra of methionine (Met) containing dipeptides: Met-X and X-Met, where X is: L-glycine (Gly), L-leucine (Leu), L-proline (Pro), and L-phenylalanine (Phe) are reported. Using pre-aggregated Ag colloid we obtained high-quality SERS spectra of these compounds spontaneously adsorbed on colloidal silver. Additionally, we measured Raman spectra (RS) of these heterodipeptides in a solid state as well as in acidic and basic solutions. The RS and SERS spectra of Met-X and X-Met presented in this work appear to be different. One of the most prominent and common features in the SERS spectra of all these dipeptides is a band in the 660-690 cm(-1) range that is due to the C-S stretching, v(CS), vibration of Met. This suggests that all the abovementioned compounds adsorb on the silver surface through a thioether atom. On the other hand, the SERS spectra of X-Met show clearly that not only the S atom but also the carboxylate group interact with the colloid surface as manifested by the enhancement of bands in the 920-930 and 1380-1396 cm(-1) regions. These bands are ascribed to the v(C-COO(-)) and v(sym)(COO(-)) vibrations, respectively. Additionally, a SERS spectrum of Phe-Met indicates that the interaction of the thioether atom, amine group, and aromatic side chain with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide.

  18. Synthesis, characterization, Raman, and surface enhanced Raman studies of semiconductor quantum dots

    Science.gov (United States)

    Pan, Yi

    The major contributions and discoveries of the dissertation include: (1) Homogeneous nucleation processes for the formation of nanocrystals can occur at low temperature and do not need to proceed at high temperature to overcome a high energy barrier. Monodisperse PbS quantum dots (QDs) obtained with nucleation and growth at 45°C support this finding. (2) Monodisperse single elemental Se QDs can be produced by simple solution crystallization from TDE (1-tetradecene) or ODE (1-octadecene). (3) TDE is a better non-coordinating solvent compare to ODE. STDE (S dissolved in TDE) and SeTDE (Se dissolved in TDE) are stable reagents with long storage time. They can be used as universal precursors for S-containing and Se-containing QDs. (4) QDs synthesis can be carried out at low temperature and relatively short reaction time using the simple, non-injection, one-pot synthetic method. (5) The one-pot method can be extended for the synthesis of QDs and graphene oxide nanocomposites and metal and graphene oxide nanocomposites. (6) PbCl2-OLA (oleylamine) is a universal system for the synthesis of Pb-chaclogenides QDs. (7) Surface enhanced Raman spectroscopy (SERS) is used to probe both size and wave length dependent quantum confinement effects (QCEs) of PbS QDs. (8) Raman spectroscopy is a powerful tool to elucidate crystal structure of Se nanoclusters with size of 1--2 nm. Semiconductor QDs have attracted considerable attention due to their potential for energy-efficient materials in optoelectronic and solar cell applications. When the radius of a QD is decreased to that of the exciton Bohr radius, the valence and conduction bands are known to split into narrower bands due to QCEs. QCEs are both size and wave length dependent. We have developed, synthesized and characterized a series of Pb-chaclogenide QDs, which all the sizes of the QDs are monodisperse and smaller than their respective exciton Bohr radius, to study the QCEs of these QDs. SERS is used as a crucial tool to

  19. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich.

    Science.gov (United States)

    Fletcher, Melissa; Alexson, D M; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm(-1)) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm(-1) disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS

    Directory of Open Access Journals (Sweden)

    Raju Botta

    2016-07-01

    Full Text Available The detection of glucose by Surface Enhanced Raman Scattering (SERS is a challenging problem because glucose molecules have a small Raman scattering cross-section and they have a low affinity for adsorption on metal nanoparticle surfaces. In this study we used 2-Thienylboronic acid (2-TBA as a bridge or linker molecule between the metal surface and the glucose molecule and observed an intense Raman line at 986 cm−1 that was used to quantify the glucose concentration in the molar concentration range 1 μM–500 μM. A good correlation was observed between the intensity of this line and molar concentration of glucose. These results would find applications in the development of a non-invasive glucose sensor for diabetic patients using saliva as the body fluid instead of blood serum. Keywords: SERS, Nanoclusters, Raman Spectroscopy, 2-Thienylboronic acid, d-Glucose

  1. Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers.

    Science.gov (United States)

    Paxton, Walter F; Kleinman, Samuel L; Basuray, Ashish N; Stoddart, J Fraser; Van Duyne, Richard P

    2011-05-19

    Surface-enhanced Raman spectroscopy (SERS) was used to monitor the response of a self-assembled monolayer (SAM) of a tetrathiafulvalene (TTF) derivative on a gold film-over-nanosphere electrode. The electrochemical response observed was rationalized in terms of the interactions between TTF moieties as the oxidation state was changed. Electrochemical oxidation to form the monocation caused the absorbance of the TTF unit to coincide with both the laser excitation wavelength and the localized surface plasmon resonance (LSPR), resulting in surface-enhanced resonance Raman scattering (SERRS). The vibrational frequency changes that accompany electron transfer afford a high-contrast mechanism that can be used to determine the oxidation state of the TTF unit in an unambiguous manner.

  2. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    Science.gov (United States)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  3. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... such as bioconjugation, material science or drug discovery. Additionally, as an attractive advantage of this technique, no significant background signal is expected during the measurements, since these signals reside in a Raman silent region of 2000–2300 cm−1, where virtually all biological molecules are transparent....

  4. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Evlyukhin, Andrey B.; Goodilin, Eugene A.

    2015-01-01

    due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living...... mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman...

  5. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  6. sp Carbon chain interaction with silver nanoparticles probed by Surface Enhanced Raman Scattering

    Science.gov (United States)

    Lucotti, A.; Casari, C. S.; Tommasini, M.; Li Bassi, A.; Fazzi, D.; Russo, V.; Del Zoppo, M.; Castiglioni, C.; Cataldo, F.; Bottani, C. E.; Zerbi, G.

    2009-08-01

    Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp 2 phase.

  7. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  8. Principal component analysis of bacteria using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Guicheteau, Jason; Christesen, Steven D.

    2006-05-01

    Surface-enhanced Raman scattering (SERS) provides rapid fingerprinting of biomaterial in a non-destructive manner. The problem of tissue fluorescence, which can overwhelm a normal Raman signal from biological samples, is largely overcome by treatment of biomaterials with colloidal silver. This work presents a study into the applicability of qualitative SER spectroscopy with principal component analysis (PCA) for the discrimination of four biological threat simulants; Bacillus globigii, Pantoea agglomerans, Brucella noetomae, and Yersinia rohdei. We also demonstrate differentiation of gram-negative and gram-positive species and as well as spores and vegetative cells of Bacillus globigii.

  9. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering.

    Science.gov (United States)

    D'Andrea, C; Neri, F; Ossi, P M; Santo, N; Trusso, S

    2009-06-17

    An effective method for the production of surface enhanced Raman scattering (SERS) active substrates is presented. Nanostructured silver thin films are pulsed laser deposited in an argon atmosphere. The films consist of arrays of nanoparticles whose size is controlled by the Ar pressure. The surface morphology of the films can be tuned by the laser pulse number. Nanoparticle size is calculated by a phenomenological model taking into account the dynamics of the laser generated silver plasma. The SERS activity of the films is investigated by Raman scattering of adsorbed rhodamine 6G at different concentrations.

  10. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  11. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    Science.gov (United States)

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  12. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot......) intensity distributions of target molecules on receptor-functionalized nanopillar substrates for biomolecular quantification. We demonstrate that by utilizing only a small set of empirically determined parameters, our general theoretical framework agrees with the experimental data particularly well...

  13. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  14. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  15. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  16. Surface enhanced Raman spectroscopy platform based on graphene with one-year stability

    Energy Technology Data Exchange (ETDEWEB)

    Tite, Teddy [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Barnier, Vincent [Ecole Nationale Supérieure des Mines, CNRS, Laboratoire Georges Friedel UMR 5307, 158 cours Fauriel, F-42023 Saint-Etienne (France); Donnet, Christophe, E-mail: Christophe.Donnet@univ-st-etienne.fr [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Loir, Anne–Sophie; Reynaud, Stéphanie; Michalon, Jean–Yves; Vocanson, Francis; Garrelie, Florence [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France)

    2016-04-01

    We report the synthesis, characterization and use of a robust surface enhanced Raman spectroscopy platform with a stable detection for up to one year of Rhodamine R6G at a concentration of 10{sup −6} M. The detection of aminothiophenol and methyl parathion, as active molecules of commercial insecticides, is further demonstrated at concentrations down to 10{sup −5}–10{sup −6} M. This platform is based on large scale textured few-layer (fl) graphene obtained without any need of graphene transfer. The synthesis route is based on diamond-like carbon films grown by pulsed laser deposition, deposited onto silicon substrates covered by a Ni layer prior to diamond-like carbon deposition. The formation of fl-graphene film, confirmed by Raman spectroscopy and mapping, is obtained by thermal annealing inducing the diffusion of Ni atoms and the concomitant formation of nickel silicide compounds, as identified by Raman and Auger electron spectroscopies. The textured fl-graphene films were decorated with gold nanoparticles to optimize the efficiency of the SERS device to detect organic molecules at low concentrations. - Highlights: • Synthesis of graphene film from amorphous carbon by pulsed laser deposition with nickel catalyst • Large scale textured graphene with nanoscale roughness obtained through nickel silicide formation • Films used for surface enhanced Raman spectroscopy detection of organophosphate compounds • Stability of the SERS platforms over up to one year.

  17. Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering.

    Science.gov (United States)

    Roy, Pradip Kumar; Huang, Yi-Fan; Chattopadhyay, Surojit

    2014-01-01

    A simple way of detecting melamine in raw milk is demonstrated via surface-enhanced Raman spectroscopy (SERS) using fractals of bare and nonfunctionalized ~30 nm gold nanoparticles (AuNP) distributed on a solid support. The technique demonstrates the formation of AuNP fractals, from a random distribution, upon exposure to melamine, that enhance the Raman scattering cross-section to enable detection by SERS. The agglomeration, which is pronounced at higher melamine concentrations, is demonstrated directly through imaging, and the red-shift of the plasmon absorption peak of the AuNP fractal away from 530 nm by finite difference time domain (FDTD) calculations. The agglomeration results in a strong plasmon field, shown by FDTD, over the interparticle sites that enhances the Raman scattering cross-section of melamine and ensures unambiguous detection. Limit of detection of 100 ppb could be achieved reproducibly.

  18. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  19. Surface-Enhanced Raman Spectroscopy forStaphylococcus aureusDNA Detection by Using Surface-Enhanced Raman Scattering Tag on Au Film Over Nanosphere Substrate.

    Science.gov (United States)

    Chen, Jian; Wang, Jun-Feng; Wu, Xue-Zhong; Rong, Zhen; Dong, Pei-Tao; Xiao, Rui

    2018-06-01

    We developed a high-performance surface-enhanced Raman scattering (SERS) sensing platform that can be used for specific and sensitive DNA detection. The SERS platform combines the advantages of Au film over nanosphere (AuFON) substrate and Ag@PATP@SiO2 SERS tag. SERS tag-on-AuFON is a sensing system that operates by the self-assembly of SERS tag onto an AuFON substrate in the presence of target DNAs. The SERS signals can be dramatically enhanced by the formation of "hot spots" in the interstices between the assembled nanostructures, as confirmed by finite-difference time-domain (FDTD) simulation. As a new sensing platform, SERS tag-on-AuFON was utilized to detect Staphylococcus aureus (S. aureus) DNA with a limit of detection at 1 nM. A linear relationship was also observed between the SERS intensity at Raman peak 1439 cm-1 and the logarithm of target DNA concentrations ranging from 1 μM to 1 nM. Besides, the sensing platform showed good homogeneity, with a relative standard deviation of about 1%. The sensitive SERS platform created in this study is a promising tool for detecting trace biochemical molecules because of its relatively simple and effective fabrication procedure, high sensitivity, and high reproducibility of the SERS effect.

  20. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    al., "Visible, near-infrared, and ultraviolet laser- excited Raman spectroscopy of the monocytes/macrophages (U937) cells", J. Raman Spectrosc., 41...Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of the monocytes/macrophages (U937) cells,” J. Raman Spectrosc., 41(3), 268...spectroscopy,” Journal of Photochemistry and Photobiology B-Biology, 16(2), 211-233 (1992). [17] K. Kneipp, H. Kneipp, and H. G. Bohr, “Single-molecule SERS

  1. [The investigation of humic acid by surface-enhanced Raman spectroscopy].

    Science.gov (United States)

    Zhang, Wen-Juan; Li, Ying; Guo, Jin-Jia; Xiao, Qiong; Yu, Li

    2013-05-01

    Humic acid (HA), which are organic compounds widely existing in the oceans, rivers and soil, has important significance for the environmental monitoring of soil and water. In this paper, ai ming at the problem of Surface-enhanced Raman Spectroscopy (SERS) applying for HA detection in water, the characteristics of the humic acid on silver colloids was studied by means of SERS. The influence of laser irradiation time, HA concentrations and pH value on the surface-enhanced effects of HA were investigated. The experimental results show that the SERS spectra of HA is ideal when the laser irradiation time between 20-30 min. The SERS of different HA concentrations was detected. It was found that the relative intensity at 1 379 cm(-1) increased as a linear function of the concentration of HA with correlation coefficient R2 of 0.993. The SERS of HA was found to be very sensitive to pH, the SERS spectra of HA was very weak at neutral pH, but at acidic pH and alkaline pH a remarkable increase of SERS intensity occurred. The SERS of HA in running water was detected too. The experimental results show that it is feasible to detect HA in natural water by means of surface-enhanced Raman spectroscopy.

  2. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina [Department of Chemistry, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Franzka, Steffen [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen, 47047 Duisburg (Germany); Biener, Monika; Biener, Jürgen [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550 (United States); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Department of Chemistry, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen, 47047 Duisburg (Germany)

    2016-06-30

    Graphical abstract: - Highlights: • Photothermal laser processing is used to modify the surface structure of nanoporous gold. • Laser-fabricated structures exhibit pore sizes in the range from 25 nm to 200 nm and higher. • Ru-dye-functionalized surface structures are used in surface-enhanced Raman spectroscopy (SERS) studies. • Raman peak intensities of N719, a commercial Ru-dye, exhibit a strong dependence on the pore size. • Maximum Raman peak intensities are observed for small pore sizes close to 25 nm. - Abstract: Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  3. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    Science.gov (United States)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-06-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement.

  4. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-01-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement. (papers)

  5. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-11-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics, which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.

  6. Surface-enhanced Raman scattering for the detection of polycystic ovary syndrome.

    Science.gov (United States)

    Momenpour, Ali; Lima, Patrícia D A; Chen, Yi-An; Tzeng, Chii-Ruey; Tsang, Benjamin K; Anis, Hanan

    2018-02-01

    Polycystic ovary syndrome (PCOS) is a multi-factorial heterogeneous syndrome that affects many women of reproductive age. This work demonstrates how the surface-enhanced Raman scattering (SERS) technique can be used to differentiate between PCOS and non-PCOS patients. We determine that the use of SERS, in conjunction with partial least squares (PLS) and principal component analysis (PCA), allows us to detect PCOS in patient samples. Although the role of chemerin in the pathogenesis of PCOS patients is not clear, this work enables us to measure their chemerin levels using the PLS regression method.

  7. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...... on the use of the detection OND with or without the gold nanoparticle (Au-NP). Our results confirm that, when the detection OND is coupled to the Au-NP, a better sensitivity for the target OND detection, in terms of a wider dynamic range and a lower detection limit (0:4 fM versus 1nM without Au-NP), would...

  8. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Týčová, Anna; Přikryl, Jan; Foret, František

    2017-01-01

    Roč. 38, č. 16 (2017), s. 1977-1987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Grant - others:AV ČR(CZ) MSM200311601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68081715 Keywords : microfluidics * nanoparticles * separation * Surface-enhanced Raman spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  9. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  10. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  11. Temperature dependence of the surface enhanced raman spectroelectrochemistry of iron in aqueous solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L. J.; Melendres, C. A.; Chemical Engineering

    1996-06-01

    The effect of temperature on the composition of the corrosion film on iron in aqueous sodium hydroxide and borate solutions was investigated using surface enhanced Raman spectroelectrochemistry (SERS). Fe(OH){sub 2} and Fe{sub 3}O{sub 4} were observed in the prepassivation region, while Fe{sub 3}O{sub 4} and FeOOH accounted for most of the passivated film at 25, 60 and 95 C. Fe(OH){sub 2} was found to be a stable component of the corrosion film on iron at 95 C, which is contrary to recently published theoretical calculations.

  12. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    Science.gov (United States)

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  13. Rapid identification of bacterial resistance to Ciprofloxacin using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Pitris, Costas

    2014-02-01

    Due to its effectiveness and broad coverage, Ciprofloxacin is the fifth most prescribed antibiotic in the US. As current methods of infection diagnosis and antibiotic sensitivity testing (i.e. an antibiogram) are very time consuming, physicians prescribe ciprofloxacin before obtaining antibiogram results. In order to avoid increasing resistance to the antibiotic, a method was developed to provide both a rapid diagnosis and the sensitivity to the antibiotic. Using Surface Enhanced Raman Spectroscopy, an antibiogram was obtained after exposing the bacteria to Ciprofloxacin for just two hours. Spectral analysis revealed clear separation between sensitive and resistant bacteria and could also offer some inside into the mechanisms of resistance.

  14. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasova, Polina; Chen, Hui; Du, Henry, E-mail: hdu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States); Kanka, Jiri [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 182 31 Prague (Czech Republic); Mergo, Pawel [Department of Optical Fibres Technology, Maria Curie-Sklodovska University, PI. M. Currie-Sklodowskiej 5, 20-031 Lublin (Poland)

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  15. New Insight into Erythrocyte through In Vivo Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Abdali, Salim; Brazhe, Alexey R.

    2009-01-01

    The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples...... containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent...... techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes. For the first time to our knowledge, we describe how to use the SERS-RS approach to study two populations of hemoglobin molecules inside an intact living...

  16. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  17. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.

    Science.gov (United States)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-03-03

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (Raman spectroelectrochemistry. The SEC system includes a nanostructured Au surface that serves dual roles as the electrochemical working electrode (WE) and SERS substrate, a microfabricated Pt counter electrode (CE), and an external Ag/AgCl reference electrode (RE). The nanostructured Au WE enables highly sensitive in situ SERS spectroscopy through large and reproducible SERS enhancements, which eliminates the need for resonant wavelength matching of the laser excitation source with the electronic absorption of the target molecule. The new SEC analysis system has the merits of wide applicability to target molecules, small sample volume, and a low detection limit. We demonstrate in situ SERS spectroelectrochemistry measurements of the metalloporphyrin hemin showing shifts of the iron oxidation marker band ν4 with the nanostructured Au working electrode under precise potential control.

  18. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  19. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness

    International Nuclear Information System (INIS)

    Linn, Nicholas C; Sun, C-H; Arya, Ajay; Jiang Peng; Jiang Bin

    2009-01-01

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10 8 ). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  20. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  1. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  2. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag 2 Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H 8 Si 8 Al 8 O 12 represents the zeolite cavity unit, and small clusters of (Ag 2 Se) n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  3. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  4. Plasmon-less surface enhanced Raman spectra induced by self-organized networks of silica nanoparticles produced by femtosecond lasers.

    Science.gov (United States)

    Bellouard, Yves; Block, Erica; Squier, Jeff; Gobet, Jean

    2017-05-01

    Raman spectroscopy is the workhorse for label-free analysis of molecules. It relies on the inelastic scattering of incoming monochromatic light impinging molecules of interest. This effect leads to a very weak emission of light spectrum that provides a signature of the molecules being observed. Considerable efforts have been made over the last decades, in particular with the development of Surface Enhanced Raman Spectroscopy (SERS), to enhance the intensity of the emitted signal so that ultimately, traces of molecules can be detected. Here, we show that dense self-organized networks of quasi-monodisperse nanoparticles redepositing during femtosecond laser ablation of trenches in fused silica can lead to a significant field enhancement effect, enabling the Raman detection of a single-molecule layer deposited on the surface (so called monolayer). Unlike previously reported for SERS experiments, here, there is no metal layer promoting plasmonics effects causing localized field enhancement. The method for producing SERS substrates is therefore quite straightforward and low cost.

  5. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  6. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  7. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  8. A Biomedical Surface Enhanced Raman Scattering Substrate: Functionalized Three-Dimensional Porous Membrane Decorated with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2015-01-01

    Full Text Available We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition, Staphylococcus aureus cells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.

  9. Detection of Prohibited Fish Drugs Using Silver Nanowires as Substrate for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Jia Song

    2016-09-01

    Full Text Available Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity.

  10. Rapid Detection of Tetracycline Residues in Duck Meat Using Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jinhui Zhao

    2016-01-01

    Full Text Available A rapid detection method based on surface enhanced Raman spectroscopy (SERS was proposed in this paper in order to realize the detection of tetracycline residues in duck meat. Firstly, surface enhanced Raman spectra characteristics of tetracycline aqueous solution, duck meat extract, and duck meat extract containing tetracycline were analyzed. Secondly, the effect of the addition amount of duck meat extract containing tetracycline on SERS intensity and the effect of the adsorption time on SERS intensity were discussed, respectively. Thirdly, SERS intensity ratio at 1272 and 1558 cm−1 (I1272/I1558 was used to establish the SERS calibration curve. A good linearity relationship between the tetracycline concentration in duck meat extract and I1272/I1558 was obtained, and the linear regression equation and the correlation coefficient (r were y=0.0177x+0.1213 and 0.950, respectively. The average recovery of tetracycline in duck meat extract was 101~108% with relative standard deviation (RSD of 2.4~4.6%. The experimental results showed that the method proposed in this paper was a good detection scheme for the rapid detection of tetracycline residues in duck meat.

  11. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    Jana Chocholousova, Vladimir Spirko and Pavel. Hobza 2004 Phys. Chem. Chem. Phys. 6 37. 36. Erik T J Nibbering Thomas Elsaesser 2004 Chem. Rev. 104 10. 37. Markovits A, Garcia-Hernandez M, Ricart J M and. Illas F 1999 J. Phys. Chem. B103 509. 38. Jung Sang Suh and Jurae Kim 1998 J. Raman Spec- trosc.

  12. Time-Resolved Study of the Surface-Enhanced Raman Scattering Effect of Silver Nanoparticles Generated in Voltammetry Experiments

    OpenAIRE

    Ibáñez, David; Fernández Blanco, Ana Cristina; Heras, Aránzazu; Colina, Álvaro

    2014-01-01

    UV–vis absorption and Raman spectroelectrochemistry have been used to study silver nanoparticle (AgNP) electrodeposition, allowing a better understanding about the metal nanoparticle (NP) formation process and its influence on the surface-enhanced Raman scattering (SERS) effect. These techniques have provided in situ information related to the synthesis of AgNPs by cyclic voltammetry. With a marker, such as cyanide anion (CN–), Raman spectroscopy has allowed us to study all changes that take ...

  13. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  14. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  15. Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification

    Directory of Open Access Journals (Sweden)

    Mohamed Hassoun

    2017-06-01

    Full Text Available The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles.

  16. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Yilmaz, Mehmet; Babur, Esra; Ozdemir, Mehmet; Gieseking, Rebecca L.; Dede, Yavuz; Tamer, Ugur; Schatz, George C.; Facchetti, Antonio; Usta, Hakan; Demirel, Gokhan

    2017-09-01

    π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 103 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to ~1010 and sub-zeptomole (films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.

  17. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  18. Surface-enhanced Raman spectroscopy study of radix astragali based on soxhlet extractor

    Science.gov (United States)

    Lu, Peng; Lin, Juqiang; Liu, Nengrong; Shao, Yonghong; Wang, Jing; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    Due to its high sensitivity, flexibility, and "fingerprints" sensing capability, Surface-enhanced Raman Spectroscopy (SERS) is a very powerful method for characterization of substances. In this paper, two kinds of Radix Astragali with different quality were firstly extracted through continuous circumfluence extraction method and then mixed with silver nanoparticles for SERS detection. Most Raman bands obtained in Radix Astragali extraction solution are found at 300-7000cm-1 and 900-1390 cm-1. Although, major peak positions at 470, 556, 949, 1178 and 1286 cm-1 found in these two kinds of Radix Astragali appear nearly the same, Raman bands of 556 and 1178 cm-1 are different in intensity, thus may be used as a characteristic marker of Radix Astragali quality. In detail, we can make full use of the different intensity of two different kinds but the same state at 556 cm-1 to describe the quality standard of Radix Astragali. Our preliminary results show that SERS combining with continuous circumfluence extraction method may provide a direct, accurate and rapid detection method of Radix Astragali.

  19. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  20. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  1. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  2. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  3. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    Science.gov (United States)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  4. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Chen, Y. X.; Chen, M. W.; Lin, J. Y.; Lai, W. Q.; Huang, W.; Chen, H. Y.; Weng, G. X.

    2016-11-01

    This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA-LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA-LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients' pain to a great extent.

  5. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  6. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  7. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  8. Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili

    2015-05-01

    In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.

  9. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  10. Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu; Li, Tao; Schmidt, Michael Stenbæk

    2018-01-01

    Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodoos...... substrate. The macroscopic uniformity combined with recyclability at conserved high performance is expected to contribute significantly on the overall competitivity of the substrates. These findings show that the gold nanoparticles sliding on recyclable nanohoodoo substrate is a very strong candidate...... 6% across 4 cm. After SERS analyses, the nanohoodoos can be recycled by complete removal of gold via a one-step, simple, and robust wet etching process without compromising performance. After eight times of recycling, the substrate still exhibits identical SERS performance in comparison to a new...

  11. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Chen, Longqing; Syed, Ahad; Wong, Kimchong; Wang, Xianbin

    2012-01-01

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. (paper)

  12. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  13. Surface enhanced Raman spectroscopy for urinary tract infection diagnosis and antibiogram

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Constantinos

    2010-02-01

    Urinary tract infection diagnosis and antibiogram require a minimum of 48 hours using standard laboratory practice. This long waiting period contributes to an increase in recurrent infections, rising health care costs, and a growing number of bacterial strains developing resistance to antibiotics. In this work, Surface Enhanced Raman Spectroscopy (SERS) was used as a novel method for classifying bacteria and determining their antibiogram. Five species of bacteria were classified with > 90% accuracy using their SERS spectra and a classification algorithm involving novel feature extraction and discriminant analysis. Antibiotic resistance or sensitivity was determined after just a two-hour exposure of bacteria to ciprofloxacin (sensitive) and amoxicillin (resistant) and analysis of their SERS spectra. These results can become the basis for the development of a novel method that would provide same day diagnosis and selection of the most appropriate antibiotic for most effective treatment of a urinary tract infection.

  14. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas.

    Science.gov (United States)

    Wustholz, Kristin L; Brosseau, Christa L; Casadio, Francesca; Van Duyne, Richard P

    2009-09-14

    This perspective presents recent surface-enhanced Raman spectroscopy (SERS) studies of dyes, with applications to the fields of single-molecule spectroscopy and art conservation. First we describe the development and outlook of single-molecule SERS (SMSERS). Rather than providing an exhaustive review of the literature, SMSERS experiments that we consider essential for its future development are emphasized. Shifting from single-molecule to ensemble-averaged experiments, we describe recent efforts toward SERS analysis of colorants in precious artworks. Our intention is to illustrate through these examples that the forward development of SERS is dependent upon both fundamental (e.g., SMSERS) and applied (e.g., on-the-specimen SERS of historical art objects) investigations and that the future of SERS is very bright indeed.

  15. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...... showed only minor differences between standard PCB77 and PCB77-SCH3. Consequently, we observe significantly increased SERS signals for –SCH3 modified PCB77 while retaining most vibrational modes that characterize standard PCB77. Results point towards more efficient path for detecting different PCB...

  16. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  17. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  18. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  19. Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths

    KAUST Repository

    Yue, Weisheng

    2012-08-01

    We demonstrate that surface-enhanced Raman scattering (SERS) enhancement could be tuned by adjusting the width of a connection bar at the bottom of a gold nanorod pair. Arrays of gold nanorod pairs with interconnection bars of different widths at the bottom of the interspace were fabricated by electron-beam lithography and used for the SERS study. Rhodamine 6G (R6G) was used as the probe molecule for the SERS. In addition to the large SERS enhancement observed in the nanostructured substrates, the SERS enhancement increases as the width of the connection bar increases. This result provides an important method for tuning SERS enhancement. Numerical simulations of electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results correspond well with the experimental observations. © 2012 Elsevier B.V. All rights reserved.

  20. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Li, Yin; Lu, Gewu; Wu, Xufeng; Shi, Gaoquan

    2006-12-07

    Two-dimensional palladium (Pd) nanostructures have been fabricated by electrochemical deposition of Pd onto an indium tin oxide glass substrate modified with a thin flat film of polypyrrole or a nanofibril film of polyaniline. The experimental results demonstrated that the morphology of Pd nanoparticles strongly depended on the properties of conducting polymers and the conditions of electrochemical deposition. Two-dimensional nanostructures composed of flower-like (consisting of staggered nanosheets) or pinecone-like Pd nanoparticles were successfully synthesized. They can be used as substrates for surface-enhanced Raman scattering after partly decomposing the polymer components by heating in air, and the enhancement factor of the substrate composed of flower-like Pd nanoparticles was measured to be as high as 105 for 4-mercaptopyridine.

  1. N-Heterocyclic Carbenes as a Robust Platform for Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    DeJesus, Joseph F; Trujillo, Michael J; Camden, Jon P; Jenkins, David M

    2018-01-31

    Surface-enhanced Raman spectroscopy (SERS) underpins a wide range of commercial and fundamental applications. SERS often relies on ligands, usually thiols, bound to a noble metal surface. The difficulty of straightforward thiol synthesis combined with their instability on surfaces highlights the need for alternative ligand design. We present the first example of SERS utilizing N-heterocyclic carbene ligands. A general three step synthesis is presented for functionalized NHC-CO 2 adducts. These ligands are deposited on SERS-active gold film-over-nanosphere substrates (AuFONs) in solvent-free and base-free conditions, which prevents fouling. The resulting films are found to be robust and capable of postsynthetic modifications.

  2. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  3. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  4. A nanoforest structure for practical surface-enhanced Raman scattering substrates

    International Nuclear Information System (INIS)

    Seol, Myeong-Lok; Choi, Sung-Jin; Baek, David J; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Jung Park, Tae; Yup Lee, Sang

    2012-01-01

    A nanoforest structure for surface-enhanced Raman scattering (SERS) active substrates is fabricated and analyzed. The detailed morphology of the resulting structure can be easily controlled by modifying the process parameters such as initial gold layer thickness and etching time. The applicability of the nanoforest substrate as a label-free SERS immunosensor is demonstrated using influenza A virus subtype H1N1. Selective binding of the H1N1 surface antigen and the anti-H1 antibody is directly detected by the SERS signal differences. Simple fabrication and high throughput with strong in-plane hot-spots imply that the nanoforest structure can be a practical sensing component of a chip-based SERS sensing system. (paper)

  5. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Li, Tao; Wu, Kaiyu; Rindzevicius, Tomas

    2016-01-01

    We report a novel nanofabrication process via block copolymer lithography using solvent vapor annealing. The nanolithography process is facile and scalable, enabling fabrication of highly ordered periodic patterns over entire wafers as substrates for surface-enhanced Raman spectroscopy (SERS......). Direct silicon etching with high aspect ratio templated by the block copolymer mask is realized without any intermediate layer or external precursors. Uniquely, an atomic layer deposition (ALD)-assisted method is introduced to allow reversing of the morphology relative to the initial pattern. As a result......, highly ordered silicon nanopillar arrays are fabricated with controlled aspect ratios. After metallization, the resulting nanopillar arrays are suitable for SERS applications. These structures readily exhibit an average SERS enhancement factor of above 108, SERS uniformities of 8.5% relative standard...

  6. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    Science.gov (United States)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  7. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies.

    Science.gov (United States)

    Qu, Hua; Lai, Yuming; Niu, Dongzi; Sun, Shuqing

    2013-02-06

    Binary nanoparticles composed of a superparamagnetic Fe(3)O(4) core and an Au nanoshell (Fe(3)O(4)@Au) were prepared via a simple co-precipitation method followed by seed-mediated growth process. The nanoparticles exhibited functions of both fast magnetic response and local surface plasmon resonance. The Fe(3)O(4)@Au nanoparticles were used as probes for surface-enhanced Raman scattering (SERS) using p-thiocresol (p-TC) as reporter molecule. With the ability of analyte capture and concentration magnetically, the Fe(3)O(4)@Au nanoparticles showed significant SERS properties with excellent reproducibility. Under non-optimized conditions, detection limit as low as 4.55 pM of analyte can be reached using Fe(3)O(4)@Au nanoparticle assemblies, which excel remarkably the cases with traditional Au nanoprobes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors.

    Science.gov (United States)

    Lombardi, John R

    2017-12-04

    We present an expression for the lowest order nonzero contribution to the surface-enhanced Raman spectrum obtained from a system of a molecule adsorbed on a semiconductor nanoparticle. Herzberg-Teller vibronic coupling of the zero-order Born-Oppenheimer states results in an expression which may be regarded as an extension of the Albrecht A-, B-, and C-terms to SERS substrates. We show that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances. These resonances are coupled by terms in the numerator, which provide selection rules that enable various tests of the theory and predict the relative intensities of the Raman lines. Furthermore, by considering interactions of the various contributions to the SERS enhancement, we are able to develop ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances. This provides a procedure by which molecular sensors can be constructed and optimized. We provide several experimental examples on substrates such as monolayer MoS 2 and GaN nanorods.

  9. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Victoria Shalabaeva

    Full Text Available Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS. This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA, we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization

  10. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  11. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    Science.gov (United States)

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  12. Analysis of Genomic DNAs from Nine Rosaceae Species Using Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Lu, Qiu; Lang, Tao; Fan, Shuguo; Chen, Wen; Zang, Deqing; Chen, Jing; Shi, Minzhen

    2015-12-01

    Surface-enhanced Raman scattering (SERS) of genomic DNA was used to determine genetic relationships and species identification of nine plants from three subfamilies of Rosaceae. Genomic DNA was extracted, and the SERS spectra were obtained by using a nanosilver collosol at an excitation wavelength of 785 nm. Adenine and ribodesose were the active sites of genomic DNAs in the silver surface-enhanced Raman spectra. The strong peak at 714 cm(-1) was assigned to the stretching vibration of adenine, the strong peak at 1011cm(-1) contributed to the stretching vibration of the deoxyribose and the scissoring vibrations of cytosine, and the strong peak at 625 cm(-1) is the stretching vibration of glycosidic bond and the scissoring vibrations of guanine. The three-dimensional plot of the first, second, and third principal components showed that the nine species could be classified into three categories (three subfamilies), consistent with the traditional classification. The model of the hierarchical cluster combined with the principal component of the second derivative was more reasonable. The results of the cluster analysis showed that apricot (Prunus armeniaca L.) and cherry (Prunus seudocerasus Lindl.) were clustered into one category (Prunoideae); firethorn (Firethorn fortuneana Li.), loquat (Eriobotrya japonica Lindl.), apple (Malus pumila Mill.), and crabapple (Malus hallianna Koehne.) were clustered into a second category (Pomoideae); and potentilla (Potentilla fulgens Wall.), rose (Rosa chinensis Jacd.), and strawberry (Fragaria chiloensis Duchesne.) were clustered into a third category (Rosoideae). These classifications were in accordance with the traditional classification with a correction rate of clustering of 100%. The correct rate of species identification was 100%. These five main results indicate that the genetic relationship and species identification of nine Rosaceae species could be determined by using SERS spectra of their genomic DNAs.

  13. Surface enhanced Raman scattering by organic and inorganic semiconductors formed on laterally ordered arrays of Au nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@thermo.isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090, Novosibirsk (Russian Federation); Yeryukov, Nikolay A., E-mail: yeryukov@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Sheremet, Evgeniya S.; Ludemann, Michael; Gordan, Ovidiu D. [Semiconductor Physics, Chemnitz University of Technology, D-09107, Chemnitz (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090, Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Chemnitz University of Technology, D-09107, Chemnitz (Germany)

    2013-09-30

    This work is devoted to the investigation of surface-enhanced Raman scattering by vibrational modes of cobalt phthalocyanine ultrathin films and CuS nanocrystals prepared using by organic molecular beam vapor deposition and the Langmuir–Blodgett technique, respectively, on laterally ordered arrays of Au nanoclusters formed by electron beam lithography on Si and GaAs substrates. The surface-enhanced Raman scattering study of cobalt phthalocyanine films demonstrates the strong dependence of Raman intensity of vibrational modes in cobalt phthalocyanine on the laser excitation wavelength as well as on the size and period of Au nanoclusters. By tuning the optical resonance conditions a maximal enhancement factor of 2 × 10{sup 4} is achieved. The investigation of surface-enhanced Raman scattering by cobalt phthalocyanine deposited on laterally ordered arrays of paired Au nanoclusters (dimers) reveals anisotropic enhancement with respect to polarization of the scattered light parallel or perpendicular to the dimer axis. - Highlights: • Controllable and reproducible Au nanocluster and dimer arrays were fabricated. • Surface enhanced Raman scattering (SERS) by CuS nanocrystals was observed. • SERS by ultrathin cobalt phthalocyanine (CoPc) films was observed. • Dependence of SERS enhancement factor on the size of Au nanoclusters is resonant. • SERS by ultrathin CoPc films formed on Au dimer arrays is polarization dependent.

  14. The monothiocyanate complexes of chromium ion(III) on the silver electrode by the surface enhanced Raman scattering

    Science.gov (United States)

    Wang, Huanru; Wu, Guozhen

    2005-11-01

    Two adsorbate forms of the monothiocyanate complex of chromium ion on the silver electrode are identified in the surface enhanced Raman scattering. The spectroscopic, especially the electronic, properties of these two forms under different applied voltages on the electrode and under both 632.8 and 514.5 nm excitations are studied by the bond force constants (bond orders) and the bond polarizability derivatives which are retrieved from the Raman intensities by an algorithm developed by Wu and co-workers [B. Tian, G. Wu, G. Liu, J. Chem. Phys. 87 (1987) 7300]. The work shows the potential of this approach to the surface enhanced Raman scattering and other fields like resonance Raman that involve vibronic coupling.

  15. Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhou, Qin; Zhang, Xian; Huang, Yu; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs) in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10(-6) mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  16. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Validation of a Miniaturized Spectrometer for Trace Detection of Explosives by Surface-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Salvatore Almaviva

    2016-08-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS measurements of some common military explosives were performed with a table-top micro-Raman system integrated with a Serstech R785 miniaturized device, comprising a spectrometer and detector for near-infrared (NIR laser excitation (785 nm. R785 was tested as the main component of a miniaturized SERS detector, designed for in situ and stand-alone sensing of molecules released at low concentrations, as could happen in the case of traces of explosives found in an illegal bomb factory, where solid microparticles of explosives could be released in the air and then collected on the sensor’s surface, if placed near the factory, as a consequence of bomb preparation. SERS spectra were obtained, exciting samples in picogram quantities on specific substrates, starting from standard commercial solutions. The main vibrational features of each substance were clearly identified also in low quantities. The amount of the sampled substance was determined through the analysis of scanning electron microscope images, while the spectral resolution and the detector sensitivity were sufficiently high to clearly distinguish spectra belonging to different samples with an exposure time of 10 s. A principal component analysis procedure was applied to the experimental data to understand which are the main factors affecting spectra variation across different samples. The score plots for the first three principal components show that the examined explosive materials can be clearly classified on the basis of their SERS spectra.

  18. Bromide-Assisted Anisotropic Growth of Gold Nanoparticles as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Melissa A. Kerr

    2016-01-01

    Full Text Available We report herein a one-step synthesis of gold nanoparticles (Au NPs of various shapes such as triangles, hexagons, and semispheres, using 5-hydroxyindoleacetic acid (5-HIAA as the reducing agent in the presence of potassium bromide (KBr. Anisotropic Au NPs have received ever-increasing attention in various areas of research due to their unique physical and chemical properties. Numerous synthetic methods involving either top-down or bottom-up approaches have been developed to synthesize Au NPs with deliberately varied shapes, sizes, and configurations; however, the production of templateless, seedless, and surfactant-free singular-shaped anisotropic Au NPs remains a significant challenge. The concentrations of hydrogen tetrachloroaurate (HAuCl4, 5-HIAA, and KBr, as well as the reaction temperature, were found to influence the resulting product morphology. A detailed characterization of the resulting Au NPs was performed using ultraviolet-visible (UV-Vis spectroscopy, scanning electron microscopy (SEM, and Raman spectroscopy. The as-prepared Au NPs exhibited excellent surface-enhanced Raman scattering (SERS properties, which make them very attractive for the development of SERS-based chemical and biological sensors.

  19. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    KAUST Repository

    De Vitis, Stefania

    2015-05-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars. © 2015 Elsevier Ltd.

  20. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates.

    Science.gov (United States)

    Janči, Tibor; Valinger, Davor; Gajdoš Kljusurić, Jasenka; Mikac, Lara; Vidaček, Sanja; Ivanda, Mile

    2017-06-01

    This study was focused on development of a rapid and sensitive method for histamine determination in fish based on Surface Enhanced Raman Spectroscopy (SERS) using simple and widely available silver colloid SERS substrate. Extraction of histamine with 0.4M perchloric acid and purification with 1-butanol significantly shortened sample preparation (30min) and provided clear SERS spectra with characteristic Raman bands of histamine. Principal component analysis effectively distinguished SERS spectra of fish samples with different histamine content. Partial least square (PLS) regression models confirmed reliability of detection and spectral analysis of histamine with SERS. In histamine concentration range 0-200mgkg -1 , significant in legislative and fish quality control aspects, PLS regression model based on spectral range 1139.9-1643.7cm -1 showed linear trend with R 2 pred =0.962, RPD=7.250. Presented protocol for histamine extraction and purification followed by SERS analysis coupled with chemometric approach, enabled development of rapid and inexpensive method for histamine determination in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  3. Re-thinking surface enhance Raman spectroscopy (SERS) sensors with a systems perspective

    Science.gov (United States)

    White, Ian M.

    2017-02-01

    While surface enhanced Raman spectroscopy (SERS) may not compete with the standard central lab approaches for chemical and biological sensing, SERS may have the potential to provide unique capabilities for analytics away from the central lab. Raman spectrometers have evolved from benchtop systems to high-performing handheld instruments that are compatible with analysis of samples in the field. However, for SERS to truly succeed as a "point-of-sample" analytical technique, the SERS sensor must fit the needs of analysis in the field, including little or no sample preparation, minimal peripheral equipment, and ease of use. Traditional plasmonically-active rigid devices do not meet these requirements. Even microfluidic SERS devices generally are not compatible with point-of-sample analysis, as the "world-to-chip" interface presents challenges, and peripheral equipment is generally required. In this review we will discuss the advances in plasmonic substrates fabricated on porous membranes, leading to SERS sensors that can collect samples via swabbing or dipping, clean up samples through separation, concentrate analytes by lateral flow focusing, and avoid the need for peripheral equipment. In particular, we will focus on inkjet-fabricated devices, which may present the best opportunity for scale-up via roll-to-roll manufacturing. We will also discuss the directions that flexible SERS sensors are moving the field, such as simple fabrication techniques, new support materials, SERS swabs, and SERS-active tapes and films.

  4. Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds

    Science.gov (United States)

    Thrift, Will; Bhattacharjee, Arunima; Darvishzadeh-Varcheie, Mahsa; Lu, Ying; Hochbaum, Allon; Capolino, Filippo; Whiteson, Katrine; Ragan, Regina

    2015-08-01

    Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated. Electromagnetic full wave simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of genes related to biofilm formation. These results pave the way for the use of SERS sensors for the early detection of biofilm formation, leading to reduced healthcare costs and better patient outcomes.

  5. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    Science.gov (United States)

    De Vitis, Stefania; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Perozziello, Gerardo; Dattola, Elisabetta; Candeloro, Patrizio; Di Fabrizio, Enzo

    2016-01-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars.

  6. Surface-enhanced Raman Scattering Enhancement Factors for RNA Mononucleotides on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Snežana Miljanić

    2015-12-01

    Full Text Available Surface-enhanced Raman scattering (SERS enhancement factors (EF were evaluated for RNA mononucleotides: adenosine 5'-monophosphate (AMP, guanosine 5'-monophosphate (GMP, cytidine 5'-monophosphate (CMP and uridine 5'-monophosphate (UMP, on silver nanoparticles, which differed in shape (nanospheres, nanostars and stabilizing anionic layer (chlorides, citrates on the metal surface. In freshly prepared silver colloids the enhanced Raman scattering was observed for all the RNA mononucleotides on the chloride coated silver nanospheres, Ag_Cl nsp (EF ≈ 104, for AMP only on the citrate coated silver nanospheres, Ag_cit nsp (EF ≈ 103, while not obtained at all for any of the mononucleotides on the citrate stabilized silver nanostars, Ag_cit nst. Upon aggregation, the SERS activity of all the silver colloids increased, whereby the purine mononucleotides, AMP and GMP, more strongly scattered radiation on Ag_Cl nsp, and the pyrimidine mononucleotides, CMP and UMP, on Ag_cit nsp. Regardless of the silver nanoparticles, the higher EFs were evaluated for AMP and GMP (EF up to 5 × 106, than for CMP and UMP (EF ≈ 5 × 104.

  7. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Guichi [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Hu Yongjun, E-mail: yjhu@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Gao Jiao; Zhong Liang [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-07-04

    Graphical abstract: Schemes of SERS nanoprobes preparation (a) and competitive SERS immunoassay for clenbuterol (b). Highlights: > A new method for clenbuterol detection by the use of a competitive SERS immunoassay has been developed. > 4,4'-Dipyridyl is chosen as the Raman reporter due to its fast-labeled, nontoxic and bifunctional properties. > The present method could detect clenbuterol over a wide dynamic concentration range and exhibit significant specificity in real samples. > The technique is more sensitive and simpler than the conventional method ELISA. - Abstract: In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL{sup -1}) with a lower limit of detection (ca. 0.1 pg mL{sup -1}) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.

  8. Surface enhanced Raman spectroscopy as a point-of-care diagnostic for infection in wound effluent

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Crane, Nicole J.

    2016-03-01

    In military medicine, one of the challenges in dealing with large combat-related injuries is the prevalence of bacterial infection, including multidrug resistant organisms. This can prolong the wound healing process and lead to wound dehiscence. Current methods of identifying bacterial infection rely on culturing microbes from patient material and performing biochemical tests, which together can take 2-3 days to complete. Surface Enhanced Raman Spectroscopy (SERS) is a powerful vibrational spectroscopy technique that allows for highly sensitive structural detection of analytes adsorbed onto specially prepared metal surfaces. In the past, we have been able to discriminate between bacterial isolates grown on solid culture media using standard Raman spectroscopic methods. Here, SERS is utilized to assess the presence of bacteria in wound effluent samples taken directly from patients. To our knowledge, this is the first attempt for the application of SERS directly to wound effluent. The utilization of SERS as a point-of-care diagnostic tool would enable physicians to determine course of treatment and drug administration in a matter of hours.

  9. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  10. Semi-quantitative analysis of indigo by surface enhanced resonance Raman spectroscopy (SERRS) using silver colloids

    Science.gov (United States)

    Shadi, I. T.; Chowdhry, B. Z.; Snowden, M. J.; Withnall, R.

    2003-08-01

    In this paper we report for the first time semi-quantitative analysis of indigo using surface enhanced Raman spectroscopy (SERS) and surface enhance resonance Raman spectroscopy (SERRS). Indigo, a dye widely used today in the textile industry, has been used, historically, both as a dye and as a pigment; the latter in both paintings and in printed material. The molecule is uncharged and largely insoluble in most solvents. The application of SERS/SERRS to the semi-quantitative analysis of indigo has been examined using aggregated citrate-reduced silver colloids with appropriate modifications to experimental protocols to both obtain and maximise SERRS signal intensities. Good linear correlations are observed for the dependence of the intensities of the SERRS band at 1151 cm -1 using laser exciting wavelengths of 514.5 nm ( R=0.9985) and 632.8 nm ( R=0.9963) on the indigo concentration over the range 10 -7-10 -5 and 10 -8-10 -5 mol dm -3, respectively. Band intensities were normalised against an internal standard (silver sol band at 243 cm -1). Resonance Raman spectra (RRS) of aqueous solutions of indigo could not be collected because of its low solubility and the presence of strong fluorescence. It was, however, possible to obtain RS and RRS spectra of the solid at each laser excitation wavelength. The limits of detection (L.O.D.) of indigo by SERS and SERRS using 514.5 and 632.8 nm were 9 ppm at both exciting wavelengths. Signal enhancement by SERS and SERRS was highly pH dependent due to the formation of singly protonated and possibly doubly protonated forms of the molecule at acidic pH. The SERS and SERRS data provide evidence to suggest that an excess of monolayer coverage of the dye at the surface of silver colloids is observed at concentrations greater than 7.85×10 -6 mol dm -3 for each exciting wavelength. The data reported herein also strongly suggest the presence of multiple species of the indigo molecule.

  11. Quick Detection of Contaminants Leaching from Polypropylene Centrifuge Tube with Surface Enhanced Raman Spectroscopy and Ultra Violet Absorption Spectroscopy

    OpenAIRE

    Xu, Zhida; Liu, Logan

    2014-01-01

    Anomalous surface enhanced Raman scattering (SERS) peaks are identified for liquid sample stored in polypropylene centrifuge tubes (PP tube) for months. We observed the unexpected Raman peaks during experiments for Thiamine Hydrochloride aqueous solution stored in PP tube for two months. In order to identify the contaminants we have performed SERS experiments for de-ionized water (DI water) stored in polypropylene centrifuge tube for two months and compared them with fresh DI water sample. We...

  12. Characterization and surface-enhanced Raman spectral probing of silver hydrosols prepared by two-wavelength laser ablation and fragmentation

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, P.; Šišková, K.; Vlčková, B.; Pfleger, Jiří; Šloufová, Ivana; Šlouf, Miroslav; Mojzeš, P.

    2003-01-01

    Roč. 59, č. 10 (2003), s. 2321-2329 ISSN 1386-1425. [International Conference on Raman Spectroscopy Applied to the Earth Sciences /5./. Prague, 12.06.2002-15.06.2002] R&D Projects: GA ČR GA203/01/1013 Institutional research plan: CEZ:AV0Z4050913 Keywords : surface-enhanced Raman spectroscopy * silver hydrosols * two-wavelength laser ablation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2003

  13. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lei Lin

    2018-04-01

    Full Text Available Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91. Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  14. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  15. Coupling of column liquid chromatography and surface-enhanced resonance Raman spectroscopy via a thin-layer chromatographic plate.

    NARCIS (Netherlands)

    Coulter, S.K.; Gooijer, C.; Velthorst, N.H.; Brinkman, U.A.T.; Somsen, G.W.

    1997-01-01

    Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thinlayer chromatography (TLC) plate using a spray-jet

  16. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced raman spectroscopy an chemometric analysis

    Science.gov (United States)

    The intrinsic surface-enhanced Raman scattering (SERS) was used for differentiating and classifying bacterial species with chemometric data analysis. Such differentiation has often been conducted with an insufficient sample population and strong interference from the food matrices. To address these ...

  17. Surface-Enhanced Raman Scattering Activity of Ag/graphene/polymer Nanocomposite Films Synthesized by Laser Ablation

    Czech Academy of Sciences Publication Activity Database

    Siljanovska Petreska, G.; Blazevska-Gilev, J.; Fajgar, Radek; Tomovska, R.

    2014-01-01

    Roč. 564, AUG 1 (2014), s. 115-120 ISSN 0040-6090 Grant - others:NATO SfP(US) 984399 Institutional support: RVO:67985858 Keywords : laser ablation * surface-enhanced raman scattering * nanocomposite s * graphene * rhodamine 6G Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.759, year: 2014

  18. Application of silver films with different roughness parameter for septic human serum albumin detection by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.

    2018-01-01

    In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.

  19. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  20. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...

  1. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  2. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kirubha, E.; Vishista, K.; Palanisamy, P. K.

    2014-11-01

    In the present study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple, eco-friendly and `green' method using gripe water as reducing as well as stabilizing agent. Control over the dispersity of silver (Ag) nanoparticles was attained by altering the synthesis process. The size and morphology of the particles were perceived using high-resolution transmission electron microscope and the surface plasmon resonance of the prepared nanoparticles was observed by UV-VIS spectrum. Herein, we report the nonlinear optical behavior and surface-enhanced Raman spectroscopy of silver nanoparticles with different particle size and dispersity. The nonlinear optical behavior was studied by single beam Z-scan technique using tunable Ti: Sapphire mode-locked femtosecond laser as source. The nonlinear optical parameters such as the nonlinear refractive index, nonlinear absorption coefficient β and the third-order nonlinear susceptibility χ 3 of the prepared Ag nanoparticles were obtained for various wavelengths by tuning the wavelength of the laser from 700 to 950 nm. Surface-enhanced Raman spectroscopy (SERS) is an inspiring phenomenon especially in the case of silver nanoparticles. The as-synthesized silver nanoparticles show huge enhancements in the order of 109 in the Raman spectrum of rhodamine 6G dye.

  4. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    Science.gov (United States)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  5. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

    International Nuclear Information System (INIS)

    Jeremy Daniel Driskell

    2006-01-01

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  6. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  7. Industrial Applications of the Surface-Enhanced Raman Spectroscopy Application industrielle du SERS

    Directory of Open Access Journals (Sweden)

    Nabiev I.

    2006-11-01

    Full Text Available Surface-enhanced Raman scattering (SERS spectroscopy is now a well-established phenomenon, which has been thoroughly characterized in a variety of interfacial and colloidal environments. Although some quantitative aspects of the underlying enhancement mechanisms apparently remain unresolved, attention is now shifting towards application of SERS to explore phenomena of chemical, physical, biological and industrial significance. The goal of this review is to appreciate the industrial value of innovative SERS technique on the basis of our experience in development of new SERS-active substrates and in their biomedical and biotechnological applications. Examples of diverse SERS analytical applications as well as some very recent facilities, as SERS microprobe analysis, SERS fiber optics probes, FT-SERS spectroscopy, SERS detection for high-performance liquid chromatography, etc. , are also discussed. Le SERS (Surface Enhanced Raman Spectroscopy est un phénomène aujourd'hui bien connu qui a été étudié dans toute une gamme de milieux interfaciaux et colloïdaux. Si certains aspects quantitatifs des mécanismes d'exaltation restent apparemment non résolus, l'attention se porte à présent vers l'application de la spectroscopie SERS à l'exploration de phénomènes présentant un intérêt chimique, physique, biologique et industriel. L'objectif de cet article est d'estimer la valeur industrielle des nouvelles techniques de spectroscopie SERS à partir de notre expérience dans le développement de nouveaux substrats actifs en SERS et leurs applications biomédicales et biotechnologiques. Les auteurs discutent également des exemples de diverses applications analytiques de la spectroscopie SERS ainsi que de quelques procédés très récents : analyse par microsonde SERS, sondes SERS à fibres optiques, spectroscopie FT-SERS, détection SERS pour la chromatographie haute performance en phase liquide, etc.

  8. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Driskell, Jeremy Daniel [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  9. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-01-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H 2 O 2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H 2 O 2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  10. Detection of Ractopamine and Clenbuterol Hydrochloride Residues in Pork Using Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zhao, J. H.; Yuan, H. C.; Peng, Y. J.; Hong, Q.; Liu, M. H.

    2017-03-01

    Surface enhanced Raman spectroscopy (SERS) coupled with chemometric methods, such as adaptive iteratively reweighted penalized least squares (AIR-PLS), wavelet transform, and least squares support vector machine (LSSVM), was investigated to realize the rapid detection and identifi cation of ractopamine (RAC) and clenbuterol hydrochloride (CL) residues in pork. First-level wavelet detail signal intensities at 1168 cm-1 were used to establish a standard curve of the RAC residues in pork, and the linear regression equation and the correlation coefficient were y = -4. 3683x - 11.059 and -0.9726. Second-level wavelet detail signal intensities at 1258 cm-1 were used to establish a standard curve of the CL residues in pork, and the linear regression equation and the correlation coeffi cient were y=33.595x + 36.538 and 0.9842. The second-level wavelet detail signals of the SERS spectra were selected as the inputs of the LSSVM classifi cation model for the identifi cation of the RAC and CL residues in pork, with a total accuracy rate reaching 100%. The experimental results demonstrate that the proposed method based on SERS is a good detection scheme for the rapid detection and identifi cation of RAC and CL residues in pork.

  11. Rapid determination of ractopamine in swine urine using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhai, Fuli; Huang, Yiqun; Li, Chunying; Wang, Xichang; Lai, Keqiang

    2011-09-28

    Ractopamine is approved for use in swine to improve carcass leanness in the United States, but banned in the European Union and China because ractopamine residue may pose health risks. This study investigated the possibility of applying surface-enhanced Raman spectroscopy (SERS) for analysis of ractopamine in swine urine. Ractopamine (0.1-10 μg mL(-1)) was added to urine samples collected from 20 swine to prepare a total of 240 samples. A simple centrifugation, a liquid-liquid extraction (LLE) method, and a more complicated method involving liquid-liquid extraction and solid-phase extraction (LLE-SPE) were used to extract ractopamine from urine samples. Principal component analysis (PCA) and partial least-squares (PLS) regression were used for spectral data analyses. Although no satisfactory result was obtained with the centrifugation method, ractopamine could be detected at levels of 0.8 and 0.4 μg mL(-1) with the LLE and LLE-SPE extraction methods, respectively. The R2 of the PLS model of actual ractopamine values versus predicted values was 0.74 for the LLE method and 0.73 for the LLE-SPE method. The SERS method with simple sample preparation has great potential for rapid analysis of ractopamine in swine urine.

  12. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Joseph Smolsky

    2017-01-01

    Full Text Available Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS.

  13. Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Cao, Xiaoqiong; Ma, Changchu; Gao, Zili; Zheng, Jinkai; He, Lili; McClements, David Julian; Xiao, Hang

    2016-12-14

    Nanosized titanium dioxide (TiO 2 ) particles are commonly present in TiO 2 food additives (E171) and have been associated with potential adverse effects on health. However, little knowledge is available regarding the interactions between TiO 2 nanoparticles (NPs) and other food components, such as flavonoids. In this study, we aim to study the molecular interactions between TiO 2 anatase NPs and three structurally closely related polymethoxyflavones (PMFs, flavonoids found in citrus fruits), namely, 3',4'-didemethylnobiletin (DDN), 5-demethylnobiletin (5DN), and 5,3',4'-tridemethylnobiletin (TDN), using ultraviolet-visible (UV-vis) spectrometry and surface-enhanced Raman spectroscopy (SERS). In the UV-vis absorption spectra, bathochromic effects were observed after DDN and TDN conjugated with TiO 2 NPs. The results from SERS analysis clearly demonstrated that DDN and TDN could bind TiO 2 NPs with the functional groups 3'-OH and 4'-OH on ring B and formed charge-transfer complexes. However, 5DN with functional groups C═O on ring C and 5-OH on ring A could not bind TiO 2 NPs. Knowledge on the molecular interactions between TiO 2 NPs and food components, such as flavonoids, will facilitate the understanding of the fate of TiO 2 NPs during food processing and in the gastrointestinal tract after oral consumption.

  14. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhang, Weiqing; Liu, Jie; Niu, Wenxin; Yan, Heng; Lu, Xianmao; Liu, Bin

    2018-04-19

    Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO 3 used. Upon 785 nm excitation, single Au-Ag NC 350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

  15. In vivo blood lactic acid monitoring using microdialysis and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Hsu, Po-Hsiang; Tsai, Tung-Hu; Chiang, Huihua Kenny

    2008-08-01

    Blood lactic acid concentration is an important indicator for physiological functions. To develop a rapid and sensitive measurement technique for monitoring blood lactic acid may provide a useful tool in clinical diagnosis. We proposed to develop a microdialysis surface-enhanced Raman spectroscopy (microdialysis-SERS) approach to filter/reduce interference from other large metabolites in blood and enhance the detection sensitivity for blood lactic acid. In this study, a microdialysis probe was constructed using 13 kDa cut-off dialysis membrane. The dialysate was mixed with 50 nm Ag colloidal nanoparticles automatically in a micro-fluid chamber for SERS detection under blood microdialysis of Sprague-Dawley rat. The linear range of SERS-lactic acid measurement is 10-5~3x10-4 M with R2 value of 0.99. The optimal mixing flow rate of nanoparticles is 18 μl/min under microdialysis at constant flow rate (2 μl/min). Real time lactic acid monitoring in vivo also has been demonstrated using microdialysis-SERS system.

  16. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  17. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  18. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  19. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.

    Science.gov (United States)

    Lee, Chang H; Hankus, Mikella E; Tian, Limei; Pellegrino, Paul M; Singamaneni, Srikanth

    2011-12-01

    We report a novel surface enhanced Raman scattering (SERS) substrate platform based on a common filter paper adsorbed with plasmonic nanostructures that overcomes many of the challenges associated with existing SERS substrates. The paper-based design results in a substrate that combines all of the advantages of conventional rigid and planar SERS substrates in a dynamic flexible scaffolding format. In this paper, we discuss the fabrication, physical characterization, and SERS activity of our novel substrates using nonresonant analytes. The SERS substrate was found to be highly sensitive, robust, and amiable to several different environments and target analytes. It is also cost-efficient and demonstrates high sample collection efficiency and does not require complex fabrication methodologies. The paper substrate has high sensitivity (0.5 nM trans-1,2-bis(4-pyridyl)ethene (BPE)) and excellent reproducibility (~15% relative standard deviation (RSD)). The paper substrates demonstrated here establish a novel platform for integrating SERS with already existing analytical techniques such as chromatography and microfluidics, imparting chemical specificity to these techniques.

  20. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  1. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  2. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy.

    Science.gov (United States)

    Sharma, Bhavya; Cardinal, M Fernanda; Ross, Michael B; Zrimsek, Alyssa B; Bykov, Sergei V; Punihaole, David; Asher, Sanford A; Schatz, George C; Van Duyne, Richard P

    2016-12-14

    We report here the first fabrication of aluminum film-over nanosphere (AlFON) substrates for UV surface-enhanced resonance Raman scattering (UVSERRS) at the deepest UV wavelength used to date (λ ex = 229 nm). We characterize the AlFONs fabricated with two different support microsphere sizes using localized surface plasmon resonance spectroscopy, electron microscopy, SERRS of adenine, tris(bipyridine)ruthenium(II), and trans-1,2-bis(4-pyridyl)-ethylene, SERS of 6-mercapto-1-hexanol (as a nonresonant molecule), and dielectric function analysis. We find that AlFONs fabricated with the 210 nm microspheres generate an enhancement factor of approximately 10 4-5 , which combined with resonance enhancement of the adsorbates provides enhancement factors greater than 10 6 . These experimental results are supported by theoretical analysis of the dielectric function. Hence our results demonstrate the advantages of using AlFON substrates for deep UVSERRS enhancement and contribute to broadening the SERS application range with tunable and affordable substrates.

  3. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  5. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer.

    Science.gov (United States)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Li, Buhong; Huang, Zufang; Chen, Guannan; Zhang, Wei; Wang, Lan; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2013-07-21

    Based on blood plasma surface-enhanced Raman spectroscopy (SERS) analysis, a simple and label-free blood test for non-invasive cervical cancer detection is presented in this paper. SERS measurements were performed on blood plasma samples from 60 cervical cancer patients and 50 healthy volunteers. Both the empirical approach and multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were employed to analyze and differentiate the obtained blood plasma SERS spectra. The empirical diagnostic algorithm based on the integration area of the SERS spectral bands (1310-1430 and 1560-1700 cm(-1)) achieved a diagnostic sensitivity of 70% and 83.3%, and a specificity of 76% and 78%, respectively, whereas the diagnostic algorithms based on PCA-LDA yielded a better diagnostic sensitivity of 96.7% and a specificity of 92% for separating cancerous samples from normal samples. This exploratory work demonstrates that a silver nanoparticle based SERS plasma analysis technique in conjunction with PCA-LDA has potential for improving cervical cancer detection and screening.

  6. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  7. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  8. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Chang, Te-Wei; Wang, Xinhao; Mahigir, Amirreza; Veronis, Georgios; Liu, Gang Logan; Gartia, Manas Ranjan

    2017-08-25

    Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 10 3 ). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 10 10 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10 -12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

  9. Genus- and species-level identification of dermatophyte fungi by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Witkowska, Evelin; Jagielski, Tomasz; Kamińska, Agnieszka

    2018-03-01

    This paper demonstrates that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast and reliable technique for detection and identification of dermatophyte fungi at both genus and species level. Dermatophyte infections are the most common mycotic diseases worldwide, affecting a quarter of the human population. Currently, there is no optimal method for detection and identification of fungal diseases, as each has certain limitations. Here, for the first time, we have achieved with a high accuracy, differentiation of dermatophytes representing three major genera, i.e. Trichophyton, Microsporum, and Epidermophyton. Two first principal components (PC), namely PC-1 and PC-2, gave together 97% of total variance. Additionally, species-level identification within the Trichophyton genus has been performed. PC-1 and PC-2, which are the most diagnostically significant, explain 98% of the variance in the data obtained from spectra of: Trichophyton rubrum, Trichophyton menatgrophytes, Trichophyton interdigitale and Trichophyton tonsurans. This study offers a new diagnostic approach for the identification of dermatophytes. Being fast, reliable and cost-effective, it has the potential to be incorporated in the clinical practice to improve diagnostics of medically important fungi.

  10. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Kurouski, Dmitry; Van Duyne, Richard P

    2015-03-03

    Hair is one of the most common types of physical evidence found at a crime scene. Forensic examination may suggest a connection between a suspect and a crime scene or victim, or it may demonstrate an absence of such associations. Therefore, forensic analysis of hair evidence is invaluable to criminal investigations. Current hair forensic examinations are primarily based on a subjective microscopic comparison of hair found at the crime scene with a sample of suspect's hair. Since this is often inconclusive, the development of alternative and more-accurate hair analysis techniques is critical. In this study, we utilized surface-enhanced Raman spectroscopy (SERS) to demonstrate that artificial dyes can be directly detected on hair. This spectroscopic technique is capable of a confirmatory identification of analytes with single molecule resolution, requires minimal sample, and has the advantage of fluorescence quenching. Our study reveals that SERS can (1) identify whether hair was artificially dyed or not, (2) determine if a permanent or semipermanent colorants were used, and (3) distinguish the commercial brands that are utilized to dye hair. Such analysis is rapid, minimally destructive, and can be performed directly at the crime scene. This study provides a novel perspective of forensic investigations of hair evidence.

  11. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  12. Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wang, Panxue; Pang, Shintaro; Zhang, Hua; Fan, Mingtao; He, Lili

    2016-01-01

    Decades of antibiotic use or misuse has resulted in antibiotic resistance in lactic acid bacteria, a group of common culture starters and probiotic microorganisms. This has urged researchers to study how lactic acid bacteria respond to antibiotics, so as to have a better strategy to identify and predict the antibiotic-resistant bacteria. This study aimed to characterize the biochemical profiles of Lactococcus lactis responding to antibiotics using surface-enhanced Raman spectroscopy (SERS). Lactococcus lactis exposed to antibiotics was mixed with 50-nm gold nanoparticles for subsequent SERS measurements. The SERS spectra analyzed by principal component analysis showed no significant change after 30 min of antibiotic treatment, whereas distinct changes were clearly observed after 60 and 90 min of antibiotic treatment. Different antibiotics induced different spectral changes, and these changes revealed the detailed biochemical information of cellular responses. This study demonstrates that the SERS method developed not only senses the changes in the bacterial cell wall, but also reveals details of the biochemical profiles, which help us to understand how lactic acid bacteria respond to antibiotics, as well as to set a base for the detection of antibiotic susceptibility of bacteria by SERS.

  13. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Xia Lixin; Wang Haibo; Wang Jian; Gong Ke; Jia Yi; Zhang Huili; Sun Mengtao

    2008-01-01

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at a power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the ∼1593 cm -1 band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.

  14. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  15. Determination of Benzylpenicillin Potassium Residues in Duck Meat Using Surface Enhanced Raman Spectroscopy with Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yijie Peng

    2016-01-01

    Full Text Available A new method using surface enhanced Raman spectroscopy (SERS with Au nanoparticles was established for the rapid detection of benzylpenicillin potassium (PG residues in duck meat. Au nanoparticles were used as SERS enhancement substrate, and the maximum absorption peak of Au nanoparticles using the UV-Vis spectrophotometer was 548 nm. In the research, the SERS spectra of PG solutions and PG duck meat extract as well as their vibrational assignment were analyzed. The effects of Au nanoparticles addition, sample addition, NaCl solution addition, and adsorption time on the SERS intensities of PG duck meat extract were discussed. It is revealed that a good linearity can be obtained between the SERS intensities at 993 cm−1 and the PG residues concentrations (0.5~15.0 mg·L−1 detected in duck meat extract. The linear equation was Y=831.68X+1997.1, and the determination coefficient was 0.9553. The determination coefficient of PG in duck meat extract between the actual values and the predictive values was 0.9757, and the root mean square error (RMSEP was 0.6496 mg/L. The recovery rate of PG in duck meat extract was 90~121%. The results showed that the method using SERS with Au nanoparticles could pave a new way for the rapid detection of PG residues in duck meat.

  16. Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor

    Science.gov (United States)

    Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.

  17. Surface enhanced raman spectroscopy on nucleic acids and related compounds adsorbed on colloidal silver particles

    Science.gov (United States)

    Kneipp, K.; Pohle, W.; Fabian, H.

    1991-04-01

    Various nucleic acids and related compounds have been investigated by surface enhanced Raman spectroscopy (SERS) on silver sol. The time delay between the addition of the various nucleic acids to the silver sol and the appearance of their SER spectra, i.e. the time needed by the various molecules to adsorb on an active site of the silver surface with an adsorption geometry which allows a SERS enhancement, shows strong differences. For instance, an immediate appearance of SER spectra has been found for DNA, whereas ribonucleic acids (RNAs) demonstrated a strong time delay (up to days) of the appearance of their SER spectra. This delay can be tentatively explained by the higher rigidity of RNA molecules compared with DNA. The more flexible DNA molecules are better adaptable to adsorption on silver than RNAs. The SER spectra of RNAs and DNAs showed strong changes within their relative line intensities as a function of time before they achieved stationary conditions, which indicates a protracted re-arrangement of the large molecules on the silver surface.

  18. Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions.

    Science.gov (United States)

    Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

    2013-12-01

    Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al(3+), Sb(2+), As(2+), Cd(2+) and Pb(2+)) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10(-6) to 5 x 10(-4) M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four different PCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay.

    Science.gov (United States)

    Zhu, Guichi; Hu, Yongjun; Gao, Jiao; Zhong, Liang

    2011-07-04

    In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL(-1)) with a lower limit of detection (ca. 0.1 pg mL(-1)) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    Science.gov (United States)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  1. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  2. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ren, Xiaoqian; Tan, Enzhong; Lang, Xiufeng; You, Tingting; Jiang, Li; Zhang, Hongyan; Yin, Penggang; Guo, Lin

    2013-09-14

    In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. The laser power-dependent SERS spectra of 4-NBT on the surface of Au substrates were studied, and show that the laser power has an influence on the SERS signals of 4-NBT on Au NPs and production of DMAB by a plasmon-driven surface-catalyzed chemical reaction tends to be much easier under relative high laser power. Furthermore, we have used simple and efficient Au substrates (gold NPs with a size around 45 nm) exhibiting both catalytic properties and SERS activities to monitor the catalytic reaction of surface catalytic reaction process with borohydride solution. The experiments prove that the nitro-to-amino group conversion could be completed by borohydride at ambient conditions on Au substrates. Illuminated with high laser power, 4-NBT molecules and already formed DMAB molecules are further reduced into 4-aminobenzenthiol (4-ABT) by the addition of borohydride, While with low laser power 4-NBT molecules are transformed into 4-ABT with DMAB as the intermediate, which proves Au NPs are a mild and promising catalyst. Our studies might be helpful in extending the understanding of chemical reactions of 4-NBT and related research as well as providing a new strategy synthesis of azo dyes and anilines.

  3. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  4. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  5. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  6. Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement.

    Science.gov (United States)

    Jiang, Li; You, Tingting; Yin, Penggang; Shang, Yang; Zhang, Dongfeng; Guo, Lin; Yang, Shihe

    2013-04-07

    Surface-enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid (4-MBA) have been investigated on the surface of Cu2O nanospheres. The SERS signals were believed to originate from the static chemical enhancement, resonant chemical enhancement and electromagnetic enhancement. The coupling between the adsorbates and the semiconductor, evidenced by the shift in absorption spectrum of modified Cu2O and the enhancement of non-totally symmetric modes of the 4-MBA and 4-mercaptopyridine (4-MPY) molecules, were invoked to explain the experimental results. Furthermore, simulations were employed to investigate the nature of the enhancement mechanisms operative between the molecules and the semiconductor. Density functional theory (DFT) calculations suggested a charge transfer (CT) transition process between the molecules and the Cu2O nanospheres. Three-dimensional finite-difference time domain (3D-FDTD) simulations were conducted to map out the electromagnetic field around the Cu2O nanospheres. The experimental and simulation results have revealed the promise of the Cu2O nanospheres as a good SERS substrate and the prospect of using the SERS substrate as a valuable tool for in situ investigation and assay of the adsorption behavior on semiconductor surfaces.

  7. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  8. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Casadio, Francesca; Leona, Marco; Lombardi, John R; Van Duyne, Richard

    2010-06-15

    Organic dyes extracted from plants, insects, and shellfish have been used for millennia in dyeing textiles and manufacturing colorants for painting. The economic push for dyes with high tinting strength, directly related to high extinction coefficients in the visible range, historically led to the selection of substances that could be used at low concentrations. But a desirable property for the colorist is a major problem for the analytical chemist; the identification of dyes in cultural heritage objects is extremely difficult. Techniques routinely used in the identification of inorganic pigments are generally not applicable to dyes: X-ray fluorescence because of the lack of an elemental signature, Raman spectroscopy because of the generally intense luminescence of dyes, and Fourier transform infrared spectroscopy because of the interference of binders and extenders. Traditionally, the identification of dyes has required relatively large samples (0.5-5 mm in diameter) for analysis by high-performance liquid chromatography. In this Account, we describe our efforts to develop practical approaches in identifying dyes in works of art from samples as small as 25 microm in diameter with surface-enhanced Raman scattering (SERS). In SERS, the Raman scattering signal is greatly enhanced when organic molecules with large delocalized electron systems are adsorbed on atomically rough metallic substrates; fluorescence is concomitantly quenched. Recent nanotechnological advances in preparing and manipulating metallic particles have afforded staggering enhancement factors of up to 10(14). SERS is thus an ideal technique for the analysis of dyes. Indeed, rhodamine 6G and crystal violet, two organic compounds used to demonstrate the sensitivity of SERS at the single-molecule level, were first synthesized as textile dyes in the second half of the 19th century. In this Account, we examine the practical application of SERS to cultural heritage studies, including the selection of

  9. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    Science.gov (United States)

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  10. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) method for determination of cyanide

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Jørgensen, Kirsten; Møller, Birger Lindberg

    2004-01-01

    -dried sorghum leaf was also obtained using this instrument. Surface-enhanced Raman Spectroscopy (SERS) was demonstrated to be a more sensitive method that enabled determination of the cyanogenic potential of plant tissue. The SERS method was optimized by flow injection (FI) using a colloidal gold dispersion...... as effluent. Potential problems and pitfalls of the method are discussed....

  11. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Johnston J

    2015-12-01

    Full Text Available Jencilin Johnston,1 Erik N Taylor,1,2 Richard J Gilbert,2 Thomas J Webster1,3 1Department of Chemical Engineering, 2Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched was assessed for the characterization of a Raman signal (ie, molecular fingerprint that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792 and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide], were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye

  12. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.

    Science.gov (United States)

    Kuligowski, Julia; El-Zahry, Marwa R; Sánchez-Illana, Ángel; Quintás, Guillermo; Vento, Máximo; Lendl, Bernhard

    2016-04-07

    Biothiols play an essential role in a number of biological processes in living organisms including detoxification and metabolism. Fetal to neonatal transition poses a pro-oxidant threat for newborn infants, especially those born prematurely. A reliable and rapid tool for the direct determination of thiols in small volume whole blood (WB) samples would be desirable for its application in clinical practice. This study shows the feasibility of Surface Enhanced Raman Spectroscopy (SERS) using a silver colloid prepared by reduction of silver nitrate using hydroxylamine, as the SERS substrate for the quantification of thiols in WB samples after a simple precipitation step for protein removal. Bands originating from biothiols (790, 714 and 642 cm(-1)) were enhanced by the employed SERS substrate and the specificity of the detected SERS signal was tested for molecules presenting -SH functional groups. A statistically significant correlation between the obtained SERS signals and the thiol concentration measured using a chromatographic reference method in umbilical cord WB samples could be demonstrated. Using WB GSH concentrations obtained from the chromatographic reference procedure, a Partial Least Squares (PLS) regression model covering GSH concentrations from 13 to 2200 μM was calculated obtaining a root mean square error of prediction (RMSEP) of 381 μM when applied to an external test set. The developed approach uses small blood sample volumes (50 μL), which is important for clinical applications, especially in the field of neonatology. This feasibility study shows that the present approach combines all the necessary characteristics for its potential application in clinical practice.

  13. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  14. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Junior, Benedito Roberto Alvarenga; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Durango, Luis Guillermo Cuadrado; Forim, Moacir Rossi; Carneiro, Renato Lajarim

    2018-01-01

    The aim of this work was to quantify B-complex vitamins in pharmaceutical samples by surface enhanced Raman spectroscopy technique using gold colloid substrate. Synthesis of gold nanoparticles was performed according to an adapted Turkevich method. Initial essays were able to suggest the orientation of molecules on gold nanoparticles surface. Central Composite design was performed to obtain the highest SERS signal for nicotinamide and riboflavin. The evaluated parameters in the experimental design were volume of AuNPs, concentration of vitamins and sodium chloride concentration. The best condition for nicotinamide was NaCl 2.3 × 10- 3 mol L- 1 and 700 μL of AuNPs colloid and this same condition showed to be adequate to quantify thiamine. The experimental design for riboflavin shows the best condition at NaCl 1.15 × 10- 2 mol L- 1 and 2.8 mL of AuNPs colloid. It was possible to quantify thiamine and nicotinamide in presence of others vitamins and excipients in two solid multivitamin formulations using the standard addition procedure. The standard addition curve presented a R2 higher than 0.96 for both nicotinamide and thiamine, at orders of magnitude 10- 7 and 10- 8 mol L- 1, respectively. The nicotinamide content in a cosmetic gel sample was also quantified by direct analysis presenting R2 0.98. The t-student test presented no significant difference regarding HPLC method. Despite the experimental design performed for riboflavin, it was not possible its quantification in the commercial samples.

  15. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    De Bleye, C., E-mail: cdebleye@ulg.ac.be; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-08-12

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L{sup −1} for BPA and BPB and from 5 to 100 μg L{sup −1} for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols.

  16. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    OpenAIRE

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-01-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a stro...

  17. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Hao; Shi, Hong; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Feng, Shangyuan; Lin, Juqiang; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm −1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm −1 . This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction. (paper)

  18. Rapid Detection of Polychlorinated Biphenyls at Trace Levels in Real Environmental Samples by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-11-01

    Full Text Available Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10-6 mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  19. The application of supported liquid extraction in the analysis of benzodiazepines using surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Doctor, Erika L; McCord, Bruce

    2015-11-01

    Benzodiazepines are among the most frequently prescribed medicines for anxiety disorders and are present in many toxicological screens. These drugs are often administered in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to the potency of the drugs, only small amounts are usually given to victims; therefore, the target detection limit for these compounds in biological samples has been set at 50 ng/mL. Currently the standard screening method for detection of this class of drug is the immunoassay; however, screening methods that are more sensitive and selective than immunoassays are needed to encompass the wide range of structural variants of this class of compounds. Surface enhanced Raman spectroscopy (SERS) can be highly sensitive and has been shown to permit analysis of various benzodiazepines with limits of detection as low as 6 ng/mL. This technique permits analytical results in less than 2 min when used on pure drug samples. For biological samples, a key issue for analysis by SERS is removal of exogenous salts and matrix components. In this paper we examine supported liquid extraction as a useful preparation technique for SERS detection. Supported liquid extraction has many of the benefits of liquid-liquid extraction along with the ability to be automated. This technique provides a fast and clean extraction for benzodiazepines from urine at a pH of 5.0, and does not produce large quantities of solvent waste. To validate this procedure we have determined figures of merit and examined simulated urine samples prepared with commonly appearing interferences. It was shown that at a pH 5.0 many drugs that are prevalent in urine samples can be removed, permitting a selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than 20 min), sensitive, and specific detection of benzodiazepines with limits of detection between 32 and 600 ng/mL and dynamic range of 32

  20. Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics

    Science.gov (United States)

    Olivares-Amaya, Roberto

    The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy Project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure

  1. Nanostructured silver for applications in surface enhanced Raman spectroscopy and photoelectrochemical reactions

    Science.gov (United States)

    Clayton, Daniel A.

    Initial work focused on characterizing silver and its surface enhanced Raman spectroscopy (SERS) capabilities. Silver nanowires were chosen as an ideal material and scanning confocal microscopy studies were performed to identify hot spots. The silver nanowires were found to exhibit fluorescence blinking that was attributed to small silver clusters undergoing rapid interchange from Ag0 to Ag2O. Control of this blinking was accomplished through the removal of oxygen and through electrochemical control of the system. SERS was also recorded from these nanowires. Deconvolution of the SERS signal from the fluorescence was accomplished either by increasing the SERS analyte concentration or increasing the total number of "hot spots" in the focus volume. Silver applications were studied by performing a SERS study of Rhodamine 6G (R6G) and Poly(3-hexylthiophene-2,5-diyl) (P3HT). A Tollens' silver substrate was utilized as the SERS substrate and similar blinking effects were found to arise. P3HT was cast from 4 different solvents:dichloromethane, chlorobenzene, THF, and toluene. The solvent effects were studied, with kinking of the polymer noted in the non-chlorinated solvents. Single molecule studies in conjunction with polarization control indicated that the P3HT formed in an overlapping manner with only partial charge transfer within the molecule. Finally silvers interactions with TiO2 were studied. Micron scale single crystal anatase TiO2 was synthesized by using HF in a hydrothermal process forming a truncated bipyramidal structure consisting of [101] and [001] faces. Fluorine was present in small amounts on the surface of the TiO2 as confirmed by x-ray photoelectron spectroscopy (XPS). An annealing process was used to remove the fluorine. Nitrogen doping was attempted, but was not found to occur in significant amounts. Visible light sensitivity was noted in annealed samples but did not occur in the bulk as demonstrated through photoelectrochemical measurements. Silver

  2. Optical properties of nucleobase thin films as studied by attenuated total reflection and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon

    2018-04-01

    Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.

  3. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars.

    Science.gov (United States)

    He, Shuai; Kyaw, Yi Mon Ei; Tan, Eddie Khay Ming; Bekale, Laurent; Kang, Malvin Wei Cherng; Kim, Susana Soo-Yeon; Tan, Ivan; Lam, Kong-Peng; Kah, James Chen Yong

    2018-04-26

    The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm -1 , whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.

  4. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-01-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity

  5. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  6. Synthesis of Au Nanostars and Their Application as Surface Enhanced Raman Scattering-Activity Tags Inside Living Cells.

    Science.gov (United States)

    Cao, Xiaowei; Shi, Chaowen; Lu, Wenbo; Zhao, Hang; Wang, Man; Tong, Wei; Dong, Jian; Han, Xiaodong; Qian, Weiping

    2015-07-01

    This work presents the synthesis and characterization of Au nanostars (AuNSs) and demonstrates their application as surface enhanced Raman scattering (SERS)-activity tags for cellular imaging and sensing. Nile blue A (NBA) and bovine serum albumin (BSA) were used as Raman reporter molecules and capping materials, respectively. The SERS-activity tags were tested on human lung adenocarcinoma cell (A549) and alveolar type II cell (AT II) and found to present a low level of cytotoxicity and high chemical stability. These SERS-activity tags not only can be applied in multiplexed cellular imaging, including dark field imaging, transmission electron microscopy (TEM) and SERS imaging, but also can be used for cellular sensing. The SERS spectra clearly identified cellular important components such as proteins, nucleic acids, lipids, and carbohydrates. This study also shows that endocytosis is the main channel of tags internalized in cells. The AuNSs exhibiting strong surface enhanced Raman effects are utilized in the design of an efficient, stable SERS-activity tag for intracellular applications.

  7. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: a comparative study.

    Science.gov (United States)

    Zheng, Jinkai; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-11-01

    Surface enhanced Raman scattering (SERS) detection using a handheld Raman spectrometer and a bench-top Raman spectrometer was systemically evaluated and compared in this study. Silver dendrites were used as the SERS substrate, and two pesticides, maneb and pyrrolidine dithiocarbamate-ammonium salt (PDCA) were used as the analytes. Capacity and performance were evaluated based on spectral resolution, signal variation, quantitative capacity, sensitivity, flexibility and intelligence for SERS detection. The results showed that the handheld Raman spectrometer had better data consistency, more accurate quantification capacity, as well as the capacity of on-site and intelligence for qualitative and semi-quantitative analysis. On the other hand, the bench-top Raman spectrometer showed about 10 times higher sensitivity, as well as flexibility for optimization of the SERS measurements under different parameters such as laser power output, collective time, and objective magnification. The study on the optimization of SERS measurements on a bench-top spectrometer provides a useful guide for designing a handheld Raman spectrometer, specifically for SERS detection. This evaluation can advance the application of a handheld Raman spectrometer for the on-site measurement of trace amounts of pesticides or other chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  9. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  10. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.

    Science.gov (United States)

    Kneipp, Janina; Li, Xiangting; Sherwood, Margaret; Panne, Ulrich; Kneipp, Harald; Stockman, Mark I; Kneipp, Katrin

    2008-06-01

    Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as "nanolenses". Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 10(9). The "chemically clean" preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications.

  11. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...... microfluidic platform with embedded gold nanopillar substrates. While spinning, the disc platform enables dynamic SERS acquisition of multiple chips, significantly reducing time-to-result and improving the reproducibility of the acquired spectra, reducing the fluctuation by a factor of 2....

  12. Simultaneous synthesis and assembly of silver nanoparticles to three-demensional superstructures for sensitive surface-enhanced Raman spectroscopy detection.

    Science.gov (United States)

    Yang, Yanqiong; Wang, Wenqin; Chen, Tao; Chen, Zhong-Ren

    2014-12-10

    Construction of superstructures with controllable morphologies from NPs is of great scientific and technological importance. A one-step method for simultaneous synthesis and assembly of Ag NPs to three-dimensional (3D) nanoporous superstructures is demonstrated. By varying the adsorption time of Ag precursors, an array of well-defined Ag superstructures with different morphologies are harvested. A "hot spot"-rich substrate for surface-enhanced Raman spectroscopy is established, which exhibits high sensitivity in trace detection of molecules. It is believed that the presented 3D nanoporous Ag superstructures hold great potential for various uses, such as novel multifunctional sensing and monitoring chips or devices.

  13. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  14. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kim, Ju-Hyun; Choi, Yang-Kyu; Kang, Taejoon; Kim, Bongsoo; Yoo, Seung Min; Lee, Sang Yup

    2009-01-01

    A controllable flower-like Au nanostructure array for surface-enhanced Raman scattering (SERS) was fabricated using the combined technique of the top-down approach of conventional photolithography and the bottom-up approach of electrodeposition. Au nanostructures with a mean roughness ranging from 5.1 to 49.6 nm were obtained by adjusting electrodeposition time from 2 to 60 min. The rougher Au nanostructure provides higher SERS enhancement, while the highest SERS intensity obtained with the Au nanostructure is 29 times stronger than the lowest intensity. The SERS spectra of brilliant cresyl blue (BCB), benzenethiol (BT), adenine and DNA were observed from the Au nanostructure.

  15. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar

    2014-01-22

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  17. Sensitive surface-enhanced Raman scattering activity of triple gold/silver/graphene oxide nanostructures decorated on gold nanowire arrays

    Science.gov (United States)

    Xu, Xiaodi; Ma, Yi; Du, Yuanyuan; Jiang, Tao; Zhou, Jun; Zhao, Ziqi

    2018-01-01

    Triple core–shell gold/silver/graphene oxide (Au/Ag/GO) nanoparticles (NPs) decorated on Au nanowire arrays as sensitive, reproducible, and low-cost platforms for surface-enhanced Raman spectroscopy (SERS) were introduced. An in situ reducing method was used to synthesize core–shell Au/Ag NPs with inbuilt 4-mercaptobenzoic acid, which gave prominent SERS signals. Subsequently, a second ultrathin shell of GO was constructed on the Ag shell to improve the SERS intensity and homogeneity. Details on stability of the Raman enhancement were discussed by mapping of SERS spectra. A composite structure was finally designed by decorating the triple core–shell Au/Ag/GO NPs onto a vertically aligned ultrathin Au nanowire forest to provide additional enhancement of the SERS signals. This hetero structure will provide an alternative choice for the effective SERS substrate.

  18. Functionalized gold nanostars for label-free detection of PKA phosphorylation using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    He, Shuai; Kah, James C. Y.

    2017-04-01

    Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.

  19. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles.

    Science.gov (United States)

    Li, Xiaozhou; Zhang, Su; Yu, Zhuang; Yang, Tianyue

    2014-01-01

    Traditional pesticide residue detection methods are usually complicated, time consuming, and expensive. Rapid, portable, online, and real-time detection kits are the developing direction of pesticide testing. In this paper, we used a surface-enhanced Raman spectroscopy (SERS) technique to detect the organophosphate pesticide residue of phorate and fenthion in apple skin, for the purpose of finding a fast, simple, and convenient detection method for pesticide detection. The results showed that the characteristic wavenumbers of the two organophosphorus pesticides are more easily identified using SERS. We selected the Raman peaks at 728 cm(-1) of phorate and 1215 cm(-1) of fenthion as the target peaks for quantitative analysis, and utilized internal standards to establish linear regression models for phorate and fenthion. The detection limit was 0.05 mg/L for phorate and 0.4 mg/L for fenthion. This method can be used as a quantitative analytical reference for the detection of phorate and fenthion.

  20. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  1. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical...

  2. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman Optical Activity (ROA) and...

  3. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman optical activity (ROA) provides...

  4. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kovaříček, Petr; Bastl, Zdeněk; Valeš, Václav; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 15 (2016), s. 5404-5408 ISSN 1521-3765 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * nanomaterials * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  5. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman Optical Activity (ROA) and...

  6. Surface enhanced Raman spectroelectrochemistry of a μ-oxo triruthenium acetate cluster: an experimental and theoretical approach.

    Science.gov (United States)

    Santos, Jonnatan J; Ando, Romulo A; Toma, Sergio H; Corio, Paola; Araki, Koiti; Toma, Henrique E

    2015-10-05

    Surface enhanced Raman spectroelectrochemistry (SERS) spectroelectrochemistry provides a very sensitive technique to investigate the vibrational characteristics of coordination compounds and their particular behavior under the influence of plasmonic surfaces, concomitant with the exploitation of their redox properties and electronic spectra. The results, however, depend upon the mechanisms involved in the intensification of Raman spectra associated with the electromagnetic, resonance Raman and charge-transfer excitation at the Fermi levels. By probing the model complex [(Ru3O)(CH3COO)6(4,4'-bipy)3](n) (n = 1, 0, -1) adsorbed onto rough gold electrode surfaces, contrasting SERS profiles were obtained at several successive redox potentials and oxidation states, which enables a critical discussion on the role of the complex interaction with the gold surface, and the influence of the specific electronic bands in the triruthenium acetate cluster. Density functional theory (DFT) and time-dependent DFT calculations were carried out for the complex bound to an Au20 cluster to show the participation of active lowest unoccupied molecular orbital levels centered on the gold atoms. The corresponding charge-transfer band was predicted around 1200 nm, which supports a charge-transfer interpretation for the SERS response observed at λexc = 1064 nm. The selective enhancement of the vibrational modes was discussed based on the Raman theoretical calculations.

  7. [Rapid determination of melamine in pet food by surface enhanced Raman spectroscopy in combination with Ag nanoparticles].

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou

    2011-01-01

    The rapid qualitative and quantitative analysis of melamine in pet food was realized by surface-enhanced Raman spectroscopy in combination with Ag nanoparticle. In the present study, the 709 and 1 542 cm(-1) Raman shift was chosen as qualitative basis. The quantitative calculation of the concentration range between 1.0 and 10.0 mg x kg(-1) was achieved based on the intensity of 1 149 cm(-1) Raman peak which was used as a normalization standard. The limit of detection was 0.5 mg x kg(-1). The Ag nanoparticle had a strong Raman enhancement effect on melamine and the intensity was affected by the adding time of Ag nanoparticle and the vortex strength. At the same time, the intensity of SERS was affected by the extraction solvent type, and the manner of extraction. The analysis time of each sample was about 5 min. It was so quick that it was easy to realize the rapid detection of melamine in pet food compared with existing methods.

  8. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Açikgöz, Güneş; Hamamci, Berna; Yildiz, Abdulkadir

    2018-04-01

    Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, 920~820 cm -1 band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method (R 2 = 1). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

  9. Probing the Sulfur-Modified Capping Layer of Gold Nanoparticles Using Surface Enhanced Raman Spectroscopy (SERS) Effects.

    Science.gov (United States)

    Prado, Adilson R; Souza, Danilo Oliveira de; Oliveira, Jairo P; Pereira, Rayssa H A; Guimarães, Marco C C; Nogueira, Breno V; Dixini, Pedro V; Ribeiro, Moisés R N; Pontes, Maria J

    2017-12-01

    Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.

  10. Facile fabrication of large-area and uniform silica nanospheres monolayer for efficient surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Junqi; Zhao, Qianrun; Zhang, Ning; Man, Shi-Qing, E-mail: man_shiqing@yahoo.com

    2014-07-01

    A large-area efficient surface enhanced Raman scattering (SERS) substrate was deposited by Langmuir–Blodgett (LB) assembly and followed by sputter coating process. The interparticle distance of silica nanospheres was convenient and readily regulated by controlling the surface pressure. After sputter coating with a small amount of gold, the nanocomposite film was formed. The surfaces of nanostructures were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The applicability of the nanostructures as SERS substrates was investigated by adsorption of crystal violet (CV) molecules. Different SERS effects were observed on deposited gold nanostructure upon large-area silica nanospheres monolayer with diameter of 250, 570 and 800 nm. It was also discussed the nanospheres with diameter of 250 nm for the fabrication of ordered arrangement of monolayers at surface pressures of 10–30 mN/m. These substrates with the close-packed nanospheres and sputtering of gold were found to exhibit high and uniform enhancement of the Raman signal across the entire surface. The averaged surface enhancement factor (ASEF) was calculated and discussed. The fabricated nanocomposite structures could be utilized as low-cost SERS-active substrates for biomedical and analytical chemistry field.

  11. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2018-02-01

    Full Text Available Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm−1 in water-tetracycline solutions and 1322 and 1621 cm−1 (shifted from 1317 and 1632 cm−1, respectively in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm−1 were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.

  12. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering.

    Science.gov (United States)

    Han, Xiao X; Jia, Hui Y; Wang, Yan F; Lu, Zhi C; Wang, Chun X; Xu, Wei Q; Zhao, Bing; Ozaki, Yukihiro

    2008-04-15

    We have developed a new analytical procedure for label-free protein detection designated "Western SERS", consisting of protein electrophoresis, Western blot, colloidal silver staining, and surface-enhanced Raman scattering (SERS) detection. A novel method of silver staining for Western blot that uses a silver colloid, an excellent SERS-active substrate, is first proposed in the present study. During the process of silver staining, interactions between proteins and silver nanoparticles result in the emergence of SERS of proteins. In the present study, we use myoglobin (Mb) and bovine serum albumin (BSA) as model proteins. From different protein bands on a nitrocellulose (NC) membrane, we have observed surface-enhanced resonance Raman scattering (SERRS) spectra of Mb and SERS spectra of BSA. The proposed technique offers dual advantages of simplicity and high sensitivity. On one hand, after the colloidal silver staining, we can detect label-free multi-proteins directly on a NC membrane without digestion, extraction, and other pretreatments. On the other hand, the detection limit of the Western SERS is almost consistent with the detection limit of colloidal silver staining, and the SERRS detection limit of Mb is found to be 4 ng/band. This analytical method, which combines the technique of protein separation with SERS, may be a powerful protocol for label-free protein detection in proteomic research.

  13. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  14. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber - optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  16. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Czech Academy of Sciences Publication Activity Database

    Pinkhasova, P.; Chen, H.; Kaňka, Jiří; Mergo, P.; Du, H.

    2015-01-01

    Roč. 106, č. 7 (2015), 0711061-0711064 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fibers * Raman scattering * Crystal whiskers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.142, year: 2015

  17. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Chen, Yanping; Chen, Gang; Feng, Shangyuan; Pan, Jianji; Zheng, Xiongwei; Su, Ying; Chen, Yan; Huang, Zufang; Lin, Xiaoqian; Lan, Fenghua; Chen, Rong; Zeng, Haishan

    2012-06-01

    Studies with circulating ribonucleic acid (RNA) not only provide new targets for cancer detection, but also open up the possibility of noninvasive gene expression profiling for cancer. In this paper, we developed a surface-enhanced Raman scattering (SERS), platform for detection and differentiation of serum RNAs of colorectal cancer. A novel three-dimensional (3-D), Ag nanofilm formed by dry MgSO4 aggregated silver nanoparticles, Ag NP, as the SERS-active substrate was presented to effectively enhance the RNA Raman signals. SERS measurements were performed on two groups of serum RNA samples. One group from patients, n=55 with pathologically diagnosed colorectal cancer and the other group from healthy controls, n=45. Tentative assignments of the Raman bands in the normalized SERS spectra demonstrated that there are differential expressions of cancer-related RNAs between the two groups. Linear discriminate analysis, based on principal component analysis, generated features can differentiate the colorectal cancer SERS spectra from normal SERS spectra with sensitivity of 89.1 percent and specificity of 95.6 percent. This exploratory study demonstrated great potential for developing serum RNA SERS analysis into a useful clinical tool for label-free, noninvasive screening and detection of colorectal cancers.

  18. Polymer nanopillar-gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes.

    Science.gov (United States)

    Picciolini, Silvia; Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Bedoni, Marzia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Prosperi, Davide; Tresoldi, Cristina; Ciceri, Fabio; Gramatica, Furio

    2014-10-28

    In our study, 2D nanopillar arrays with plasmonic crystal properties are optimized for surface-enhanced Raman spectroscopy (SERS) application and tested in a biochemical assay for the simultaneous detection of multiple genetic leukemia biomarkers. The special fabrication process combining soft lithography and plasma deposition techniques allows tailoring of the structural and chemical parameters of the crystal surfaces. In this way, it has been possible to tune the plasmonic resonance spectral position close to the excitation wavelength of the monochromatic laser light source in order to maximize the enhancing properties of the substrate. Samples are characterized by scanning electron microscopy and reflectance measurements and tested for SERS activity using malachite green. Besides, as the developed substrate had been prepared on a simple glass slide, SERS detection from the support side is also demonstrated. The optimized substrate is functionalized with thiol-modified capture oligonucleotides, and concentration-dependent signal of the target nucleotide is detected in a sandwich assay with labeled gold nanoparticles. Gold nanoparticles functionalized with different DNA and various Raman reporters are applied in a microarray-based assay recognizing a disease biomarker (Wilms tumor gene) and housekeeping gene expressions in the same time on spatially separated microspots. The multiplexing performance of the SERS-based bioassay is illustrated by distinguishing Raman dyes based on their complex spectral fingerprints.

  19. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Angel, S.M.; Sharma, S.K.

    1987-11-30

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  20. Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering

    Science.gov (United States)

    Zhou, Qing; Shao, Mingwang; Que, Ronghui; Cheng, Liang; Zhuo, Shujuan; Tong, Yanhua; Lee, Shuit-Tong

    2011-05-01

    Silver vanadate nanoribbons were synthesized via a hydrothermal process, which exhibited surface-enhanced Raman scattering effect. This surface-enhanced substrate was stable and reproducible for identifying human serum transferrin and human serum apotransferrin in the concentration of 1×10-5 M, which further exhibited significant sensitivity in monitoring the conversion of these two proteins in turn. This result showed that the silver vanadate nanoribbon might be employed as biomonitor in such systems.

  1. Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory

    DEFF Research Database (Denmark)

    Castillo, Jaime; Rindzevicius, Tomas; Wu, Kaiyu

    2015-01-01

    The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study of the adso......The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study...... of the adsorption of FA on silver-capped silicon nanopillar substrates employing surface enhanced Raman scattering spectroscopy and density functional theory calculations. The experimentally observed vibrations from free FA and FA bound to the Ag surface display different vibrational spectra indicating chemical...

  2. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  3. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering.

    Science.gov (United States)

    Kahraman, Mehmet; Balz, Ben N; Wachsmann-Hogiu, Sebastian

    2013-05-21

    Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 μg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.

  4. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent...... circular patterns is 30 +/- 5 nm. Silver (30 nm) and gold (15 nm) plasmonic active layers are deposited on the nanostructures subsequently. SERS measurements on different concentrations of acetone vapor ranged from 0.7, 1.5, 3.5, 10.3, 24.5 % and control have been performed with the substrate......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  5. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  6. Highly Sensitive Detection of Clenbuterol in Animal Urine Using Immunomagnetic Bead Treatment and Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou; Wang, Shi; Zhao, Yiping

    2016-09-01

    Combining surface-enhanced Raman spectroscopy (SERS) of aggregated graphene oxide/gold nanoparticle hybrids with immunomagnetic bead sample preparation method, a highly sensitive strategy to determine the clenbuterol content in animal urine was developed. Based on a linear calibration curve of the SERS characteristic peak intensity of clenbuterol at Δv = 1474 cm-1 versus the spiked clenbuterol concentration in the range of 0.5-20 ng·mL-1, the quantity of clenbuterol in real animal urine samples can be determined and matches well with those determined by LC-MS/MS, while the detection time is significantly reduced to 15 min/sample. The limits of detection and quantification in the urine are 0.5 ng·mL-1 and 1 ng·mL-1, respectively, and the recovery clenbuterol rates are 82.8-92.4% with coefficients of variation farming.

  7. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  8. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Svanda, J.; Gromov, M. V.; Kalachyova, Y.; Postnikov, P. S.; Svorcik, V.; Lyutakov, O.

    2016-01-01

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application–surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  9. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Svanda, J.; Gromov, M. V.; Kalachyova, Y.; Postnikov, P. S.; Svorcik, V.; Lyutakov, O.

    2016-10-01

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application-surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  10. Plant-Mediated Fabrication and Surface Enhanced Raman Property of Flower-Like Au@Pd Nanoparticles

    Directory of Open Access Journals (Sweden)

    Daohua Sun

    2014-02-01

    Full Text Available The flower-like nanostructures of an Au core and Pd petals with the average size of 47.8 nm were fabricated through the successive reduction of HAuCl4 and Na2PdCl4 at room temperature. During the synthesis, Cacumen Platycladi leaf extract served as weak reductant and capping agent. Characterization techniques such as Energy-dispersive X-ray spectroscopy, UV-Vis spectroscopy, and X-ray diffraction characterizations were employed to confirm that the as-synthesized nanoparticles have the structure of core-shell. The obtained core-shell nanoflowers exhibited good surface enhanced Raman spectroscopic activity with Rhodamine 6G.

  11. Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering

    Science.gov (United States)

    Scaglione, F.; Paschalidou, E. M.; Rizzi, P.; Bordiga, S.; Battezzati, L.

    2015-09-01

    Nanoporous gold (NPG) has been synthesized by electrochemical de-alloying a new precursor, amorphous Au30Cu38Ag7Pd5Si20 (at.%), starting from melt-spun ribbons. Ligaments ranging from 75 to 210 nm depending on the de-alloying time were obtained. Analytical and electrochemical evidence showed the ligaments contain residual Cu, Ag and Pd. Surface-enhanced Raman scattering from the NPG was investigated using pyridine and 4,4‧-bi-pyridine as probe molecules. It was found that the activity is at maximum when the ribbon is fully de-alloyed although the ligaments then have a larger size. The enhancement is attributed to the small size of crystals in the ligaments, to their morphology and to trapped atoms.

  12. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

    Science.gov (United States)

    Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; La Porta, Andrea; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M.

    2016-11-01

    Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.

  13. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Fedick, Patrick W; Bills, Brandon J; Manicke, Nicholas E; Cooks, R Graham

    2017-10-17

    Sample preparation is the most common bottleneck in the analysis and processing of forensic evidence. Time-consuming steps in many forensic tests involve complex separations, such as liquid and gas chromatography or various types of extraction techniques, typically coupled with mass spectrometry (e.g., LC-MS). Ambient ionization ameliorates these slow steps by reducing or even eliminating sample preparation. While some ambient ionization techniques have been adopted by the forensic community, there is significant resistance to discarding chromatography as most forensic analyses require both an identification and a confirmation technique. Here, we describe the use of a paper substrate, the surface of which has been inkjet printed with silver nanoparticles, for surface enhanced Raman spectroscopy (SERS). The same substrate can also act as the paper substrate for paper spray mass spectrometry. The coupling of SERS and paper spray ionization creates a quick, forensically feasible combination.

  14. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-04-10

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10 -3 , 10 -4 and 10 -5 M and adenine in 30 and 100μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm -1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm -1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm -1 . The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm -1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    Science.gov (United States)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  16. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    of acetone and ethanol vapor was also successfully demonstrated. The vibrational fingerprints of molecular structures provide specific Raman peaks for different VOCs contents. To the best of our knowledge, this is the first multiplex VOCs detection using SERS. We believe that this work may lead to a portable......-pillars. In this experiment, detections of acetone and ethanol vapor at different concentrations were demonstrated. The detection limits were found to be 0.0017 ng and 0.0037 ng for ethanol and acetone vapor molecules respectively. Our approach is a non-labeling method such that it does not require the incorporation of any...

  17. The ''Adatom Model'' of SERS (Surface Enhanced Raman Scattering): The present status

    International Nuclear Information System (INIS)

    Otto, A.; Billmann, J.; Eickmans, J.; Ertuerk, U.; Pettenkofer, C.

    1984-01-01

    The model predicts resonant Raman scattering by adsorbate vibrations through photon excited charge transfer transition from localized electronic states at sites of atomic scale roughness (e.g. 'adatoms') on silver surfaces to the affinity levels of the adsorbates. Experimental tests are discussed: search for the localized states, shifts of the affinity levels, comparison of SERS at sites of ASR and at atomically smooth parts of the surface, changes in SER vibrational bands by shifts of the affinity levels, 'SERS' vibrational selection rules. Infrared enhancement at sites of ASR is conjectured. Different hypotheses on the role of the 'porosity' of coldly deposited silver films are discussed. (orig.)

  18. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...... by electron beam lithography. We used 633 nm excitation and Rhodamine 6G as a probe molecule to confirm that, although the dipolar resonances of these shapes lie well into the infrared, SERS in the visible can still be obtained by coupling to their ‘dark mode’ multipolar resonances. However, the magnitude...

  19. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion

    DEFF Research Database (Denmark)

    Hakonen, Aron; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2016-01-01

    Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. He...... adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field....

  20. Rapid and large-scale synthesis of pitaya-like silver nanostructures as highly efficient surface-enhanced Raman scattering substrates.

    Science.gov (United States)

    Huang, Qingli; Zhu, Xiashi

    2013-02-15

    A new wet-chemical approach to prepare surface-enhanced Raman scattering (SERS)-active substrates with pitaya-like silver nanostructures (PSNs) was proposed. It has been found that the morphology of as-prepared products is dependent on the reaction parameters. PSNs exhibit a high detection sensitivity of surface-enhanced Raman scattering for Rhodamine 6G (R6G) with a limit of detection of 1.0 × 10(-13) mol L(-1). This facile, large-scale, low-cost, and green chemistry synthesized Ag nanostructures make it a perfect choice for practical SERS detection applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-09-30

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C 3 N 4 (S-g-C 3 N 4 ) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C 3 N 4 /Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C 3 N 4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C 3 N 4 nanosheets, and induces a charge transfer from S-g-C 3 N 4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C 3 N 4 /Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C 3 N 4 /Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C 3 N 4 /Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability.

  2. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    Science.gov (United States)

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.

    Science.gov (United States)

    Lu, Tai-Yen; Lee, Yang-Chun; Yen, Yu-Ting; Yu, Chen-Chieh; Chen, Hsuen-Li

    2016-03-15

    In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zhang, Hua; Zhang, Xia-Guang; Wei, Jie; Wang, Chen; Chen, Shu; Sun, Han-Lei; Wang, Ya-Hao; Chen, Bing-Hui; Yang, Zhi-Lin; Wu, De-Yin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-08-02

    Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H 2 and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites. Direct spectroscopic evidence demonstrates that the atomic hydrogen species generated on the Pt nanocatalysts can spill over from Pt to Au via the Pt-Au and Pt-TiO 2 -Au interfaces, but would be blocked at the Pt-SiO 2 -Au interfaces, leading to the different reaction pathways and product selectivity on Pt-on-Au and Pt-on-SHINs nanocomposites. Such findings have also been verified by the density functional theory calculation. In addition, it is found that nanocatalysts assembled on pinhole-free shell-isolated nanoparticles (Pt-on-pinhole-free-SHINs) can override the influence of the Au core on the reaction and can be applied as promising platforms for the in situ study of heterogeneous catalysis. This work offers a concrete example of how SERS/SHINERS elucidate details about in situ reaction and helps to dig out the fundamental role of interfaces in catalysis.

  5. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ji; Choo, Jae Bum [Dept. of Bionano Technology, Hanyang University, Ansan (Korea, Republic of); Yang, Sung Chul [School of Architectural Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-12-15

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10{sup 4} PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit.

  6. Synthesis of silver particles on copper substrates using ethanol-based solution for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-03-01

    Full Text Available The displacement reaction of AgNO3 and copper metal is an effective and economical way to fabricate Ag-Cu surface enhanced Raman scattering (SERS substrates. Aqueous solutions of AgNO3 are usually used for substrate preparation. In this work, a new method for Ag-Cu SERS substrate preparation is proposed, which uses an ethanol solution rather than an aqueous AgNO3 solution. Analysis of the surface morphologies of sample substrates by field emission scanning electron microscopy (FESEM showed that the silver nanoparticles prepared by this new method were more regular than those prepared in the traditional aqueous solution. The SERS spectra of Rhodamine 6G (R6G adsorbed on these Ag-Cu substrates were then investigated and compared. It was found that the Ag-Cu substrates prepared by this method provide significant improvements in Raman signal sensitivity and large-area uniformity. The enhancement factor of this new substrate is about 330 times higher than that prepared using an aqueous AgNO3 solution under identical experimental conditions. It was also found that 70% of the original sensitivity of the substrate remains after 15 days of exposure to air.

  7. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  8. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.

    Science.gov (United States)

    Park, Seungyoung; Lee, Jiwon; Ko, Hyunhyub

    2017-12-20

    Integration of surface-enhanced Raman scattering (SERS) sensors onto transparent and flexible substrates enables lightweight and deformable SERS sensors which can be wrapped or swabbed on various nonplanar surfaces for the efficient collection and detection of analytes on various surfaces. However, the development of transparent and flexible SERS substrates with high sensitivity is still challenging. Here, we demonstrate a transparent and flexible SERS substrate with high sensitivity based on a polydimethylsiloxane (PDMS) film embedded with gold nanostar (GNS) assemblies. The flexible SERS substrates enable conformal coverage on arbitrary surfaces, and the optical transparency allows light interaction with the underlying contact surface, thereby providing highly sensitive detection of analytes adsorbed on arbitrary metallic and dielectric surfaces which otherwise do not provide any noticeable Raman signals of analytes. In particular, when the flexible SERS substrates are covered onto metallic surfaces, the SERS enhancement is greatly improved because of the additional plasmon couplings between GNS and metal film. We achieve the detection capability of a trace amount of benzenethiol (10 -8 M) and enormous SERS enhancement factor (∼1.9 × 10 8 ) for flexible SERS substrates on Ag film. In addition, because of the embedded structure of GNS monolayers within the PDMS film, SERS sensors maintain the high sensitivity even after mechanical deformations of stretching, bending, and torsion for 100 cycles. The transparent and flexible SERS substrates introduced in this study are applicable to various SERS sensing applications on nonplanar surfaces, which are not achievable for hard SERS substrates.

  9. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  10. Semi-quantitative analysis of indigo carmine, using silver colloids, by surface enhanced resonance Raman spectroscopy (SERRS)

    Science.gov (United States)

    Shadi, I. T.; Chowdhry, B. Z.; Snowden, M. J.; Withnall, R.

    2003-08-01

    The application of surface enhanced resonance Raman spectroscopy (SERRS) to the semi-quantitative analysis of the dye, indigo carmine, has been examined using citrate-reduced silver colloids. Good linear correlations are observed for the dye band at 1580 cm -1 in the concentration range 10 -7-10 -5 and 10 -9-10 -5 mol dm -3, using laser exciting wavelengths of 514.5 [( R=0.9983)] and 632.8 nm [( R=0.9978)], respectively. At concentrations of dye above 10 -6 M the concentration dependence of the SERRS signals is non-linear due to the coverage of the surface of the colloidal particles by the dye being in excess of a full monolayer. At concentrations above 10 -6 M resonance Raman spectroscopy (RRS) can be employed for the quantitative analysis of the dye. An internal standard was used and a good linear correlation ( R=0.997) was observed for the dependence of dye signal intensities at 1580 cm -1 in the concentration range 10 -5-10 -4 M using a laser exciting wavelength of 514.5 nm. The limits of detection of indigo carmine by SERRS (514.5 nm), SERRS (632.8 nm) and solution RRS (514.5 nm) are found to be 0.9, 1 and 38 ppm, respectively.

  11. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds.

    Science.gov (United States)

    Kundu, Subrata; Yi, Su-In; Ma, Lian; Chen, Yunyun; Dai, Wei; Sinyukov, Alexander M; Liang, Hong

    2017-07-25

    Palladium nanoparticles (Pd NPs) of three different morphologies viz., nanocubes with cetyltrimethylammonium bromide (CTAB), nanowires with polyvinyl alcohol (PVA) and Pd NPs with deoxyribonucleic acid (DNA) scaffolds were synthesized by UV-irradiation. Catalysis and surface enhanced Raman scattering (SERS) studies were done with the synthesized morphologically distinct Pd nanostructures for the very first time. The catalytic rate was extremely high with Pd nanowires templated with PVA and the order of the catalytic rate was Pd nanowires in PVA > Pd nanocubes in CTAB > DNA-Pd wire-like assemblies. The highest catalytic rate was observed for PVA capped Pd nanowires which is a few hundred fold higher than other metal NP catalysts. Methylene blue (MB) was used as a Raman analyte for the SERS study and the largest EF of 1.9 × 10 5 at a peak position of 1391 cm -1 was observed with Pd nanowires in the DNA scaffold as a SERS substrate. The order of the SERS EF values was DNA-Pd wire-like assemblies > Pd nanocubes in CTAB > Pd nanowires in PVA. Beyond everything, the present synthesis route is easy, faster, candid, highly reproducible and cost-effective. In the near future, the same protocol could be applied to synthesize other materials for various applications.

  12. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    International Nuclear Information System (INIS)

    Park, Hyun Ji; Choo, Jae Bum; Yang, Sung Chul

    2016-01-01

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10 4 PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit

  13. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  14. Microanalysis of Organic Pigments in Ancient Textiles by Surface-Enhanced Raman Scattering on Agar Gel Matrices

    Directory of Open Access Journals (Sweden)

    Marilena Ricci

    2016-01-01

    Full Text Available We review some new methods based on surface-enhanced Raman scattering (SERS for the nondestructive/minimally invasive identification of organic colorants in objects whose value or function precludes sampling, such as historic and archeological textiles, paintings, and drawing. We discuss in detail the methodology we developed for the selective extraction and identification of anthraquinones and indigoids in the typical concentration used in textiles by means of an ecocompatible homogeneous nanostructured agar matrix. The extraction system was modulated according to the chemical properties of the target analyte by choosing appropriate reagents for the extraction and optimizing the extraction time. The system has been found to be extremely stable, easy to use and produce, easy to store, and at the same time able to be analyzed even after long time intervals, maintaining its enhancement properties unaltered, without the detriment of the extracted compound. Highly structured SERS band intensities have been obtained from the extracted dyes adopting laser light excitations at 514.5 and 785 nm of a micro-Raman setup. This analytical method has been found to be extremely safe for the analyzed substrates, thus being a promising procedure for the selective analysis and detection of molecules at low concentration in the field of artworks conservation.

  15. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  16. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  17. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

  18. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    Science.gov (United States)

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  19. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering.

    Science.gov (United States)

    Alharbi, Omar; Xu, Yun; Goodacre, Royston

    2015-11-01

    Accurate quantitative measurement of drugs and their metabolites is important as this can be used to establish long-term abuse of illicit materials as well as establish accurate drug dosing for legal therapeutics. However, the levels of drugs and xenometabolites found in human body fluids necessitate methods that are highly sensitive as well as reproducible with the potential for portability. Raman spectroscopy does offer excellent reproducibility, portability and chemical specificity, but unfortunately, the Raman effect is generally too weak unless it is enhanced. We therefore developed surface-enhanced Raman scattering (SERS) and combined it with the powerful machine learning technique of artificial neural networks to enable rapid quantification of caffeine and its two major metabolites theobromine and paraxanthine. We established a three-way mixture analysis from 10(-5) to 10(-7) mol/dm(3), and excellent predictions were generated for all three analytes in tertiary mixtures. The range we selected reflects the levels found in human body fluids, and the typical errors for our portable SERS analysis were 1.7 × 10(-6) mol/dm(3) for caffeine, 8.8 × 10(-7) mol/dm(3) for theobromine and 9.6 × 10(-7) mol/dm(3) for paraxanthine. We believe this demonstrates the exciting prospect of using SERS for the quantitative analysis of multiple analytes simultaneously without recourse to lengthy and time-consuming chromatography, a method that often has to be combined with mass spectrometry.

  20. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  1. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    Science.gov (United States)

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Zou, Kun; Gao, Zhigang; Deng, Quanfeng; Luo, Yong; Zou, Lijuan; Lu, Yao; Zhao, Weijie; Lin, Bingcheng

    2016-03-01

    Carcinoembryonic antigen (CEA) is a wide-spectrum biomarker. Clinically, we generally use serum sample to detect CEA, which needs to be centrifuged to pretreat the raw blood sample. In this study, we realized direct CEA detection in raw blood samples exploiting microfluidics. The LOD was as low as 10(-12) M. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. MoS2-based nanocomposites for surface enhanced Raman scattering

    Science.gov (United States)

    Li, Juan; Zhang, Weina; Lei, Hongxiang; Li, Baojun

    2018-01-01

    Molybdenum disulfide (MoS2) monolayer, a two dimensional (2D) layered transition metal dichalcogenides with its novel nanoelectronic and optoelectronic properties has been investigated and applied widely. MoS2-based hybrid composites have shown great potential in chemical and biological fields by combining the advantages of several structures. In our work, a SERS-active substrate was fabricated by combining the MoS2 monolayer with Ag Nanowire (NW)-Nanoparticle (NP) structures using a spin-coated method. This AgNW-AgNP-MoS2 hybrid structure was characterized by SEM, UV-Vis and Raman spectroscopy. Experimental results indicate that strong SERS signals of rhodamine 6G (R6G) molecules is able to be achieved at the "hotspot" formed in this hybrid structure. The enhancement factor is high up to 106 as the incident laser is polarized perpendicular to the NW and the limit of detection is found to be as low as 10-11 M. Besides, the fabricated SERS substrate was reliable and reproducible, which showed great potential to be an excellent SERS substrate for chemical and biological detection.

  4. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  5. Voltammetric and surface-enhanced resonance Raman spectroscopic characterization of cytochrome C adsorbed on a 4-mercaptopyridine monolayer on silver electrodes

    NARCIS (Netherlands)

    Millo, D.; Bonifacio, A.; Ranieri, A.; Borsari, M.; Gooijer, C.; van der Zwan, G.

    2007-01-01

    To combine voltammetric techniques with surface-enhanced resonance Raman scattering (SERRS), cytochrome c (cyt c) was immobilized on a roughened silver electrode chemically modified with a self-assembled monolayer (SAM) of 4-mercaptopyridine (PySH). All measurements were performed on the same

  6. Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Perot Nanocavities

    Czech Academy of Sciences Publication Activity Database

    Xu, J.; Guan, P.; Kvasnička, Pavel; Gong, H.; Homola, Jiří; Yu, Q.

    2011-01-01

    Roč. 115, č. 22 (2011), s. 10996-11002 ISSN 1932-7447 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : localized surface plasmon * surface enhanced raman scattering * finite differences-time domain Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.805, year: 2011

  7. Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Bertel, Linda

    2016-01-01

    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical...

  8. Surface-enhanced Raman scattering (SERS) characterization of trace organoarsenic antimicrobials using silver/polydimethylsiloxane nanocomposites.

    Science.gov (United States)

    Olavarría-Fullerton, Jenifier; Wells, Sabrina; Ortiz-Rivera, William; Sepaniak, Michael J; De Jesús, Marco A

    2011-04-01

    Organoarsenic drugs such as roxarsone and 4-arsanilic acid are poultry feed additives widely used in US broilers to prevent coccidosis and to enhance growth and pigmentation. Despite their veterinary benefits there has been growing concern about their use because over 90% of these drugs are released intact into litter, which is often sold as a fertilizing supplement. The biochemical degradation of these antimicrobials in the litter matrix can release significant amounts of soluble As(III) and As(V) to the environment, representing a potential environmental risk. Silver/polydimethylsiloxane (Ag/PDMS) nanocomposites are a class of surfaceenhanced Raman scattering (SERS) substrates that have proven effective for the sensitive, reproducible, and field-adaptable detection of aromatic acids in water. The work presented herein uses for the first time Ag/PDMS nanocomposites as substrates for the detection and characterization of trace amounts of roxarsone, 4-arsanilic acid, and acetarsone in water. The results gathered in this study show that organoarsenic species are distributed into the PDMS surface where the arsonic acid binds onto the embedded silver nanoparticles, enhancing its characteristic 792 cm(-1) stretching band. The chemisorption of the drugs to the metal facilitates its detection and characterization in the parts per million to parts per billion range. An extensive analysis of the distinct spectroscopic features of each drug is presented with emphasis on the interactions of the arsonic acid, amino, and nitro groups with the metal surface. The benefits of SERS based methods for the study of arsenic drugs are also discussed. © 2011 Society for Applied Spectroscopy

  9. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens.

    Science.gov (United States)

    Sundaram, Jaya; Park, Bosoon; Kwon, Yongkuk; Lawrence, Kurt C

    2013-10-01

    A biopolymer encapsulated with silver nanoparticles was prepared using silver nitrate, polyvinyl alcohol (PVA) solution, and trisodium citrate. It was deposited on a mica sheet to use as SERS substrate. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus and Listeria innocua were washed from chicken rinse and suspended in 10 ml of sterile deionized water. Approximately 5 μl of the bacterial suspensions was placed on the substrate individually and exposed to 785 nm HeNe laser excitation. SERS spectral data were recorded over the Raman shift between 400 and 1800 cm(-1) from 15 different spots on the substrate for each sample; and three replicates were done on each bacteria type. Principal component analysis (PCA) model was developed to classify foodborne bacteria types. PC1 identified 96% of the variation among the given bacteria specimen, and PC2 identified 3%, resulted in a total of 99% classification accuracy. Soft Independent Modeling of Class Analogies (SIMCA) of validation set gave an overall correct classification of 97%. Comparison of the SERS spectra of different types of gram-negative and gram-positive bacteria indicated that all of them have similar cell walls and cell membrane structures. Conversely, major differences were noted around the nucleic acid and amino acid structure information between 1200 cm(-1) and 1700 cm(-1) and at the finger print region between 400 cm(-1) and 700 cm(-1). Silver biopolymer nanoparticle substrate could be a promising SERS tool for pathogen detection. Also this study indicates that SERS technology could be used for reliable and rapid detection and classification of food borne pathogens. Published by Elsevier B.V.

  10. Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles

    Science.gov (United States)

    Shi, Zhijie; Wang, Tao; Lin, Haiyang; Wang, Xiuhua; Ding, Juanjuan; Shao, Mingwang

    2013-09-01

    A simple hydrothermal method was employed to synthesize AgFeO2 nanoparticles, which were utilized as substrates in SERS detection of Rhodamine 6G and 4-mercaptobenzoic acid. The magnetic properties of the products provided the capability of concentrating analyte molecules under an external magnetic field. The detection in aqueous solution has ensured the uniformity of the SERS signals and the reproducibility of the substrates. It was interesting that the substrates exhibited high SERS activity at Rhodamine 6G concentration of 1 × 10-7 M with an enhancement factor of 5.1 × 105, showing the highest SERS effect for semiconductor substrates, which might be ascribed to the orderly orientation of AgFeO2 nanoparticles under external magnetic field.A simple hydrothermal method was employed to synthesize AgFeO2 nanoparticles, which were utilized as substrates in SERS detection of Rhodamine 6G and 4-mercaptobenzoic acid. The magnetic properties of the products provided the capability of concentrating analyte molecules under an external magnetic field. The detection in aqueous solution has ensured the uniformity of the SERS signals and the reproducibility of the substrates. It was interesting that the substrates exhibited high SERS activity at Rhodamine 6G concentration of 1 × 10-7 M with an enhancement factor of 5.1 × 105, showing the highest SERS effect for semiconductor substrates, which might be ascribed to the orderly orientation of AgFeO2 nanoparticles under external magnetic field. Electronic supplementary information (ESI) available: UV-vis absorption, magnetic hysteresis loop and thermogravimetric analysis of AgFeO2, Raman spectra of 0.01 M R6G solution and 4-mercaptobenzoic acid powder. See DOI: 10.1039/c3nr03460g

  11. Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide-osmium hybrid nano thin films

    Science.gov (United States)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Aggarwal, Shantanu

    2017-09-01

    Reduced graphene oxide-osmium (rGO-Os) hybrid nano dendtrites have been prepared by simple liquid/liquid interface method for the first time. The method involves the introduction of phase-transfered metal organic precursor in toluene phase and GO dispersion in the aqueous phase along with hydrazine hydrate as the reducing agent. Dendritic networks of Os nanoparticles and their aggregates decorating rGO layers are obtained. The substrate shows improved catalytic and surface-enhanced activities comparable with previous reports. The catalytic activity was tested for the reduction of p-nitroaniline into p-phenyldiamine with an excess amount of NaBH4. The catalytic activity factors of these hybrid films are 2.3 s-1 g-1 (Os film) and 4.4 s-1 g-1 (rGO-Os hybrid film), which are comparable with other noble metal nanoparticles such as Au, Ag, but lower than Pd-based catalysts. Surface-enhanced Raman spectroscopy (SERS) measurements have been done on rhodamine 6G (R6G) and methylene blue dyes. The enhancement factor for the R6G adsorbed on rGO-Os thin film is 1.0 × 105 and for Os thin film is 7 × 103. There is a 14-fold enhancement observed for Os hybrids with rGO. The enhanced catalytic and SERS activities of rGO-Os hybrid thin film prepared by simple liquid/liquid interface method open up new challenges in electrocatalytic application and SERS-based detection of biomolecules.

  12. Investigating the interaction of aminopolycarboxylic acid (APCA) ligands with silver nanoparticles: A Raman, surface-enhanced Raman and density functional theoretical study

    Science.gov (United States)

    Maiti, Nandita; Malkar, Vishwabharati V.; Mukherjee, Tulsi; Kapoor, Sudhir

    2018-03-01

    Aminopolycarboxylic acid (APCA) ligands are polydentate chelating agents that have multiple binding sites viz. nitrogen atoms and short chain carboxylic groups and hence can form very stable complexes with metal ions. The interactions of these APCAs with silver nanoparticles have been investigated using surface-enhanced Raman scattering (SERS) which is supported with density functional theoretical (DFT) calculations using B3LYP functional and LANL2DZ basis set. From the observed enhancement of the CO2 symmetric stretching vibration, in addition to the red shift of ∼14-35 cm-1 for the various APCAs in the SERS spectra as well as theoretical calculations, it has been inferred that the APCAs are chemisorbed to the silver surface directly through the oxygen atoms of the carboxylate groups as well as the N atom of the substituted amino groups. The apparent enhancement factors for the CO2 symmetric stretching vibration of the APCAs are of the order of 106.

  13. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants.

    Science.gov (United States)

    Shi, Ruyi; Liu, Xiangjiang; Ying, Yibin

    2017-11-16

    Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.

  14. [Quantitative analysis of thiram by surface-enhanced raman spectroscopy combined with feature extraction Algorithms].

    Science.gov (United States)

    Zhang, Bao-hua; Jiang, Yong-cheng; Sha, Wen; Zhang, Xian-yi; Cui, Zhi-feng

    2015-02-01

    Three feature extraction algorithms, such as the principal component analysis (PCA), the discrete cosine transform (DCT) and the non-negative factorization (NMF), were used to extract the main information of the spectral data in order to weaken the influence of the spectral fluctuation on the subsequent quantitative analysis results based on the SERS spectra of the pesticide thiram. Then the extracted components were respectively combined with the linear regression algorithm--the partial least square regression (PLSR) and the non-linear regression algorithm--the support vector machine regression (SVR) to develop the quantitative analysis models. Finally, the effect of the different feature extraction algorithms on the different kinds of the regression algorithms was evaluated by using 5-fold cross-validation method. The experiments demonstrate that the analysis results of SVR are better than PLSR for the non-linear relationship between the intensity of the SERS spectrum and the concentration of the analyte. Further, the feature extraction algorithms can significantly improve the analysis results regardless of the regression algorithms which mainly due to extracting the main information of the source spectral data and eliminating the fluctuation. Additionally, PCA performs best on the linear regression model and NMF is best on the non-linear model, and the predictive error can be reduced nearly three times in the best case. The root mean square error of cross-validation of the best regression model (NMF+SVR) is 0.0455 micormol x L(-1) (10(-6) mol x L(-1)), and it attains the national detection limit of thiram, so the method in this study provides a novel method for the fast detection of thiram. In conclusion, the study provides the experimental references the selecting the feature extraction algorithms on the analysis of the SERS spectrum, and some common findings of feature extraction can also help processing of other kinds of spectroscopy.

  15. Surface-enhanced fluorescence and surface-enhanced Raman scattering of ultrathin layers of bichromophoric antenna systems adsorbed on silver nanoisland films

    International Nuclear Information System (INIS)

    Del Rosso, Tommaso; Giorgetti, Emilia; Cicchi, Stefano; Muniz-Miranda, Maurizio; Margheri, Giancarlo; Giusti, Anna; Rindi, Alessio; Ghini, Giacomo; Sottini, Stefano; Marcelli, Agnese; Foggi, Paolo

    2009-01-01

    We investigated a novel bichromophoric antenna system, characterized by energy transfer between a naphthalene group acting as the donor and a benzofurazane group acting as the acceptor. We studied the spectroscopic properties (infrared, Raman, UV-vis and fluorescence) of self-assembled monolayers of this molecular antenna on Ag nanoisland films and the energy-transfer process upon irradiation at 300 nm.

  16. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering

    Science.gov (United States)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong

    2017-06-01

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  17. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    Science.gov (United States)

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  18. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wallace, Gregory Q; Tabatabaei, Mohammadali; Zuin, Mariachiara S; Workentin, Mark S; Lagugné-Labarthet, François

    2016-01-01

    A nanoaggregate-on-mirror (NAOM) structure has been developed for molecular and biomolecular detection using surface-enhanced Raman spectroscopy (SERS). The smooth surface of the gold mirror allows for simple and homogeneous functionalization, while the introduction of the nanoaggregates enhances the Raman signal of the molecule(s) in the vicinity of the aggregate-mirror junction. This is evidenced by functionalizing the gold mirror with 4-nitrothiophenol, and the further addition of gold nanoaggregates promotes local SERS activity only in the areas with the nanoaggregates. The application of the NAOM platform for biomolecular detection is highlighted using glucose and H2O2 as molecules of interest. In both cases, the gold mirror is functionalized with 4-mercaptophenylboronic acid (4-MPBA). Upon exposure to glucose, the boronic acid moiety of 4-MPBA forms a cyclic boronate ester. Once the nanoaggregates are added to the surface, detection of glucose is possible without the use of an enzyme. This method of indirect detection provides a limit of detection of 0.05 mM, along with a linear range of detection from 0.1 to 15 mM for glucose, encompassing the physiological range of blood glucose concentration. The detection of H2O2 is achieved with optical inspection and SERS. The H2O2 interferes with the coating of the gold mirror, enabling qualitative detection by visual inspection. Simultaneously, the H2O2 reacts with the boronic acid to form a phenol, a change that is detected by SERS.

  19. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  20. Development of microfluidic devices for in situ investigation of cells using surface-enhanced Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Ho, Yu-Han; Galvan, Daniel D.; Yu, Qiuming

    2016-03-01

    Surface-enhanced Raman spectroscopy (SERS) has immerged as a power analytical and sensing technique for many applications in biomedical diagnosis, life sciences, food safety, and environment monitoring because of its molecular specificity and high sensitivity. The inactive Raman scattering of water molecule makes SERS a suitable tool for studying biological systems. Microfluidic devices have also attracted a tremendous interest for the aforementioned applications. By integrating SERS-active substrates with microfluidic devices, it offers a new capability for in situ investigation of biological systems, their dynamic behaviors, and response to drugs or microenvironment changes. In this work, we designed and fabricated a microfluidic device with SERS-active substrates surrounding by cell traps in microfluidic channels for in situ study of live cells using SERS. The SERS-active substrates are quasi-3D plasmonic nanostructure array (Q3D-PNA) made in h-PDMS/PMDS with physically separated gold film with nanoholes op top and gold nanodisks at the bottom of nanowells. 3D finite-difference time-domain (3D-FDTD) electromagnetic simulations were performed to design Q3D-PNAs with the strongest local electric fields (hot spots) at the top or bottom water/Au interfaces for sensitive analysis of cells and small components, respectively. The Q3D-PNAs with the hot spots on top and bottom were placed at the up and down stream of the microfluidic channel, respectively. Each Q3D-PNA pattern was surrounded with cell trapping structures. The microfluidic device was fabricated via soft lithography. We demonstrated that normal (COS-7) and cancer (HpeG2) cells were captured on the Q3D-PNAs and investigated in situ using SERS.

  1. Surface enhanced Raman spectroscopy in nanofibers mats of SiO2-TiO2-Ag

    Directory of Open Access Journals (Sweden)

    José Hafid Roque-Ruiz

    Full Text Available Surface-enhanced Raman scattering (SERS is a powerful tool with high potential for detection of dilute analytes. Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for SERS analysis. SERS-active substrates of silice-titania-silver (SiO2-TiO2-Ag nanofibers were prepared using a simple approach involving electrospinning. We report a simple method for quantitative SERS analysis using SiO2-TiO2-Ag nanofibers as the SERS substrate. Precursors SiO2 and TiO2 were synthetized through the sol-gel method and then incorporated into a polymeric PVP matrix; later they were processed by coaxial electrospinning to obtain fibers with an average diameter of 250 nm. The SiO2-TiO2-Ag structure was demonstrated by Raman, XRD, IR, SEM and EDX. Through infrared spectroscopy it was possible to evaluate the thermal evolution of the sol-gel process. The Titania phase transformation was observed around 800 °C and the hydroxyl group loss was detected between 500 and 800 °C. The presence of two Titania phases, anatase and rutile were analized with DRX. Using Pyridine (1 nM as probe molecule the SERS effect of the scaffold was evaluated and it was determined that the vibration modes 8a, 8b, and 15 were the most amplified signals with a 3 orders of magnitude factor. With this it was concluded that the Silica-Titania-Silver Scaffold is a feasible as a SERS enhancer. Keywords: Electrospinning, Sol-gel, SERS

  2. Surface enhanced Raman spectroscopy in nanofibers mats of SiO2-TiO2-Ag

    Science.gov (United States)

    Roque-Ruiz, José Hafid; Martínez-Máynez, Héctor; Zalapa-Garibay, Manuela Alejandra; Arizmendi-Moraquecho, Ana; Farias, Rurik; Reyes-López, Simón Yobanny

    Surface-enhanced Raman scattering (SERS) is a powerful tool with high potential for detection of dilute analytes. Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for SERS analysis. SERS-active substrates of silice-titania-silver (SiO2-TiO2-Ag) nanofibers were prepared using a simple approach involving electrospinning. We report a simple method for quantitative SERS analysis using SiO2-TiO2-Ag nanofibers as the SERS substrate. Precursors SiO2 and TiO2 were synthetized through the sol-gel method and then incorporated into a polymeric PVP matrix; later they were processed by coaxial electrospinning to obtain fibers with an average diameter of 250 nm. The SiO2-TiO2-Ag structure was demonstrated by Raman, XRD, IR, SEM and EDX. Through infrared spectroscopy it was possible to evaluate the thermal evolution of the sol-gel process. The Titania phase transformation was observed around 800 °C and the hydroxyl group loss was detected between 500 and 800 °C. The presence of two Titania phases, anatase and rutile were analized with DRX. Using Pyridine (1 nM) as probe molecule the SERS effect of the scaffold was evaluated and it was determined that the vibration modes 8a, 8b, and 15 were the most amplified signals with a 3 orders of magnitude factor. With this it was concluded that the Silica-Titania-Silver Scaffold is a feasible as a SERS enhancer.

  3. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  4. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  5. Raman, surface-enhanced Raman, and density functional theory characterization of (diphenylphosphoryl)(pyridin-2-, -3-, and -4-yl)methanol.

    Science.gov (United States)

    Proniewicz, Edyta; Pięta, Ewa; Zborowski, Krzysztof; Kudelski, Andrzej; Boduszek, Bogdan; Olszewski, Tomasz K; Kim, Younkyoo; Proniewicz, Leonard M

    2014-07-31

    This work presents near-infrared Raman spectroscopy (FT-RS) and surface-enhanced Raman scattering (SERS) studies of three pyridine-α-hydroxymethyl biphenyl phosphine oxide isomers: (diphenylphosphoryl)(pyridin-2-yl)methanol (α-Py), (diphenylphosphoryl)(pyridin-3-yl)methanol (β-Py), and (diphenylphosphoryl)(pyridin-4-yl)methanol (γ-Py) adsorbed onto colloidal and roughened in oxidation-reduction cycles silver surfaces. The molecular geometries in the equilibrium state and vibrational frequencies were calculated by density functional theory (DFT) at the B3LYP 6-311G(df,p) level of theory. The results imply that the most stable structure of the investigated molecules is a dimer created by two intermolecular hydrogen bonds between the H atom of the α-hydroxyl group (in up (HOU) or down (HOD) stereo bonds position) and the O atom of tertiary phosphine oxide (═O) of the two monomers. Comparison the FT-RS spectra with the respective SERS spectra allowed us to predict the orientation of the hydroxyphosphonate derivatives of pyridine that depends upon both the position of the substituent relative to the ring N atom (in α-, β-, and γ-position, respectively) and the type of silver substrate.

  6. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  7. Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Hairui Ren

    2016-01-01

    Full Text Available Concentrations of S-Adenosyl-L-Methionine (SAM in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS and verified by high-pressure liquid chromatography (HPLC. The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1 in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1.

  8. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  9. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles

    Science.gov (United States)

    Sun, Hai-Long; Xu, Min-Min; Guo, Qing-Hua; Yuan, Ya-Xian; Shen, Li-Ming; Gu, Ren-Ao; Yao, Jian-Lin

    2013-10-01

    A facile approach has been developed to fabricate multifunctional Fe3O4@AuAg alloy core-shell nanoparticles, owning the magnetism of the core and the surface enhanced Raman spectroscopy (SERS) activities of the alloy shell. By changing the amount of HAuCl4 and AgNO3, Fe3O4@AuAg alloy nanoparticles with different component ratios of Au and Ag were successfully prepared. The surface plasmon resonance of the composition was linearly tuned in a wide range by varying the molar fraction of Ag and Au, suggesting the formation of AuAg alloy shell. SERS and magnetic enrichment effects were investigated by using thiophenol (TP) as the probe molecule. The SERS intensity was strongly dependent on the molar ratios of Au and Ag and the excitation line. Enrichment for the molecules with low concentration and on line SERS monitoring experiments were performed through combining the magnetism of the core and the SERS effect of the alloy shell. The results revealed that the magnetic enrichment efficiency was dramatically increased due to the strong magnetism of Fe3O4 core. In addition, the Fe3O4@AuAg nanoparticles were also used in the microfluidic chip to continuously detect different flowing solution in the channel. The detection time and amount of analyte were successfully decreased.

  10. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  11. Use of a fractal-like gold nanostructure in surface-enhanced raman spectroscopy for detection of selected food contaminants.

    Science.gov (United States)

    He, Lili; Kim, Nam-Jung; Li, Hao; Hu, Zhiqiang; Lin, Mengshi

    2008-11-12

    The safety of imported seafood products because of the contamination of prohibited substances, including crystal violet (CV) and malachite green (MG), raised a great deal of concern in the United States. In this study, a fractal-like gold nanostructure was developed through a self-assembly process and the feasibility of using surface-enhanced Raman spectroscopy (SERS) coupled with this nanostructure for detection of CV, MG, and their mixture (1:1) was explored. SERS was capable of characterizing and differentiating CV, MG, and their mixture on fractal-like gold nanostructures quickly and accurately. The enhancement factor of the gold nanostructures could reach an impressive level of approximately 4 x 10(7), and the lowest detectable concentration for the dye molecules was at approximately 0.2 ppb level. These results indicate that SERS coupled with fractal-like gold nanostructures holds a great potential as a rapid and ultra-sensitive method for detecting trace amounts of prohibited substances in contaminated food samples.

  12. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  13. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors.

    Science.gov (United States)

    Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2015-01-01

    The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares-discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares-discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer.

  15. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  16. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  17. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Suxia Ren

    2017-01-01

    Full Text Available Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN, silver nanoparticles (AgNPs, silicon nanoparticles (SiNPs, and cellulose nanocrystals (CNCs. Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection.

  18. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  19. Detection of low-concentration contaminants in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Hardy, Mike; Doherty, Matthew D; Krstev, Igor; Maier, Konrad; Möller, Torgny; Müller, Gerhard; Dawson, Paul

    2014-09-16

    A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ~4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.

  20. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  1. Tuning gold nanoparticles interfaces by specific peptide interaction for surface enhanced Raman spectroscopy (SERS) and separation applications.

    Science.gov (United States)

    Manikas, Anastasios C; Causa, Filippo; Della Moglie, Raffaella; Netti, Paolo A

    2013-08-28

    Surface functionalization and control over nanostructured interfaces represents a key aspect in nanoscience and nanobiotechnology. Nanoplasmonic structures for analyte detection typically require sophisticated nanofabrication techniques, as well as bioactivated nanostructures that need multistep conjugations for chemical ligation. An alternative to such complex processes is to rely on specific biomolecules adsorption for decoration or self-assembly of nanoparticles at solid/liquid interface. In principle, small biomolecules with specific binding properties to nanostructures could control the assembly without modifying the nanoparticle chemistry, pH of the solution or salt concentration. Importantly, such an approach could be direct, robust, and reversible. In this work, we report about the use of a specific peptide for direct and reversible adsorption on gold nanoparticles with tuned interfacial properties just by simply adjusting the ratio between the numbers of peptide molecules to the number of gold nanoparticles. This easy, direct and reversible assembly of gold nanoparticles mediated by the specific peptide makes this platform ideal for small-volume samples and low concentrations detection using surface enhanced Raman Spectroscopy, as well as for the capture or separation of biomolecules in complex mix.

  2. Deposition of silver nanoleaf film onto chemical vapor deposited diamond substrate and its application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jianwen [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China); College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan Province, 416000 (China); Tian Ruhai [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China); Zhi Jinfang [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China)], E-mail: zhi-mail@mail.ipc.ac.cn

    2008-04-30

    An approach for simultaneously synthesizing and immobilizing silver nanoleaves (SNLs) on {gamma}-mercaptopropyltrimethyoxysilane (MPTS)-modified chemical vapor deposited (CVD) diamond film surface has been developed. As-grown diamond film surface was oxidized by exposing to UV irradiation in oxygen gas atmosphere, and then the oxygen-terminated diamond film was dipped into a methanol solution of MPTS to form a self-assembled MPTS monolayer on the diamond film surface. SNLs were then deposited on diamond film surfaces by an electroless process. The morphology of SNL film was characterized by scanning electron microscopy. The thickness of SNL layer deposited onto the CVD diamond substrate increased with increasing the deposition time and the formation mechanism of SNL films was also discussed. Their performance as surface-enhanced Raman scattering (SERS) substrates was evaluated by using rhodamine 6G (R6G) as the probe molecule. Compared with self-assembled silver nanoparticle film and silver film from the mirror reaction, the SERS signal of R6G was obviously improved on the SNL films.

  3. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  4. Label-Free in Situ Discrimination of Live and Dead Bacteria by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhou, Haibo; Yang, Danting; Ivleva, Natalia P; Mircescu, Nicoleta E; Schubert, Sören; Niessner, Reinhard; Wieser, Andreas; Haisch, Christoph

    2015-07-07

    Techniques to distinguish between live and dead bacteria in a quantitative manner are in high demand in numerous fields including medical care, food safety, and public security as well as basic science research. This work demonstrates new nanostructures (silver nanoparticles coating bacteria structure, Bacteria@AgNPs) and their utility for rapid counting of live and dead bacteria by surface-enhanced Raman scattering (SERS). We found that suspensions containing Gram-negative organisms as well as AgNPs give strong SERS signals of live bacteria when generated selectively on the particle surface. However, almost no SERS signals can be detected from Bacteria@AgNPs suspensions containing dead bacteria. We demonstrate successful quantification of different percentages of dead bacteria both in bulk liquid and on glass surfaces by using SERS mapping on a single cell basis. Furthermore, different chemicals have been used to elucidate the mechanism involved in this observation. Finally, we used the Bacteria@AgNPs method to detect antibiotic resistance of E. coli strains against several antibiotics used in human medicine.

  5. Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

    Directory of Open Access Journals (Sweden)

    Somi Kang

    2017-11-01

    Full Text Available Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI sensing and surface-enhanced Raman spectroscopy (SERS as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.

  6. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.

    Science.gov (United States)

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Hsu, Ting-Chu

    2012-05-01

    As shown in the literature, additional energies are necessary for the reduction of positively charged noble metal ions to prepare metal nanoparticles (NPs). In this work, we report a new green pathway to prepare Au NPs in neutral 0.1M NaCl aqueous solutions from bulk Au substrates without addition of any stabilizer and reductant just via aid of natural chitosan (Ch) at room temperature. Au- and Ch-containing complexes in aqueous solution were electrochemically prepared. The role of Ch is just an intermediate to perform electron transfer with Au NPs. The stability of these prepared Au NPs is well maintained by Au NPs themselves with slightly positively charged Au remained on the surface of Au NPs. The particle size of prepared spherical Au (111) NPs is ca. 15 nm in diameter. Moreover, increasing the pH of preparation solutions can be contributive to preparing concentrated Au NPs in solutions. The prepared Au NPs are surface-enhanced Raman scattering (SERS)-active for probe molecules of Rhodamine 6G. They also demonstrate significantly catalytic activity for decomposition of acetaldehyde in rice wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil

    2016-05-01

    Full Text Available Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  8. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering

    Science.gov (United States)

    Leona, Marco

    2009-01-01

    Scientific studies of works of art are usually limited by severe sampling restrictions. The identification of organic colorants, a class of compounds relevant for attribution and provenance studies, is further complicated by the low concentrations at which these compounds are used and by the interference of the protein-, gum-, or oil-binding media present in pigment and glaze samples. Surface-enhanced resonance Raman scattering (SERRS) was successfully used to identify natural organic colorants in archaeological objects, polychrome sculptures, and paintings from samples smaller than 25 μm in diameter. The key factors in achieving the necessary sensitivity were a highly active stabilized silver colloid, obtained by the reproducible microwave-supported reduction of silver sulfate with glucose and sodium citrate, and a non-extractive hydrolysis sample treatment procedure that maximizes dye adsorption on the colloid. Among the examples presented are the earliest so far found occurrence of madder lake (in a 4,000 years old Egyptian object dating to the Middle Kingdom period), and the earliest known occurrence in Europe of the South Asian dyestuff lac (in the Morgan Madonna, a 12th century polychrome sculpture from Auvergne, France). PMID:19667181

  9. Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy.

    Science.gov (United States)

    Cesaratto, Anna; Leona, Marco; Lombardi, John R; Comelli, Daniela; Nevin, Austin; Londero, Pablo

    2014-12-22

    Surface-enhanced Raman spectroscopy (SERS) has been increasingly used in the study of works of art to identify organic pigments and dyes in paintings, which (depending on the material) are difficult or not possible to detect by other current methods. The application of SERS to the study of paintings has been limited, however, by the lack of a sampling approach with sufficient sensitivity and spatial resolution. We show that ultraviolet laser ablation (LA) sampling coupled with SERS detection can be successfully used to study paint layers. LA-SERS permitted the isolation of signals from colorants in individual thin paint layers in sample cross-sections, avoiding contamination from adjacent layers. These results expand the range of analytical applications of SERS demonstrating how the technique can be used to sensitively detect minor organic components in complex matrices. While this is fundamental for the study of cultural heritage, it is also relevant in other fields such as forensic analysis, food science, and pharmacology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Leona, Marco

    2009-09-01

    Scientific studies of works of art are usually limited by severe sampling restrictions. The identification of organic colorants, a class of compounds relevant for attribution and provenance studies, is further complicated by the low concentrations at which these compounds are used and by the interference of the protein-, gum-, or oil-binding media present in pigment and glaze samples. Surface-enhanced resonance Raman scattering (SERRS) was successfully used to identify natural organic colorants in archaeological objects, polychrome sculptures, and paintings from samples smaller than 25 microm in diameter. The key factors in achieving the necessary sensitivity were a highly active stabilized silver colloid, obtained by the reproducible microwave-supported reduction of silver sulfate with glucose and sodium citrate, and a non-extractive hydrolysis sample treatment procedure that maximizes dye adsorption on the colloid. Among the examples presented are the earliest so far found occurrence of madder lake (in a 4,000 years old Egyptian object dating to the Middle Kingdom period), and the earliest known occurrence in Europe of the South Asian dyestuff lac (in the Morgan Madonna, a 12th century polychrome sculpture from Auvergne, France).

  11. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  12. Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; Jing, Qifeng; Chen, Jun; Wang, Bodong; Huang, Jianhan; Liu, Younian

    2013-11-15

    Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed. In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.

  13. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Science.gov (United States)

    Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A.; Basirun, Wan Jefrey; Bhargava, Suresh K.

    2016-01-01

    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer. PMID:28773528

  14. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide

    Science.gov (United States)

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-01

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

  15. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  16. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C

    2009-08-01

    Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

  17. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  18. A facile precursor route to highly loaded metal/ceramic nanofibers as a robust surface-enhanced Raman template

    Science.gov (United States)

    Park, Jay Hoon; Joo, Yong Lak

    2017-09-01

    We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.

  19. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lingwei Ma

    2017-08-01

    Full Text Available Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.

  20. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  1. Classification of bacterial samples as negative or positive for a UTI and antibiogram using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Costas

    2011-03-01

    Urinary tract infection (UTI) diagnosis requires an overnight culture to identify a sample as positive or negative for a UTI. Additional cultures are required to identify the pathogen responsible for the infection and to test its sensitivity to antibiotics. A rise in ineffective treatments, chronic infections, rising health care costs and antibiotic resistance are some of the consequences of this prolonged waiting period of UTI diagnosis. In this work, Surface Enhanced Raman Spectroscopy (SERS) is used for classifying bacterial samples as positive or negative for UTI. SERS spectra of serial dilutions of E.coli bacteria, isolated from a urine culture, were classified as positive (105-108 cells/ml) or negative (103-104 cells/ml) for UTI after mixing samples with gold nanoparticles. A leave-one-out cross validation was performed using the first two principal components resulting in the correct classification of 82% of all samples. Sensitivity of classification was 88% and specificity was 67%. Antibiotic sensitivity testing was also done using SERS spectra of various species of gram negative bacteria collected 4 hours after exposure to antibiotics. Spectral analysis revealed clear separation between the spectra of samples exposed to ciprofloxacin (sensitive) and amoxicillin (resistant). This study can become the basis for identifying urine samples as positive or negative for a UTI and determining their antibiogram without requiring an overnight culture.

  2. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

    Directory of Open Access Journals (Sweden)

    Gal Schkolnik

    Full Text Available Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp, thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.

  3. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  4. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  5. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings.

    Science.gov (United States)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-13

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  6. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  7. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation

    Science.gov (United States)

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe3O4@SiO2@Au), composed of a Fe3O4 cluster core, a thin Au shell and a SiO2 layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe3O4@SiO2@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe3O4@SiO2@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have

  8. Stabilization of silver nanoparticles in nonanoic acid: A temperature activated conformation reaction observed with surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Henneke, Dale E.; Malyavanatham, Gokul; Kovar, Desiderio; O'Brien, D.T.; Becker, M.F.; Nichols, William T.; Keto, J.W.

    2003-01-01

    Silver nanoparticles were synthesized by ultraviolet (λ=248 nm) laser ablation of an aerosol of micron-sized source particles entrained in nitrogen. As a result of thermionic electron emission and photoionization, nanoparticles produced in this manner were highly charged. The resulting aerosol was primarily composed of nanometer sized particles. The charged nanoparticles were deflected by an electric field that was perpendicular to the aerosol flow. Deflected nanoparticles were deposited directly into n-nonanoic acid flowing along the negative collection electrode. Suspensions of nanoparticles collected in this manner were dark gray in color and were found to be flocculated. When the suspensions were heated to temperatures above 75 deg. C, a color change from gray to clear was observed. Ultraviolet/visible extinction spectroscopy was performed on each suspension following annealing at different temperatures and times. By modeling the absorption decrease as a first order reaction, a good fit for the data was found. Analysis by dynamic light scattering (DLS) showed that the initial mean flocculent size of the gray suspensions was 602 nm. DLS analysis of the suspensions taken at different annealing intervals showed that the flocculent size decreased, but maintained a narrow size distribution until the size shrank below the instrument resolution limit. The reduction in flocculent size coincided with the observed color change, and an irreversible transition to a deflocculated primary nanoparticle suspension is observed. Surface enhanced Raman scattering is used to confirm that the reaction results from a change in the orientation of the nonanoic molecule on the surface of the nanoparticle

  9. Evaluation of a commercially developed semiautomated PCR-surface-enhanced raman scattering assay for diagnosis of invasive fungal disease.

    Science.gov (United States)

    White, P Lewis; Hibbitts, Samantha J; Perry, Michael D; Green, Julie; Stirling, Emma; Woodford, Luke; McNay, Graeme; Stevenson, Ross; Barnes, Rosemary A

    2014-10-01

    Nonculture-based tests are gaining popularity in the diagnosis of invasive fungal disease (IFD), but PCR is excluded from disease-defining criteria because of limited standardization and a lack of commercial assays. Commercial PCR assays may have a standardized methodology while providing quality assurance. The detection of PCR products by a surface-enhanced Raman scattering (SERS) assay potentially provides superior analytical sensitivity and multiplexing capacity compared to that of real-time PCR. Using this approach, the RenDx Fungiplex assay was developed to detect Candida and Aspergillus. Analytical and clinical evaluations of the assay were undertaken using extraction methods according to European Aspergillus PCR Initiative (EAPCRI) recommendations. A total of 195 previously extracted samples (133 plasma, 49 serum, and 13 whole blood) from 112 patients (29 with proven/probable IFD) were tested. The 95% limit of detection of Candida and Aspergillus was 200 copies per reaction, with an overall reproducibility of 92.1% for detecting 20 input copies per PCR, and 89.8% for the nucleic acid extraction-PCR-SERS process for detecting fungal burdens of Candida (80.0%) and Aspergillus (85.7%). The specificity was 87.5% and was increased (97.5%) by using a multiple (≥ 2 samples) PCR-positive threshold. In summary, the RenDx Fungiplex assay is a PCR-SERS assay for diagnosing IFD and demonstrates promising clinical performance on a variety of samples. This was a retrospective clinical evaluation, and performance is likely to be enhanced through a prospective analysis of clinical validity and by determining clinical utility. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.

    Science.gov (United States)

    Anantharaj, S; Sakthikumar, K; Elangovan, Ayyapan; Ravi, G; Karthik, T; Kundu, Subrata

    2016-12-01

    Highly Sensitive and ultra-small Rhenium (Re) metal nanoparticles (NPs) were successfully stabilized in water by the staging and fencing action of the versatile biomolecule DNA that resulted in two distinct aggregated chain-like morphologies with average grain sizes of 1.1±0.1nm and 0.7±0.1nm for the very first time within a minute of reaction time. Re NPs are formed by the borohydride reduction of ammonium perrhenate (NH4ReO4) in the presence of DNA at room temperature (RT) under stirring. The morphologies were controlled by carefully monitoring the molar ratio of NH4ReO4 and DNA. The synthesized material was employed in two potential applications: as a substrate for surface enhanced Raman scattering (SERS) studies and as a catalyst for the reduction of aromatic nitro compounds. SERS study was carried out by taking methylene blue (MB) as the probe and the highest SERS enhancement factor (EF) of 2.07×10(7) was found for the aggregated chain-like having average grain size of 0.7±0.1nm. Catalytic reduction of 4-nitro phenol (4-NP), 2-nitro phenol (2-NP) and 4-nitroaniline (4-NA) with a rate constant value of 6×10(-2)min(-1), 33.83×10(-2)min(-1) and 37.4×10(-2)min(-1) have testified the excellent catalytic performance of our Re NPs immobilized on DNA. The overall study have revealed the capability of DNA in stabilizing the highly reactive Re metal at nanoscale and made them applicable in practice. The present route can also be extended to prepare one dimensional (1-D), self-assembled NPs of other reactive metals, mixed metals or even metal oxides for specific applications in water based solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection.

    Directory of Open Access Journals (Sweden)

    Kelley C Henderson

    Full Text Available Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP. At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR, which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains.

  12. Fabrication of chitosan-gold nanoshells for γ-aminobutyric acid detection as a surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ik Joong; Lim, Jae Wook [Dept. of Chemical and BioEngineering, Gachon University, Seongnam (Korea, Republic of)

    2015-02-15

    A surface-enhanced Raman scattering (SERS) principle-based brain-probing optical fiber was produced to analyze changes in the concentration of γ-aminobutyric acid (GABA). The procedure was carried out within the GABA administration concentration range of 5–30 mM for the patients who should take cranial medicines for GABA components of less than a normal range. The optical fiber, of which the surface had been reformed, was prepared by treatment with chitosan-gold nanoshell particles, which were synthesized by using an ionic interaction. The treated fiber was subsequently combined with GABA, for the purpose of analyzing its GABA concentration. The calibration curve of the SERS sensitivity (counts) as determined by the concentration levels of GABA adsorbed onto the chitosan-gold nanoshell without attachment to the optical fiber was as follows: y = 0.2x{sup 2} − 0.6743x + 419.8 ( R{sup 2}  = 0.9874), while the corresponding calibration curve of the SERS sensitivity (counts) with attachment to optical fiber was as follows: y = 7.4057x{sup 2} + 93.68x + 1851.4 ( R{sup 2}  = 0.9472). Based on the aforementioned two sets of data, it was confirmed that the analysis of GABA using optical fiber had a higher level of sensitivity compared to its analysis in the absence of optical fiber.

  13. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping.

    Science.gov (United States)

    Yang, Tianxi; Zhao, Bin; Kinchla, Amanda J; Clark, John M; He, Lili

    2017-05-03

    Understanding pesticide behavior in plants is important for effectively applying pesticides and in reducing pesticide exposures from ingestion. This study aimed to investigate the penetration and persistence of pesticides applied on harvested and live basil leaves. Surface-enhanced Raman scattering (SERS) mapping was applied for in situ and real-time tracking of pesticides over time using gold nanoparticles as probes. The results showed that, after surface exposure of 30 min to 48 h, pesticides (10 mg/L) penetrated more rapidly and deeply into the live leaves than the harvested leaves. The systemic pesticide thiabendazole and the nonsystemic pesticide ferbam can penetrate into the live leaves with depths of 225 and 130 μm, respectively, and the harvested leaves with depths of 180 and 18 μm, respectively, after 48 h of exposure. The effects of leaf integrity and age on thiabendazole penetration were also evaluated on live basil leaves after 24 h of exposure. Thiabendazole (10 mg/L) when applied onto intact leaves penetrated deeper (170 μm) than when applied onto damaged leaves (80 μm) prepared with 20 scrapes on the top surface of the leaves. Older leaves with a wet mass of 0.204 ± 0.019 g per leaf (45 days after leaf out) allowed more rapid and deeper penetration of pesticides (depth of 165 μm) than younger leaves with a wet mass of 0.053 ± 0.007 g per leaf (15 days after leaf out, depth of 95 μm). The degradation of thiabendazole on live leaves was detected after 1 week, whereas the apparent degradation of ferbam was detected after 2 weeks. In addition, the removal of pesticides from basil was more efficient when compared with other fresh produce possibly due to the specific gland structure of basil leaves. The information obtained here provides a better understanding of the behavior and biological fate of pesticides on plants.

  14. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  15. Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kui [ORNL; Leona, Marco [ORNL; Yan, Fei [ORNL; Wabuyele, Musundi B [ORNL; Vo Dinh, Tuan [ORNL

    2006-04-01

    Surface-enhanced Raman scattering (SERS) was investigated for applications in the analysis of anthraquinone dyes used in works of art. Two SERS procedures were developed and evaluated with three frequently used anthraquinone dyes, alizarin, carminic acid and lac dye. The first procedure involves coating a layer of silver nanoparticles directly on pieces of filter paper stained with the dyes of interest by thermal evaporation to induce SERS effect. In the second procedure, a SERS-active Ag-Al{sub 2}O{sub 3} substrate was prepared by spin-coating an alumina-nanoparticle layer onto a glass slide to provide the nanostructure of the substrate, followed by thermally evaporating a layer of silver nanoparticles on top of the alumina layer. Aliquots of dye solutions were delivered onto this substrate to be analyzed. Intense SERS spectra characteristic of alizarin, carminic acid and lac dye were obtained using both SERS procedures. The effects of two parameters, the concentration of the alumina suspension and the thickness of the silver nanoparticle layer on the performance of the Ag-Al{sub 2}O{sub 3} substrate were examined with alizarin as the model compound. Comparative studies were conducted between the Ag-Al{sub 2}O{sub 3} substrate and the SERS substrate prepared using Tollens reaction. The Ag-Al{sub 2}O{sub 3} substrate was shown to offer larger enhancement and improved reproducibility than the Tollens substrates. Finally, the potential applicability of the Ag-Al{sub 2}O{sub 3} substrate for the analysis of real artifact objects was illustrated by the identification of alizarin extracted from a small piece of textile dyed using traditional methods and materials. The limit of detection for alizarin was estimated to be 7 x 10{sup -15} g from tests performed on solutions of known concentration.

  16. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xin; Pan, Lujun, E-mail: lpan@dlut.edu.cn; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-15

    Graphical abstract: - Highlights: • Uniform Ag nanoparticle films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering. • This modified photocatalytic method combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). • The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. - Abstract: Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO{sub 2} film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO{sub 2} films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO{sub 2} film without Ag seeds.

  17. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering

    OpenAIRE

    Moran, Christine H.; Rycenga, Matthew; Zhang, Qiang; Xia, Younan

    2011-01-01

    In this work, we used surface-enhanced Raman scattering (SERS) to monitor the replacement of poly(vinyl pyrrolidone) (PVP) on Ag nanocubes by cysteamine, thiol-terminated PEG, and benzenedithiol. PVP is widely used as a colloidal stabilizer and capping agent to control the shape of Ag (as well as many other noble metals) nanocrystals during synthesis, and to stabilize the final colloidal suspension. However, the surface chemistry of Ag nanocrystals often needs to be tailored for specific appl...

  18. DEPENDENCE OF THE SURFACE-ENHANCED RAMAN SCATTERING SIGNAL ON THE SHAPE OF SILVER NANOSTRUCTURES GROWN IN THE SiO2 /n-Si POROUS TEMPLATE

    Directory of Open Access Journals (Sweden)

    D. V. Yakimchuk

    2017-01-01

    Full Text Available Surface-enhanced Raman scattering is a powerful method used in chemoand biosensorics. The aim of this work was to determine the relationship between the signal of Surface-enhanced Raman scattering and the shape of silver nanostructures under the influence of laser radiation with different power.Plasmonic nanostructures were synthesized in silicon dioxide pores on monocrystalline silicon n-type substrate. The pores were formed using ion-track technology and selective chemical etching. Silver deposition was carried out by galvanic displacement method. Synthesis time was chosen as a parameter that allows controlling the shape of a silver deposit in the pores of silicon dioxide on the surface of single-crystal n-silicon during electrodeless deposition. Deposition time directly effects on the shape of metal nanostructures.Analysis of the dynamics of changing the morphology of the metal deposit showed that as the deposition time increases, the metal evolves from individual metallic crystallites within the pores at a short deposition time to dendritic-like nanostructures at a long time. The dependence of the intensity of Surface-enhanced Raman scattering spectra on the shape of the silver deposit is studied at the powers of a green laser (λ = 532 nm from 2.5 μW to 150 μW on the model dye analyte Rodamin 6G. The optimum shape of the silver deposit and laser power is analyzed from this point of view design of active surfaces for Surface-enhanced Raman scattering with nondestructive control of small concentrations of substances.The silver nanostructures obtained in porous template SiO2 on n-type silicon substrate could be used as plasmon-active surfaces for nondestructive investigations of substances with low concentrations at low laser powers. 

  19. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation.

    Science.gov (United States)

    Muntean, Cristina M; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-05

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation

    Science.gov (United States)

    Muntean, Cristina M.; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-01

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm-1. Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2‧-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm-1, being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy.

  1. Direct visual evidence of end-on adsorption geometry of pyridine on silver surface investigated by surface enhanced Raman scattering and density functional theory calculations.

    Science.gov (United States)

    Bhunia, Snehasis; Forster, Stefan; Vyas, Nidhi; Schmitt, Hans-Christian; Ojha, Animesh K

    2015-12-05

    Fourier transform Raman (FT-Raman) spectra of neat pyridine (Py) and surface enhanced Raman scattering (SERS) spectra of Py with silver nanoparticles (AgNPs) solution at different molar concentrations (X=1.5M, 1.0M, 0.50 M, 0.25 M, and 0.125 M) were recorded using 1064 nm excitation wavelength. The intensity of Raman bands at ∼1003 (ν11) and ∼1035 (ν21) cm(-1) of Py is enhanced in the SERS spectra. Two new Raman bands were observed at ∼1009 (ν12) and ∼1038 (ν22) cm(-1) in the SERS spectra. These bands correspond to the ring breathing vibrations of Py molecules adsorbed at the AgNPs surface. The value of intensity ratios (I12/I11) and (I21/I22) is increased with dilution and attains a maximum value at X=0.5M and upon further dilution (0.25 and 0.125 M) it drops gradually. The theoretically calculated Raman spectra were found to be in good agreement with experimentally observed Raman spectra. Both, experimental and theoretical investigations have confirmed that the Py interacts with AgNPs via the end-on geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry.

    Science.gov (United States)

    Witkowska, Evelin; Korsak, Dorota; Kowalska, Aneta; Księżopolska-Gocalska, Monika; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa; Michałowicz, Weronika; Albrycht, Paweł; Podrażka, Marta; Hołyst, Robert; Waluk, Jacek; Kamińska, Agnieszka

    2017-02-01

    We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290-1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures. Graphical Abstract New approach of the SERS strategy for detection and identification of food-borne bacteria, namely S. enterica, L. monocytogenes, and C. sakazakii in selected food matrices.

  3. Effect of concentration and pH on the surface-enhanced Raman scattering of captopril on nano-colloidal silver surface

    Science.gov (United States)

    Gao, Junxiang; Gu, Huaimin; Liu, Fangfang; Dong, Xiao; Xie, Min; Hu, Yongjun

    2011-07-01

    In this report, Raman and surface-enhanced Raman scattering (SERS) spectra of captopril are studied in detail. Herein, the Raman bands are assigned by the density functional theory (DFT) calculations and potential energy distributions (PED) based on internal coordinates of the molecule, which are found to be in good agree with the experimental values. Furthermore, the concentration and pH dependence of the SERS intensity of the molecule is discussed. By analyzing the intensities variation of SERS bands of the different concentrations of captopril solution, it can be concluded that the molecules orientation adsorbed on the silver nanoparticles surface change with the change of the concentrations. The variation of SERS spectra of captopril with the change of pH suggests that the interaction among the adsorbates with Ag cluster depend on the protonated state of the adsorbate and the aggregation of silver nanoparticles.

  4. Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels

    Science.gov (United States)

    Freitag, Isabel; Matthäus, Christian; Csaki, Andrea; Clement, Joachim H.; Cialla-May, Dana; Weber, Karina; Krafft, Christoph; Popp, Jürgen

    2015-05-01

    Identification of tumor and normal cells is a promising application of Raman spectroscopy. The throughput of Raman-assisted cell sorting is limited by low sensitivity. Surface-enhanced Raman spectroscopy (SERS) is a well-recognized candidate to increase the intensity of Raman signals of cells. First, different strategies are summarized to detect tumor cells using targeted SERS probes. Then, a protocol is described to prepare multicore-SERS-labels (MSLs) by aggregating gold nanoparticles, coating with a reporter molecule and a thin silver shell to further boost enhancement, encapsulating with a stable silica layer, and functionalizing by epithelial cell adhesion molecule (EpCAM) antibodies. Raman, dark field and fluorescence microscopy proved the specific and nonspecific binding of functionalized and nonfunctionalized MSLs to MCF-7 tumor cells, leukocytes from blood, and nontransformed human foreskin fibroblasts. Raman imaging and dark field microscopy indicated no uptake of MSLs, yet binding to the cellular membrane. Viability tests were performed with living tumor cells to demonstrate the low toxicity of MSL-EpCAM. The SERS signatures were detected from cells with exposure times down to 25 ms at 785-nm laser excitation. The prospects of these MSLs in multiplex assays, for enumeration and sorting of circulating tumor cells in microfluidic chips, are discussed.

  5. Triplet State Resonance Raman Spectrum of all-trans-diphenylbutadiene

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Grossman, W.E.L.; Killough, P.M

    1984-01-01

    The resonance Raman spectrum of all-trans-diphenylbutadiene (DPB) in its ground state and the resonance Raman spectrum (RRS) of DPB in its short-lived electronically excited triplet state are reported. Transient spectra were obtained by a pump-probe technique using two pulsed lasers....... The preresonance spectrum of the ground state is not significantly changed from that of the nonresonance spectrum. In the resonance spectrum of the triplet state the double-bond stretching mode of the butadiene part is shifted by 43 cm-1 downward to 1582 cm-1 whereas the single-bond stretching mode is essentially...

  6. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors.

    Science.gov (United States)

    Yan, Bing; Li, Bo; Wen, Zhining; Luo, Xianyang; Xue, Lili; Li, Longjiang

    2015-10-05

    It is difficult for the parotid gland neoplasms to make an accurate preoperative diagnosis due to the restriction of biopsy in the parotid gland neoplasms. The aim of this study is to apply the surface-enhanced Raman spectroscopy (SERS) method for the blood serum biochemical detection and use the support vector machine for the analysis in order to develop a simple but accurate blood serum detection for preoperative diagnosis of the parotid gland neoplasms. The blood serums were collected from four groups: the patients with pleomorphic adenoma, the patients with Warthin's tumor, the patients with mucoepidermoid carcinoma and the volunteers without parotid gland neoplasms. Au nanoparticles (Au NPs) were mixed with the blood serum as the SERS active nanosensor to enhance the Raman scattering signals produced by the various biochemical materials and high quality SERS spectrum were obtained by using the Raman microscope system. Then the support vector machine was utilized to analyze the differences of the SERS spectrum from the blood serum of different groups and established a diagnostic model to discriminate the different groups. It was demonstrated that there were different intensities of SERS peaks assigned to various biochemical changes in the blood serum between the parotid gland tumor groups and normal control group. Compared with the SERS spectra of the normal serums, the intensities of peaks assigned to nucleic acids and proteins increased in the SERS spectra of the parotid gland tumor serums, which manifested the differences of the biochemical metabolites in the serum from the patients with parotid gland tumors. When the leave-one-sample-out method was used, support vector machine (SVM) played an outstanding performance in the classification of the SERS spectra with the high accuracy (84.1 % ~ 88.3 %), sensitivity (82.2 % ~ 97.4 %) and specificity (73.7 % ~ 86.7 %). Though the accuracy, sensitivity and specificity decreased in the leave

  7. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    Surface-enhanced Raman scattering (SERS) has been established as a versatile tool for probing and labeling in analytical applications, based on the vibrational spectra of samples as well as label molecules in the proximity of noble metal nanostructures. The aim of this work was the construction of novel SERS hybrid probes. The hybrid probes consisted of Au and Ag nanoparticles and reporter molecules, as well as a targeting unit. The concept for the SERS hybrid probe design was followed by experiments comprising characterization techniques such as UV/Vis-spectroscopy (UV/Vis), Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. SERS experiments were performed for studying and optimizing the plasmonic properties of nanoparticles with respect to their enhancement capabilities. The SERS-probes had to meet following requirements: biocompatibility, stability in physiological media, and enhancement of Raman-signals from Raman reporter molecules enabling the identification of different probes even in a complex biological environment. Au and Ag nanoaggregates were found to be the most appropriate SERS substrates for the hybrid probe design. The utilization of Raman reporters enabled the identification of different SERS probes in multiplexing experiments. In particular, the multiplexing capability of ten various reporter molecules para-aminobenzenethiol, 2-naphthalenethiol, crystal violet, rhodamine (B) isothiocyanate, fluorescein isothiocyanate, 5,5'dithiobis(2-nitrobenzoic acid), para-mercaptobenzoic acid, acridine orange, safranine O und nile blue was studied using NIR-SERS excitation. As demonstrated by the results the reporters could be identified through their specific Raman signature even in the case of high structural similarity. Chemical separation analysis of the reporter signatures was performed in a trivariate approach, enabling the discrimination through an automated calculation of specific band ratios. The trivariate

  8. “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhigao; Liao, Lei; Wu, Wei; Guo, Shishang; Zhao, Xinyue; Li, Wei; Ren, Feng; Jiang, Changzhong, E-mail: xxh@whu.edu.cn, E-mail: czjiang@whu.edu.cn [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); Mei, Fei [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068 (China); Xiao, Xiangheng, E-mail: xxh@whu.edu.cn, E-mail: czjiang@whu.edu.cn [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States); Fu, Lei; Wang, Jiao [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2014-07-21

    The Ag nanoparticles (NPs) surrounding triangular nanoarrays (TNAs) with high number density of surface-enhanced Raman scattering (SERS) hot spots (SERS hot spots ring) are prepared by a combination of NPs deposition and subsequent colloid lithography processing. Owing to the SERS hot spots ring, the Ag NPs surrounding TNAs have been proved an excellent candidate for ultrasensitive molecular sensing for their high SERS signal enhancing capacity in experiments and theories. The Ag NPs surrounding TNAs can be readily used for the quick detection of low concentrations of molecules related to food safety; herein, detection of melamine is discussed.

  9. Writing droplets of molecularly imprinted polymers by nano fountain pen and detecting their molecular interactions by surface-enhanced Raman scattering.

    Science.gov (United States)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A; Haupt, Karsten; Bar, Ilana

    2009-07-15

    Molecularly imprinted polymer (MIP) droplets were printed using a pipet or a nano fountain pen on surface-enhanced Raman scattering (SERS)-active surfaces, to directly monitor the uptake and release of a template molecule, the beta-blocking drug propranolol, by SERS. The monitored SERS bands can be related to the template, allowing for its detection but also identification in the MIP. This is an advantage if the technique is to be used during the development phase of MIPs as microstructures, but equally for the readout of MIP-based biochips.

  10. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  11. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water.

    Science.gov (United States)

    Ji, Wei; Wang, Yue; Tanabe, Ichiro; Han, Xiaoxia; Zhao, Bing; Ozaki, Yukihiro

    2015-01-01

    Semiconductor materials have been successfully used as surface-enhanced Raman scattering (SERS)-active substrates, providing SERS technology with a high flexibility for application in a diverse range of fields. Here, we employ a dye-sensitized semiconductor system combined with semiconductor-enhanced Raman spectroscopy to detect metal ions, using an approach based on the "turn-off" SERS strategy that takes advantage of the intrinsic capacity of the semiconductor to catalyze the degradation of a Raman probe. Alizarin red S (ARS)-sensitized colloidal TiO 2 nanoparticles (NPs) were selected as an example to show how semiconductor-enhanced Raman spectroscopy enables the determination of Cr(vi) in water. Firstly, we explored the SERS mechanism of ARS-TiO 2 complexes and found that the strong electronic coupling between ARS and colloidal TiO 2 NPs gives rise to the formation of a ligand-to-metal charge-transfer (LMCT) transition, providing a new electronic transition pathway for the Raman process. Secondly, colloidal TiO 2 nanoparticles were used as active sites to induce the self-degradation of the Raman probe adsorbed on their surfaces in the presence of Cr(vi). Our data demonstrate the potential of ARS-TiO 2 complexes as a SERS-active sensing platform for Cr(vi) in an aqueous solution. Remarkably, the method proposed in this contribution is relatively simple, without requiring complex pretreatment and complicated instruments, but provides high sensitivity and excellent selectivity in a high-throughput fashion. Finally, the ARS-TiO 2 complexes are successfully applied to the detection of Cr(vi) in environmental samples. Thus, the present work provides a facile method for the detection of Cr(vi) in aqueous solutions and a viable application for semiconductor-enhanced Raman spectroscopy based on the chemical enhancement they contribute.

  12. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.

    Science.gov (United States)

    Tian, Yue; Zhang, Hua; Xu, Linlin; Chen, Ming; Chen, Feng

    2018-02-15

    The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10 -13   M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.

  13. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  14. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    Science.gov (United States)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  15. Identification of Natural Dyes in Ancient Textiles by Time-of-Flight Secondary Ion Mass Spectrometry and Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lee, Jihye; Kim, Min Jung; van Elslande, Elsa; Walter, Philippe; Lee, Yeonhee

    2015-11-01

    The identification of dyes in archaeological remains is a long standing challenge. Major problems include contamination by environmental conditions over long periods of time, small amounts and limited availability of excavated samples, and low concentrations of dyestuff in the obtained samples. To address these issues, highly sensitive and non-destructive techniques are required. In response, in this work, two non-destructive analytical techniques, Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Surface-Enhanced Raman Spectroscopy (SERS), were used for dye detection and the analysis results are compared. TOF-SIMS provides high detection efficiency for the analysis of organic materials whereas SERS is a useful technique for the detection of dyes in ancient textiles. An Ag colloid was employed to surmount the limitations of normal Raman measurement such as background fluorescence and weak Raman signals in small amounts of components. To identify the dyes used in ancient textiles, standard samples prepared using various dyestuffs and historical samples were analyzed with TOF-SIMS and Raman techniques. From the TOF-SIMS and the SERS spectra, dyestuffs such as alizarin, berberine, an indigo were identified in ancient textiles. The results suggest that TOF-SIMS and SERS are efficient non-destructive techniques for the characterization of archaeological textiles.

  16. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    Science.gov (United States)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  17. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.

    Science.gov (United States)

    Jiang, Zhongwei; Gao, Pengfei; Yang, Lin; Huang, Chengzhi; Li, Yuanfang

    2015-12-15

    Surface-enhanced Raman scattering (SERS) signals are intensively dominated by the Raman hot spots and distance between analyte molecules and metallic nanostructures. Herein, an efficient SERS substrate was developed by in situ synthesis of silver nanoparticles (AgNPs) on the surface of MIL-101 (Fe), a typical metal-organic framework (MOF). The as-prepared SERS substrate combines the numerous Raman hot spots between the high-density Ag NPs and the excellent adsorption performance of MOFs, making it an excellent SERS substrate for highly sensitive SERS detection by effectively concentrating analytes in close proximity to the Raman hot spots domains between the adjacent AgNPs. The resulting hybrid material was used for ultrasensitive SERS detection of dopamine based on the peroxidase-like activity of MIL-101 (Fe) by utilizing the enzyme-linked immunosorbent assay (ELISA) colorimetric substrate, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as a SERS marker. This new developed method showed good linearity in the range from 1.054 pM to 210.8 nM for dopamine with the correlation coefficient of 0.992, detection limit of approximately 0.32 pM [signal-to-noise ratio (S/N) = 3], and acceptable recoveries ranging from 99.8% to 108.0% in human urine. These results predict that the proposed SERS system may open up a new opportunity for chemical and biological assay applications.

  18. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.

    Science.gov (United States)

    Silva de Almeida, Francylaine; Bussler, Larissa; Marcio Lima, Sandro; Fiorucci, Antonio Rogério; da Cunha Andrade, Luis Humberto

    2016-07-01

    In this work, low-cost substrates with rough silver surfaces were prepared from commercial copper foil-covered phenolic board (CPB) and an aqueous solution of AgNO3, and were used for surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) measurements. A maximum SERS amplification factor of 1.2 × 10(7) was obtained for Rhodamine 6G (R6G), and use of the CPB resulted in a detection limit for Thiram pesticide of 0.5 µmol L(-1) The minimum detection level was limited by residual traces of phenolic groups that originated from the substrate resin, which became solubilized in the aqueous Ag(+) solution. It was found that the bands corresponding to the impurities had less influence in the Thiram analysis, which could be explained by the high affinity of sulfur for Ag surfaces. The influence of impurities in the SERS analyses therefore depended on the linkage between the rough silver surface and the analyte. The findings demonstrated the ease and effectiveness of using CPB to prepare a nanostructured surface for SERS. © The Author(s) 2016.

  19. Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide–osmium hybrid nano thin films

    OpenAIRE

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Aggarwal, Shantanu

    2017-01-01

    Reduced graphene oxide–osmium (rGO-Os) hybrid nano dendtrites have been prepared by simple liquid/liquid interface method for the first time. The method involves the introduction of phase-transfered metal organic precursor in toluene phase and GO dispersion in the aqueous phase along with hydrazine hydrate as the reducing agent. Dendritic networks of Os nanoparticles and their aggregates decorating rGO layers are obtained. The substrate shows improved catalytic and surface-enhanced activities...

  20. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Dousti, M. Reza [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Tehran-North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sahar, M.R., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Amjad, Raja J.; Ghoshal, S.K.; Awang, Asmahani [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2013-11-15

    Enhancing the up-conversion luminescence and Raman intensity in rare-earth doped glasses is an important issue for nanophotonics. Erbium-doped zinc tellurite glass with and without silver nanoparticles (NPs) were prepared using melt quenching method. The effect of NPs concentration and annealing time on the Raman and photoluminescence (PL) response were investigated. The presence of silver NPs with Gaussian size distribution having average size ∼12 nm were confirmed by transmission electron microscopy. The Raman spectra consist of six peaks that show red shift. The up-conversion emission exhibits three major visible lines corresponding to the transitions from {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} excited states to {sup 4}I{sub 15/2} ground state of Er{sup 3+} ion. An eight times enhancement in the Raman and five times in photoluminescence (PL) intensities were attributed to the large electric field originated from the face-centered cubic silver NPs. Quenching of PL emission in the visible range for longer annealing time interval was observed and attributed to dissolution of the growth of NPs in the host glass. The prominent absorption plasmon bands of silver were also evidenced that confirms the non-spherical shape of nanoparticles. -- Highlights: • A series of zinc tellurite glass has been prepared by melt quenching technique. • Effect of silver NPs on photoluminescence and Raman response has been investigated. • The average size of silver NPs is estimated to be ∼12 nm having a Gaussian distribution. • Both PL and Raman intensities were enhanced significantly. • Enhancement is discussed in terms of different interactions between Er and Ag NP.

  1. Separation of Time-Resolved Phenomena in Surface-Enhanced Raman Scattering of the Photocatalytic Reduction of p-Nitrothiophenol

    NARCIS (Netherlands)

    Lantman, E. M. van Schrojenstein|info:eu-repo/dai/nl/34138643X; de Peinder, P.|info:eu-repo/dai/nl/325810818; Mank, A. J. G.|info:eu-repo/dai/nl/143338773; Weckhuysen, B. M.|info:eu-repo/dai/nl/285484397

    2015-01-01

    Straightforward analysis of chemical processes on the nanoscale is difficult, as the measurement volume is linked to a discrete number of molecules, ruling out any ensemble averaging over rotation and diffusion processes. Raman spectroscopy is sufficiently selective for monitoring chemical changes,

  2. Surface-enhanced Raman spectroscopic study of DNA and 6-mercapto-1-hexanol interactions using large area mapping

    DEFF Research Database (Denmark)

    Frøhling, Kasper Bayer; Alstrøm, Tommy Sonne; Bache, Michael

    2016-01-01

    intensities and peak positions it is possible to directly inspect the interplay between DNA and 6-mercapto-1-hexanol on gold covered nanopillars. It is demonstrated that optimised functionalization parameters can be extracted from the Raman spectra directly. Using the peak-fitting approach it is possible...

  3. Shape and Size Control of Substrate Grown Gold Nanoparticles for Surface Enhanced Raman Spectroscopy Detection of Chemical Analytes (Preprint)

    Science.gov (United States)

    2017-10-12

    for impurity products . Furthermore, the porous nature of the Distribution A. Approved for public release (PA): distribution unlimited.      5...the Raman fingerprint of serotonin. Results and Discussion We initially sought to quantify the extent to which anisotropic nanoparticles exhibit...particle nucleation from product growth by first nucleating a uniform “seed” population and subsequently overgrowing seeds to form nanoparticles. To

  4. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties.

    Science.gov (United States)

    Zhang, Qiang; Moran, Christine H; Xia, Xiaohu; Rycenga, Matthew; Li, Naixu; Xia, Younan

    2012-06-19

    This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.

  5. Influence of the silver deposition method on the activity of platforms for chemometric surface-enhanced Raman scattering measurements: Silver films on ZrO2 nanopore arrays

    Science.gov (United States)

    Pisarek, Marcin; Krajczewski, Jan; Wierzbicka, Ewa; Hołdyński, Marcin; Sulka, Grzegorz D.; Nowakowski, Robert; Kudelski, Andrzej; Janik-Czachor, Maria

    2017-07-01

    Deposition of plazmonic metal nanoparticles on nanostructured oxide templates is an important part in preparation and design of suitable substrates for surface-enhanced Raman scattering (SERS) measurements. In this contribution we analyze the influence of the Ag deposition methods (magnetron sputtering and evaporation in vacuum, which are often used interchangeably) on SERS activity of the resultant Ag-n/ZrO2/Zr composite samples fabricated. We found that deposition of the same amount of Ag (0.020 mg/cm2) on the ZrO2 nanoporous layers using magnetron sputtering and evaporation in vacuum leads to formation of two different surface morphologies, which can be distinguished on the basis of high-resolution scanning electron microscopy (HR-SEM) measurements. Those differences distinctly affect SERS intensity measured for probe molecules: pyridine and sodium 2-mercaptoethanesulfonate. SERS substrates obtained using evaporation technique are ca. 1.5 times more efficient than substrates prepared using magnetron sputtering.

  6. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Peng Yingjing; Qiu Lihua; Pan Congtao; Wang Cancan; Shang Songmin; Yan Feng

    2012-01-01

    Water dispersible polypyrrole nanotube/silver nanoparticle hybrids (PPyNT-COOAgNP) were synthesized via a cation-exchange method. The approach involves the surface functionalization of PPyNTs with carboxylic acid groups (-COOH), and cation-exchange with silver ions (Ag + ) and followed by the reduction of metal ions. The morphology and optical properties of the produced PPyNT-COOAgNP nanohybrids were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometer, and UV–vis spectroscopy. The as-prepared PPyNT-COOAgNP nanohybrids exhibited well-defined response to the reduction of hydrogen peroxide, and as extremely suitable substrates for surface-enhanced Raman spectroscopy (SERS) with a high enhancement factor of 6.0 × 10 7 , and enabling the detection of 10 −12 M Rhodamine 6G solution.

  7. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms.

    Science.gov (United States)

    Huang, Qingli; Wang, Jiaming; Wei, Wenxian; Yan, Qiuxiang; Wu, Changle; Zhu, Xiashi

    2015-01-01

    Reduced graphene oxide/Ag nanoparticles hybrids (rGO/AgNPs) were fabricated via a green and facile hydrothermal method. The as-synthesized materials were characterized in detail using various spectroscopic and microscopic techniques. Under a suitable dosage of silver ions, well-dispersed AgNPs on the reduced graphene oxide sheets were obtained. The surface plasmon resonance properties of AgNPs on graphene show that there is an interaction between AgNPs and graphene. Trace detection of organic dyes is studied based on rGO/AgNPs hybrids as efficient surface enhanced Raman scattering platforms. It has been found that the suitable experiment parameter is crucial to trace detection of organic dyes molecules. This work is of importance in the practical application in device-design based on the SERS effect of noble metal/reduced oxide graphene (or oxide graphene) hybrids. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Deposition of the fractal-like gold particles onto electrospun polymethylmethacrylate fibrous mats and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Bin; Han Gaoyi; Li Miaoyu; Zhao Shizhen

    2010-01-01

    The ultrafine polymethylmethacrylate fibers containing gold nanoparticles have been prepared by using the electrospinning technique. Then the continuously coarse gold films formed by fractal-like thorny gold particles were deposited on the organic eletrospun fiber surface by an electroless process. The morphology of coarse gold films was characterized by scanning electron and transmission electron microscopy. The results revealed that the morphology of the gold particles was affected not only by the amount of gold seeds embedded in the organic fibers but also by the amount of gold deposited on the fiber's surfaces. The surface-enhanced Raman scattering (SERS) effect of the fibrous mats coated with gold films was evaluated by using Rhodamine B as an adsorbate. The results indicated that this kind of fibrous mat exhibited high and reproducible SERS activity and could be developed as highly sensitive SERS substrate.

  9. Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars

    DEFF Research Database (Denmark)

    Ashley, Jon; Wu, Kaiyu; Hansen, Mikkel Fougt

    2017-01-01

    using an internal standard. By coherently combining MMIP extraction and silicon nanopillar-based SERS biosensor, good sensitivity toward cloxacillin was achieved. The detection limit was 7.8 pmol. Cloxacillin recoveries from spiked pig plasma samples were found to be more than 80%.......There is an increasing demand for rapid, sensitive, and low cost analytical methods to routinely screen antibiotic residues in food products. Conventional detection of antibiotics involves sample preparation by liquid-liquid or solid-phase extraction, followed by analysis using liquid...... with surface-enhanced Raman spectroscopy (SERS)-based detection for quantitative analysis of cloxacillin in pig serum. MMIP microspheres were synthesized using a core-shell technique. The large loading capacity and high selectivity of the MMIP microspheres enabled efficient extraction of cloxacillin, while...

  10. Surface-enhanced Raman spectroscopy of chernozem humic acid and their fractions obtained by coupled size exclusion chromatography-polyacrylamide gel electrophoresis (SEC-PAGE).

    Science.gov (United States)

    Sanchez-Cortes, S; Corrado, G; Trubetskaya, O E; Trubetskoj, O A; Hermosin, B; Saiz-Jimenez, C

    2006-01-01

    A humic acid extracted from a chernozem soil was fractionated combining size exclusion chromatography and polyacrylamide electrophoresis (SEC-PAGE). Three fractions named A, B, and C+D, with different electrophoretic mobilities and molecular sizes (MS), were obtained and subsequently characterized by thermochemolysis and surface-enhanced Raman spectroscopy (SERS). The data confirmed that fraction A, with the higher MS, was more aliphatic than fractions B and C+D and, in turn, fractions with lower MS (B and C+D) denoted an enrichment in lignin residues. These structural features explain conformational changes when varying the pH in the humic fraction A and indicated that combination of the two techniques is a good approach for characterizing humic substances.

  11. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    Science.gov (United States)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  12. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  13. Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC.

    Science.gov (United States)

    Pazos, Elena; Garcia-Algar, Manuel; Penas, Cristina; Nazarenus, Moritz; Torruella, Arnau; Pazos-Perez, Nicolas; Guerrini, Luca; Vázquez, M Eugenio; Garcia-Rico, Eduardo; Mascareñas, José L; Alvarez-Puebla, Ramon A

    2016-11-02

    Blood-based biomarkers (liquid biopsy) offer extremely valuable tools for the noninvasive diagnosis and monitoring of tumors. The protein c-MYC, a transcription factor that has been shown to be deregulated in up to 70% of human cancers, can be used as a robust proteomic signature for cancer. Herein, we developed a rapid, highly specific, and sensitive surface-enhanced Raman scattering (SERS) assay for the quantification of c-MYC in real blood samples. The sensing scheme relies on the use of specifically designed hybrid plasmonic materials and their bioderivatization with a selective peptidic receptor modified with a SERS transducer. Peptide/c-MYC recognition events translate into measurable alterations of the SERS spectra associated with a molecular reorientation of the transducer, in agreement with the surface selection rules. The efficiency of the sensor is demonstrated in cellular lines, healthy donors and a cancer patient.

  14. Monitoring the inorganic chemical reaction by surface-enhanced Raman spectroscopy: A case of Fe³⁺ to Fe²⁺ conversion.

    Science.gov (United States)

    Qin, Suhua; Meng, Juan; Tang, Xianghu; Yang, Liangbao

    2016-01-01

    Monitoring the process of organic chemical reactions to study the kinetics by surface-enhanced Raman spectroscopy (SERS) is currently of immense interest. However, monitoring the inorganic chemical reaction is still an extremely difficulty for researchers. This study exactly focused on the monitor of inorganic chemical reaction. Capillary coated with silver nanoparticles was introduced, which was an efficient platform for monitoring reactions with SERS due to the advantages of sensitivity and excellent reproducibility. The photoreduction of [Fe(phen)3](3+) to [Fe(phen)3](2+) was used as model reaction to demonstrated the feasibility of SERS monitoring inorganic chemical reaction by involving in metal-organic complexes. Moreover, the preliminary implementation demonstrated that the kinetics of photoreduction can be real-time monitored by in situ using the SERS technique on a single constructed capillary, which may be useful for the practical application of SERS technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A surface-enhanced Raman study of N-methylquinolinium tricyanoquinodimethanide adsorbed on Ag nanospheres: Determination of molecular orientation and order

    Science.gov (United States)

    Fletcher, Melissa C.; Alexson, Dimitri M.; Prokes, Sharka M.; Glembocki, Orest J.; Vivoni, Alberto; Hosten, Charles M.

    2015-08-01

    Quinolinium tricyanoquinodimethanides are among the most promising molecules for electronic applications. Disorder can be detrimental to the desired electronic properties of a monolayer, and as such, a reliable method to characterize a monolayer without destroying or creating defects is paramount to determining potential applications. Here, the normal and surface-enhanced Raman scattering spectra of N-methylquinolinium tricyanoquinodimethanide (CH3Q-3CNQ) on silver coated nanosurfaces have been obtained and analyzed. Theoretical treatment of CH3Q-3CNQ was performed. Optimization and frequency search was conducted using the B3LYP functional with the 6-31G(d) basis set. A complete list of frequencies and assignments for the molecules are presented. The spectroscopic evidence points to the fact that a monolayer of CH3Q-3CNQ can be formed through the self-assembly process, and the SERS data indicate that the monolayer attaches to the silver surface through the nitrile groups.

  16. Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

    International Nuclear Information System (INIS)

    Ganbold, Erdene Ochir; Park, Jin Ho; Ock, Kwang Su; Joo, Sang Woo

    2011-01-01

    We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs

  17. The Raman spectrum character of skin tumor induced by UVB

    Science.gov (United States)

    Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng

    2016-03-01

    In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.

  18. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap.

    Science.gov (United States)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-02-19

    Gaps with single-nanometer dimensions (foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene-SiO2-Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au-graphene-Cu hybrid configuration as an SERS substrate.

  19. [EMD Time-Frequency Analysis of Raman Spectrum and NIR].

    Science.gov (United States)

    Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe

    2016-02-01

    This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.

  20. Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    International Nuclear Information System (INIS)

    Kirubha, E; Palanisamy, P K

    2014-01-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au–Ag bimetallic core–shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au–Ag nanoparticles are characterized using UV–Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 10 9 . The nonlinear optical parameters such as the nonlinear refractive index n 2 , nonlinear absorption coefficient β and the third order nonlinear susceptibility χ 3 are measured for various wavelengths from 700 nm to 950 nm. The Au–Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G. (paper)

  1. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications.

    Science.gov (United States)

    Robinson, Ashley M; Zhao, Lili; Shah Alam, Marwa Y; Bhandari, Paridhi; Harroun, Scott G; Dendukuri, Dhananjaya; Blackburn, Jonathan; Brosseau, Christa L

    2015-02-07

    The demand for methods and technologies capable of rapid, inexpensive and continuous monitoring of health status or exposure to environmental pollutants persists. In this work, the development of novel surface-enhanced Raman spectroscopy (SERS) substrates from metal-coated silk fabric, known as zari, presents the potential for SERS substrates to be incorporated into clothing and other textiles for the routine monitoring of important analytes, such as disease biomarkers or environmental pollutants. Characterization of the zari fabric was completed using scanning electron microscopy, energy dispersive X-ray analysis and Raman spectroscopy. Silver nanoparticles (AgNPs) were prepared, characterized by transmission electron microscopy and UV-vis spectroscopy, and used to treat fabric samples by incubation, drop-coating and in situ synthesis. The quality of the treated fabric was evaluated by collecting the SERS signal of 4,4'-bipyridine on these substrates. When AgNPs were drop-coated on the fabric, sensitive and reproducible substrates were obtained. Adenine was selected as a second probe molecule, because it dominates the SERS signal of DNA, which is an important class of disease biomarker, particularly for pathogens such as Plasmodium spp. and Mycobacterium tuberculosis. Excellent signal enhancement could be achieved on these affordable substrates, suggesting that the developed fabric chips have the potential for expanding the use of SERS as a diagnostic and environmental monitoring tool for application in wearable sensor technologies.

  2. Au-Ag Core-Shell Nanospheres for Surface-Enhanced Raman Scattering Detection of Sudan I and Sudan II in Chili Powder

    Directory of Open Access Journals (Sweden)

    Lu Pei

    2015-01-01

    Full Text Available Au-Ag core-shell (Au@Ag bimetallic nanospheres synthesized by a facile seed-growth method are proposed as a substrate for surface-enhanced Raman spectroscopy (SERS to detect azo-group dyes including Sudan I and Sudan II. Au@Ag nanospheres with a series of particle sizes (diameter: 30–120 nm and silver shell thicknesses (6–51 nm were synthesized and compared for their morphological and optical properties to obtain optimum enhancement effect. Normal Raman, SERS, infrared, and ultraviolet-visible were used to investigate the optical absorption properties of Sudan I and Sudan II as well as the enhancement mechanism of Au@Ag substrates. The nanospheres with particle size of 73 ± 6 nm in diameter and silver layer of 27 ± 2 nm resulted in the highest enhancement effect and could be used to detect Sudan I and Sudan II standard solutions at levels as low as 0.4 and 0.1 mg/L, respectively. Moreover, Sudan I and Sudan II in chili powder could be detected at 0.6 and 0.4 mg/kg, respectively. Sudan I and Sudan II with similar structures in complicated food matrices could be distinguished through applying principal component analysis, indicating good selectivity of the SERS method for detection of banned additives in food stuffs at trace levels.

  3. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    Science.gov (United States)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  4. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.

    Science.gov (United States)

    Li, Bowei; Zhang, Wei; Chen, Lingxin; Lin, Bingcheng

    2013-08-01

    In this study, a fast, low-cost, and facile spray method was proposed. This method deposits highly sensitive surface-enhanced Raman scattering (SERS) silver nanoparticles (AgNPs) on the paper-microfluidic scheme. The procedures for substrate preparation were studied including different strategies to synthesize AgNPs and the optimization of spray cycles. In addition, the morphologies of the different kinds of paper substrates were characterized by SEM and investigated by their SERS signals. The established method was found to be favorable for obtaining good sensitivity and reproducible results. The RSDs of Raman intensity of randomly analyzing 20 spots on the same paper or different filter papers depositing AgNPs are both below 15%. The SERS enhancement factor is approximately 2 × 10(7) . The whole fabrication is very rapid, robust, and does not require specific instruments. Furthermore, the total cost for 1000 pieces of chip is less than $20. These advantages demonstrated the potential for growing SERS applications in the area of environmental monitoring, food safety, and bioanalysis in the future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (Conference Presentation)

    Science.gov (United States)

    Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan

    2016-03-01

    Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.

  6. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    Science.gov (United States)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  7. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    Science.gov (United States)

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis of Silver Nanodendrites on Silicon and Its Application for the Trace Detection of Pyridaben Pesticide Using Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Ngan, Luong Truc Quynh; Minh, Kieu Ngoc; Cao, Dao Tran; Anh, Cao Tuan; Van Vu, Le

    2017-06-01

    We present the results of the synthesis of arrays of silver nanodendrites (AgNDs) on the surface of a silicon wafer (AgNDs@Si) and the application of them as surface-enhanced Raman scattering (SERS) substrates to detect traces of pesticides, through the example of pyridaben detection. AgNDs were chosen because they contain many of the points that could be considered as "hot spots", and therefore SERS substrates made from them will have a high Raman enhancement factor. AgNDs were deposited onto the surface of silicon by electrochemical deposition, using an aqueous solution of HF and AgNO3. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the surface of the silicon. These AgNDs are distributed evenly across the entire silicon surface with a relatively thick density. Pyridaben is a pesticide for the control of mites and some other insects such as white flies, aphids and thrips on fruits, vegetables, tea and ornamentals. Pyridaben is harmful to humans if it is used improperly. When used for the detection of pyridaben, SERS substrates made from fabricated AgNDs@Si were able to detect concentrations as low as 0.1 ppm.

  9. Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications

    Science.gov (United States)

    Noda, Yuta; Asaka, Toru; Fudouzi, Hiroshi; Hayakawa, Tomokatsu

    2018-03-01

    To examine the optical responses of surface-enhanced Raman scattering (SERS) for tuned plasmonic nanoparticles, triangular Ag-coated Au (Au@Ag) nanoprisms with different sizes were separately synthesized, which were well controlled in their size (edge-length) and localized surface plasmon resonance (LSPR) wavelength (69.0 ± 8.4 to 173.8 ± 25.6 nm in size and 662-943 nm in LSPR wavelength). The mechanism of Ag shell formation on the Au nanoprisms was also studied with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS). The Au@Ag nanoprisms were immobilized by covering a colloidal solution containing the nanoprisms with silicone oil and evaporating the solvent in the oil (oil-coating method) so as to form a layer of accumulated plasmonic Au@Ag nanoprisms that had LSPR peak wavelengths tuned from 839 to 1182 nm. The accumulation conditions were analyzed by field-emission scanning electron microscopy (FE-SEM) and a Raman mapping technique. The Au@Ag nanoprisms under excitation at 632.8 nm exhibited higher SERS signals of rhodamine 6G, and SERS-mapped images of the novel immobilized films were obtained at different magnifications. It was concluded that accumulated Au@Ag nanoprisms undergoing tip-planar interconnections could produce enhanced local fields, resulting in higher SERS signals.

  10. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Babaei, Reza

    2013-01-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C 10 H 8 N 2 ) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm −1 that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  11. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Babaei, Reza, E-mail: reza_babaee_62@yahoo.com [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C{sub 10}H{sub 8}N{sub 2}) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm{sup −1} that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  12. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor.

    Science.gov (United States)

    Gao, Fang; Hu, Yaxi; Chen, Da; Li-Chan, Eunice C Y; Grant, Edward; Lu, Xiaonan

    2015-10-01

    Sudan I is a carcinogenic and mutagenic azo-compound that has been utilized as a common adulterant in spice and spice blends to impart a desirable red color to foods. A novel biosensor combining molecularly imprinted polymers (MIPs), thin layer chromatography (TLC) and surface enhanced Raman spectroscopy (SERS) could determine Sudan I levels in paprika powder to 1 ppm (or 2 ng/spot). Sudan I spiked paprika extracts (spiking levels: 0, 1, 5, 10, 40, 70 and 100 ppm) were prepared. Sudan I imprinted polymers were synthesized by employing the interaction between Sudan I (template) and methacrylic acid (functional monomer), followed by washing to remove Sudan I leaving the Sudan I-binding sites exposed. MIPs were used as a stationary phase for TLC and could selectively retain Sudan I at the original spot with little interference. A gold colloid SERS substrate could enhance Raman intensity for Sudan I in this MIP-TLC system. Principal component analysis plot and partial least squares regression (R(2)=0.978) models were constructed and a linear regression model (R(2)=0.983) correlated spiking levels (5, 10, 40, 70 and 100 ppm) with the peak intensities (721 cm(-1)) of Sudan I SERS spectra. Both separation (30-40s) and detection (1s or 0.1s) were extremely fast by using both commercial bench-top and custom made portable Raman spectrometers. This biosensor can be applied as a rapid, low-cost and reliable tool for screening Sudan I adulteration in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine

    Science.gov (United States)

    Weng, Shizhuang; Dong, Ronglu; Zhu, Zede; Zhang, Dongyan; Zhao, Jinling; Huang, Linsheng; Liang, Dong

    2018-01-01

    Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30 ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of > 92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2 μL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.

  14. A competitive immunoassay for ultrasensitive detection of Hg(2+) in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering.

    Science.gov (United States)

    She, Pei; Chu, Yanxin; Liu, Chunwei; Guo, Xun; Zhao, Kang; Li, Jianguo; Du, Haijing; Zhang, Xiang; Wang, Hong; Deng, Anping

    2016-02-04

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg(2+). This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg(2+) and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg(2+). The ICT was able to directly detect Hg(2+) without complexing due to the specific recognition of the mAb with Hg(2+). The IC50 and limit of detection (LOD) of the assay for Hg(2+) detection were 0.12 ng mL(-1) and 0.45 pg mL(-1), respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg(2+) were in range of 88.3-107.3% with the relative standard deviations (RSD) of 1.5-9.5% (n = 3). The proposed ICT was used for the detection of Hg(2+) in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg(2+) in environmental water samples and biological serum and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    Science.gov (United States)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  16. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions.

    Science.gov (United States)

    Chen, Li-Miao; Liu, You-Nian

    2011-08-01

    Silver/carbon (Ag/C) core-shell nanospheres synthesized by a hydrothermal method were used as templates for fabricating silver nanoparticle-decorated Ag/C (Ag/C/AgNps) nanospheres. The particle size of Ag nanoparticles can be tuned by varying the concentration of Ag precursor. Detection of melamine molecules at concentrations as low as 5.0×10(-8) M shows that the Ag/C/AgNps nanosphere is a good SERS-active substrate. The effect of heavy metal ions on the detection of melamine is also investigated. It was found that the SERS spectrum profile of melamine is very sensitive to the presence of heavy metal ions: the peak positions of the SERS bands exhibit some apparent change with the kind of metal ion, showing a blue or red shift compared with those in the SERS spectrum of melamine; the SERS signal intensity decrease with increasing the concentration of metal ion.

  17. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören

    2015-01-01

    We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)

  18. Analysis of defects in low-temperature polycrystalline silicon thin films related to surface-enhanced Raman scattering

    Science.gov (United States)

    Kitahara, Kuninori; Yeh, Wenchang; Hara, Akito

    2018-01-01

    The analysis of Raman scattering (RS) spectroscopy is presented for low-temperature polycrystalline silicon (poly-Si) thin films on glass substrates fabricated by excimer laser crystallization. In this material, RS is enhanced by specific protrusions at the grain boundary (GB). As a result, the Si lattice mode predominantly reflects the characteristics of GB and its neighborhood. A combination of low-damage hydrogenation and RS analysis enables the detection of lattice defects as Si-hydrogen (H) local vibration modes (LVMs). The characteristics of LVMs peculiar to this material are examined by chemical etching and postannealing. One of the dominant LVMs centered at ˜2000 cm-1 is assigned to H-terminated dangling bonds in the amorphous structures at GB, which is also enhanced by protrusions. The other dominant band centered at ˜2100 cm-1 is attributed to the strained Si-Si lattice near the Si/underlayer interface in grains that is broken and stabilized by extrinsic H atoms.

  19. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes.

    Science.gov (United States)

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph

    2014-05-02

    Alternative splicing (AS) increases the size of the transcriptome and proteome to enhance the physiological capacity of cells. We demonstrate surface enhanced Raman spectroscopy (SERS) in combination with a DNA hybridization analytical platform to identify and quantify AS genes in plants. AS in AtDCL2 and AtPTB2 were investigated using non-fluorescent Raman probes using a 'sandwich assay'. Utilizing Raman probes conjugated to gold nanoparticles we demonstrate the recognition of RNA sequences specific to AtDCL2 and AtPTB2 splice junction variants with detection sensitivity of up to 0.1 fM. Published by Elsevier B.V.

  20. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.