WorldWideScience

Sample records for surface-energy correction proportional

  1. Proportional crosstalk correction for the segmented clover at iThemba LABS

    International Nuclear Information System (INIS)

    Bucher, T D; Noncolela, S P; Lawrie, E A; Dinoko, T R S; Easton, J L; Erasmus, N; Lawrie, J J; Mthembu, S H; Mtshali, W X; Shirinda, O; Orce, J N

    2017-01-01

    Reaching new depths in nuclear structure investigations requires new experimental equipment and new techniques of data analysis. The modern γ -ray spectrometers, like AGATA and GRETINA are now built of new-generation segmented germanium detectors. These most advanced detectors are able to reconstruct the trajectory of a γ -ray inside the detector. These are powerful detectors, but they need careful characterization, since their output signals are more complex. For instance for each γ -ray interaction that occurs in a segment of such a detector additional output signals (called proportional crosstalk), falsely appearing as an independent (often negative) energy depositions, are registered on the non-interacting segments. A failure to implement crosstalk correction results in incorrectly measured energies on the segments for two- and higher-fold events. It affects all experiments which rely on the recorded segment energies. Furthermore incorrectly recorded energies on the segments cause a failure to reconstruct the γ -ray trajectories using Compton scattering analysis. The proportional crosstalk for the iThemba LABS segmented clover was measured and a crosstalk correction was successfully implemented. The measured crosstalk-corrected energies show good agreement with the true γ -ray energies independent on the number of hit segments and an improved energy resolution for the segment sum energy was obtained. (paper)

  2. Proportional counter with a wire-anode lying on the dielectric surface

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    1983-01-01

    Proportional coUnter with wire-anode lying on the dielectric surface is described. The result of the accumulation of charges on the dielectric surface immediately near the wire-anode surface is that such a counter possesses electrostatic memory relative to distribution of the gas amplification coefficient along the anode. SUch a distribution can be received for example by means of irradiation by the neutrons or the γ-rays. The disposition of the wire-anode on the convex dielectric surface allows one to make the ring-shaped counters or the nonplane proportional chambers practically of any profile. However, the energy resolution of the counter with anode on the dielectric is worse than the resolution of counter with free anode particularly at the large gas amplification coefficient

  3. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    Science.gov (United States)

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

    Science.gov (United States)

    Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.; Thiel, Walter

    2017-06-01

    We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

  5. Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals.

    Science.gov (United States)

    Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S

    2010-09-01

    We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.

  6. Functional Representation for the Born-Oppenheimer Diagonal Correction and Born-Huang Adiabatic Potential Energy Surfaces for Isotopomers of H3

    International Nuclear Information System (INIS)

    Mielke, Steven L.; Schwenke, David; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.

    2009-01-01

    Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H3 were performed at 1397 symmetry-unique configurations using the Born-Huang approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm-1 for the H3, DH2, and MuH2 isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein we choose the CCI potential energy surface, the uncertainties of which (∼0.01 kcal/mol) are much smaller than the magnitude of the BODC. FORTRAN routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics.

  7. Proportion quantitative analysis and etching of {110} planes on tungsten single crystal coating surface

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rende, E-mail: dallasbiam@163.com [Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Department 5, P.O. Box 81-5, Beijing 100095 (China); Tan, Chengwen; Yu, Xiaodong [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-05-05

    Tungsten single crystal and poly crystal were treated by electrolytic etching in a 3% by weight solution of NaOH in distilled water. The method for determining the proportion of {110} planes and characteristic morphology on the coating surface after electrolytic etching were investigated using EBSD and auto-focusing microscope. Then the optimization of process parameters for electrolytic etching is achieved. In order to compare the effect of process parameters, three process parameters were selected for the tungsten single crystal electrolytic etching. Through analyzing the change of {110} planes' proportion, we found that when the coatings are etched with 1.4 amp/cm{sup 2} and 3 min, {110} planes can be exposed in the greatest degree that can reach 61.4% on tubular surfaces. The proposed approach greatly improves the proportion of {110} planes relative to the original surface. - Highlights: • Tungsten single/poly crystals treated by electrolytic etching in solution of NaOH. • The {110} planes have the lower surface free energy than {112}. • Some {112} planes etched firstly, the {110} planes exposed at last during etching. • {110} planes exposed to the greatest extent with 1.4 amp/cm{sup 2} and 3 min.

  8. Experimental dead time corrections for a linear position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yelon, W.B.; Tompson, C.W.; Mildner, D.F.R.; Berliner, R.; Missouri Univ., Columbia

    1984-01-01

    Two simple counters included in the charge-digitization circuitry of a position-sensitive proportional counter using the charge division method for position encoding have enabled us to determine the dead time losses for the system. An interesting positional dependence of the dead time tau is observed, which agrees with a simple model. The system enables us to correct the experimental data for dead time and to be indifferent to the relatively slow analog-to-digital converters used in the system. (orig.)

  9. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  10. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  11. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  12. Entropy-Corrected Holographic Dark Energy

    International Nuclear Information System (INIS)

    Wei Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  13. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  14. Corrected body surface potential mapping.

    Science.gov (United States)

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  15. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  16. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  17. X-ray Multilayers and Thin-Shell Substrate Surface-Figure Correction

    Science.gov (United States)

    Windt, David

    We propose a comprehensive experimental research program whose two main goals are (a) to improve the performance of hard X-ray multilayer coatings and (b) to develop a high-throughput method to correct mid-frequency surface errors in thin-shell mirror substrates. Achieving these goals will enable the cost-effective construction of light- weight, highly-nested X-ray telescopes having greater observational sensitivity, wider energy coverage, and higher angular resolution than can be achieved at present. The realization of this technology will thus benefit the development of a variety of Explorer- class NASA X-ray astronomy missions now being formulated for both the soft and hard X-ray bands, and will enable the construction of future facility-class X-ray missions that will require both high sensitivity and high resolution. Building on the success of our previous APRA-funded research, we plan to investigate new thin-film growth techniques, new materials, and new aperiodic coating designs in order to develop new hard X-ray multilayers that have higher X-ray reflectance, wider energy response, lower film stress, and good stability, and that can be produced more quickly, at reduced cost. Additionally, we propose to build upon our extensive experience in sub-nm film-thickness control using velocity modulation and masked deposition techniques, and in the recent development of low-roughness, low-stress films grown by reactive sputtering, in order to develop new methods for correcting mid-frequency surface errors in thin-shell mirror substrates using both differential deposition and ion-beam figuring, either alone or in combination. These two surface-correction techniques already being used for sub-nm figuring of precision optics in a variety of disciplines, including diffraction-limited EUV lithography and synchrotron applications requiring sub-micron focusing are ideally suited for controlling mm-scale surface errors in the thin-shell substrates used for astronomical X

  18. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  19. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  20. Statistical properties of proportional residual energy intake as a new measure of energetic efficiency.

    Science.gov (United States)

    Zamani, Pouya

    2017-08-01

    Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.

  1. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  2. Simple analytical approximation for rotationally inelastic rate constants based on the energy corrected sudden scaling law

    International Nuclear Information System (INIS)

    Smith, N.; Pritchard, D.E.

    1981-01-01

    We have recently demonstrated that the energy corrected sudden (ECS) scaling law of De Pristo et al. when conbined with the power law assumption for the basis rates k/sub l/→0proportional[l(l+1)]/sup -g/ can accurately fit a wide body of rotational energy transfer data. We develop a simple and accurate approximation to this fitting law, and in addition mathematically show the connection between it and our earlier proposed energy based law which also has been successful in describing both theoretical and experimental data on rotationally inelastic collisions

  3. X-ray proportional counter for the Viking Lander

    International Nuclear Information System (INIS)

    Glesius, F.L.; Kroon, J.C.; Castro, A.J.; Clark, B.C.

    1978-01-01

    A set of four sealed proportional counters with optimized energy response is employed in the X-ray fluorescence spectrometer units aboard the two Viking Landers. The instruments have provided quantitative elemental analyses of soil samples taken from the Martian surface. This paper discusses the design and development of these miniature proportional counters, and describes their performance on Mars

  4. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  5. Opportunities and Challenges of AC/DC Transmission Network Planning Considering High Proportion Renewable Energy

    Directory of Open Access Journals (Sweden)

    Arslan Habib

    2018-03-01

    Full Text Available The time and space distribution characteristics of future high proportion of renewable energy sources will bring unprecedented challenges to the electric power system’s processing and planning, the basic form of electric power system and operating characteristics will have fundamental changes. Based on the research status quo at home and abroad, this paper expounds the four scientific problems of the transmission network planning with high proportion of renewable energy. Respectively, from the network source collaborative planning, transmission network flexible planning. With the distribution network in conjunction with the transmission network planning, transmission planning program comprehensive evaluation and decision-making methods. This paper puts forward the research ideas and framework of transmission network planning considering the high proportion of renewable energy. At the end, the future high proportion of (renewable energy grid-connected transmission network’s opportunities and challenges are presented.

  6. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W

    2012-11-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach

  7. Interacting holographic dark energy with logarithmic correction

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy

  8. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  9. Correction of systematic behaviour in topographical surface analysis

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    Four specimens in the sub-micrometre range and with different polishing were topographically investigated in fiveareas over their respective surfaces. Uncertainties were evaluated with and without correction for systematicbehaviour and successively analysed by a design of experiment (DOE). Result...... showed that the correction forsystematic behaviour allowed for a lower value of the estimated uncertainty when the correction was adequate tocompletely recognise the systematic effects. If not, the correction can produce an overestimation of the uncertainty....

  10. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  11. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  12. Surface excitation correction of electron IMFP of selected polymers

    International Nuclear Information System (INIS)

    Gergely, G.; Orosz, G.T.; Lesiak, B.; Jablonski, A.; Toth, J.; Varga, D.

    2004-01-01

    Complete text of publication follows. The IMFP [1] of selected polymers: polythiophenes, polyanilines, polyethylene (PE) [2] was determined by EPES [3] experiments, using Si, Ge and Ag (for PE) reference samples. Experiments were evaluated by Monte Carlo (MC) simulations [1] applying the NIST 64 (1996 and 2002) databases and IMFP data of Tanuma and Gries [1]. The integrated experimental elastic peak ratios of sample and reference are different from those calculated by Monte Carlo (MC) simulation [1]. The difference was attributed to the difference of surface excitation parameters (SEP) [4] of the sample and reference. The SEP parameters of the reference samples were taken from Chen and Werner. A new procedure was developed for experimental determination of the SEP parameters of polymer samples. It is a trial and error method for optimising the SEP correction of the IMFP and the correction of experimental elastic peak ratio [4]. Experiments made with a HSA spectrometer [5] covered the E = 0.2-2 keV energy range. The improvements with SEP correction appears in reduc- ing the difference between the corrected and MC calculated IMFPs, assuming Gries and Tanuma's et al IMFPs [1] for polymers and standard respectively. The experimental peak areas were corrected for the hydrogen peak. For the direct detection of hydrogen see Ref. [6] and [7]. Results obtained with the different NIST 64 databases and atomic potentials [8] are presented. This work was supported by the Hungarian Science Foundation of OTKA: T037709 and T038016. (author)

  13. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  14. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  15. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  16. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  17. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  18. Correction of the horizontal closed orbit at all energies

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.

    The method followed is accomplished in two steps. At average energy, the closed orbit is corrected by a remote realignment of the focusing quadrupoles by a known quantity. This closed orbit, created by the position adjustment of the quadrupoles, is valid during the whole cycle; but at low energy level, a closed orbit is added because of constant currents or parasitic fields whose effects decrease as the energy level increases. This residual orbit is corrected during the injection by dipolar correction fields, located on the inside of the quadrupoles and fed by direct currents. Therefore, the closed orbit resulting from the superposition of the two types of corrections and defects is brought back to +- 2.5 mm with respect to the center of the quadrupoles

  19. Collective plasma corrections to thermonuclear reactions rates in dense plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2002-01-01

    General kinetic equations for nuclear reaction in dense plasmas are obtained. They take into account the first order collective plasma effects. Together with previously known corrections proportional to Z i Z j , the product of the charges Z i and Z j of two interacting nuclei, it is shown that there exist corrections proportional to the squares Z i 2 and Z j 2 of the charges. It is shown that the Salpeter's [1] correction due to the plasma screening of the interaction potential is at least r/d smaller (r is the nuclei size and d is Debye screening length) than previously thought and is zero in the approximation when the terms of the order r/d are neglected. But the correlation effects in the first approximation in the parameter 1/N d (where N d is the number of particle in the Debye sphere) give corrections which often coincide with the first order Salpeter's corrections (found by expansion in another small parameter, the ratio of thermal energy to Gamov's energy). The correlation corrections are ∝ Z i Z j , have a different physical meaning than the corrections [1], can have a different sign and are present for reactions where the Salpeter's corrections are zero. Previously in astrophysical applications it was widely used the interpolation formulas between weak and strong Salpeter's screening corrections. Since the correlation correction take place the previously known Salpeter's corrections and the strong correlation corrections is difficult to describe analytically, the interpolation formulas between the weak and strong correlations cannot be yet found. A new type of corrections are found here which are proportional to the square of the charges. They are due to collective change in electrostatic self-energy of the plasma system during the nuclear reactions. The latter corrections are found by taking into account the changes of plasma particle fluctuations by the nuclear reactions. Numerical evaluation of the plasma corrections for the nuclear reactions of the

  20. Finite-size corrections to the free energies of crystalline solids

    NARCIS (Netherlands)

    Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.

    2000-01-01

    We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free

  1. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    Science.gov (United States)

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  3. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  4. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).

    Science.gov (United States)

    Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans

    2012-04-23

    The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->////ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analytic representation of the backscatter correction factor at the exit of high energy photon beams

    International Nuclear Information System (INIS)

    Kappas, K.; Rosenwald, J.C.

    1991-01-01

    In high-energy X-ray beams, the dose calculated near the exit surface under electronic equilibrium conditions is generally over-estimated since it is derived from measurements performed in water with large thickness of backscattering material. The resulting error depends on a number of parameters such as beam energy, field dimension, thickness of overlying and underlying material. The authors have systematically measured for 4 different energies and for different para- meters and for different combinations of the above parameters, the reduction of dose due to backscatter. This correction is expressed as a multiplicative factor, called 'Backscatter Correction Factor' (BCF). This BCF is larger for lower energies, larger field sizes and larger depths. The BCF has been represented by an analytical expression which involves an exponential function of the backscattering thickness and linear relationships with depth field size and beam quality index. Using this expression, the BCF can be calculated within 0.5% for any conditions in the energy range investigated. (author). 14 refs.; 4 figs.; 3 tabs

  6. Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-02-01

    Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.

  7. Modelling and analysis of piezoelectric cantilever energy harvester for different proof mass and material proportion

    Science.gov (United States)

    Shashank, R.; Harisha, S. K., Dr; Abhishek, M. C.

    2018-02-01

    Energy harvesting using ambient energy sources is one of the fast growing trends in the world, research and development in the area of energy harvesting is moving progressively to get maximum power output from the existing resources. The ambient sources of energy available in the nature are solar energy, wind energy, thermal energy, vibrational energy etc. out of these methods energy harvesting by vibrational energy sources gain more importance due to its nature of not getting influenced by any environmental parameters and its free availability at anytime and anywhere. The project mainly deals with validating the values of voltage and electrical power output of experimentally conducted energy harvester, varying the parameters of the energy harvester and analyse the effect of the parameters on the performance of the energy harvester and compare the results. The cantilever beam was designed, analysed and simulated using COMSOL multi-physics software. The energy harvester gives an electrical output voltage of the 2.75 volts at a natural frequency of 37.2 Hz and an electrical power of 29μW. Decreasing the percentage of the piezoelectric material and simultaneously increasing the percentage of polymer material (so that total percentage of proportion remains same) increases the electrical voltage and decreases the natural frequency of the beam linearly upto 3.9V and 28.847 Hz till the percentage proportion of the beam was 24% piezoelectric beam and 76% polymer beam when the percentage proportion increased to 26% and 74% natural frequency goes on decreases further but voltage suddenly drops to 2.8V. The voltage generated by energy harvester increases proportionally and reaches 3.7V until weight of the proof mass reaches 4 grams and further increase in the weight of the proof mass decreases the voltage generated by energy harvester. Thus the investigation conveys that the weight of the proof mass and the length of the cantilever beam should be optimised to obtain maximum

  8. ENERGY CORRECTION FOR HIGH POWER PROTON/H MINUS LINAC INJECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA, D.; LEE, Y.Y.; WEI, J.

    2005-05-16

    High-energy proton/H minus energy (> GeV) linac injector suffer from energy jitter due to RF amplitude and phase stability. Especially in high power injectors this energy jitter result beam losses more than 1 W/m that require for hand on maintenance. Depending upon the requirements for next accelerator in the chain, this energy jitter may or may not require to be corrected. This paper will discuss the sources of this energy jitter, correction schemes with specific examples.

  9. Lowering rumen-degradable protein maintained energy-corrected milk yield and improved nitrogen-use efficiency in multiparous lactating dairy cows exposed to heat stress.

    Science.gov (United States)

    Kaufman, J D; Kassube, K R; Ríus, A G

    2017-10-01

    The objective of this study was to examine the effect of reducing rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) proportions on feed intake, milk production, and N-use efficiency in primiparous and multiparous cows exposed to warm climates. Eighteen primiparous and 30 multiparous mid-lactation Holstein cows were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Cows were randomly assigned to 1 of 4 dietary treatments formulated to contain 2 proportions of RDP (10 and 8%) and 2 proportions RUP (8 and 6%) of dry matter (DM) indicated as follows: (1) 10% RDP, 8% RUP; (2) 8% RDP, 8% RUP; (3) 10% RDP, 6% RUP; and (4) 8% RDP, 6% RUP. Protein sources were manipulated to obtain desired RDP and RUP proportions. Diets were isoenergetic and contained 50% forage and 50% concentrate (DM basis). Cows were individually fed the 10% RDP, 8% RUP diet 3 wk before treatment allocation. Cows were exposed to the prevailing Tennessee July and August temperature and humidity in a freestall barn with no supplemental cooling. Main effects and their interaction were tested using the Mixed procedure of SAS (least squares means ± standard error of the mean; SAS Institute Inc., Cary, NC). Observed values of nutrient intake and milk production were used to obtain NRC (2001) model predictions. Cows showed signs of heat stress throughout the study. Reducing from 10 to 8% RDP decreased dry matter intake (DMI; 0.9 kg/d) at 8% RUP, but increased DMI (2.6 kg/d) at 6% RUP in primiparous cows. Reducing from 10 to 8% RDP decreased milk yield (10%) at 8% RUP, but increased yield (14%) at 6% RUP. Treatments did not affect yield of energy-corrected milk. For multiparous cows, treatments did not affect DMI. Reducing from 10 to 8% RDP decreased yield of energy-corrected milk (3.4%) at 8% RUP, but increased yield (8.8%) at 6% RUP. Reducing from 10 to 8% RDP and 8 to 6% RUP both increased N-use efficiency for primiparous and multiparous cows. The NRC

  10. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  11. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 4; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 4

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.

  12. Radiative corrections to high-energy neutrino scattering

    International Nuclear Information System (INIS)

    Rujula, A. de; Petronzio, R.; Savoy-Navarro, A.

    1979-01-01

    Motivated by precise neutrino experiments, the electromagnetic radiative corrections to the data are reconsidered. The usefulness is investigated and the simplicity demonstrated of the 'leading log' approximation: the calculation to order α ln (Q/μ), α ln (Q/msub(q)). Here Q is an energy scale of the overall process, μ is the lepton mass and msub(q) is a hadronic mass, the effective quark mass in a parton model. The leading log radiative corrections to dsigma/dy distributions and to suitably interpreted dsigma/dx distributions are quark-mass independent. The authors improve upon the conventional leading log approximation and compute explicitly the largest terms that lie beyond the leading log level. In practice this means that the model-independent formulae, though approximate, are likely to be excellent estimates everywhere except at low energy or very large y. It is pointed out that radiative corrections to measurements of deviations from the Callan-Gross relation and to measurements of the 'sea' constituency of nucleons are gigantic. The QCD inspired study of deviations from scaling is of particular interest. The authors compute, beyond the leading log level, the radiative corrections of the QCD predictions. (Auth.)

  13. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    International Nuclear Information System (INIS)

    Mulero, A; Galan, C; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs

  14. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  15. Exploitation of jet properties for energy scale corrections for the CMS calorimeters

    International Nuclear Information System (INIS)

    Kirschenmann, Henning

    2011-02-01

    Jets form important event signatures in proton-proton collisions at the Large Hadron Collider (LHC) and the precise measurement of their energy is a crucial premise for a manifold of physics studies. Jets, which are reconstructed exclusively from calorimeter information, have been widely used within the CMS collaboration. However, the response of the calorimeters to incident particles depends heavily on their energy. In addition, it has been observed at previous experiments that the charged particle multiplicity and the radial distribution of constituents differ for jets induced by light quarks or by gluons. In conjunction with the non-linearity of the CMS calorimeters, this contributes to a mean energy response deviating from unity for calorimeter jets, depending on the jet-flavour. This thesis describes a jet-energy correction to be applied in addition to the default corrections within the CMS collaboration. This correction aims at decreasing the flavour dependence of the jet-energy response and improving the energy resolution. As many different effects contribute to the observed jet-energy response, a set of observables are introduced and corrections based on these observables are tested with respect to the above aims. A jet-width variable, which is defined from energy measured in the calorimeter, shows the best performance: A correction based on this observable improves the energy resolution by up to 20% at high transverse momenta in the central detector region and decreases the flavour dependence of the jet-energy response by a factor of two. A parametrisation of the correction is both derived from and validated on simulated data. First results from experimental data, to which the correction has been applied, are presented. The proposed jet-width correction shows a promising level of performance. (orig.)

  16. Exploitation of jet properties for energy scale corrections for the CMS calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenmann, Henning

    2011-02-15

    Jets form important event signatures in proton-proton collisions at the Large Hadron Collider (LHC) and the precise measurement of their energy is a crucial premise for a manifold of physics studies. Jets, which are reconstructed exclusively from calorimeter information, have been widely used within the CMS collaboration. However, the response of the calorimeters to incident particles depends heavily on their energy. In addition, it has been observed at previous experiments that the charged particle multiplicity and the radial distribution of constituents differ for jets induced by light quarks or by gluons. In conjunction with the non-linearity of the CMS calorimeters, this contributes to a mean energy response deviating from unity for calorimeter jets, depending on the jet-flavour. This thesis describes a jet-energy correction to be applied in addition to the default corrections within the CMS collaboration. This correction aims at decreasing the flavour dependence of the jet-energy response and improving the energy resolution. As many different effects contribute to the observed jet-energy response, a set of observables are introduced and corrections based on these observables are tested with respect to the above aims. A jet-width variable, which is defined from energy measured in the calorimeter, shows the best performance: A correction based on this observable improves the energy resolution by up to 20% at high transverse momenta in the central detector region and decreases the flavour dependence of the jet-energy response by a factor of two. A parametrisation of the correction is both derived from and validated on simulated data. First results from experimental data, to which the correction has been applied, are presented. The proposed jet-width correction shows a promising level of performance. (orig.)

  17. Near-station terrain corrections for gravity data by a surface-integral technique

    Science.gov (United States)

    Gettings, M.E.

    1982-01-01

    A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?

  18. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  19. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  20. Logarithmic corrections to gravitational entropy and the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Maulik, E-mail: maulik.parikh@asu.edu; Svesko, Andrew

    2016-10-10

    Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  1. Logarithmic corrections to gravitational entropy and the null energy condition

    Directory of Open Access Journals (Sweden)

    Maulik Parikh

    2016-10-01

    Full Text Available Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  2. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  3. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  4. Energy efficiency of error correction on wireless systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    1999-01-01

    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software.

  5. Saturation and Energy Corrections for TeV Electrons and Photons

    CERN Document Server

    Clerbaux, Barbara; Mahmoud, Tariq; Marage, Pierre Edouard

    2006-01-01

    This note presents a study of the response of the CMS electromagnetic calorimeter ECAL to high energy electrons and photons (from 500 to 4000 GeV), using the full simulation of the CMS detector. The longitudinal containment and the lateral extension of high energy showers are discussed, and energy and eta dependent correction factors F(E_meas, eta), where E_meas = E_ECAL + E_HCAL, are determined in order to reconstruct the incident particle energy, using the energies measured in the ECAL and in the hadronic calorimeter HCAL. For ECAL barrel crystals with energy deposit higher than 1700 GeV, improvements are proposed to techniques aimed at correcting for the effects of electronics saturation.

  6. Energy resolution limitations in a gas scintillation proportional counter

    International Nuclear Information System (INIS)

    Simons, D.G.; de Korte, P.A.J.; Peacock, A.; Bleeker, J.A.M.

    1985-01-01

    An investigation is made of the factors limiting the energy resolution of a gas scintillation proportional counter (GSPC). Several of these limitations originate in the drift region of such a counter and data is presented, giving a quantitative description of those effects. Data is also presented of a GSPC without a drift region, that therefore largely circumvents most of those degrading factors. The results obtained so far indicate that in that detector the limitation to the resolution is most probably due to cleanliness of the gas. Further research is underway in order to assess quantitatively the limiting factors in such a driftless GSPC

  7. Interacting holographic dark energy with logarithmic correction

    OpenAIRE

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of s...

  8. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  9. Inflation via logarithmic entropy-corrected holographic dark energy model

    International Nuclear Information System (INIS)

    Darabi, F.; Felegary, F.; Setare, M.R.

    2016-01-01

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  10. Characterizing the potential energy surface of the water dimer with DFT: failures of some popular functionals for hydrogen bonding.

    Science.gov (United States)

    Anderson, Julie A; Tschumper, Gregory S

    2006-06-08

    Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H(2)O)(2) stationary points studied here.

  11. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  12. Accurate adiabatic energy surfaces for the ground and first excited states of He2+

    International Nuclear Information System (INIS)

    Lee, E.P.F.

    1993-01-01

    Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)

  13. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  14. Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.

    Science.gov (United States)

    Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R

    2015-10-01

    Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.

  15. Theory of quasiparticle surface states in semiconductor surfaces

    International Nuclear Information System (INIS)

    Hybertsen, M.S.; Louie, S.G.

    1988-01-01

    A first-principles theory of the quasiparticle surface-state energies on semiconductor surfaces is developed. The surface properties are calculated using a repeated-slab geometry. Many-body effects due to the electron-electron interaction are represented by the electron self-energy operator including the full surface Green's function and local fields and dynamical screening effects in the Coulomb interaction. Calculated surface-state energies for the prototypical Si(111):As and Ge(111):As surfaces are presented. The calculated energies and dispersions for the occupied surface states (resonances) are in excellent agreement with recent angle-resolved photoemission data. Predictions are made for the position of empty surface states on both surfaces which may be experimentally accessible. The resulting surface state gap at Gamma-bar for Si(111):As agrees with recent scanning-tunneling-spectroscopy measurements. Comparison of the present results to eigenvalues from the local-density-functional calculation reveals substantial corrections for the gaps between empty and occupied surface states. This correction is found to depend on the character of the surface states involved

  16. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  17. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  18. Power corrections in QCD: A matter of energy resolution

    International Nuclear Information System (INIS)

    Akhoury, R.; Zakharov, V.I.

    1996-01-01

    We consider powerlike corrections in QCD which can be viewed as power suppressed infrared singularities. We argue that the presence of these singularities depends crucially on the energy resolution. In the case of poor energy resolution, i.e., inclusive cross sections, there are constraints on infrared singularities expressed by the Kinoshita-Lee-Nauenberg (KLN) theorem. We rewrite the theorem in covariant notations and argue that the KLN theorem implies the extension of the Bloch-Nordsieck cancellation of logarithmic singularities to the case of linear corrections. copyright 1996 The American Physical Society

  19. Unitary screening corrections in high energy hadron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Maor, U

    1994-10-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for elastic and diffractive hadron-hadron and photon-hadron scattering in the energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Reggeon model with no such corrections. It is argued that the saturation of cross sections is attained at different scales for different channels. In particular, we point out that whereas the saturation scale for elastic scattering apparently above the Tevatron energy range, the appropriate diffraction scale is considerably lower and can be assessed with presently available data. A review of the relevant data and its implications is presented. (author). 12 refs, 3 figs, 2 tabs.

  20. Proportional gas scintillation detectors and their applications

    International Nuclear Information System (INIS)

    Petr, I.

    1978-01-01

    The principle is described of a gas proportional scintillation detector and its function. Dependence of Si(Li) and xenon proportional detectors energy resolution on the input window size is given. A typical design is shown of a xenon detector used for X-ray spetrometry at an energy of 277 eV to 5.898 keV and at a gas pressure of 98 to 270 kPa. Gas proportional scintillation detectors show considerable better energy resolution than common proportional counters and even better resolution than semiconductor Si(Li) detectors for low X radiation energies. For detection areas smaller than 25 mm 2 Si(Li) detectors show better resolution, especially for higher X radiation energies. For window areas 25 to 190 mm 2 both types of detectors are equal, for a window area exceeding 190 mm 2 the proportional scintillation detector has higher energy resolution. (B.S.)

  1. 77 FR 10997 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction

    Science.gov (United States)

    2012-02-24

    ... Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction AGENCY: Office of... standards for distribution transformers. It was recently discovered that values in certain tables of the...,'' including distribution transformers. The Energy Policy Act of 1992 (EPACT 1992), Public Law 102-486, amended...

  2. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    Science.gov (United States)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the

  3. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Science.gov (United States)

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  4. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  5. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region.

    Science.gov (United States)

    Geslin, Benoît; Le Féon, Violette; Folschweiller, Morgane; Flacher, Floriane; Carmignac, David; Motard, Eric; Perret, Samuel; Dajoz, Isabelle

    2016-09-01

    Given the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.06% to 64.31% within a 500 m radius. We collected using pan trapping and estimated the landscape composition of the sites within a 500 m radius and the species richness of plant assemblages within a 200 m radius. We collected 1104 bees from 74 species. The proportion of impervious surfaces at the landscape scale had a negative effect on wild bee abundance and species richness, whereas local flower composition had no effect. Ground-nesting bees were particularly sensitive to the urbanization gradient. This study provides new evidences of the impact of urbanization on bee assemblages and the proportion of impervious surfaces at the landscape scale emerged as a key factor that drives those assemblages.

  6. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    International Nuclear Information System (INIS)

    Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey

    2008-01-01

    51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  7. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

    Science.gov (United States)

    Zhang, Yao; Wang, Ao; DeBenedictis, Elizabeth P.; Keten, Sinan

    2017-11-01

    The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered

  8. Attenuation correction strategies for multi-energy photon emitters using SPECT

    International Nuclear Information System (INIS)

    Pretorius, P.H.; King, M.A.; Pan, T.S.

    1996-01-01

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojection (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation-maximization reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: (1) the 93 keV attenuation map for attenuation correction, (2) the 185 keV attenuation map for attenuation correction, (3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and (4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCR's of sphere 4 were under-estimated, although TCR's were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable accuracy to reconstruction of the windows separately

  9. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  10. Crosstalk corrections for improved energy resolution with highly segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Wiens, Andreas; Eberth, Juergen; Hess, Herbert; Pascovici, Gheorghe; Warr, Nigel; Aydin, Sezgin; Bazzacco, Dino; Recchia, Francesco

    2009-01-01

    Crosstalk effects of 36-fold segmented, large volume AGATA HPGe detectors cause shifts in the γ-ray energy measured by the inner core and outer segments as function of segment multiplicity. The positions of the segment sum energy peaks vary approximately linearly with increasing segment multiplicity. The resolution of these peaks deteriorates also linearly as a function of segment multiplicity. Based on single event treatment, two methods were developed in the AGATA Collaboration to correct for the crosstalk induced effects by employing a linear transformation. The matrix elements are deduced from coincidence measurements of γ-rays of various energies as recorded with digital electronics. A very efficient way to determine the matrix elements is obtained by measuring the base line shifts of untriggered segments using γ-ray detection events in which energy is deposited in a single segment. A second approach is based on measuring segment energy values for γ-ray interaction events in which energy is deposited in only two segments. After performing crosstalk corrections, the investigated detector shows a good fit between the core energy and the segment sum energy at all multiplicities and an improved energy resolution of the segment sum energy peaks. The corrected core energy resolution equals the segment sum energy resolution which is superior at all folds compared to the individual uncorrected energy resolutions. This is achieved by combining the two independent energy measurements with the core contact on the one hand and the segment contacts on the other hand.

  11. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  12. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  13. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    Energy Technology Data Exchange (ETDEWEB)

    Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2008-09-15

    {sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  14. Two-Loop Self-Energy Correction in a Strong Coulomb Nuclear Field

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Indelicato, P.; Shabaev, V.M.

    2005-01-01

    The two-loop self-energy correction to the ground-state energy levels of hydrogen-like ions with nuclear charges Z ≥ 10 is calculated without the Zα expansion, where α is the fine-structure constant. The data obtained are compared with the results of analytical calculations within the Zα expansion; significant disagreement with the analytical results of order α 2 (Zα) 6 has been found. Extrapolation is used to obtain the most accurate value for the two-loop self-energy correction for the 1s state in hydrogen

  15. Zero-point energy conservation in classical trajectory simulations: Application to H2CO

    Science.gov (United States)

    Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.

    2018-05-01

    A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.

  16. Polarization correction in the theory of energy losses by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  17. Many-Body Energy Decomposition with Basis Set Superposition Error Corrections.

    Science.gov (United States)

    Mayer, István; Bakó, Imre

    2017-05-09

    The problem of performing many-body decompositions of energy is considered in the case when BSSE corrections are also performed. It is discussed that the two different schemes that have been proposed go back to the two different interpretations of the original Boys-Bernardi counterpoise correction scheme. It is argued that from the physical point of view the "hierarchical" scheme of Valiron and Mayer should be preferred and not the scheme recently discussed by Ouyang and Bettens, because it permits the energy of the individual monomers and all the two-body, three-body, etc. energy components to be free of unphysical dependence on the arrangement (basis functions) of other subsystems in the cluster.

  18. Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3

    Science.gov (United States)

    Stirner, Thomas; Scholz, David; Sun, Jizhong

    2018-05-01

    The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.

  19. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Science.gov (United States)

    2010-04-05

    ... Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction AGENCY: Office of... standards for small electric motors, which was published on March 9, 2010. In that final rule, the U.S... titled ``Energy Conservation Standards for Small Electric Motors.'' 75 FR 10874. Since the publication of...

  20. Energy-driven surface evolution in beta-MnO2 structures

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wentao; Yuan, Yifei; Asayesh-Ardakani, Hasti; Huang, Zhennan; Long, Fei; Friedrich, Craig; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2018-01-01

    Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 < 100 > Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.

  1. Empirically Determined Response Matrices for On-Line Orbit and Energy Correction at Jefferson Lab

    International Nuclear Information System (INIS)

    Leigh Harwood; Alicia Hofler; Michele Joyce; Valeri Lebedev; David Bryan

    2001-01-01

    Jefferson Lab uses feedback loops (less than 1 hertz update rate) to correct drifts in CEBAF's electron beam orbit and energy. Previous incarnations of these loops used response matrices that were computed by a numerical model of the machine. Jefferson Lab is transitioning this feedback system to use empirically determined response matrices whereby the software introduces small orbit or energy deviations using the loop's actuators and measures the system response with the loop's sensors. This method is in routine use for orbit correction. This paper will describe the orbit correction system and future plans to extend this method to energy correction

  2. Proportional reasoning as a heuristic-based process: time constraint and dual task considerations.

    Science.gov (United States)

    Gillard, Ellen; Van Dooren, Wim; Schaeken, Walter; Verschaffel, Lieven

    2009-01-01

    The present study interprets the overuse of proportional solution methods from a dual process framework. Dual process theories claim that analytic operations involve time-consuming executive processing, whereas heuristic operations are fast and automatic. In two experiments to test whether proportional reasoning is heuristic-based, the participants solved "proportional" problems, for which proportional solution methods provide correct answers, and "nonproportional" problems known to elicit incorrect answers based on the assumption of proportionality. In Experiment 1, the available solution time was restricted. In Experiment 2, the executive resources were burdened with a secondary task. Both manipulations induced an increase in proportional answers and a decrease in correct answers to nonproportional problems. These results support the hypothesis that the choice for proportional methods is heuristic-based.

  3. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water

    International Nuclear Information System (INIS)

    Xue Dongmei; De Baets, Bernard; Van Cleemput, Oswald; Hennessy, Carmel; Berglund, Michael; Boeckx, Pascal

    2012-01-01

    To identify different NO 3 − sources in surface water and to estimate their proportional contribution to the nitrate mixture in surface water, a dual isotope and a Bayesian isotope mixing model have been applied for six different surface waters affected by agriculture, greenhouses in an agricultural area, and households. Annual mean δ 15 N–NO 3 − were between 8.0 and 19.4‰, while annual mean δ 18 O–NO 3 − were given by 4.5–30.7‰. SIAR was used to estimate the proportional contribution of five potential NO 3 − sources (NO 3 − in precipitation, NO 3 − fertilizer, NH 4 + in fertilizer and rain, soil N, and manure and sewage). SIAR showed that “manure and sewage” contributed highest, “soil N”, “NO 3 − fertilizer” and “NH 4 + in fertilizer and rain” contributed middle, and “NO 3 − in precipitation” contributed least. The SIAR output can be considered as a “fingerprint” for the NO 3 − source contributions. However, the wide range of isotope values observed in surface water and of the NO 3 − sources limit its applicability. - Highlights: ► The dual isotope approach (δ 15 N- and δ 18 O–NO 3 − ) identify dominant nitrate sources in 6 surface waters. ► The SIAR model estimate proportional contributions for 5 nitrate sources. ► SIAR is a reliable approach to assess temporal and spatial variations of different NO 3 − sources. ► The wide range of isotope values observed in surface water and of the nitrate sources limit its applicability. - This paper successfully applied a dual isotope approach and Bayesian isotopic mixing model to identify and quantify 5 potential nitrate sources in surface water.

  4. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-09-01

    concentrations exceeding the FALs. • Polychlorinated biphenyl (PCB) contamination above the FAL was identified in the surface and/or shallow subsurface soils at the outfall and around Catch Basin 2, and in soils contained within the catch basins and the manhole at CAS 25-60-03. A corrective action of close in place with a soil removal action and use restriction (UR) was completed at CAS 25-60-03. The PCB-contaminated soils were removed from the outfall area and around Catch Basin 2, and disposed of at a Nevada Test Site landfill as part of a removal action. The catch basins and the manhole were sealed shut by filling them with grout. The end of the outfall pipe was plugged using grout, covered with soil, and the area was regraded. A UR was applied to the entire stormwater system at CAS 25-60-03, which includes the three catch basins, manhole, and associated piping. No further action is the corrective action for CASs 06-20-04, 06-99-09, and 25-64-01. The liquids in the test holes at CAS 06-99-09 were removed for disposal and the features were filled with grout as a best management practice. The drainage pipe between the vehicle washdown pad and the drainage pit at CAS 25-64-01 was sealed at each end as a best management practice. The corrective actions were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. They were judged to meet all requirements for the technical components evaluated. The corrective actions meet all applicable federal and state regulations for closure of the site and will reduce potential exposure pathways to the contaminated media to an acceptable level at CAU 556. Therefore, the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Maintain a UR for the entire stormwater drainage system (i.e., three catch basins, one manhole, and associated piping) at CAS 25-60-03. • No further corrective action for CAU 556. • A Notice of

  6. Power corrections from decoupling of the charm quark

    Science.gov (United States)

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham; Alpha Collaboration

    2017-11-01

    Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm quark mass M starting at M-2. Ratios of hadronic scales are equal to their value in the pure gauge theory up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson flow, that these corrections are very small and that they can be described by a term proportional to M-2 down to masses in the region of the charm quark mass.

  7. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  8. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  9. Novel scatter compensation with energy and spatial dependent corrections in positron emission tomography

    International Nuclear Information System (INIS)

    Guerin, Bastien

    2010-01-01

    We developed and validated a fast Monte Carlo simulation of PET acquisitions based on the SimSET program modeling accurately the propagation of gamma photons in the patient as well as the block-based PET detector. Comparison of our simulation with another well validated code, GATE, and measurements on two GE Discovery ST PET scanners showed that it models accurately energy spectra (errors smaller than 4.6%), the spatial resolution of block-based PET scanners (6.1%), scatter fraction (3.5%), sensitivity (2.3%) and count rates (12.7%). Next, we developed a novel scatter correction incorporating the energy and position of photons detected in list-mode. Our approach is based on the reformulation of the list-mode likelihood function containing the energy distribution of detected coincidences in addition to their spatial distribution, yielding an EM reconstruction algorithm containing spatial and energy dependent correction terms. We also proposed using the energy in addition to the position of gamma photons in the normalization of the scatter sinogram. Finally, we developed a method for estimating primary and scatter photons energy spectra from total spectra detected in different sectors of the PET scanner. We evaluated the accuracy and precision of our new spatio-spectral scatter correction and that of the standard spatial correction using realistic Monte Carlo simulations. These results showed that incorporating the energy in the scatter correction reduces bias in the estimation of the absolute activity level by ∼ 60% in the cold regions of the largest patients and yields quantification errors less than 13% in all regions. (author)

  10. Effects of phosphor proportion and grain size on photon energy response of CaSO4:Dy teflon TLD discs

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Bhatt, R.C.

    1979-01-01

    Effects of phosphor proportion and grain size on the photon energy dependence of CaSO 4 :Dy embedded teflon TLD discs have been studied. It was found that in the commonly used TLD disc compositions, the proportion of phosphor has only little effect on energy dependence. This dependence could be significantly reduced by using phosphor of grain size less than 1 μm. The experimental results are compared with calculated results. (Auth.)

  11. The Improved Estimation of Ratio of Two Population Proportions

    Science.gov (United States)

    Solanki, Ramkrishna S.; Singh, Housila P.

    2016-01-01

    In this article, first we obtained the correct mean square error expression of Gupta and Shabbir's linear weighted estimator of the ratio of two population proportions. Later we suggested the general class of ratio estimators of two population proportions. The usual ratio estimator, Wynn-type estimator, Singh, Singh, and Kaur difference-type…

  12. β-particle energy-summing correction for β-delayed proton emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Z., E-mail: meisel@ohio.edu [Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements (United States); Santo, M. del [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Cyburt, R.H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Grinyer, G.F. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, Caen 14076 (France); Langer, C. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Institute for Applied Physics, Goethe University Frankfurt am Main, 60438 Frankfurt am Main (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Schatz, H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Smith, K. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-02-01

    A common approach to studying β-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the β-delayed proton-emitting (βp) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the β-particle emitted from the βp nucleus, an effect referred to here as β-summing. We present an approach to determine an accurate correction for β-summing. Our method relies on the determination of the mean implantation depth of the βp nucleus within the DSSD by analyzing the shape of the total (proton + recoil + β) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  13. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections

    DEFF Research Database (Denmark)

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L

    2014-01-01

    and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. MATERIALS AND METHODS: (177)Lu SPECT images of a phantom...... technique, the measured ratio was close to the real ratio, and the differences between spheres were small. CONCLUSION: For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated...

  14. Detection unit with corrected energy dependence

    International Nuclear Information System (INIS)

    Viererbl, L.

    1989-01-01

    The detection unit consists of a plastic scintillator with a layer of a powder semicrystalline scintillator deposited on its surface. An inorgaic monocrystalline scintillator is placed inside the plastic scintillator and surrounded with an absorption layer, except for the window. The advantage of the detection unit is a reduced energy dependence of response, especially in the energy range 100 to 400 keV. (E.J.). 3 figs

  15. Corrected Statistical Energy Analysis Model for Car Interior Noise

    Directory of Open Access Journals (Sweden)

    A. Putra

    2015-01-01

    Full Text Available Statistical energy analysis (SEA is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure. For an acoustic space where significant absorptive materials are present, direct field component from the sound source dominates the total sound field rather than a reverberant field, where the latter becomes the basis in constructing the conventional SEA model. Such environment can be found in a car interior and thus a corrected SEA model is proposed here to counter this situation. The model is developed by eliminating the direct field component from the total sound field and only the power after the first reflection is considered. A test car cabin was divided into two subsystems and by using a loudspeaker as a sound source, the power injection method in SEA was employed to obtain the corrected coupling loss factor and the damping loss factor from the corrected SEA model. These parameters were then used to predict the sound pressure level in the interior cabin using the injected input power from the engine. The results show satisfactory agreement with the directly measured SPL.

  16. Systematic errors in ground heat flux estimation and their correction

    NARCIS (Netherlands)

    Gentine, P.; Entekhabi, D.; Heusinkveld, B.G.

    2012-01-01

    Incoming radiation forcing at the land surface is partitioned among the components of the surface energy balance in varying proportions depending on the time scale of the forcing. Based on a land-atmosphere analytic continuum model, a numerical land-surface model and field observations we show that

  17. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    Science.gov (United States)

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  18. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    Science.gov (United States)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  19. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    Science.gov (United States)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  20. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  1. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    International Nuclear Information System (INIS)

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-01-01

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p 1/2 -4d 3/2 transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations

  2. TileGap3 Correction in ATLAS Jet Triggers

    CERN Document Server

    Carmiggelt, Joris Jip

    2017-01-01

    Study done to correct for the excess of jets in the TileGap3 (TG3) region of the ATLAS detector. Online leading jet pt is scaled down proportional to its energy fraction in TG3. This study shows that such a correction is undesirable for high pt triggers, since it leads to a slow turn-on and thus high losses in triggerrates. For low pt triggers there seems to be some advantageous effects as counts are slightly reduced below the 95% efficiency point of the trigger. There is, however, a pay-off: An increase of missed counts above the 95% efficiency point due to an shifting of the turn-on curve. Suggestion for further research are made to compensate for this and optimise the correction.

  3. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  4. Detecting and correcting partial errors: Evidence for efficient control without conscious access.

    Science.gov (United States)

    Rochet, N; Spieser, L; Casini, L; Hasbroucq, T; Burle, B

    2014-09-01

    Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed.

  5. Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We investigate the importance of including quantized initial conditions in Langevin dynamics for adsorbates interacting with a thermal reservoir of electrons. For quadratic potentials the time evolution is exactly described by a classical Langevin equation and it is shown how to rigorously obtain...... quantum mechanical probabilities from the classical phase space distributions resulting from the dynamics. At short time scales, classical and quasiclassical initial conditions lead to wrong results and only correctly quantized initial conditions give a close agreement with an inherently quantum...... mechanical master equation approach. With CO on Cu(100) as an example, we demonstrate the effect for a system with ab initio frictional tensor and potential energy surfaces and show that quantizing the initial conditions can have a large impact on both the desorption probability and the distribution...

  6. Effect of attenuation correction on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...

  7. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  8. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  9. Approximations for W-Pair Production at Linear-Collider Energies

    CERN Document Server

    Denner, A

    1997-01-01

    We determine the accuracy of various approximations to the O(alpha) corrections for on-shell W-pair production. While an approximation based on the universal corrections arising from initial-state radiation, from the running of alpha, and from corrections proportional to m_t^2 fails in the Linear-Collider energy range, a high-energy approximation improved by the exact universal corrections is sufficiently good above about 500GeV. These results indicate that in Monte Carlo event generators for off-shell W-pair production the incorporation of the universal corrections is not sufficient and more corrections should be included.

  10. A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Kristensen, Kasper; Kjærgaard, Thomas

    2014-01-01

    Using the coupled cluster Lagrangian technique, we have determined perturbative corrections to the coupled cluster singles and doubles (CCSD) energy that converge towards the coupled cluster singles, doubles, and triples (CCSDT) and coupled cluster singles, doubles, triples, and quadruples (CCSDTQ......) energies, considering the CCSD state as the unperturbed reference state and the fluctua- tion potential as the perturbation. Since the Lagrangian technique is utilized, the energy corrections satisfy Wigner’s 2n + 1 rule for the cluster amplitudes and the 2n + 2 rule for the Lagrange multi- pliers...

  11. Energy dependence corrections to MOSFET dosimetric sensitivity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Illawarra Cancer Care Centre, Crown St, Wollongong

    2009-01-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to reading to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  12. Energy dependence corrections to MOSFET dosimetric sensitivity.

    Science.gov (United States)

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  13. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  14. Correction of sub-pixel topographical effects on land surface albedo retrieved from geostationary satellite (FengYun-2D) observations

    International Nuclear Information System (INIS)

    Roupioz, L; Nerry, F; Jia, L; Menenti, M

    2014-01-01

    The Qinghai-Tibetan Plateau is characterised by a very strong relief which affects albedo retrieval from satellite data. The objective of this study is to highlight the effects of sub-pixel topography and to account for those effects when retrieving land surface albedo from geostationary satellite FengYun-2D (FY-2D) data with 1.25km spatial resolution using the high spatial resolution (30 m) data of the Digital Elevation Model (DEM) from ASTER. The methodology integrates the effects of sub-pixel topography on the estimation of the total irradiance received at the surface, allowing the computation of the topographically corrected surface reflectance. Furthermore, surface albedo is estimated by applying the parametric BRDF (Bidirectional Reflectance Distribution Function) model called RPV (Rahman-Pinty-Verstraete) to the terrain corrected surface reflectance. The results, evaluated against ground measurements collected over several experimental sites on the Qinghai-Tibetan Plateau, document the advantage of integrating the sub-pixel topography effects in the land surface reflectance at 1km resolution to estimate the land surface albedo. The results obtained after using sub-pixel topographic correction are compared with the ones obtained after using pixel level topographic correction. The preliminary results imply that, in highly rugged terrain, the sub-pixel topography correction method gives more accurate results. The pixel level correction tends to overestimate surface albedo

  15. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  16. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  17. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  18. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  19. Domain shape dependence of semiclassical corrections to energy

    International Nuclear Information System (INIS)

    Kwiatkowski, Grzegorz

    2017-01-01

    Stationary solution of a one-dimensional sine-Gordon system is embedded in a multidimensional theory with an explicitly finite domain in the added spatial dimensions. Semiclassical corrections to energy are calculated for a static kink solution with emphasis on the impact of the scale of the domain as well as the choice of boundary conditions on the results for a rectangular cross-section. (paper)

  20. Correction factors for {gamma}-ray relative intensities in the {sup 66}Ga radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G.J. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Chasteler, R.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Laymon, C.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Weller, H.R. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Drake, J.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Tilley, D.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Vavrina, G. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Wallace, P.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States)

    1996-09-16

    We present here strong evidence that recently published values for the relative intensities of {gamma}-ray lines in the {sup 66}Ga({beta}{sup +}+EC){sup 66}Zn decay are incorrect at the higher energies ({proportional_to}30% too low at 4.8 MeV). In particular, we find that our current results are consistent with a set of correction factors which were first suggested 20 years ago, but have gone largely ignored until now. Our validation of these little known correction factors will have bearing on experiments which use the {sup 66}Ga radioisotope to extrapolate absolute detector efficiencies to higher energies. In particular, we discuss the conclusions of a recent D(p, {gamma}){sup 3}He experiment which will be strongly affected by our current results. The astrophysical S-factor data derived from this D(p, {gamma}){sup 3}He experiment are now seen to be systematically too low by {proportional_to}30%. (orig.).

  1. Shielding correction to bodywork of in-situ object counting system

    International Nuclear Information System (INIS)

    Feng Tiancheng; Chen Wei; Long Bin; Su Chuanying; Wu Rui; Jia Mingyan; Cheng Jianping

    2009-01-01

    This paper presents the methods of experiment and calculation for shielding correction to the bodywork of in-situ object counting system (ISOCS) using a plane source of 152 Eu. The shielding correction coefficients were obtained in the conditions that the HPGe detector of BE5030 with the collimators of 50 mm-90 degree, 50 mm-30 degree or 50 mm-180 degree, and the detector distance 58.2 cm from ground surface. The relationships between the shielding correction coefficients and γ-ray energies were fitted by the least square method, for the shielding correction calculation of any energy within 122-1 408 keV by interpolation. (authors)

  2. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  3. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): (sm b ullet) CAS 23-21-03, Bldg 750 Surface Discharge (sm b ullet) CAS 23-25-02, Bldg 750 Outfall (sm b ullet) CAS 23-25-03, Bldg 751 Outfall (sm b ullet) CAS 25-60-01, Bldg 3113A Outfall (sm b ullet) CAS 25-60-02, Bldg 3901 Outfall (sm b ullet) CAS 25-62-01, Bldg 3124 Contaminated Soil (sm b ullet) CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH

  4. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  5. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  6. The effect of differing support surfaces on the efficacy of chest compressions using a resuscitation manikin model.

    Science.gov (United States)

    Tweed, M; Tweed, C; Perkins, G D

    2001-11-01

    External chest compression (ECC) efficacy is influenced by factors including the surface supporting the patient. Air-filled support surfaces are deflated for cardiopulmonary resuscitation, with little evidence to substantiate this. We investigated the effect that differing support surfaces had on ECC efficacy using a CPR manikin model. Four participants carried out four cycles of ECC with an assistant ventilating. The subjects were blinded to the seven support surfaces and the order was randomised. For each participant/surface combination, ECC variables and the participants' perceptions were measured. Participants produced effective ECC with the manikin on the floor (mean proportion correct, 94.5%; mean depth, 42.5 mm). Compared with the floor: the proportion of correct ECC was less for the overlay inflated (PCPR.

  7. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    Science.gov (United States)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  8. Energy distributions of neutral species ejected from well-characterized surfaces measured by means of multiphoton resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, D.; Ishigami, R.; Dhole, S.D.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp

    2000-04-01

    The energy distributions of neutral atoms ejected from the polycrystalline Cu target, the Si(1 1 1)-7x7 surface, and the Si(1 1 1)-''5 x 5''-Cu surface by 5 keV Ar{sup +} ion bombardment have been measured with very high efficiency by means of the multi-photon resonance ionization spectroscopy, in order to obtain the surface binding energies. The energy distributions for Cu from polycrystalline Cu target, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface have been found to have a peak at energies of around 3.0, 5.0 and 1.5 eV, and the function shapes of high energy tails to be proportional to E{sup -1.9}, E{sup -1.2} and E{sup -1.3}, respectively. Based on the linear collision cascade theory, the surface binding energies are determined to be 5.7, 6.0 and 2.0 eV, and the power factor m in the power law approximation to the Thomas-Fermi potential are determined to be 0.1, 0.4 and 0.3 for Cu from the Cu polycrystalline, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface, respectively. In conclusion, the results indicate that the energy distributions of ejected particles are well characterized by the linear collision cascade theory developed by Sigmund.

  9. Studies on the true coincidence correction in measuring filter samples by gamma spectrometry

    CERN Document Server

    Lian Qi; Chang Yong Fu; Xia Bing

    2002-01-01

    The true coincidence correction in measuring filter samples has been studied by high efficiency HPGe gamma detectors. The true coincidence correction for a specific three excited levels de-excitation case has been analyzed, and the typical analytical expressions of true coincidence correction factors have been given. According to the measured relative efficiency on the detector surface with 8 'single' energy gamma emitters and efficiency of filter samples, the peak and total efficiency surfaces are fitted. The true coincidence correction factors of sup 6 sup 0 Co and sup 1 sup 5 sup 2 Eu calculated by the efficiency surfaces agree well with experimental results

  10. First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.

    Science.gov (United States)

    Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio

    2015-07-15

    The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.

  11. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  12. Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2017-10-01

    recommended in Beijing and the southeast coast (excluding spring, where the elevated aerosol layer rarely occurs and a large proportion of aerosol is aggregated in near-surface. Moreover, validation experiments in 2016 agreed well with our discussions and conclusions drawn from the experiments of the first two years. Furthermore, suggested vertical correction scheme was applied into linear mixed effect (LME model, and high cross validation (CV R2 (~85% and relatively low root mean square errors (RMSE, ~20 μg/m3 were achieved, which demonstrated that the PM2.5 estimation agreed well with the measurements. When compared to the original situation, CV R2 values and RMSE after vertical correction both presented improvement to a certain extent, proving that the suggested vertical correction schemes could further improve the estimation accuracy of PM2.5 based on sophisticated model in China. Estimating PM2.5 with better accuracy could contribute to a more precise research of ecology and epidemiology, and provide a reliable reference for environmental policy making by governments.

  13. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Ellis, A.W.; Wan, W.; Berghaus, A.; Schaff, O.

    2010-01-01

    We describe a new design for an aberration-corrected low energy electron microscope (LEEM) and photo electron emission microscope (PEEM), equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control over the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length, to match and correct the aberrations of the objective lens. For LEEM (PEEM) the theoretical resolution is calculated to be ∼1.5 nm (∼4 nm). Unlike previous designs, this instrument makes use of two magnetic prism arrays to guide the electron beam from the sample to the electron mirror, removing chromatic dispersion in front of the mirror by symmetry. The aberration correction optics was retrofitted to an uncorrected instrument with a base resolution of 4.1 nm in LEEM. Initial results in LEEM show an improvement in resolution to ∼2 nm.

  14. Accurate double many-body expansion potential energy surface of HS2A2A′) by scaling the external correlation

    International Nuclear Information System (INIS)

    Zhang Lu-Lu; Song Yu-Zhi; Gao Shou-Bao; Zhang Yuan; Meng Qing-Tian

    2016-01-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS 2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pV Q Z basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol −1 . The topographical features of the HS 2 (A 2 A′) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS 2 (A 2 A′) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. (paper)

  15. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    Science.gov (United States)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  16. Analysis of energy flow during playground surface impacts.

    Science.gov (United States)

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  17. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    Science.gov (United States)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  18. Author Correction: Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    In the version of this Analysis originally published, the value of the pessimistic EROI for the geothermal energy source in Table 1 was incorrectly given as 14:1; it should have read 9:1. This has now been corrected in all versions of the Analysis.

  19. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  20. Reparameterization invariance of NRQED self-energy corrections and improved theory for excited D states in hydrogenlike systems

    International Nuclear Information System (INIS)

    Wundt, Benedikt J.; Jentschura, Ulrich D.

    2008-01-01

    Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy

  1. Reparameterization invariance of NRQED self-energy corrections and improved theory for excited D states in hydrogenlike systems

    Energy Technology Data Exchange (ETDEWEB)

    Wundt, Benedikt J. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Jentschura, Ulrich D. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Institut fuer Theoretische Physik, Philosophenweg 16, 69120 Heidelberg (Germany)], E-mail: ulrich.jentschura@mpi-hd.mpg.de

    2008-01-24

    Canonically, the quantum electrodynamic radiative corrections in bound systems have been evaluated in photon energy regularization, i.e., using a noncovariant overlapping parameter that separates the high-energy relativistic scales of the virtual quanta from the nonrelativistic domain. Here, we calculate the higher-order corrections to the one-photon self-energy calculation with three different overlapping parameters (photon energy, photon mass and dimensional regularization) and demonstrate the reparameterization invariance of nonrelativistic quantum electrodynamics (NRQED) using this particular example. We also present new techniques for the calculation of the low-energy part of this correction, which lead to results for the Lamb shift of highly excited states that are important for high-precision spectroscopy.

  2. Electrical and magnetic properties of the energy-saver correction elements

    International Nuclear Information System (INIS)

    Johnson, M.; McInturff, A.; Raja, R.; Mantsch, P.

    1983-08-01

    The lattice of the Fermi National Accelerator Laboratory's Energy Saver/Doubler contains a group of superconducting correction windings associated with each quadrupole. These are housed in an element referred to as a spool. There are 192 spools in the ring plus 12 special power spools which contain the main buss 5000 ampere power input as well as correction elements. There will be constructed and tested 290 spools, including spares of each of the eight different types. There have been 266 individual spools tested to date. The spools were tested for (a) magnetic field quality, harmonic moments, transfer constants and coil angles, (b) high voltage integrity, (c) critical transport current, and (d) cryogenic operating characteristics (i.e., heatloads, thermometry calibration checks, etc.). Data are summarized for 318 cryogenic tests and magnetic field quality of the 266 different spools, which contain 1614 correction magnet coils

  3. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Science.gov (United States)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  4. Perturbative correction to the ground-state properties of one-dimensional strongly interacting bosons in a harmonic trap

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.

    2010-01-01

    We calculate the first-order perturbation correction to the ground-state energy and chemical potential of a harmonically trapped boson gas with contact interactions about the infinite repulsion Tonks-Girardeau limit. With c denoting the interaction strength, we find that, for a large number of particles N, the 1/c correction to the ground-state energy increases as N 5/2 , in contrast to the unperturbed Tonks-Girardeau value that is proportional to N 2 . We describe a thermodynamic scaling limit for the trapping frequency that yields an extensive ground-state energy and reproduces the zero temperature thermodynamics obtained by a local-density approximation.

  5. Anomalies in the detection of change: When changes in sample size are mistaken for changes in proportions.

    Science.gov (United States)

    Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy

    2016-01-01

    Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.

  6. WKB corrections to the energy splitting in double-well potentials

    OpenAIRE

    Robnik, Marko; Salasnich, Luca

    1997-01-01

    By using the WKB quantization we deduce an analytical formula for the energy splitting in a double-well potential which is the usual Landau formula with additional quantum corrections. Then we analyze the accuracy of our formula for the double square well potential and the parabolic double-well potential.

  7. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  8. On the theory of type-I superconductor surface tension and twinning-plane-superconductivity

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-01-01

    A correction is found to the surface tension in type-I superconductors which is proportional to the square root of the Ginsburg-Landau parameter. This correction is essential for obtaining the phase diagram and other thermodynamical variables of the narrow superconducting layer arising near the twinning plane in some metals

  9. Interacting entropy-corrected new agegraphic dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2010-08-15

    Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.

  10. A systematic first-principles study of surface energies, surface relaxation and Friedel oscillation of magnesium surfaces

    International Nuclear Information System (INIS)

    Tang, Jia-Jun; Yang, Xiao-Bao; Zhao, Yu-Jun; OuYang, LiuZhang; Zhu, Min

    2014-01-01

    We systematically study the surface energies and surface relaxations of various low-index and high-index Mg surfaces. It is found that low-index surfaces are not necessarily stable as Mg(1 0  1-bar  0) is the most unstable surface in the series of Mg(1 0  1-bar  n) (n = 0–9). A surface-energy predicting model based on the bond cutting is proposed to explain the relative surface stabilities. The local relaxations of the low-index surfaces could be explained by the Friedel oscillation. For the high-index surfaces, the combination of charge smoothing effect and dramatic charge depletion influences the relaxations, which show a big difference from the low-index ones. Our findings provide theoretical data for considerable insights into the surface energies of hexagonal close-packed metals. (paper)

  11. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method

    International Nuclear Information System (INIS)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H.

    2015-01-01

    A three dimensional potential energy surface for the F + H 2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2) Q ] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H 2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface

  12. Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal

    International Nuclear Information System (INIS)

    Woody, C.L.; Petridou, C.I.; Smith, G.C.

    1985-01-01

    The properties of a detector consisting of a large barium fluoride crystal and a multiwire proportional chamber operating at low pressure with TMAE have been studied. Measurements of the time resolution, pulse width, energy resolution, photoelectron yield and the effective energy threshold were carried out in a test beam using minimum ionizing particles. Although the detector is sensitive to signals originating from an adsorbed layer of TMAE from the crystal surface, no indication of such a signal was observed. 7 refs., 6 figs

  13. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Science.gov (United States)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  14. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Directory of Open Access Journals (Sweden)

    S. Lange

    2018-05-01

    Full Text Available Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds. Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016 rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011 data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016. This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  15. Regional myocardial flow and capillary permeability-surface area products are nearly proportional.

    Science.gov (United States)

    Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B

    1994-08-01

    Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.

  16. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  17. A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Wan, W.; Berghaus, A.; Schaff, O.

    2013-01-01

    In Part I we described a new design for an aberration-corrected Low Energy Electron Microscope (LEEM) and Photo Electron Emission Microscope (PEEM) equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control of the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length. In this Part II we discuss details of microscope operation, how the microscope is set up in a systematic fashion, and we present typical results. - Highlights: ► The C c and C 3 aberrations of a LEEM/PEEM instrument are corrected with an electrostatic electron mirror. ► The mirror provides independent control over C c , C 3 and focal length in close agreement with theory. ► A detailed alignment procedure for the corrected microscope is given. ► Novel methods to measure C c and C 3 of the objective lens and the mirror are presented. ► We demonstrate a record spatial resolution of 2 nm

  18. Simple vertex correction improves GW band energies of bulk and two-dimensional crystals

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt; Patrick, Christopher E.; Thygesen, Kristian Sommer

    2017-01-01

    The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situ......The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy...

  19. Asteroseismic modelling of solar-type stars: internal systematics from input physics and surface correction methods

    Science.gov (United States)

    Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.

    2018-04-01

    Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.

  20. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  1. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  2. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  3. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  4. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  5. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  6. Printed low velocity delay lines for cathode readout of proportional chambers

    International Nuclear Information System (INIS)

    Bosshard, R.; Chase, R.L.; Fischer, J.; Radeka, V.

    1974-01-01

    A readout which simultaneously insures a correct electric field, a satisfactory induced signal, the delay function itself, and low particle scattering is described for multiwire proportional chambers. (U.S.)

  7. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  8. Concavity Theorems for Energy Surfaces

    OpenAIRE

    Giraud, B. G.; Karataglidis, S.

    2011-01-01

    Concavity properties prevent the existence of significant landscapes in energy surfaces obtained by strict constrained energy minimizations. The inherent contradiction is due to fluctuations of collective coordinates. A solution to those fluctuations is given.

  9. Surface terms and radiative corrections to the VVA triangle diagram

    International Nuclear Information System (INIS)

    Chowdhury, A.M.; McKeon, G.

    1986-01-01

    The two-loop radiative corrections to the divergence of the axial-vector current are analyzed in the context of spinor electrodynamics. It is found that the arbitrariness that occurs in the relevant Feynman diagrams due to the appearance of surface terms associated with linearly divergent integrals is sufficient to ensure that at two-loop order the Ward identity can be satisfied, irrespective of how the divergences that occur are parametrized. This indicates that the Adler-Bardeen theorem is satisfied

  10. Errors in estimating neutron quality factor using lineal energy distributions measured in tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1982-01-01

    Neutron dose equivalent is obtained from quality factors which are defined in terms of LET. It is possible to estimate the dose averaged quality factor, antiQ, directly from distributions in lineal energy, y, that are measured in tissue-equivalent proportional counters. This eliminates a mathematical transformation of the absorbed dose from D(y) to D(L). We evaluate the inherent error in computing Q from D(y) rather than D(L) for neutron spectra below 4 MeV. The effects of neutron energy and simulated tissue diameters within a gas cavity are examined in detail. (author)

  11. CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations

    Science.gov (United States)

    Naik, Mit H.; Jain, Manish

    2018-05-01

    Charged point defects in materials are widely studied using Density Functional Theory (DFT) packages with periodic boundary conditions. The formation energy and defect level computed from these simulations need to be corrected to remove the contributions from the spurious long-range interaction between the defect and its periodic images. To this effect, the CoFFEE code implements the Freysoldt-Neugebauer-Van de Walle (FNV) correction scheme. The corrections can be applied to charged defects in a complete range of material shapes and size: bulk, slab (or two-dimensional), wires and nanoribbons. The code is written in Python and features MPI parallelization and optimizations using the Cython package for slow steps.

  12. The two-photon self-energy and other QED radiative corrections

    International Nuclear Information System (INIS)

    Zschocke, S.

    2001-07-01

    One of the main issues in current nuclear physics is the precise measurement of the Lamb shift of strongly bound electrons in quantum electrodynamic (QED) tests in strong fields in highly charged ions. The currently performed high-precision measurements require extreme accuracy in the theoretical calculation of Lamb shift. This requires consideration of all α and α 2 order QED corrections as well as of precisely all orders in Zα. In the past years most of these QED corrections have been calculated both in 1st order and in 2nd order interference theory. As yet however, it has not been possible to assess the contribution of the two-photon self-energy, which has therefore been the greatest uncertainty factor in predicting Lamb shift in hydrogen-like systems. This study examines the contribution of these processes to Lamb shift. It also provides the first ever derivation of renormalized terms of two-photon vacuum polarisation and self-energy vacuum polarisation. Until now it has only been possible to evaluate these contributions by way of an Uehling approximation [de

  13. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  14. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties

    Energy Technology Data Exchange (ETDEWEB)

    Jerman, Ivan; Kozelj, Matjaz; Orel, Boris [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2010-02-15

    Thickness-Insensitive Spectrally Selective (TISS) paint coatings were made of fluoropolymer resin binder (Lumiflon (LF), Asahi Glass Co., Ltd., Japan) and their water- and oil-repellent properties were obtained (contact angle: {theta}{sub water}{proportional_to}150 , {theta}{sub n-hexadecane}{proportional_to}55 ) by the addition of Polyhedral Oligomeric Silsesquioxane (POSS) characterized by amino (AP), isooctyl (IO) and perfluoro (PF) groups (i.e. AP{sub 2}IO{sub 4}PF{sub 2}) attached on the silsesquioxane cube (-SiO{sub 3/2}){sub 8}. Paint dispersions were made by modifying of black spinel pigment with trisilanol isobutyl (IB{sub 7}T{sub 7}(OH){sub 3}) POSS dispersant and with a single-capped silane isobutyltrimethoxysilane (IBTMS). Infrared and {sup 29}Si NMR spectra measurements were used for the identification of the structural characteristic of the corresponding POSS compounds. Surface free energy values of the pure cross-linked (no pigment added) LF binder which was determined from the measured contact angles for water, diiodomethane and formamide revealed the {gamma}{sup tot} value of the LF unpigmented resin with added AP{sub 2}IO{sub 4}PF{sub 2} T{sub 8} POSS was about 16.4 mN/m, which led to the {theta}{sub water}{proportional_to}110 , indicating enhancement of the hydrophobicity of the pure LF resin binder ({theta}{sub water}{proportional_to}89 ). SEM micrographs, which were used for the assessment of the TISS paint coating surface morphology confirmed the beneficial dispersive effect of IB{sub 7} T{sub 7}(OH){sub 3} dispersant as compared to the IBTMS silane. The presence of large Aluminium flake pigment and finely ground black pigment led to the formation of TISS paint coating surface, which exhibited bi-hierarchical roughness, resulting in water sliding angles of less than 10 , indicating the possible self-cleaning effect ({theta}{sub water}>150 and {theta}{sub n-hexadecane}{proportional_to}55 ). The use of POSS dispersant and POSS low surface energy

  15. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    International Nuclear Information System (INIS)

    Nickel, F.; Gottlob, D.M.; Krug, I.P.; Doganay, H.; Cramm, S.; Kaiser, A.M.; Lin, G.; Makarov, D.; Schmidt, O.G.

    2013-01-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown

  16. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  17. Cointegration, error-correction, and the relationship between GDP and energy. The case of South Korea and Singapore

    International Nuclear Information System (INIS)

    Glasure, Yong U.; Lee, Aie-Rie

    1998-01-01

    This paper examines the causality issue between energy consumption and GDP for South Korea and Singapore, with the aid of cointegration and error-correction modeling. Results of the cointegration and error-correction models indicate bidirectional causality between GDP and energy consumption for both South Korea and Singapore. However, results of the standard Granger causality tests show no causal relationship between GDP and energy consumption for South Korea and unidirectional causal relationship from energy consumption to GDP for Singapore

  18. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  19. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  20. An accurate potential energy surface for the F + H{sub 2} → HF + H reaction by the coupled-cluster method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: zsun@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-01-14

    A three dimensional potential energy surface for the F + H{sub 2} → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2){sub Q}] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H{sub 2} reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface.

  1. An intercomparison of surface energy flux measurement systems used during FIFE 1987

    International Nuclear Information System (INIS)

    Nie, D.; Kanemasu, E.T.; Fritschen, L.J.; Weaver, H.L.; Smith, E.A.; Verma, S.B.; Field, R.T.; Kustas, W.P.; Stewart, J.B.

    1992-01-01

    During FIFE 1987, surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to 20 of the flux stations to serve as a reference for estimating the instrument-related differences. The rover system was installed within a few meters from the host instrument of a site. Using linear regression analysis, net radiation, Bowen ratio, and latent heat fluxes were compared between the rover measurements and the host measurements. The average differences in net radiation, Bowen ratio, and latent heat flux from different types of instruments can be up to 10, 30, and 20 percent, respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected radiation energy balance system (REBS) model. The four-way components method and the Thornthwaite type give similar values to the REBS. The surface energy radiation balance systems type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the arid zone evapotranspiration systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems. It is recommended that users of the flux data take these differences into account. 11 refs

  2. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  3. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  4. Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data

    International Nuclear Information System (INIS)

    Sutterley, Tyler C; Velicogna, Isabella; Csatho, Beata; Rezvan-Behbahani, Soroush; Babonis, Greg; Van den Broeke, Michiel

    2014-01-01

    Glacial isostatic adjustment (GIA) represents a source of uncertainty for ice sheet mass balance estimates from the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity measurements. We evaluate Greenland GIA corrections from Simpson et al (2009 Quat. Sci. Rev. 28 1631–57), A et al (2013 Geophys. J. Int. 192 557–72) and Wu et al (2010 Nature Geosci. 3 642–6) by comparing the spatial patterns of GRACE-derived ice mass trends calculated using the three corrections with volume changes from ICESat (Ice, Cloud, and land Elevation Satellite) and OIB (Operation IceBridge) altimetry missions, and surface mass balance products from the Regional Atmospheric Climate Model (RACMO). During the period September 2003–August 2011, GRACE ice mass changes obtained using the Simpson et al (2009 Quat. Sci. Rev. 28 1631–57) and A et al (2013 Geophys. J. Int. 192 557–72) GIA corrections yield similar spatial patterns and amplitudes, and are consistent with altimetry observations and surface mass balance data. The two GRACE estimates agree within 2% on average over the entire ice sheet, and better than 15% in four subdivisions of Greenland. The third GRACE estimate corrected using the (Wu et al 2010 Nature Geosci. 3 642–6)) GIA shows similar spatial patterns, but produces an average ice mass loss for the entire ice sheet that is 64 − 67 Gt yr −1 smaller. In the Northeast the recovered ice mass change is 46–49 Gt yr −1 (245–270%) more positive than that deduced from the other two corrections. By comparing the spatial and temporal variability of the GRACE estimates with trends of volume changes from altimetry and surface mass balance from RACMO, we show that the Wu et al (2010 Nature Geosci. 3 642–6) correction leads to a large mass increase in the Northeast that is inconsistent with independent observations. (paper)

  5. Next-to-soft corrections to high energy scattering in QCD and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.; Melville, S. [SUPA, School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Naculich, S.G. [Department of Physics, Bowdoin College,Brunswick, ME 04011 (United States); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-01-12

    We examine the Regge (high energy) limit of 4-point scattering in both QCD and gravity, using recently developed techniques to systematically compute all corrections up to next-to-leading power in the exchanged momentum i.e. beyond the eikonal approximation. We consider the situation of two scalar particles of arbitrary mass, thus generalising previous calculations in the literature. In QCD, our calculation describes power-suppressed corrections to the Reggeisation of the gluon. In gravity, we confirm a previous conjecture that next-to-soft corrections correspond to two independent deflection angles for the incoming particles. Our calculations in QCD and gravity are consistent with the well-known double copy relating amplitudes in the two theories.

  6. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  7. On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    Science.gov (United States)

    Lan, C. E.; Lamar, J. E.

    1977-01-01

    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.

  8. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  9. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  10. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  11. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  12. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  13. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope

    International Nuclear Information System (INIS)

    King, W.E.; Merkle, K.L.; Meshii, M.

    1981-01-01

    A detailed study of the anisotropy of the threshold energy for Frenkel-pair production in copper was carried out experimentally, using in-situ electrical-resistivity measurements in the high-voltage electron microscope. These electrical-resistivity measurements, which are sensitive to small changes in point-defect concentration, were used to determine the damage or defect production rate. Damage-rate measurements in copper single crystals were carried out for approx.40 incident electron-beam directions and six electron energies from 0.4 to 1.1 MeV. The total cross section for Frenkel-pair production is proportional to the measured damage rate and can be theoretically calculated if the form of the threshold-energy surface is known. Trial threshold-energy surfaces were systematically altered until a ''best fit'' of the calculated to the measured total cross sections for Frenkel-pair production was obtained. The average threshold energy of this surface is 28.5 eV. The minimum threshold energy is 18 +- 2 eV and is located near . A ring of very high threshold energy (>50 eV) surrounds the direction. A damage function for single-defect production was derived from this surface and was applied to defect-production calculations at higher recoil energies. This function rises rather sharply from a value of zero at 17 eV to 0.8 at 42 eV. It has the value of 0.5 at 24.5 eV. Above 30 eV the slope of the curve begins to decrease, reflecting the presence of the high-energy regions of the threshold-energy surface. Both topographical and quantitative comparisons of the present surface with those in the literature were presented. Based on a chi 2 goodness-of-fit test, the present surface was found to predict the experimentally observed total cross sections for Frenkel-pair production significantly better than the other available surfaces. Also, the goodness of fit varied substantially less with energy and direction for the present surface

  14. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  15. Running coupling corrections to high energy inclusive gluon production

    International Nuclear Information System (INIS)

    Horowitz, W.A.; Kovchegov, Yuri V.

    2011-01-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. In the final answer for the cross section the three powers of fixed coupling are replaced by seven factors of running coupling, five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling k T -factorization formula for gluon production which includes nonlinear small-x evolution.

  16. Dynamic performance improvement of standalone battery integrated PMSG wind energy system using proportional resonant controller

    Directory of Open Access Journals (Sweden)

    Dileep Kumar Varma Sagiraju

    2017-08-01

    Full Text Available The load voltage and frequency should be controlled under steady state and transient conditions in off grid applications. Power quality and power management is very important task for rural communities under erratic wind and load conditions. This paper presents a coordinated Proportional resonant (PR and battery energy controller for enhancement of power quality and power management in direct drive standalone wind energy system. The dynamic performance of standalone direct drive Permanent Magnet Synchronous Generator (PMSG is investigated with the proposed control scheme under various operating conditions such as fluctuating wind with step increase and decrease in wind velocity, balanced and unbalanced load conditions. The proposed PR control strategy with battery energy controller also ensures effective power balance between wind and battery source in order to fulfill the load demand. The superiority of the proposed control strategy is confirmed by comparing with the traditional vector control strategy under fluctuating wind and load conditions through MATLAB/SIMULINK platform.

  17. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  18. Quantum corrections to potential energy surfaces and their influence on barriers

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Goeke, K.W.; Bonn Univ.

    1980-01-01

    A microscopic theory suitable for the description of fission processes and other large-amplitude collective phenomena is presented. The approach makes use of an optimal collective path, which is constructed by means of adiabatic time-dependent Hartree-Fock (TDHF) techniques as to show maximal de-coupling of collective and non-collective degrees of freedom. Although this involves a classical concept, the theory fully incorporates quantum effects associated with extracting a collective Schroedinger equation from adiabatic time-dependent Hartree-Fock theories (ATDHF). The quantum corrections are discussed extensively, and calculations in the two-centre shell model show, e.g. that they reduce the second barrier by 2 MeV and the life-time by a factor of 10 -7 . The relationships of the presented quantized ATDHF approach to the random-phase approximation (RPA) and a generalized dynamic generator co-ordinate method are investigated. For the construction of the optimal fission path, simple step-by-step methods are suggested. (author)

  19. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  20. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  1. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  2. Investigation of the range of validity of the pairwise summation method applied to the calculation of the surface roughness correction to the van der Waals force

    Science.gov (United States)

    Gusso, André; Burnham, Nancy A.

    2016-09-01

    It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.

  3. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    Science.gov (United States)

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-05

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.

  4. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  5. Surface energy of very neutron rich nuclei

    CERN Document Server

    Von Groote, H

    1976-01-01

    For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the ou...

  6. Self-energy correction to the hyperfine splitting for excited states

    International Nuclear Information System (INIS)

    Wundt, B. J.; Jentschura, U. D.

    2011-01-01

    The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.

  7. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  8. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  9. Effect of scatter correction on quantification of myocardial SPECT and application to dual-energy acquisition using triple-energy window method

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Matsudaira, Masamichi; Yamada, Masato; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi

    1995-01-01

    Triple-energy window (TEW) method is a simple and practical approach for correcting Compton scatter in single-photon emission tracer studies. The fraction of scatter correction, with a point source or 30 ml-syringe placed under the camera, was measured by the TEW method. The scatter fraction was 55% for 201 Tl, 29% for 99m Tc and 57% for 123 I. Composite energy spectra were generated and separated by the TEW method. Combination of 99m Tc and 201 Tl was well separated, and 201 Tl and 123 I were separated within an error of 10%; whereas asymmetric photopeak energy window was necessary for separating 123 I and 99m Tc. By applying this method to myocardial SPECT study, the effect of scatter elimination was investigated in each myocardial wall by polar map and profile curve analysis. The effect of scatter was higher in the septum and the inferior wall. The count ratio relative to the anterior wall including scatter was 9% higher in 123 I, 7-8% higher in 99m Tc and 6% higher in 201 Tl. Apparent count loss after scatter correction was 30% for 123 I, 13% for 99m Tc and 38% for 201 Tl. Image contrast, as defined myocardium-to-left ventricular cavity count ratio, improved by scatter correction. Since the influence of Compton scatter was significant in cardiac planar and SPECT studies; the degree of scatter fraction should be kept in mind both in quantification and visual interpretation. (author)

  10. Correction of refractive errors

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2005-10-01

    Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.

  11. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    Science.gov (United States)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  12. Conservation laws, vertex corrections, and screening in Raman spectroscopy

    Science.gov (United States)

    Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.

    2017-07-01

    We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.

  13. Improvement of surface planarity measurements by temperature correction and structural simulations

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Maximilian; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Mueller, Ralph [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    Novel micro pattern gaseous detectors, like Micromegas, for particle physics experiments require precise flat active layers of 2-3 m{sup 2} in size. A construction procedure developed at LMU for 2 m{sup 2} sized Micromegas achieves surface planarities with a RMS below 30 μm. The measurements were performed using a laser distance sensor attached to a coordinate measurement machine. Studies were made to investigate the influence of temperature variations on these measurements. The temperature is monitored by several sensors. We present results containing corrections of the measurements in respect to temperature changes. In addition simulations with the FEM program ANSYS are compared to measured detector panel deformations introduced by forces, in order to study their effect on the surface planarity.

  14. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  15. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  16. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  17. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    Science.gov (United States)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  18. Three-dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments

    International Nuclear Information System (INIS)

    Chin, L.M.; Cheng, C.W.; Siddon, R.L.; Rice, R.K.; Mijnheer, B.J.; Harris, J.R.

    1989-01-01

    The influence of lung volume and photon energy on the 3-dimensional dose distribution for patients treated by intact breast irradiation is not well established. To investigate this issue, we studied the 3-dimensional dose distributions calculated for an 'average' breast phantom for 60Co, 4 MV, 6 MV, and 8 MV photon beams. For the homogeneous breast, areas of high dose ('hot spots') lie along the periphery of the breast near the posterior plane and near the apex of the breast. The highest dose occurs at the inferior margin of the breast tissue, and this may exceed 125% of the target dose for lower photon energies. The magnitude of these 'hot spots' decreases for higher energy photons. When lung correction is included in the dose calculation, the doses to areas at the left and right margin of the lung volume increase. The magnitude of the increase depends on energy and the patient anatomy. For the 'average' breast phantom (lung density 0.31 g/cm3), the correction factors are between 1.03 to 1.06 depending on the energy used. Higher energy is associated with lower correction factors. Both the ratio-of-TMR and the Batho lung correction methods can predict these corrections within a few percent. The range of depths of the 100% isodose from the skin surface, measured along the perpendicular to the tangent of the skin surface, were also energy dependent. The range was 0.1-0.4 cm for 60Co and 0.5-1.4 cm for 8 MV. We conclude that the use of higher energy photons in the range used here provides lower value of the 'hot spots' compared to lower energy photons, but this needs to be balanced against a possible disadvantage in decreased dose delivered to the skin and superficial portion of the breast

  19. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  20. Uniform surface-to-line integral reduction of physical optics for curved surfaces by modified edge representation with higher-order correction

    Science.gov (United States)

    Lyu, Pengfei; Ando, Makoto

    2017-09-01

    The modified edge representation is one of the equivalent edge currents approximation methods for calculating the physical optics surface radiation integrals in diffraction analysis. The Stokes' theorem is used in the derivation of the modified edge representation from the physical optics for the planar scatterer case, which implies that the surface integral is rigorously reduced into the line integral of the modified edge representation equivalent edge currents, defined in terms of the local shape of the edge. On the contrary, for curved surfaces, the results of radiation integrals depend upon the global shape of the scatterer. The physical optics surface integral consists of two components, from the inner stationary phase point and the edge. The modified edge representation is defined independently from the orientation of the actual edge, and therefore, it could be available not only at the edge but also at the arbitrary points on the scatterer except the stationary phase point where the modified edge representation equivalent edge currents becomes infinite. If stationary phase point exists inside the illuminated region, the physical optics surface integration is reduced into two kinds of the modified edge representation line integrations, along the edge and infinitesimally small integration around the inner stationary phase point, the former and the latter give the diffraction and reflection components, respectively. The accuracy of the latter has been discussed for the curved surfaces and published. This paper focuses on the errors of the former and discusses its correction. It has been numerically observed that the modified edge representation works well for the physical optics diffraction in flat and concave surfaces; errors appear especially for the observer near the reflection shadow boundary if the frequency is low for the convex scatterer. This paper gives the explicit expression of the higher-order correction for the modified edge representation.

  1. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  2. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2010-12-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  3. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  4. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  5. Kramers-Kronig transform for the surface energy loss function

    International Nuclear Information System (INIS)

    Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.

    2005-01-01

    A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function

  6. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Energy quantization for approximate H-surfaces and applications

    Directory of Open Access Journals (Sweden)

    Shenzhou Zheng

    2013-07-01

    Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.

  8. A study on crosstalk correction in dual energy acquisition of 123I-MIBG and 201TlCl in myocardial SPECT

    International Nuclear Information System (INIS)

    Onoguchi, Masahisa; Satoh, Keiko; Murata, Hajime; Takao, Yuji; Ohtake, Eiji; Katoh, Kenichi; Saitoh, Kyoko; Toyama, Hinako; Ueno, Takashi.

    1991-01-01

    In the simultaneous dual energy acquisition, energy spectrums of two radionuclides crosstalk each other and this phenomenon is a cause of the poor quality of images. In order to obtain the image of high quality in dual energy acquisition of 123 I-MIBG and 201 TlCl, a crosstalk correction method was originated. The crosstalk from 201 Tl to 123 I window (RI) and the crosstalk from 123 I to 201 Tl window (R2) were determined by the cardiac phantom studies. R1 and R2 showed almost constant value throughout the myocardial wall. The crosstalk correction was performed using R1 and R2. After the crosstalk correction, the defect region placed in the cardiac phantom was detected more clearly both in visual interpretation and in quantitative analysis. The crosstalk correction method with R1 and R2 was applied to some clinical cases. By the crosstalk correction, the quality of image was improved and a false defect caused by crosstalk disappeared in a clinical case. The crosstalk correction was considered to be useful for improving the quality of image on dual energy acquisition. (author)

  9. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  10. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  11. Derivation of Batho's correction factor for heterogeneities

    International Nuclear Information System (INIS)

    Lulu, B.A.; Bjaerngard, B.E.

    1982-01-01

    Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method

  12. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  13. Total energy intake may be more associated with glycemic control compared to each proportion of macronutrients in the korean diabetic population.

    Science.gov (United States)

    Kang, Hye Mi; Kim, Dong-Jun

    2012-08-01

    Major macronutrients for energy intake vary among countries and cultures. Carbohydrates, including rice, are the major component of daily energy intake in Korea. The aim of this study was to examine the association of daily energy intake or each proportion of macronutrients, especially carbohydrates, with glycemic control in diabetic Koreans. A total of 334 individuals with diabetes (175 men, age 57.4±0.8 years; 159 women, age 60.9±0.9 years) who participated in the 2005 Korean National Health and Nutrition Examination Survey were examined. Glycemic control was categorized based on concentration of glycated hemoglobin (HbA1c; HbA1c ≤6.5%; 6.6% to 8.0%; ≥8.1%). Dietary intake was assessed by using a 24-recall item questionnaire. High total energy intake was associated with poor glycemic control (HbA1c ≤6.5%, 1,824±75 kcal; 6.6% to 8.0%, 1,990±57 kcal; ≥8.1%, 2,144±73 kcal; P value for trend=0.002). Each proportion of protein, fat, or carbohydrate was not associated with glycemic control. Even after adjusting for several parameters, the association of daily energy intake with glycemic control still persisted. Total energy intake may be more closely related to glycemic control than each proportionof macronutrients in Korean diabetics.

  14. Total Energy Intake May Be More Associated with Glycemic Control Compared to Each Proportion of Macronutrients in the Korean Diabetic Population

    Directory of Open Access Journals (Sweden)

    Hye Mi Kang

    2012-08-01

    Full Text Available BackgroundMajor macronutrients for energy intake vary among countries and cultures. Carbohydrates, including rice, are the major component of daily energy intake in Korea. The aim of this study was to examine the association of daily energy intake or each proportion of macronutrients, especially carbohydrates, with glycemic control in diabetic Koreans.MethodsA total of 334 individuals with diabetes (175 men, age 57.4±0.8 years; 159 women, age 60.9±0.9 years who participated in the 2005 Korean National Health and Nutrition Examination Survey were examined. Glycemic control was categorized based on concentration of glycated hemoglobin (HbA1c; HbA1c ≤6.5%; 6.6% to 8.0%; ≥8.1%. Dietary intake was assessed by using a 24-recall item questionnaire.ResultsHigh total energy intake was associated with poor glycemic control (HbA1c ≤6.5%, 1,824±75 kcal; 6.6% to 8.0%, 1,990±57 kcal; ≥8.1%, 2,144±73 kcal; P value for trend=0.002. Each proportion of protein, fat, or carbohydrate was not associated with glycemic control. Even after adjusting for several parameters, the association of daily energy intake with glycemic control still persisted.ConclusionTotal energy intake may be more closely related to glycemic control than each proportionof macronutrients in Korean diabetics.

  15. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)

    2006-11-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.

  16. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    International Nuclear Information System (INIS)

    Bhaduri, R K; Dijk, W van; Srivastava, M K

    2006-01-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system

  17. Surface chemistry and catalytic activity of Ni/Al{sub 2}O{sub 3} irradiated with high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jin [Department of Optometry and Optic Science, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of)], E-mail: jinjun@dsu.ac.kr; Dhayal, Marshal [Liquid Crystal and Self Assembled Monolayer Section, National Physical Laboratory, Dr. KS Krisnan Marg, New Delhi 120011 (India); Shin, Joong-Hyeok [Department of Environmental Engineering, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of); Han, Young Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Getoff, Nikola [Department of Nutrition, Section Radiation Biology, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2008-05-30

    The radiation effects induced effects by electron beam (EB) treatment on the catalytic activity of Ni/{gamma}-Al{sub 2}O{sub 3} were studied for the carbon dioxide reforming of methane with different EB energy and absorbed radiation dose. Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the change in structure and surface states of Ni/{gamma}-Al{sub 2}O{sub 3} catalyst before and after the EB treatment. Higher energy EB treatment is useful for increasing the proportion of the active sites (such as Ni{sup 0} and NiAl{sub 2}O{sub 4}-phase) on the surface. The increase of Ni/Al-ratio indicates that the Ni dispersion on the surface increased with the EB-treatment, resulting in an increase of the active sites, which leads to improving the catalytic activity. XPS measurement also showed a decrease of the surface carbon with EB dose. The maximum 20% increase in the conversion of CO{sub 2}/CH{sub 4}-mixture into CO/H{sub 2} gas was observed for the catalyst treated with 2 MeV energy and 600 kGy dose of EB relative to untreated.

  18. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  19. Neutron dosimetry using proportional counters with tissue equivalent walls

    International Nuclear Information System (INIS)

    Kerviller, H. de

    1965-01-01

    The author reminds the calculation method of the neutron absorbed dose in a material and deduce of it the conditions what this material have to fill to be equivalent to biological tissues. Various proportional counters are mode with walls in new tissue equivalent material and filled with various gases. The multiplication factor and neutron energy response of these counters are investigated and compared with those obtained with ethylene lined polyethylene counters. The conditions of working of such proportional counters for neutron dosimetry in energy range 10 -2 to 15 MeV are specified. (author) [fr

  20. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  1. Surface relaxation and surface energy of face –centered Cubic ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of face –centered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  2. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  3. Experimental study on the location of energy windows for scatter correction by the TEW method in 201Tl imaging

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Matsumoto, Masanori; Ohyama, Yoichi; Tomiguchi, Seiji; Kira, Mitsuko; Takahashi, Mutsumasa.

    1997-01-01

    To investigate validity of scatter correction by the TEW method in 201 Tl imaging, we performed an experimental study using the gamma camera with the capability to perform the TEW method and a plate source with a defect. Images were acquired with the triple energy window which is recommended by the gamma camera manufacturer. The result of the energy spectrum showed that backscattered photons were included within the lower sub-energy window and main energy window, and the spectral shapes in the upper half region of the photopeak (70 keV) were not changed greatly by the source shape and the thickness of scattering materials. The scatter fraction calculated using energy spectra and, visual observation and the contrast values measured at the defect using planar images also showed that substantial primary photons were included in the upper sub-energy window. In TEW method (for scatter correction), two sub-energy windows are expected to be defined on the part of energy region in which total counts mainly consist of scattered photons. Therefore, it is necessary to investigate the use of the upper sub-energy window on scatter correction by the TEW method in 201 Tl imaging. (author)

  4. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  5. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  6. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  7. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  8. Determination of dose correction factor for energy and directional dependence of the MOSFET dosimeter in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho

    2006-01-01

    In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom

  9. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  10. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  11. Experimentals on the energy-deposition of fast neutrons in phantoms

    International Nuclear Information System (INIS)

    Maier, E.

    1978-01-01

    The relative neutron sensitivities of a tissue-equivalent chamber and a carbon chamber with correction factors are given for four neutron energies and a 252 Cf-source. The necessary experimental and technical conditions for an application of the multi-detector mixed-field dosimetry with proportional counters are presented. The corrections accounting for charge recombination or the intensity decrease due to the chamber well are put on a theoretical basis. (DG) [de

  12. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  13. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Benlloch, J.M.; Sanchez, F.; Pavon, N.; Gimenez, N.; Fernandez, M.; Gimenez, M.; Sebastia, A.; Martinez, J.; Mora, F.J.

    2005-01-01

    A new method of determining the depth of interaction of γ-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the γ-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation σ is computed using an enhanced position-sensitive proportional resistor network which is often used in γ-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost

  14. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  15. Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document

  16. Multiwire proportional chamber for Moessbauer spectroscopy: development and results

    International Nuclear Information System (INIS)

    Costa, M.S. da.

    1985-12-01

    A new Multiwere proportional Chamber designed for Moessbauer Spectroscopy is presented. This detector allows transmission backscattering experiments using either photons or electrons. The Moessbauer data acquisition system, partially developed for this work is described. A simple method for determining the frontier between true proportional and semi-proportional regions of operation in gaseous detectors is proposed. The study of the tertiary gas mixture He-Ar-CH 4 leads to a straight forward way of energy calibration of the electron spectra. Moessbauer spectra using Fe-57 source are presented. In particular those obtained with backsattered electrons show the feasibility of depth selective analysis with gaseous proportional counters. (author) [pt

  17. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  18. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Science.gov (United States)

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  19. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    Science.gov (United States)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  20. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  1. Self-attenuation correction factors for bioindicators measured by γ spectrometry for energies <100keV

    International Nuclear Information System (INIS)

    Manduci, L.; Tenailleau, L.; Trolet, J.L.; De Vismes, A.; Lopez, G.; Piccione, M.

    2010-01-01

    The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using γ spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.

  2. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  3. Correction for polychromatic aberration in computed tomography images

    International Nuclear Information System (INIS)

    Naparstek, A.

    1979-01-01

    A method and apparatus for correcting a computed tomography image for polychromatic aberration caused by the non-linear interaction (i.e. the energy dependent attenuation characteristics) of different body constituents, such as bone and soft tissue, with a polychromatic X-ray beam are described in detail. An initial image is conventionally computed from path measurements made as source and detector assembly scan a body section. In the improvement, each image element of the initial computed image representing attenuation is recorded in a store and is compared with two thresholds, one representing bone and the other soft tissue. Depending on the element value relative to the thresholds, a proportion of the respective constituent is allocated to that element location and corresponding bone and soft tissue projections are determined and stored. An error projection generator calculates projections of polychromatic aberration errors in the raw image data from recalled bone and tissue projections using a multidimensional polynomial function which approximates the non-linear interaction involved. After filtering, these are supplied to an image reconstruction computer to compute image element correction values which are subtracted from raw image element values to provide a corrected reconstructed image for display. (author)

  4. True coincidence summing corrections for an extended energy range HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Venegas-Argumedo, Y. [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico); M.S. Student at CIMAV (Mexico); Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico)

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  5. The influence of land surface parameters on energy flux densities derived from remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Tittebrand, A.; Schwiebus, A. [Inst. for Hydrology und Meteorology, TU Dresden (Germany); Berger, F.H. [Observatory Lindenberg, German Weather Service, Lindenberg (Germany)

    2005-04-01

    Knowledge of the vegetation properties surface reflectance, normalised difference vegetation index (NDVI) and leaf area index (LAI) are essential for the determination of the heat and water fluxes between terrestrial ecosystems and the atmosphere. Remote sensing data can be used to derive spatial estimates of the required surface properties. The determination of land surface parameters and their influence on radiant and energy flux densities is investigated with data of different remote sensing systems. Sensitivity studies show the importance of correctly derived land surface properties to estimate the key quantity of the hydrological cycle, the evapotranspiration (L.E), most exactly. In addition to variable parameters like LAI or NDVI there are also parameters which are can not be inferred from satellite data but needed for the Penman-Monteith approach. Fixed values are assumed for these variables because they have little influence on L.E. Data of Landsat-7 ETM+ and NOAA-16 AVHRR are used to show results in different spatial resolution. The satellite derived results are compared with ground truth data provided by the Observatory Lindenberg of the German Weather Service. (orig.)

  6. New proportional counter for in vivo detection of traces of plutonium in the lungs; Nouveau compteur proportionnel destine a la detection in vivo de traces de plutonium dans les poumons

    Energy Technology Data Exchange (ETDEWEB)

    Morucci, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    Development of a multi-wire proportional counter having a uniform response over 250 cm{sup 2} thanks to corrections made for boundary effects, and having a low background per sq. cm. due to the use of two identical counters set in anti-coincidence in the same enclosure is described. (author) [French] Etude et mise au point d'un compteur proportionnel multifils de reponse utile homogene sur une surface de 250 cm{sup 2} grace a la correction des effets de bords et de faible mouvement propre par cm{sup 2} grace a deux compteurs identiques montes en anticoincidence dans la meme enceinte. (auteur)

  7. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    International Nuclear Information System (INIS)

    Benhamouda, N.; Oudih, M.R.

    2002-01-01

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. * By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values

  8. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  9. Absence of log correction in entropy of large black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, A., E-mail: amit.ghosh@saha.ac.in; Mitra, P., E-mail: parthasarathi.mitra@saha.ac.in

    2014-06-27

    Earlier calculations of black hole entropy in loop quantum gravity led to a dominant term proportional to the area, but there was a correction involving the logarithm of the area, the Chern–Simons level being assumed to be large. We find that the calculations yield an entropy proportional to the area eigenvalue with no such correction if the Chern–Simons level is finite, so that the area eigenvalue can be relatively large.

  10. Derivative corrections to the symmetry energy and the isovector dipole-resonance structure in nuclei

    International Nuclear Information System (INIS)

    Blocki, J P; Magner, A G; Ring, P

    2015-01-01

    The effective surface approximation is extended accounting for derivatives of the symmetry energy density per particle. The new expressions for the isovector surface energy constants are used for calculations of improved energies and sum rules of the isovector dipole-resonance strength structure within the Fermi-liquid droplet model. Our results are in reasonable agreement with experimental data and with other theoretical approaches. (paper)

  11. Study of five-dimensional potential-energy surfaces for actinide isotopes by the macroscopic-microscopic method

    Science.gov (United States)

    Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.

    2017-09-01

    In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  12. Materials and proportion's design of self-compacting mortar used for low diffusion layer in sub-surface radioactive waste disposal facility in Japan

    International Nuclear Information System (INIS)

    Niwase, Kazuhito; Sugihashi, Naoyuki; Tsuji, Yukikazu

    2010-01-01

    This paper describes the design procedure for the material selection and mix proportion of the self-compacting mortar used for low diffusion layer cementitious material in the sub-surface radioactive waste disposal facility in Japan. The low diffusion layer is required for reducing transportation by controlling diffusion of a radionuclide. Therefore the low diffusion, cracks control, and low leaching are the important matters in the mix design. The process to select mortar mix design of the low diffusion layer is explained in detail. Of 33 kinds mix proportions used in laboratory comparative testing, the combinations of low heat portland cement, fly ash, lime powder and expansive addition was provisionally set to the mix proportion of the self-compacting mortar used for low diffusion layer. (author)

  13. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  14. Adsorption energy of iron-phthalocyanine on crystal surfaces

    International Nuclear Information System (INIS)

    Struzzi, C.; Scardamaglia, M.; Angelucci, M; Massimi, L.; Mariani, C.; Betti, G.

    2013-01-01

    The adsorption energy of iron-phthalocyanine (FePc) deposited on different crystal surfaces is studied by thermal desorption spectroscopy. A thin film of molecules has been absorbed on highly oriented pyrolytic graphite (HOPG), on graphene epitaxially grown on Ir(111), and on Au(110). Activation energies for the desorption of a molecular thin film and for the FePc single layer are determined at the three surfaces. The desorption temperature measured for the thin films is only slightly dependent on the substrate, since it is mostly dominated by molecule-molecule interactions. A definitely different desorption temperature is found at the single-layer coverage: we find an increasing desorption temperature going from HOPG, to graphene/Ir, to the Au(110) surface. The different adsorption energies of the first FePc layer in contact with the substrate surface are discussed taking into account the interaction and the growth morphology.

  15. Constraining the Surface Energy Balance of Snow in Complex Terrain

    Science.gov (United States)

    Lapo, Karl E.

    values and coupled land-atmosphere models have difficulty representing these processes. We developed a new method analyzing turbulent fluxes at the land surface that relies on using the observed surface temperature, which we called the offline turbulence method. We used this method to test a number of stability schemes as they are implemented within land models. Stability schemes can cause small biases in the simulated sensible heat flux, but these are caused by compensating errors, as no single method was able to accurately reproduce the observed distribution of the sensible heat flux. We described how these turbulence schemes perform within different turbulence regimes, particularly noting the difficulty representing turbulence during conditions with faster wind speeds and the transition between weak and strong wind turbulence regimes. Heterogeneity in the horizontal distribution of surface temperature associated with different land surface types likely explains some of the missing physics within land models and is manifested as counter-gradient fluxes in observations. The coupling of land and atmospheric models needs further attention, as we highlight processes that are missing. Expanding on the utility of surface temperature, Ts, in model evaluations, we demonstrated the utility of using surface temperature in snow models evaluations. Ts is the diagnostic variable of the modeled surface energy balance within physically-based models and is an ideal supplement to traditional evaluation techniques. We demonstrated how modeling decisions affect Ts, specifically testing the impact of vertical layer structure, thermal conductivity, and stability corrections in addition to the effect of uncertainty in forcing data on simulated Ts. The internal modeling decisions had minimal impacts relative to uncertainty in the forcing data. Uncertainty in downwelling longwave was found to have the largest impact on simulated Ts. Using Ts, we demonstrated how various errors in the forcing

  16. Numerical model and analysis of an energy-based system using microwaves for vision correction

    Science.gov (United States)

    Pertaub, Radha; Ryan, Thomas P.

    2009-02-01

    A treatment system was developed utilizing a microwave-based procedure capable of treating myopia and offering a less invasive alternative to laser vision correction without cutting the eye. Microwave thermal treatment elevates the temperature of the paracentral stroma of the cornea to create a predictable refractive change while preserving the epithelium and deeper structures of the eye. A pattern of shrinkage outside of the optical zone may be sufficient to flatten the central cornea. A numerical model was set up to investigate both the electromagnetic field and the resultant transient temperature distribution. A finite element model of the eye was created and the axisymmetric distribution of temperature calculated to characterize the combination of controlled power deposition combined with surface cooling to spare the epithelium, yet shrink the cornea, in a circularly symmetric fashion. The model variables included microwave power levels and pulse width, cooling timing, dielectric material and thickness, and electrode configuration and gap. Results showed that power is totally contained within the cornea and no significant temperature rise was found outside the anterior cornea, due to the near-field design of the applicator and limited thermal conduction with the short on-time. Target isothermal regions were plotted as a result of common energy parameters along with a variety of electrode shapes and sizes, which were compared. Dose plots showed the relationship between energy and target isothermic regions.

  17. Electroweak corrections to H->ZZ/WW->4 leptons

    International Nuclear Information System (INIS)

    Bredenstein, A.; Denner, A.; Dittmaier, S.; Weber, M.M.

    2006-01-01

    We provide predictions for the decays H->ZZ->4-bar and H->WW->4-bar including the complete electroweak O(α) corrections and improvements by higher-order final-state radiation and two-loop corrections proportional to G μ 2 M H 4 . The gauge-boson resonances are described in the complex-mass scheme. We find corrections at the level of 1-8% for the partial widths

  18. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors

    International Nuclear Information System (INIS)

    Mazurier, J.

    1999-01-01

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  19. A novel 3D absorption correction method for quantitative EDX-STEM tomography

    International Nuclear Information System (INIS)

    Burdet, Pierre; Saghi, Z.; Filippin, A.N.; Borrás, A.; Midgley, P.A.

    2016-01-01

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. - Highlights: • A novel 3D absorption correction method is proposed for 3D EDX-STEM tomography. • The absorption of X-rays along the path to the surface is calculated voxel-by-voxel. • The method is applied on highly absorbed X-rays emitted from a core/shell nanowire. • Absorption is shown to cause major artefacts in the reconstruction. • Using the absorption correction method, the reconstruction artefacts are greatly reduced.

  20. A novel 3D absorption correction method for quantitative EDX-STEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burdet, Pierre, E-mail: pierre.burdet@a3.epfl.ch [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom); Saghi, Z. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom); Filippin, A.N.; Borrás, A. [Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (ICMS), CSIC-University of Seville, C/ Americo Vespucio 49, 41092 Seville (Spain); Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom)

    2016-01-15

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. - Highlights: • A novel 3D absorption correction method is proposed for 3D EDX-STEM tomography. • The absorption of X-rays along the path to the surface is calculated voxel-by-voxel. • The method is applied on highly absorbed X-rays emitted from a core/shell nanowire. • Absorption is shown to cause major artefacts in the reconstruction. • Using the absorption correction method, the reconstruction artefacts are greatly reduced.

  1. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  2. A simulation of laser energy absorption by nanowired surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  3. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  4. Corrective Action Plan for Corrective Action Unit 168: Area 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada, REV 1

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 168 is identified in the Federal Facility Agreement and Consent Order of 1996 as Area 25 and 26 Contaminated Materials and Waste Dumps. CAU 168 consists of twelve Corrective Action Sites (CASs) in Areas 25 and 26 of the Nevada Test Site, which is approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. The CASs contain surface and subsurface debris, impacted soil, and contaminated materials. Site characterization activities were conducted in 2002, and the results are presented in the Corrective Action Decision Document (CADD) for CAU 168 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). Site characterization results indicated that soil at several sites exceeded the clean-up criteria for total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), and radionuclides. The Nevada Division of Environmental Protection approved the proposed corrective actions specified in the CADD (NNSA/NSO, 2006). The approved corrective actions include no further action, clean closure, and closure in place with administrative controls

  5. The Standard Error of a Proportion for Different Scores and Test Length.

    Directory of Open Access Journals (Sweden)

    David A. Walker

    2005-06-01

    Full Text Available This paper examines Smith's (2003 proposed standard error of a proportion index..associated with the idea of reliability as sufficiency of information. A detailed table..indexing all of the standard error values affiliated with assessments that range from 5 to..100 items, where students scored as low as 50% correct and 50% incorrect to as high as..95% correct and 5% incorrect, calculated in increments of 1 percentage point, is..presented, along with distributional qualities. Examples using this measure for classroom..teachers and higher education instructors of assessment are provided.

  6. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  7. Dark energy homogeneity in general relativity: Are we applying it correctly?

    Science.gov (United States)

    Duniya, Didam G. A.

    2016-04-01

    Thus far, there does not appear to be an agreed (or adequate) definition of homogeneous dark energy (DE). This paper seeks to define a valid, adequate homogeneity condition for DE. Firstly, it is shown that as long as w_x ≠ -1, DE must have perturbations. It is then argued, independent of w_x, that a correct definition of homogeneous DE is one whose density perturbation vanishes in comoving gauge: and hence, in the DE rest frame. Using phenomenological DE, the consequence of this approach is then investigated in the observed galaxy power spectrum—with the power spectrum being normalized on small scales, at the present epoch z=0. It is found that for high magnification bias, relativistic corrections in the galaxy power spectrum are able to distinguish the concordance model from both a homogeneous DE and a clustering DE—on super-horizon scales.

  8. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    Energy Technology Data Exchange (ETDEWEB)

    Benhamouda, N [Laboratoire de Physique Theoique, Faculte des Sciences, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Algers (Algeria); Oudih, M R [CRNA, 2. Bd Frantz Fanon, BP 399 Alger-Gare, Algers (Algeria)

    2002-09-15

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. {sup *} By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values.

  9. Black Hole Entropy with and without Log Correction in Loop Quantum Gravity

    International Nuclear Information System (INIS)

    Mitra, P.

    2014-01-01

    Earlier calculations of black hole entropy in loop quantum gravity have given a term proportional to the area with a correction involving the logarithm of the area when the area eigenvalue is close to the classical area. However the calculations yield an entropy proportional to the area eigenvalue with no such correction when the area eigenvalue is large compared to the classical area

  10. Proportional feedback control of laminar flow over a hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Il [Dept. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of); Son, Dong Gun [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2016-08-15

    In the present study, we perform a proportional feedback control of laminar flow over a hemisphere at Re = 300 to reduce its lift fluctuations by attenuating the strength of the vortex shedding. As a control input, blowing/suction is distributed on the surface of hemisphere before the separation, and its strength is linearly proportional to the transverse velocity at a sensing location in the centerline of the wake. The sensing location is determined based on a correlation function between the lift force and the time derivative of sensing velocity. The optimal proportional gains for the proportional control are obtained for the sensing locations considered. The present control successfully attenuates the velocity fluctuations at the sensing location and three dimensional vertical structures in the wake, resulting in the reduction of lift fluctuations of hemisphere.

  11. Interpolation formulas for quantities related to radiative energy-loss of electrons

    International Nuclear Information System (INIS)

    Tabata, T.; Ito, R.

    1977-01-01

    An interpolation formula is given for the quantity PHIsub(rad)/PHI(bar) that is proportional to the radiative energy-loss divided by the total energy of the incident electron. Errors caused by the formula have been checked for three sets of values of PHIsub(rad)/PHI(bar) which have been computed by Berger and Seltzer with different empirical corrections to reduce Born-approximation errors. Incident energies from 1 keV to 1000 MeV and atomic numbers of material from 1 to 92 have been considered. Values of six parameters in the formula have been determined by using Tschebyschev's criterion of approximation, and the maximum error has been found to be less than 1.9% for the intermediate set with Aiginger-Rester correction as well as for the no-correction set. A table of parameters in the case of the Aiginger-Rester set is provided for 59 elements. An interpolation formula for the Aginger-Rester correction factor is also given. (Auth.)

  12. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  13. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  14. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  15. Efficient orbit integration by manifold correction methods.

    Science.gov (United States)

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  16. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

    International Nuclear Information System (INIS)

    Conte, Riccardo; Bowman, Joel M.; Houston, Paul L.

    2014-01-01

    A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm −1 for fitted interaction energies up to roughly 12 000 cm −1 . Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm −1 . The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm −1 . All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential

  17. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Riccardo, E-mail: riccardo.conte@emory.edu, E-mail: jmbowma@emory.edu; Bowman, Joel M., E-mail: riccardo.conte@emory.edu, E-mail: jmbowma@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Calculation, Emory University, Atlanta, Georgia 30322 (United States); Houston, Paul L., E-mail: paul.houston@cos.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-04-21

    A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm{sup −1} for fitted interaction energies up to roughly 12 000 cm{sup −1}. Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm{sup −1}. The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm{sup −1}. All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential.

  18. An integrated photosensor readout for gas proportional scintillation counters

    International Nuclear Information System (INIS)

    Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    A xenon gas proportional scintillation counter has been instrumented with a novel photosensor that replaces the photomultiplier tube normally used to detect the VUV secondary scintillation light. In this implementation, the collection grid of a planar gas proportional scintillation counter also functions as a multiwire proportional chamber to amplify and detect the photoelectrons emitted by a reflective CsI photocathode in direct contact with the xenon gas. This integrated concept combines greater simplicity, compactness, and ruggedness (no optical window is used) with low power consumption. An energy resolution of 12% was obtained for 59.6 keV x-rays

  19. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  20. Monte Carlo study of MOSFET dosimeter dose correction factors considering energy spectrum of radiation field in a steam generator channel head

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)

    2006-12-15

    In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.

  1. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  2. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  3. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  4. Constant Proportion Portfolio Insurance Strategies in Contagious Markets

    DEFF Research Database (Denmark)

    Buccioli, Alice; Kokholm, Thomas

    2018-01-01

    charging and for risk management. The literature on CPPI modeling typically assumes diffusive or Lévy-driven dynamics for the risky asset underlying the strategy. In either case the self-contagious nature of asset prices is not taken into account. In order to account for contagion while preserving......Constant Proportion Portfolio Insurance (CPPI) strategies are popular as they allow to gear up the upside potential of a stock index while limiting its downside risk. From the issuer's perspective it is important to adequately assess the risks associated with the CPPI, both for correct "gap'' fee...

  5. Barkas effect, shell correction, screening and correlation in collisional energy-loss straggling of an ion beam

    CERN Document Server

    Sigmund, P

    2003-01-01

    Collisional electronic energy-loss straggling has been treated theoretically on the basis of the binary theory of electronic stopping. In view of the absence of a Bloch correction in straggling the range of validity of the theory includes both the classical and the Born regime. The theory incorporates Barkas effect and projectile screening. Shell correction and electron bunching are added on. In the absence of shell corrections the Barkas effect has a dominating influence on straggling, but much of this is wiped out when the shell correction is included. Weak projectile screening tends to noticeably reduce collisional straggling. Sizable bunching effects are found in particular for heavy ions. Comparisons are made with selected results of the experimental and theoretical literature. (authors)

  6. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  7. Temperature effect correction for muon flux at the Earth surface: estimation of the accuracy of different methods

    International Nuclear Information System (INIS)

    Dmitrieva, A N; Astapov, I I; Kovylyaeva, A A; Pankova, D V

    2013-01-01

    Correction of the muon flux at the Earth surface for temperature effect with the help of two simple methods is considered. In the first method, it is assumed that major part of muons are generated at some effective generation level, which altitude depends on the temperature profile of the atmosphere. In the second method, dependence of muon flux on the mass-averaged atmosphere temperature is considered. The methods were tested with the data of muon hodoscope URAGAN (Moscow, Russia). Difference between data corrected with the help of differential in altitude temperature coefficients and simplified methods does not exceed 1-1.5%, so the latter ones may be used for introduction of a fast preliminary correction.

  8. A novel low energy electron microscope for DNA sequencing and surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, M., E-mail: marian@electronoptica.com [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); Shadman, K. [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); Persson, H.H.J. [Stanford Genome Technology Center, Stanford University School of Medicine, 855 California Avenue, Palo Alto, CA 94304 (United States); N’Diaye, A.T. [Electron Optica Inc., 1000 Elwell Court #110, Palo Alto, CA 94303 (United States); NCEM, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Schmid, A.K. [NCEM, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Davis, R.W. [Stanford Genome Technology Center, Stanford University School of Medicine, 855 California Avenue, Palo Alto, CA 94304 (United States)

    2014-10-15

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  9. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.

    Science.gov (United States)

    Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi

    2007-08-01

    To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.

  10. An extended parametrization of gas amplification in proportional wire chambers

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Carnegie, R.K.; Hargrove, C.K.

    1987-01-01

    It is normally assumed that the gas amplification in proportional chambers is a function of Townsend's first ionization coefficient, α, and that α is a function of the anode surface electric field only. Experimental measurements are presented demonstrating the breakdown of the latter assumption for electric fields, X, greater than about 150 V/cm/Torr on the anode wire surface for a gas mixture of 80/20 argon/methane. For larger values of X, the parametrization of the proportional gas gain data requires an additional term related to the gradient of the electric field near the wire. This extended gain parametrization remains valid until the onset of nonproportional contributions such as positive ion space charge saturation effects. Furthermore, deviations of the data from this parametrization are used to measure the onset of these space charge effects. A simple scaling dependence of the gain data on the product of pressure and wire radius over the whole proportional range is also demonstrated. (orig.)

  11. Corrective action investigation plan for Central Nevada Test Area, CAU No. 417

    International Nuclear Information System (INIS)

    1997-04-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). This CAIP addresses the surface investigation and characterization of 15 identified Corrective Action Sites (CASs). In addition, several other areas of the CNTA project area have surface expressions that may warrant investigation. These suspect areas will be characterized, if necessary, in subsequent CAIPs or addendums to this CAIP prepared to address these sites. This CAIP addresses only the 15 identified CASs as shown in Table 2-1 that are associated with the drilling and construction of a number of testing wells designed as part of an underground nuclear testing program. The purpose of the wells at the time of construction was to provide subsurface access for the emplacement, testing, and post detonation evaluations of underground nuclear devices. If contamination is found at any of the 15-surface CASs, the extent of contamination will be determined in order to develop an appropriate corrective action

  12. On the energy-momentum tensor in non-linear σ-models with torsion

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1987-10-01

    We study the renormalization properties of the energy-momentum tensor in a σ-model with torsion. Our normal product version contains besides the classical expression and the trace anomaly an off diagonal term proportional to the squared torsion. Specialized to a group manifold this term is crucial to reproduce the correct perturbative expansion of the energy-momentum tensor in Sugawara form. (orig.)

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-05-01

    This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitate site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and

  14. Proportionality lost - proportionality regained?

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2010-01-01

    In recent years, the European Court of Justice (the ECJ) seems to have accepted restrictions on the freedom of establishment and other basic freedoms, despite the fact that a more thorough proportionality test would have revealed that the restriction in question did not pass the 'rule of reason' ...

  15. 1/J2 corrections to BMN energies from the quantum long range Landau-Lifshitz model

    International Nuclear Information System (INIS)

    Minahan, Joseph A.; Tirziu, Alin; Tseytlin, Arkady A.

    2005-01-01

    In a previous paper [hep-th/0509071], it was shown that quantum 1/J corrections to the BMN spectrum in an effective Landau-Lifshitz (LL) model match with the results from the one-loop gauge theory, provided one chooses an appropriate regularization. In this paper we continue this study for the conjectured Bethe ansatz for the long range spin chain representing perturbative large-N N = 4 Super Yang-Mills in the SU(2) sector, and the 'quantum string' Bethe ansatz for its string dual. The comparison is carried out for corrections to BMN energies up to order λ-tilde 3 in the effective expansion parameter λ-tilde = λ/J 2 . After determining the 'gauge-theory' LL action to order λ-tilde 3 , which is accomplished indirectly by fixing the coefficients in the LL action so that the energies of circular strings match with the energies found using the Bethe ansatz, we find perfect agreement. We interpret this as further support for an underlying integrability of the system. We then consider the 'string-theory' LL action which is a limit of the classical string action representing fast string motion on an S 3 subspace of S 5 and compare the resulting λ-tilde 3 /J 2 corrections to the prediction of the 'string' Bethe ansatz. As in the gauge case, we find precise matching. This indicates that the LL hamiltonian supplemented with a normal ordering prescription and ζ-function regularization reproduces the full superstring result for the 1/J 2 corrections, and also signifies that the string Bethe ansatz does describe the quantum BMN string spectrum to order 1/J 2 . We also comment on using the quantum LL approach to determine the non-analytic contributions in λ that are behind the strong to weak coupling interpolation between the string and gauge results

  16. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  17. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  18. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  19. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  20. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-09-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage–transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  1. Model calculation for energy loss in ion-surface collisions

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Gravielle, M.S.

    2003-01-01

    The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces

  2. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  3. A two-dimensional matrix correction for off-axis portal dose prediction errors

    International Nuclear Information System (INIS)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-01-01

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. [“An effective correction algorithm for off-axis portal dosimetry errors,” Med. Phys. 36, 4089–4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As

  4. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  5. TUnfold, an algorithm for correcting migration effects in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Stefan

    2012-07-15

    TUnfold is a tool for correcting migration and background effects in high energy physics for multi-dimensional distributions. It is based on a least square fit with Tikhonov regularisation and an optional area constraint. For determining the strength of the regularisation parameter, the L-curve method and scans of global correlation coefficients are implemented. The algorithm supports background subtraction and error propagation of statistical and systematic uncertainties, in particular those originating from limited knowledge of the response matrix. The program is interfaced to the ROOT analysis framework.

  6. Semi-empirical procedures for correcting detector size effect on clinical MV x-ray beam profiles

    International Nuclear Information System (INIS)

    Sahoo, Narayan; Kazi, Abdul M.; Hoffman, Mark

    2008-01-01

    The measured radiation beam profiles need to be corrected for the detector size effect to derive the real profiles. This paper describes two new semi-empirical procedures to determine the real profiles of high-energy x-ray beams by removing the detector size effect from the measured profiles. Measured profiles are corrected by shifting the position of each measurement point by a specific amount determined from available theoretical and experimental knowledge in the literature. The authors developed two procedures to determine the amount of shift. In the first procedure, which employs the published analytical deconvolution procedure of other investigators, the shift is determined from the comparison of the analytical fit of the measured profile and the corresponding analytical real profile derived from the deconvolution of the fitted measured profile and the Gaussian detector response function. In the second procedure, the amount of shift at any measurement point is considered to be proportional to the value of an analytical function related to the second derivative of the real profile at that point. The constant of proportionality and a parameter in the function are obtained from the values of the shifts at the 90%, 80%, 20%, and 10% dose levels, which are experimentally known from the published results of other investigators to be approximately equal to half of the radius of the detector. These procedures were tested by correcting the profiles of 6 and 18 MV x-ray beams measured by three different ionization chambers and a stereotactic field diode detector with 2.75, 2, 1, and 0.3 mm radii of their respective active cylindrical volumes. The corrected profiles measured by different detectors are found to be in close agreement. The detector size corrected penumbra widths also agree with the expected values based on the results of an earlier investigation. Thus, the authors concluded that the proposed procedures are accurate and can be used to derive the real

  7. Matter Loops Corrected Modified Gravity in Palatini Formulation

    International Nuclear Information System (INIS)

    Meng Xinhe; Wang Peng

    2008-01-01

    Recently, corrections to the standard Einstein-Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such a term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory. On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications

  8. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  9. Uncertainty in regional and zonal monthly mean downward surface irradiances from Edition 4.0 CERES Energy Balanced and Filled (EBAF) data product

    Science.gov (United States)

    Kato, S.; Rutan, D. A.; Rose, F. G.; Loeb, N. G.

    2017-12-01

    The surface of the Earth receives solar radiation (shortwave) and emission from the atmosphere (longwave). At a global and annual mean approximately 12% of solar radiation incident on the surface is reflected and the rest is absorbed by the surface. The surface emits radiation proportional to the forth power of the temperature. Although the uncertainty in global and annual mean surface irradiances is estimated in earlier studies (Zhang et al. 1995, 2004; L'Ecuyer et al. 2008; Stephens et al. 2012; Kato et al. 2012), only a few studies estimated the uncertainty in computed surface irradiances at smaller spatial and temporal scales (Zhang et al. 1995, 2004; Kato et al. 2012). We use surface observations at 46 buoys and 36 land sites and newly released the Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)-surface data product to estimate the uncertainty in regional and zonal monthly mean downward shortwave and longwave surface irradiances. The root-mean-square difference of monthly mean computed and observed irradiances is used for the regional uncertainty. The uncertainty is separated into bias and spatially random components. The random component decreases when irradiances are averaged over a larger area, nearly inversely proportional to the number of surface observation sites. The presentation provides the uncertainty in the regional and zonal monthly mean downward surface irradiances over ocean and land. ReferencesKato, S. and N.G.Loeb, D. A.Rutan, F. G. Rose, S. Sun-Mack,W.F.Miller, and Y. Chen, 2012. Surv. Geophys., 33, 395-412, doi:10.1007/s10712-012-9179-x. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951. Stephens, G. L. and Coauthors, 2012, Nat. Geosci., 5, 691-696, doi:10.1038/ngeo1580. Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004, J. Geophys. Res., 109, D19105, doi:10.1029/2003JD

  10. Increased preference of surface ablation over laser in situ keratomileusis between 2008–2011 is correlated to risk of ecatasia

    Directory of Open Access Journals (Sweden)

    Moisseiev E

    2013-01-01

    Full Text Available Elad Moisseiev,1,3 Tzahi Sela,2 Liza Minkev,2 David Varssano1,31Department of Ophthalmology, Tel-Aviv Medical Center, Tel-Aviv, Israel; 2Care Vision, Tel Aviv, Israel; 3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelPurpose: To evaluate the trends in corneal refractive procedure selection for the correction of myopia, focusing on the relative proportions of laser in situ keratomileusis (LASIK and surface ablation procedures.Methods: Only eyes that underwent LASIK or surface ablation for the correction of myopia between 2008–2011 were included in this retrospective study. Additional recorded parameters included patient age, preoperative manifest refraction, corneal thickness, and calculated residual corneal bed thickness. A risk score was given to each eye, based on these parameters, according to the Ectasia Risk Factor Score System (ERFSS, without the preoperative corneal topography.Results: This study included 16,163 eyes, of which 38.4% underwent LASIK and 61.6% underwent surface ablation. The risk score correlated with procedure selection, with LASIK being preferred in eyes with a score of 0 and surface ablation in eyes with a score of 2 or higher. When controlling for age, preoperative manifest refraction, corneal thickness, and all parameters, the relative proportion of surface ablation compared with LASIK was found to have grown significantly during the study period.Conclusions: Our results indicate that with time, surface ablation tended to be performed more often than LASIK for the correction of myopia in our cohort. Increased awareness of risk factors and preoperative risk assessment tools, such as the ERFSS, have shifted the current practice of refractive surgery from LASIK towards surface ablation despite the former's advantages, especially in cases in which the risk for ectasia is more than minimal (risk score 2 and higher.Keywords: surface ablation, LASIK, PRK, myopia correction, ectasia

  11. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  12. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  13. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  14. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    International Nuclear Information System (INIS)

    Heß, Mirco; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-01-01

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical 18 F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found

  15. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  16. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  17. Author Correction: Intergenerational equity can help to prevent climate change and extinction.

    Science.gov (United States)

    Treves, Adrian; Artelle, Kyle A; Darimont, Chris T; Lynn, William S; Paquet, Paul; Santiago-Ávila, Francisco J; Shaw, Rance; Wood, Mary C

    2018-05-01

    The original Article mistakenly coded the constitutional rights of Australia as containing a governmental duty to protect the environment (blue in the figures); this has been corrected to containing no explicit mention of environmental protection (orange in the figures). The original Article also neglected to code the constitutional rights of the Cayman Islands (no data; yellow in the figures); this has been corrected to containing a governmental duty to protect the environment (blue in the figures).Although no inferences changed as a result of these errors, many values changed slightly and have been corrected. The proportion of the world's nations having constitutional rights to a healthy environment changed from 75% to 74%. The proportions of nations in different categories given in the Fig. 1 caption all changed except purple countries (3.1%): green countries changed from 47.2% to 46.9%; blue countries changed from 24.4% to 24.2%; and orange countries changed from 25.3% to 25.8%. The proportion of the global atmospheric CO 2 emitted by the 144 nations changed from 72.6% to 74.4%; the proportion of the world's population represented by the 144 nations changed from 84.9% to 85%. The values of annual average CO 2 emissions for blue countries changed from 363,000 Gg to 353,000 Gg and for orange countries from 195,000 Gg to 201,000 Gg. The proportion of threatened mammals endemic to a single country represented by the 144 countries changed from 91% to 84%. Figures 1-3 have been updated to show the correct values and map colours and the Supplementary Information has been updated to give the correct country codes.

  18. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  19. Image correction in magneto-optical microscopy

    DEFF Research Database (Denmark)

    Paturi, P.; Larsen, B.H.; Jacobsen, B.A.

    2003-01-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects...

  20. Development, production and promotion of energy-saving and environmentally correct fixtures for private homes; Udvikling, produktion of markedsfoering af energi- og miljoerigtige armaturer til boligmarkedet

    Energy Technology Data Exchange (ETDEWEB)

    Velk, A.; Munck, K. [Lysteknisk Selskab (Denmark)

    2006-08-31

    A design competition for environmentally correct and energy-saving fixtures for private homes was arranged in 2004. There were 88 entries and three were awarded with a prize. The purpose of the project was to produce and promote two or three proposals in a campaign for the use of environmentally correct and energy-saving fixtures. Three manufacturers of fixtures had given prior notice that they would produce the fixtures, but with certain conditions. Despite the many entries, the manufacturers assessed that none of them possessed the necessary qualities to commence product development. A group of designers were offered the possibility to find other manufacturers, but they did not succeed. (au)

  1. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).

    Science.gov (United States)

    Li, Yan; Lu, Deyu; Galli, Giulia

    2009-04-14

    We present many-body perturbation theory calculations of the electronic properties of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural models obtained within density functional theory (DFT), we have investigated how the SAM molecular energies are modified by self-energy corrections and how they are affected by the presence of the surface. We have employed a combination of GW (G = Green's function; W = screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclassical image potential model to account for surface polarization effects. We find that it is essential to include both quasi-particle corrections and surface screening in order to provide a reasonable estimate of the energy level alignment at a SAM-metal interface. In particular, our results show that within the GW approximation the energy distance between phenylene diisocyanide SAM energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g., more than double in the case of low packing densities of the SAM.

  2. Corrective action strategy for single-shell tanks containing organic chemicals

    International Nuclear Information System (INIS)

    Turner, D.A.

    1993-08-01

    A Waste Tank Organic Safety Program (Program) Plan is to be transmitted to the U.S. Department of Energy, Richland Operations Office (RL) for approval by December 31, 1993. In April 1993 an agreement was reached among cognizant U.S. Department of Energy - Headquarters (HQ), RL and Westinghouse Hanford Company (WHC) staff that the Program Plan would be preceded by a ''Corrective Action Strategy,'' which addressed selected planning elements supporting the Program Plan. The ''Corrective Action Strategy'' would be reviewed and consensus reached regarding the planning elements. A Program Plan reflecting this consensus would then be prepared. A preliminary ''corrective action strategy'' is presented for resolving the organic tanks safety issue based on the work efforts recommended in the ISB (Interim Safety Basis for Hanford Site tank farm facilities). A ''corrective action strategy'' logic was prepared for individual SSTs (single-shell tanks), or a group of SSTs having similar characteristics, as appropriate. Four aspects of the organic tanks safety issue are addressed in the ISB: SSTs with the potential for combustion in the tank's headspace; combustion of a floating organic layer as a pool fire; surface fires in tanks that formerly held floating organic layers; SSTs with the potential for organic-nitrate reactions. A preliminary ''corrective action strategy'' for each aspect of the organic tanks safety issue is presented

  3. Do posture correction exercises have to be boring? Using unstable surfaces to prevent poor posture in children

    Directory of Open Access Journals (Sweden)

    Agnieszka Jankowicz-Szymanska

    2016-07-01

    Full Text Available Introduction: Poor posture in children is a common problem. It appears most often in early school-age children and, if not corrected, progresses quickly as they mature. Aim of the research: To find a method that can prevent poor posture, is effective and attractive for children, and can be used on a wide scale in state schools. Material and methods : Seventy-seven first year pupils were tested at the beginning and at the end of the school year. Nineteen children undertook corrective exercises using unstable surfaces; 41 children sat on sensorimotor pillows during classes; and 17 children were the control group. Body mass and body height were measured. Body mass index was calculated. The symmetry of the position of selected skeletal points was assessed: the acromions, lower angles of the scapulas, apexes of the iliac crests, antero-superior iliac spine, and postero-superior iliac spine using a Duometer electronic device. The differences between the groups and changes between the first and second study for each group were estimated. Results : In the first study there were no significant differences in quality of posture. In the second study a significant improvement was noted in symmetry of the shoulders, scapulas, and pelvis in children who sat on sensorimotor pillows, as well as the position of the iliac crests and iliac spines in children exercising regularly on unstable surfaces. Conclusions: Exercises using unstable surfaces and sitting on sensorimotor pillows during classes might be an effective alternative to traditional posture correction exercises.

  4. Identification of relativistic charged particles by means of ionisation energy loss in proportional counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-12-01

    A method is described of obtaining a useful degree of improvement in the particle discrimination capability of multiwire proportional counters. The normal multiple sampling technique using a suitable bias to combat the small magnitude of the relativistic rise in the ionization energy loss and the wide pulse height distributions obtained in thin gas counters requires a large number of samples for useful discrimination. In the method reported, this number is reduced by suppressing the delta ray contribution to the total charge pulse from the anode wire. A monte carlo model convoluting the 'delta ray suppressed' data from a one sample detector shows that when it is required to separate pions and electrons at 1 GeV/C with a detection efficiency for the electron of 90%, a 'suppressor' circuit can achieve a pion rejection ratio of 250:1 with 82 samples, whereas the truncated mean approach (lowest 70% of samples) requires 100 samples. (UK)

  5. Corrections to the leading eikonal amplitude for high-energy scattering and quasipotential approach

    International Nuclear Information System (INIS)

    Nguyen Suan Hani; Nguyen Duy Hung

    2003-12-01

    Asymptotic behaviour of the scattering amplitude for two scalar particle at high energy and fixed momentum transfers is reconsidered in quantum field theory. In the framework of the quasipotential approach and the modified perturbation theory a systematic scheme of finding the leading eikonal scattering amplitudes and its corrections is developed and constructed. The connection between the solutions obtained by quasipotential and functional approaches is also discussed. (author)

  6. Intermolecular potential energy surface and thermophysical properties of the CH4-N2 system.

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2014-12-14

    A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH4-N2 mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.

  7. Energy loss in grazing proton-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Juaristi, J I [Dept. Fisica de Materiales, Facultad de Quimicas, UPV/EHU, San Sebastian (Spain); Garcia de Abajo, F J [Dept. Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, San Sebastian (Spain)

    1994-05-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: (i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and (ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  8. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  9. F + H/sub 2/ potential energy surface: the ecstasy and the agony

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H.F. III

    1985-12-05

    This account surveys 14 years of more or less continuing theoretical research on the FH/sub 2/ potential energy hypersurface. Early encouragement concerning the ability of theory to reliably characterize the entrance barrier for F + H/sub 2/ ..-->.. FH + H has more recently been sobered by the realization that very high levels of theory are required for this task. The importance of zero-point vibrational corrections and tunneling corrections in reliable predictions of the same activation energy is discussed. In contrast, the barrier height of H + FH ..-->.. HF + H three-center exchange stands as a prominent early success of ab initio molecular electronic structure theory. 90 references, 4 figures, 6 tables.

  10. bcROCsurface: an R package for correcting verification bias in estimation of the ROC surface and its volume for continuous diagnostic tests.

    Science.gov (United States)

    To Duc, Khanh

    2017-11-18

    Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .

  11. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  12. Proportional reasoning

    DEFF Research Database (Denmark)

    Dole, Shelley; Hilton, Annette; Hilton, Geoff

    2015-01-01

    Proportional reasoning is widely acknowledged as a key to success in school mathematics, yet students’ continual difficulties with proportion-related tasks are well documented. This paper draws on a large research study that aimed to support 4th to 9th grade teachers to design and implement tasks...

  13. Edge corrections to electromagnetic Casimir energies from general-purpose Mathieu-function routines

    Science.gov (United States)

    Blose, Elizabeth Noelle; Ghimire, Biswash; Graham, Noah; Stratton-Smith, Jeremy

    2015-01-01

    Scattering theory methods make it possible to calculate the Casimir energy of a perfectly conducting elliptic cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the limit of zero radius, the elliptic cylinder becomes a finite-width strip, which allows for the study of edge effects. However, existing packages for computing Mathieu functions are insufficient for this calculation because none can compute Mathieu functions of both the first and second kind for complex arguments. To address this shortcoming, we have written a general-purpose Mathieu-function package, based on algorithms developed by Alhargan. We use these routines to find edge corrections to the proximity force approximation for the Casimir energy of a perfectly conducting strip opposite a perfectly conducting plane.

  14. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of$6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities.

  15. Massive Corrections to Entanglement in Minimal E8 Toda Field Theory

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2017-02-01

    Full Text Available In this letter we study the exponentially decaying corrections to saturation of the second R\\'enyi entropy of one interval of length L in minimal E8 Toda field theory. It has been known for some time that the entanglement entropy of a massive quantum field theory in 1+1 dimensions saturates to a constant value for m1 L <<1 where m1 is the mass of the lightest particle in the spectrum. Subsequently, results by Cardy, Castro-Alvaredo and Doyon have shown that there are exponentially decaying corrections to this behaviour which are characterised by Bessel functions with arguments proportional to m1 L. For the von Neumann entropy the leading correction to saturation takes the precise universal form -K0(2m1 L/8 whereas for the R\\'enyi entropies leading corrections which are proportional to K0(m1 L are expected. Recent numerical work by P\\'almai for the second R\\'enyi entropy of minimal E8 Toda has found next-to-leading order corrections decaying as exp(-2m1 L rather than the expected exp(-m1 L. In this paper we investigate the origin of this result and show that it is incorrect. An exact form factor computation of correlators of branch point twist fields reveals that the leading corrections are proportional to K0(m1 L as expected.

  16. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  17. Consequences of the center-of-mass correction in nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Reinhard, P.G.; Maruhn, J.A.

    2000-01-01

    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. (orig.)

  18. Black-Body Radiation Correction to the Polarizability of Helium

    OpenAIRE

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to black-body radiation is calculated near room temperature. A precise theoretical determination of the black-body radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ord...

  19. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  20. Activation and dissociation of CO2 on the (001), (011), and (111) surfaces of mackinawite (FeS): A dispersion-corrected DFT study.

    Science.gov (United States)

    Dzade, N Y; Roldan, A; de Leeuw, N H

    2015-09-07

    Iron sulfide minerals, including mackinawite (FeS), are relevant in origin of life theories, due to their potential catalytic activity towards the reduction and conversion of carbon dioxide (CO2) to organic molecules, which may be applicable to the production of liquid fuels and commodity chemicals. However, the fundamental understanding of CO2 adsorption, activation, and dissociation on FeS surfaces remains incomplete. Here, we have used density functional theory calculations, corrected for long-range dispersion interactions (DFT-D2), to explore various adsorption sites and configurations for CO2 on the low-index mackinawite (001), (110), and (111) surfaces. We found that the CO2 molecule physisorbs weakly on the energetically most stable (001) surface but adsorbs relatively strongly on the (011) and (111) FeS surfaces, preferentially at Fe sites. The adsorption of the CO2 on the (011) and (111) surfaces is shown to be characterized by significant charge transfer from surface Fe species to the CO2 molecule, which causes a large structural transformation in the molecule (i.e., forming a negatively charged bent CO2 (-δ) species, with weaker C-O confirmed via vibrational frequency analyses). We have also analyzed the pathways for CO2 reduction to CO and O on the mackinawite (011) and (111) surfaces. CO2 dissociation is calculated to be slightly endothermic relative to the associatively adsorbed states, with relatively large activation energy barriers of 1.25 eV and 0.72 eV on the (011) and (111) surfaces, respectively.

  1. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  2. An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies up to 300 keV

    Science.gov (United States)

    Kurková, Dana; Judas, Libor

    2018-05-01

    Gamma and X-ray energy spectra measured with semiconductor detectors suffer from various distortions, one of them being so-called "tailing" caused by an incomplete charge collection. Using the Hecht equation, a response matrix of size 321 × 321 was constructed which was used to correct the effect of incomplete charge collection. The correction matrix was constructed analytically for an arbitrary energy bin and the size of the energy bin thus defines the width of the spectral window. The correction matrix can be applied separately from other possible spectral corrections or it can be incorporated into an already existing response matrix of the detector. The correction was tested and its adjustable parameters were optimized on the line spectra of 57Co measured with a cadmium telluride (CdTe) detector in a spectral range from 0 up to 160 keV. The best results were obtained when the values of the free path of holes were spread over a range from 0.4 to 1.0 cm and weighted by a Gauss function. The model with the optimized parameter values was then used to correct the line spectra of 152Eu in a spectral range from 0 up to 530 keV. An improvement in the energy resolution at full width at half maximum from 2.40 % ± 0.28 % to 0.96 % ± 0.28 % was achieved at 344.27 keV. Spectra of "narrow spectrum series" beams, N120, N150, N200, N250 and N300, generated with tube voltages of 120 kV, 150 kV, 200 kV, 250 kV and 300 kV respectively, and measured with the CdTe detector, were corrected in the spectral range from 0 to 160 keV (N120 and N150) and from 0 to 530 keV (N200, N250, N300). All the measured spectra correspond both qualitatively and quantitatively to the available reference data after the correction. To obtain better correspondence between N150, N200, N250 and N300 spectra and the reference data, lower values of the free paths of holes (range from 0.16 to 0.65 cm) were used for X-ray spectra correction, which suggests energy dependence of the phenomenon.

  3. Numerical measures of the degree of non-proportionality of multiaxial fatigue loadings

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2015-07-01

    Full Text Available The influence of the non-proportional loadings on the fatigue life depends on the material ductility. Ductile materials react with a shortening of lifetime compared to proportional loading conditions. For a semiductile material there is almost no difference between proportional and non-proportional loadings with respect to the fatigue life. Brittle materials show an increase of the lifetime under non-proportional loadings. If fatigue life assessment is performed using stress-based hypotheses, it is a rather difficult task to take into account material ductility correctly, especially the fatigue life reduction as displayed by ductile materials. Most stress-based hypotheses will compute a longer fatigue life under non-proportional loading conditions. There are also hypotheses, which already include quantitative evaluation of the non-proportionality (e.g. EESH, SSCH and MWCM. Anyway in order to improve assessment for ductile materials, some sort of numerical measure for the degree of non-proportionality of the fatigue loading is required. A number of measures of this kind (or non-proportionality factors were proposed in the literature and are discussed here: - the factor used in EESH is a quotient of stress amplitudes integrals, - the factor according to Gaier, which works with a discrete stress tensor values in a scaled stress space, - the factor according to Kanazawa, which makes use of plane-based stress values, - the factor used in MWCM, which exploits stress values in the plane with the highest shear stress amplitude, a new non-proportionality factor, which is based on the correlation between individual stress tensor components, is proposed. General requirements imposed on the non-proportionality factors are discussed and each of the factors is evaluated with respect to these requirements. Also application with the stress-based hypotheses is discussed and illustrated using the experimental data for aluminum and magnesium welded joints under

  4. Lowest-order corrections to the RPA polarizability and GW self-energy of a semiconducting wire

    NARCIS (Netherlands)

    Groot, de H.J.; Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    We present the results of the addition of lowest-order vertex and self-consistency corrections to the RPA polarizability and the GW self-energy for a semiconducting wire. It is found that, when starting from a local density approximation zeroth-order Green function and systematically including these

  5. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  6. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  7. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  8. Understanding decimal proportions: discrete representations, parallel access, and privileged processing of zero.

    Science.gov (United States)

    Varma, Sashank; Karl, Stacy R

    2013-05-01

    Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Operability test procedure for 211BA flow proportional sampler

    International Nuclear Information System (INIS)

    Weissenfels, R.D.

    1994-01-01

    The purpose of this operability test procedure (OTP) is to verify the 211-BA flow proportional sampler system and components function correctly as intended by design. System test will include the sampling system, all associated instrumentation, and Facility Process Monitor and Control System (FPMCS). The combined chemical sewer stream from B Plant flows through sump 211BA-SMP-01 located in 211-BA and is continuously monitored for gamma and beta radiation and pH. 211-BA has been upgraded to include a flow proportional sampler. A specified sample volume will be withdrawn at programmed intervals from the 211BA sump and deposited in a 19 liter plastic carboy. The sampler will be programmed per the vendor installation and operations manual by B Plant instrument maintenance personnel. Samples will be taken during five consecutive sample cycles with the sample volumes and sample frequencies recorded for comparison purposes. Additional tests related to the sampler include the alarm circuitry for loss of power and failure to obtain sample

  10. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  11. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  12. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  13. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  14. Feed-Forward Corrections for Tune and Chromaticity Injection Decay During 2015 LHC Operation

    CERN Document Server

    Solfaroli Camillocci, Matteo; Lamont, Mike; Schaumann, Michaela; Todesco, Ezio; Wenninger, Jorg

    2016-01-01

    After two years of shutdown, the Large Hadron Collider (LHC) has been operated in 2015 at 6.5 TeV, close to its designed energy. When the current is stable at low field, the harmonic components of the main circuits are subject to a dynamic variation induced by current redistribution on the superconducting cables. The Field Description of the LHC (FiDel) foresaw an increase of the decay at injection of tune (quadrupolar components) and chromaticity (sextupolar components) of about 50% with respect to LHC Run1 due to the higher operational current. This paper discusses the beam-based measurements of the decay during the injection plateau and the implementation and accuracy of the feed-forward corrections as present in 2015. Moreover, the observed tune shift proportional to the circulating beam intensity and it's foreseen feed-forward correction are covered.

  15. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-01-02

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination

  16. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  17. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    Energy Technology Data Exchange (ETDEWEB)

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Yamamoto, Ryohei [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Imamura, Akira [Hiroshima Kokusai Gakuin University, 6-20-1 Nakano, Aki-ku, Hiroshima 739-0321 (Japan); Aoki, Yuriko, E-mail: aoki.yuriko.397@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  18. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  19. Radiative corrections to the charged pion-pair production process {pi}{sup -}{gamma} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup -} at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N.; Petschauer, S. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2013-12-15

    We calculate the one-photon loop radiative corrections to the charged pion-pair production process {pi}{sup -}{gamma} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup -}. In the low-energy region this reaction is governed by the chiral pion-pion interaction. The pertinent set of 42 irreducible photon-loop diagrams is calculated by using the package FeynCalc. Electromagnetic counterterms with two independent low-energy constants k{sub 1} and k{sub 2} are included in order to remove the ultraviolet divergences generated by the photon loops. Infrared finiteness of the virtual radiative corrections is achieved by including soft photon radiation below an energy cut-off {Lambda}. The purely electromagnetic interaction of the charged pions mediated by one-photon exchange is also taken into account. The radiative corrections to the total cross section (in the isospin limit) vary between +10% close to threshold and about -1% at a center-of-mass energy of 7m{sub {pi}}. The largest contribution comes from the simple one-photon exchange. Radiative corrections to the {pi}{sup +}{pi}{sup -} and {pi}{sup -}{pi}{sup -} mass spectra are studied as well. The Coulomb singularity of the final-state interaction produces a kink in the dipion mass spectra. The virtual radiative corrections to elastic {pi}{sup -}{pi}{sup -} scattering are derived additionally. (orig.)

  20. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    David Strand

    2006-01-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  1. Terrain Correction on the moving equal area cylindrical map projection of the surface of a reference ellipsoid

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in

  2. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanhui [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027 (China); Liu, Ningning [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Ku, Xiaoke, E-mail: xiaokeku@zju.edu.cn [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Fan, Jianren [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  3. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Jin, Hanhui; Liu, Ningning; Ku, Xiaoke; Fan, Jianren

    2017-01-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  4. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located in...

  5. Changes of surface structure of Ni, W and chromium-nickel steel Cr18Ni10 irradiated by high fluences of krypton ions with high energies

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Semina, V.K.; Khalil, A.; Suvorov, A.L.; Stepanov, A.Eh.; Cheblukov, Yu.N.

    1999-01-01

    The surfaces of W single crystal, Ni polycrystal and chromium-nickel steel, irradiated by Kr ions with energy 305 and 245 MeV up to the fluences 2*10 15 and 3*10 15 ion/cm 2 , were studied by means of scanning electron microscopy. The evaporation coefficients of material surfaces were estimated on the base of changes of surface relief. The values of these coefficients turned out much more than ones predicted by the inelastic sputtering model. The method of 'step' was offered and realized for the more correct estimations evaporation coefficient on the Ni example. The phenomenological model explaining the observed phenomena is introduced

  6. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  7. The relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here are of s......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here...... are of semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains...

  8. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    Science.gov (United States)

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  9. A novel low energy electron microscope for DNA sequencing and surface analysis.

    Science.gov (United States)

    Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W

    2014-10-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  10. Scaling of surface energy fluxes using remotely sensed data

    Science.gov (United States)

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  11. Medium corrections to nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1990-01-01

    The Bethe-Goldstone equations have been solved for both negative and positive energies to specify two nucleon G-matrices fully off of the energy shell. Medium correction effects of Pauli blocking and of the auxiliary potential are included in infinite matter systems characterized by fermi momenta in the range 0.5 fm -1 to 1.8 fm -1 . The Paris interaction is used as the starting potential in most calculations. Medium corrections are shown to be very significant over a large range of energies and densities. On the energy shell values of G-matrices vary markedly from those of free two nucleon (NN) t-matrices which have been solved by way of the Lippmann-Schwinger equation. Off of the energy shell, however, the free and medium corrected Kowalski-Noyes f-ratios rate are quite similar suggesting that a useful model of medium corrected G-matrices are appropriately scaled free NN t-matrices. The choice of auxiliary potential form is also shown to play a decisive role in the negative energy regime, especially when the saturation of nuclear matter is considered. 30 refs., 7 tabs., 7 figs

  12. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  13. Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well

    International Nuclear Information System (INIS)

    Huxtable, B.D.

    1988-01-01

    It is shown, for V in a particular class of smooth functions, that the total binding energy, E(Z), of Z noninteracting Fermions in the potential well Z 4/3 V(Z 1/3 X) obeys E(Z) = c TF (V)Z 7/3 + O(Z 5/3 ) as Z → ∞. Here c TF (V) is the coefficient predicted by Thomas-Fermi theory. This result is consistent with the conjectured Scott correction, which occurs at order Z 2 , to the total binding energy of an atomic number Z. This correction is thought to arise only because V(x)∼ - |x| -1 near x = 0 in the atomic problem, and so V is not a smooth function

  14. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  15. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  16. Radiative corrections in neutrino-deuterium disintegration

    International Nuclear Information System (INIS)

    Kurylov, A.; Ramsey-Musolf, M.J.; Vogel, P.

    2002-01-01

    The radiative corrections of order α for the charged- and neutral-current neutrino-deuterium disintegration for energies relevant to the SNO experiment are evaluated. Particular attention is paid to the issue of the bremsstrahlung detection threshold. It is shown that the radiative corrections to the total cross section for the charged current reaction are independent of that threshold, as they must be for consistency, and amount to a slowly decreasing function of the neutrino energy E ν , varying from about 4% at low energies to 3% at the end of the 8 B spectrum. The differential cross section corrections, on the other hand, do depend on the bremsstrahlung detection threshold. Various choices of the threshold are discussed. It is shown that for a realistic choice of the threshold and for the actual electron energy threshold of the SNO detector, the deduced 8 B ν e flux should be decreased by about 2%. The radiative corrections to the neutral-current reaction are also evaluated

  17. Effect of crystal habits on the surface energy and cohesion of crystalline powders.

    Science.gov (United States)

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y

    2014-09-10

    The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.

  18. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  19. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  20. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001); TOPICAL

    International Nuclear Information System (INIS)

    2001-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination and whether

  1. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    Science.gov (United States)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  2. Jet energy scale corrections and their impact on measurements of the top-quark mass at CMS

    International Nuclear Information System (INIS)

    Kirschenmann, Henning

    2014-10-01

    The final state of many physics processes at the Large Hadron Collider (LHC) is dominated by jets, the experimental signature of quarks and gluons. The precise measurement of jets is a prerequisite to understand these processes. In this thesis, the determination of jet-energy corrections at CMS using dijet events is described, and the investigation of a correction specifically tailored to improve the reconstruction of b-jets in top-quark mass measurements is presented. Dijet events are used to determine the response relative to the central detector region in data and simulation as a function of the pseudorapidity η. Two complementary response estimators are introduced and detailed supplementary studies, e.g. of the time stability of the response, are performed. For the 2011 data-taking period, the MC/Data differences are found to be below 5% in the tracker-covered detector region with systematic uncertainties of less than 1%. Furthermore, a study of b-jet properties in 2012 data is presented. The correlation of various such observables with the response is exploited to improve the jet-energy measurement of b-jets. A resolution improvement of about 10% can be achieved, and the evaluation of b-jet specific jet-energy scale uncertainties (b-JES) indicates improvements of about 30%. This additional correction is applied to an existing measurement of the top-quark mass in the muon+jets channel. It leads to a statistical sensitivity improvement of about 10% and a reduction of systematic uncertainties related to the b-JES from 0.6 GeV to 0.3 GeV.

  3. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  4. Fermionic one-loop corrections to soliton energies in 1+1 dimensions

    International Nuclear Information System (INIS)

    Graham, N.; Jaffe, R.L.

    1999-01-01

    We demonstrate an unambiguous and robust method for computing fermionic corrections to the energies of classical background field configurations. We consider the particular case of a sequence of background field configurations that interpolates continuously between the trivial vacuum and a widely separated soliton/antisoliton pair in 1+1 dimensions. Working in the continuum, we use phase shifts, the Born approximation, and Levinson's theorem to avoid ambiguities of renormalization procedure and boundary conditions. We carry out the calculation analytically at both ends of the interpolation and numerically in between, and show how the relevant physical quantities very continuously. In the process, we elucidate properties of the fermionic phase shifts and zero-modes

  5. Theoretical investigation of the energy spectra of the oxygen isoelectronic sequences taking into account relativistic corrections

    International Nuclear Information System (INIS)

    Bogdanovich, P.O.; Shadzhyuvene, S.D.; Boruta, I.I.; Rudzikas, Z.B.

    1976-01-01

    A method for calculating energy spectra of atoms and ions having complex electron configurations is developed which takes into account relativistic corrections of the order of magnitude of the square of the structure constant. The corrections included are caused by the dependence of the electron mass on velocity; by orbit-orbit interaction; by contact interaction and by spin-orbit interaction. The method described is realized in the form of universal algorithms and programs which are written in the Fortran 4 in the BESM-6 version. Examples are given of calculating the ground ls 2 2s 2 2p 6 configuration and two excited ls 2 2s 2 2p 3 3s and ls 2 2s2p 5 ones of the isoelectronic oxygen series, both with and without taking into account the relativistic corrections. The value of the nuclear charge varies from Z=8 to Z=80. The contribution of relativistic corrections increases with Z. The effect of relativistic corrections on the distance between the centers of gravity of ground and excited configurations increases with Z. The comparison of the results obtained with experimental data is made

  6. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  7. Influence factors and corrections of low-energy γ-ray penetration in ash analysis

    International Nuclear Information System (INIS)

    Cheng Bo; Tuo Xianguo; Zhou Jianbin; Tong Yunfu

    2002-01-01

    The author introduces the system of the coal ash analyzer. This system is based on the low-energy γ-ray source 241 Am emitted two kinds of energy peaks 26.4 keV and 59.6 keV to analyze the ash in coal with the penetration way. The author also offers the factors to influence the accuracy of ash analysis, such as the size of coal, the environmental temperature, the important elements in coal, and water in coal too. At the same time, depending on the cause of the factors, it offer some methods of correction such as the way of the auto-hold energy peak, the way of the auto-compensation way, and so on. The author also mentions the other influence factors of the measurement accuracy to be noticed during the experiment. All these aim at clearing off the influence factors of measurement accuracy through the experiments

  8. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    Science.gov (United States)

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  9. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  10. Ab initio Investigation to Model Stilbene Photo-Physical Properties by Combining CC2 Topological Investigation and CASPT2 Energy Corrections

    International Nuclear Information System (INIS)

    Tomasello, Gaia; Altoe, Piero; Garavelli, Marco; Orlandi, Giorgio

    2007-01-01

    Stilbene photoexcitation and consequent decay to the ground state has been investigated by mapping the Minimum Energy Path (MEP) from S 1 spectroscopic state triggering an almost barrierless reaction pathway to an S 1 /S 0 degenerate region. The particular influence of the σ-π excitation on the S 1 wave function, dominated by a π→π* character, reveals how the non-dynamical correlation energy was important to correctly describe the excited state behaviour and the topological aspect of its potential energy surface. Several strategies of calculations, by using CASSCF//CASPT2 methods, were performed trying to improve the photochemical description nowadays known. Both symmetry and non symmetry preserving computations were performed; systematically was concluded that, because of the limit of CASSCF description enables only to introduce the correlation effect such as the ones due to σ-π excitations, CASSCF and CASPT2 topologies are probably often not in agreement. Thus CC2 methodology was adopted o optimize the S 1 geometries and obtain reasonable structures for the minima. Two S 1 /S 0 accessible conical intersections featured by pyramidalized carbons were located on the first excited state explaining the ultrafast radiationless decay to the ground state and the photoproducts observed within the timescale of ps

  11. Low energy quasi free scattering on nuclear surface

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, S.

    1983-05-01

    The result of RGM calculation of low energy /sup 3/He(n, n)/sup 3/ He total elastic cross section does not agree well with experimental data for E/sub n/<1 MeV. This discrepancy can be improved by assuming lwo energy quasi-free scattering of particles beyond the nuclear surface.

  12. Harvesting electrostatic energy using super-hydrophobic surfaces

    Science.gov (United States)

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  13. Correction for variable moderation and multiplication effects associated with thermal neutron coincidence counting

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    A correction is described for multiplication and moderation when doing passive thermal neutron coincidence counting nondestructive assay measurements on powder samples of PuO 2 mixed arbitrarily with MgO, SiO 2 , and moderating material. The multiplication correction expression is shown to be approximately separable into the product of two independent terms; F/sub Pu/ which depends on the mass of 240 Pu, and F/sub αn/ which depends on properties of the matrix material. Necessary assumptions for separability are (1) isotopic abundances are constant, and (2) fission cross sections are independent of incident neutron energy: both of which are reasonable for the 8% 240 Pu powder samples considered here. Furthermore since all prompt fission neutrons are expected to have nearly the same energy distributions, variations among different samples can be due only to the moderating properties of the samples. Relative energy distributions are provided by a thermal neutron well counter having two concentric rings of 3 He proportional counters placed symmetrically about the well. Measured outer-to-inner ring ratios raised to an empirically determined power for coincidences, (N/sup I//N/sup O/)/sup Z/, and singles, (T/sup O//T/sup I/)/sup delta/, provide corrections for moderation and F/sub αn/ respectively, and F/sub Pu/ is approximated by M 240 /sup X//M 240 . The exponents are calibration constants determined by a least squares fitting procedure using standards' data. System calibration is greatly simplified using the separability principle. Once appropriate models are established for F/sub Pu/ and F/sub αn/, only a few standards are necessary to determine the calibration constants associated with these terms. Since F/sub Pu/ is expressed as a function of M 240 , correction for multiplication in a subsequent assay demands only a measurement of F/sub αn/

  14. Surface energy and crystallization phenomena of ammonium dinitramide

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Does the Boltzmann Principle Need a Dynamical Correction?

    Science.gov (United States)

    Adib, Artur B.

    2004-11-01

    In an attempt to derive thermodynamics from classical mechanics, an approximate expression for the equilibrium temperature of a finite system has been derived (M. Bianucci, R. Mannella, B. J. West and P. Grigolini, Phys. Rev. E 51: 3002 (1995)) which differs from the one that follows from the Boltzmann principle S = kln Ω( E) via the thermodynamic relation 1/ T=∂ S / ∂ E by additional terms of "dynamical" character, which are argued to correct and generalize the Boltzmann principle for small systems (here Ω( E) is the area of the constant-energy surface). In the present work, the underlying definition of temperature in the Fokker-Planck formalism of Bianucci et al., is investigated and shown to coincide with an approximate form of the equipartition temperature. Its exact form, however, is strictly related to the "volume" entropy S = k ln Ф( E) via the thermodynamic relation above for systems of any number of degrees of freedom ( Ф( E) is the phase space volume enclosed by the constant-energy surface). This observation explains and clarifies the numerical results of Bianucci et al., and shows that a dynamical correction for either the temperature or the entropy is unnecessary, at least within the class of systems considered by those authors. Explicit analytical and numerical results for a particle coupled to a small chain ( N~10) of quartic oscillators are also provided to further illustrate these facts.

  16. Correction of dental artifacts within the anatomical surface in PET/MRI using active shape models and k-nearest-neighbors

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune H.

    2014-01-01

    n combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Metal implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC. Several papers acknowledge the problem in PET attenuation correction when dental...... artifacts are ignored, but none of them attempts to solve the problem. We propose a clinically feasible correction method which combines Active Shape Models (ASM) and k- Nearest-Neighbors (kNN) into a simple approach which finds and corrects the dental artifacts within the surface boundaries of the patient...... anatomy. ASM is used to locate a number of landmarks in the T1-weighted MR-image of a new patient. We calculate a vector of offsets from each voxel within a signal void to each of the landmarks. We then use kNN to classify each voxel as belonging to an artifact or an actual signal void using this offset...

  17. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  18. Crystal Structures, Surface Stability, and Water Adsorption Energies of La-Bastnäsite via Density Functional Theory and Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Sriram Goverapet [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shivaramaiah, Radha [Univ. of California, Davis, CA (United States); Kent, Paul R. C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stack, Andrew G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Navrotsky, Alexandra [Univ. of California, Davis, CA (United States); Riman, Richard [State Univ. of New Jersey, Piscataway, NJ (United States); Anderko, Andre [OLI Systems, Inc., Cedar Knolls, NJ (United States); Bryantsev, Vyacheslav S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-11

    Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to the structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m2 in vacuum and 0.45 J/m2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m2, in good agreement with a value of 1.11 J/m2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of

  19. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    International Nuclear Information System (INIS)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels

  20. Relativistic corrections to η{sub c}-pair production in high energy proton–proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.P., E-mail: a.p.martynenko@samsu.ru [Samara State University, Pavlov Street 1, 443011, Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation); Trunin, A.M., E-mail: amtrnn@gmail.com [Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2013-06-10

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic corrections to the double η{sub c} meson production in proton–proton interactions at LHC energies. Relativistic terms in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave functions to the reference frame of moving charmonia are taken into account. For the gluon and quark propagators entering the amplitude we use a truncated expansion in relative quark momenta up to the second order. Relativistic corrections to the quark bound state wave functions are considered by means of the Breit-like potential. It turns out that the examined effects decrease total non-relativistic cross section more than two times and on 20 percents in the rapidity region of LHCb detector.

  1. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  2. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  3. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  4. Comprehensive applications of the gas flow proportional counters for radiological surveillance

    International Nuclear Information System (INIS)

    Babu, D.A.R.; Raman, Anand; Ashokkumar, P.; Sharma, D.N.

    2008-01-01

    Gas Flow Proportional Counters (GFPC) have been developed indigenously for various radiation protection applications. These detectors can be fabricated for 2 inches diameter filter paper sample counting applications to large area (∼1500 cm 2 ) detectors for surface contamination applications. Thin entrance windows allow non penetrating type of radiations like alpha and low energy beta particles, Efficiencies (for alpha and beta radiations) are comparable to conventional detectors used to measure these radiations. Poor gamma efficiency ( 2 /γ ratio, a high figure of merit and enables efficient gamma background rejection. These detectors are quite suitable for Indian environmental conditions. Three systems have been developed and successfully incorporated in to the radiation surveillance program at various nuclear facilities. The systems based on GFPC detectors include: a) Multiple sample gross alpha counting system; b) Laundry monitoring system; c) Alpha hand contamination monitoring system. The first of these enables simultaneous gross alpha counting of five air activity filter paper samples. The area of the detector surface is optimized to cover the 2 inches sized filter paper samples routinely used for the purpose. Five numbers of GFPC 's are arranged sequentially coupled to five individual amplifiers - micro controller modules to process the signal from the five counters. The laundry monitor which is micro controller based system consists of four large area multiwire GFPC detectors (700 cm 2 sensitive area) used to monitor alpha contamination of decontaminated laundry, Each detector uses a charge sensitive preamplifier coupled to I 2 C counter. The alpha hand monitoring system consists of four large area multiwire gas flow proportional detectors (330 cm 2 sensitive area each). A micro controller-based module is employed to initiate the counting process automatically when the hands are inserted in to the suitably designed window slots and provides audio and

  5. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  6. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  7. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  8. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  9. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  10. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  11. Automation system for tritium contaminated surface monitoring

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Raceanu, Mircea; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  12. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  13. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  14. Determination of shell correction energies at saddle point using pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Golda, K.S.; Saxena, A.; Mittal, V.K.; Mahata, K.; Sugathan, P.; Jhingan, A.; Singh, V.; Sandal, R.; Goyal, S.; Gehlot, J.; Dhal, A.; Behera, B.R.; Bhowmik, R.K.; Kailas, S.

    2013-01-01

    Pre-scission neutron multiplicities have been measured for 12 C + 194, 198 Pt systems at matching excitation energies at near Coulomb barrier region. Statistical model analysis with a modified fission barrier and level density prescription have been carried out to fit the measured pre-scission neutron multiplicities and the available evaporation residue and fission cross sections simultaneously to constrain statistical model parameters. Simultaneous fitting of the pre-scission neutron multiplicities and cross section data requires shell correction at the saddle point

  15. Direct measurement of gaseous activities by diffusion-in long proportional counter method

    International Nuclear Information System (INIS)

    Yoshida, M.; Yamamoto, T.; Wu, Y.; Aratani, T.; Uritani, A.; Mori, C.

    1993-01-01

    Direct measurement of gaseous activities by the diffusion-in long proportional counter method (DLPC method) was studied. The measuring time without end effect was estimated by observing the behavior of 37 Ar in the counter and was long enough to carry out the accurate activity measurement. The correction for wall effect was also examined on the basis of the measured and calculated correction factors. Among the tested gases of methane, P10 gas and propane, P10 gas was made clear to be a suitable counting gas for the DLPC method because of good diffusion properties and small wall effect. This method is quite effective for standardization of gaseous activities used for tracer experiments and calibration works of radioactive gas monitoring instruments. (orig.)

  16. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    Science.gov (United States)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  17. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  18. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance.

    Science.gov (United States)

    Veldhorst, Margriet A B; Westerterp, Klaas R; van Vught, Anneke J A H; Westerterp-Plantenga, Margriet S

    2010-11-01

    Two types of relatively high-protein diets, with a normal or low proportion of carbohydrates, have been shown effective for weight loss. The objective was to assess the significance of the presence or absence of carbohydrates and the proportion of fat in high-protein diets for affecting appetite suppression, energy expenditure, and fat oxidation in normal-weight subjects in energy balance. Subjects (aged 23 (sd 3) years and BMI 22·0 (sd 1·9) kg/m2) were stratified in two groups. Each was offered two diets in a randomised cross-over design: group 1 (n 22) - normal protein (NP; 10, 60 and 30 % energy (En%) from protein, carbohydrate and fat), high protein (HP; 30, 40 and 30 En%); group 2 (n 23) - normal protein (NP-g; 10, 60 and 30 En%), high protein, carbohydrate-free (HP-0C; 30, 0 and 70 En%) for 2 d; NP-g and HP-0C were preceded by glycogen-lowering exercise (day 1). Appetite was measured throughout day 2 using visual analogue scales (VAS). Energy expenditure (EE) and substrate oxidation (respiratory quotient; RQ) were measured in a respiration chamber (08.00 hours on day 2 until 07.30 hours on day 3). Fasting plasma β-hydroxybutyrate (BHB) concentration was measured (day 3). NP-g and NP did not differ in hunger, EE, RQ and BHB. HP-0C and HP v. NP-g and NP, respectively, were lower in hunger (P fat oxidation were higher on a high-protein diet without than with carbohydrates exchanged for fat. Energy expenditure was not affected by the carbohydrate content of a high-protein diet.

  19. 77 FR 8095 - Technical Corrections to Commission Regulations

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 2 [Docket No. RM11-30-000; Order No. 756] Technical Corrections to Commission Regulations Issued February 8, 2012. AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Final rule: correcting amendment. SUMMARY: This document adds...

  20. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  1. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  2. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  3. The regulatory instruments for the correction of energy-related environmental externalities

    International Nuclear Information System (INIS)

    Labanderia Villot, X.; Lopez Otero, X.; Rodriguez Mendez, M.

    2007-01-01

    In this paper we deal with the different regulatory instruments for the correction of energy-related environmental externalities. This objective is justified by the size and general occurrence of this type of externalities in contemporary societies. In this sense, we distinguish between three main generations of instruments: conventional regulations, market mechanisms and voluntary approaches. In all cases, some practical examples of their application are presented, albeit emphasizing the experience with the so-called market instruments and the results of hypothetical simulations for the Spanish case. As a general conclusion we underline the role of economic analysis in the design, choice and evaluation of those mechanisms, which also explains the structure and contents of the article. (Author)

  4. Constructing a multidimensional free energy surface like a spider weaving a web.

    Science.gov (United States)

    Chen, Changjun

    2017-10-15

    Complete free energy surface in the collective variable space provides important information of the reaction mechanisms of the molecules. But, sufficient sampling in the collective variable space is not easy. The space expands quickly with the number of the collective variables. To solve the problem, many methods utilize artificial biasing potentials to flatten out the original free energy surface of the molecule in the simulation. Their performances are sensitive to the definitions of the biasing potentials. Fast-growing biasing potential accelerates the sampling speed but decreases the accuracy of the free energy result. Slow-growing biasing potential gives an optimized result but needs more simulation time. In this article, we propose an alternative method. It adds the biasing potential to a representative point of the molecule in the collective variable space to improve the conformational sampling. And the free energy surface is calculated from the free energy gradient in the constrained simulation, not given by the negative of the biasing potential as previous methods. So the presented method does not require the biasing potential to remove all the barriers and basins on the free energy surface exactly. Practical applications show that the method in this work is able to produce the accurate free energy surfaces for different molecules in a short time period. The free energy errors are small in the cases of various biasing potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  6. Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

  7. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  8. Clean slate corrective action investigation plan

    International Nuclear Information System (INIS)

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT)

  9. Clean slate corrective action investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT).

  10. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Brajkovic, Denis [Clinic for Dentistry, Department of Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac (Serbia); Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Kisic, Danilo [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia); Zelic, Ksenija; Djuric, Marija [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Rakocevic, Zlatko, E-mail: zlatkora@vinca.rs [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia)

    2014-08-30

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  11. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    International Nuclear Information System (INIS)

    Brajkovic, Denis; Antonijevic, Djordje; Milovanovic, Petar; Kisic, Danilo; Zelic, Ksenija; Djuric, Marija; Rakocevic, Zlatko

    2014-01-01

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  12. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  13. Calculation of the surface energy of hcp-metals with the empirical electron theory

    International Nuclear Information System (INIS)

    Fu Baoqin; Liu Wei; Li Zhilin

    2009-01-01

    A brief introduction of the surface model based on the empirical electron theory (EET) and the dangling bond analysis method (DBAM) is presented in this paper. The anisotropy of spatial distribution of covalent bonds of hexagonal close-packed (hcp) metals such as Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Cd, Hf, and Re, has been analyzed. And under the first-order approximation, the calculated surface energy values for low index surfaces of these hcp-metals are in agreement with experimental and other theoretical values. Correlated analysis showed that the anisotropy of surface energy of hcp-metals was related with the ratio of lattice constants (c/a). The calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) is generated from EET.

  14. A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    CERN Document Server

    Li, Zhiying; Wei, Yifeng; Wang, Chi; Zhang, Yunlong; Wen, Sicheng; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.

  15. DNA Methylation Patterns in Cord Blood of Neonates Across Gestational Age: Association With Cell-Type Proportions.

    Science.gov (United States)

    Braid, Susan M; Okrah, Kwame; Shetty, Amol; Corrada Bravo, Hector

    A statistical methodology is available to estimate the proportion of cell types (cellular heterogeneity) in adult whole blood specimens used in epigenome-wide association studies (EWAS). However, there is no methodology to estimate the proportion of cell types in umbilical cord blood (also a heterogeneous tissue) used in EWAS. The objectives of this study were to determine whether differences in DNA methylation (DNAm) patterns in umbilical cord blood are the result of blood cell type proportion changes that typically occur across gestational age and to demonstrate the effect of cell type proportion confounding by comparing preterm infants exposed and not exposed to antenatal steroids. We obtained DNAm profiles of cord blood using the Illumina HumanMethylation27k BeadChip array for 385 neonates from the Boston Birth Cohort. We estimated cell type proportions for six cell types using the deconvolution method developed by . The cell type proportion estimates segregated into two groups that were significantly different by gestational age, indicating that gestational age was associated with cell type proportion. Among infants exposed to antenatal steroids, the number of differentially methylated CpGs dropped from 127 to 1 after controlling for cell type proportion. EWAS utilizing cord blood are confounded by cell type proportion. Careful study design including correction for cell type proportion and interpretation of results of EWAS using cord blood are critical.

  16. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  17. proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    The system consists of a multiwire-based proportional counter with gas ... volume of the detector to avoid any loss of detection efficiency due to absorption in the entrance ... Figure 1. (a) Energy levels of 90Sr decay scheme and (b) energy distribution of β- ... High voltage is applied to the anode grid and high electric field is.

  18. The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2005-08-01

    Full Text Available Abstract Background A prominent theoretical explanation for 3/4-power allometric scaling of metabolism proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal. The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a fractal dimension equal to or greater than 3 and less than or equal to 4. Results It is shown that contradicting predictions can be derived from the assumptions of the model. When errors in the model are corrected, it is shown to predict that metabolic rate is proportional to body mass (proportional scaling. Conclusion The presence of space-filling fractal nutrient exchange surfaces does not provide a satisfactory explanation for 3/4-power metabolic rate scaling.

  19. Load proportional safety brake

    Science.gov (United States)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  20. Reconstructions of f(T) gravity from entropy-corrected holographic and new agegraphic dark energy models in power-law and logarithmic versions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Pameli; Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)

    2016-09-15

    Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f(T) gravity theory where T represents the torsion scalar teleparallel gravity. We reconstruct the different f(T) modified gravity models in the spatially flat Friedmann-Robertson-Walker universe according to entropy-corrected versions of the holographic and new agegraphic dark energy models in power-law and logarithmic corrections, which describe an accelerated expansion history of the universe. We conclude that the equation of state parameter of the entropy-corrected models can transit from the quintessence state to the phantom regime as indicated by recent observations or can lie entirely in the phantom region. Also, using these models, we investigate the different areas of the stability with the help of the squared speed of sound. (orig.)

  1. A general formula for computing maximum proportion correct scores in various psychophysical paradigms with arbitrary probability distributions of stimulus observations.

    Science.gov (United States)

    Dai, Huanping; Micheyl, Christophe

    2015-05-01

    Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments.

  2. Accurate density functional prediction of molecular electron affinity with the scaling corrected Kohn–Sham frontier orbital energies

    Science.gov (United States)

    Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao

    2018-04-01

    Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.

  3. Corrective action investigation plan for the Roller Coaster RADSAFE Area, Corrective Action Unit 407, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. CAUs consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 407, the Roller Coaster RADSAFE Area (RCRSA) which is located on the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range Complex, is approximately 255 km (140 mi) northwest of Las Vegas, Nevada. CAU No. 407 is comprised of only one CAS (TA-23-001-TARC). The RCRSA was used during May and June 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The surface and subsurface soils are likely to have been impacted by plutonium and other contaminants of potential concern (COPCs) associated with decontamination activities at this site. The purpose of the corrective action investigation described in this CAIP is to: identify the presence and nature of COPCs; determine the vertical and lateral extent of COPCs; and provide sufficient information and data to develop and evaluate appropriate corrective actions for the CAS

  4. Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction

    International Nuclear Information System (INIS)

    Kuitsinskii, A.A.

    1986-01-01

    The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented

  5. Uncertainties in the correction factors as the dose polarization and recombination at different energies

    International Nuclear Information System (INIS)

    Alejo Luque, L.; Rodriguez Romero, R.; Castro Tejero, P.; Fandino Lareo, J. M.

    2011-01-01

    This paper discusses the measures and uncertainties of the correction factors for dose-polarization (k, 1) and recombination (k,) of different ionization chambers plane-parallel and cylindrical. The values ??have been obtained using photon and electron beams of various energies generated by linear accelerators nominal Varian 21EX CLJNAC Tomotherapy Hi-Art and JI. We study the cases in which you can avoid the application of the factors obtained, according to the criteria proposed

  6. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  7. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    Science.gov (United States)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  8. Towards self-correcting quantum memories

    Science.gov (United States)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real

  9. Potential energy surface from spectroscopic data in the photodissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Kim, Hwa Joong; Kim, Young Sik

    2001-01-01

    The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO 2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-dependent inversion method and discussed several extensions of the algorithm

  10. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  11. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  12. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  13. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-06-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  14. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  15. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  16. Leading quantum correction to the Newtonian potential

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1994-01-01

    I argue that the leading quantum corrections, in powers of the energy or inverse powers of the distance, may be computed in quantum gravity through knowledge of only the low-energy structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian gravitational potential

  17. Silver inkjet printing with control of surface energy and substrate temperature

    International Nuclear Information System (INIS)

    Lee, S-H; Shin, K-Y; Hwang, J Y; Kang, K T; Kang, H S

    2008-01-01

    The characteristics of silver inkjet printing were intensively investigated with control of surface energy and substrate temperature. A fluorocarbon (FC) film was spincoated on a silicon (Si) substrate to obtain a hydrophobic surface, and an ultraviolet (UV)/ozone (O 3 ) treatment was performed to control the surface wettability of the FC film surface. To characterize the surface changes, we performed measurements of the static and dynamic contact angles and calculated the surface energy by Wu's harmonic mean model. The surface energy of the FC film increased with the UV/O 3 treatment time, while the contact angles decreased. In silver inkjet printing, the hydrophobic FC film could reduce the diameter of the printed droplets. Merging of deposited droplets was observed when the substrate was kept at room temperature. Substrate heating was effective in preventing the merging phenomenon among the deposited droplets, and in reducing the width of printed lines. The merging phenomenon of deposited droplets was also prevented by increasing the UV/O 3 treatment time. Continuous silver lines in the width range of 48.04–139.21 µm were successfully achieved by inkjet printing on the UV/O 3 -treated hydrophobic FC films at substrate temperatures below 90 °C

  18. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  19. Modification of the surface energy in isovalent nano-oxides prepared by chemical synthesis

    International Nuclear Information System (INIS)

    Miagava, J.; Gouvea, D.

    2011-01-01

    The phase stability of the nano-oxides depends on the bulk energy but it also depends on the surface energy. The difference of surface energy of the rutile and anatase phases result in a change of phase stability: TiO_2 without additives is stable as anatase when particles have nanometric size and a high specific surface area whereas rutile is stable when particles are larger. But this stability can be modified through the use of additives. Different studies demonstrate that additives segregate on the particle surface modifying the surface energy. In this work (1-X)TiO_2-XSnO_2 powders were synthesized by the polymeric precursor method with concentrations of 0 ≤ X ≤ 1. The specific surface area measurements demonstrate that the modification of the composition change the specific surface areas and it reaches a maximum at X = 0.005. The Raman spectroscopy demonstrates that a modification on the stability of the TiO_2 polymorphs occurs and the phase rutile is stabilized when SnO_2 is added to the nano powders.(author)

  20. Simulation of the injection damping and resonance correction systems for the HEB of the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, P.; Machida, S.

    1993-02-01

    An injection damping and resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) was investigated by means of multiparticle tracking. For an injection damping study, the code Simpsons is modified to utilize two Beam Position Monitors (BPM) and two dampers. ne particles of 200 Gev/c, numbered 1024 or more, with Gaussian distribution in 6-D phase space are injected into the HEB with certain injection offsets. The whole bunch of particles is then kicked in proportion to the BPM signals with some upper limit. Tracking these particles up to several hundred turn while the damping system is acting shows the turn-by-turn emittance growth, which is caused by the tune spread due to nonlinearity of the lattice and residual chromaticity with synchrotron oscillations. For a resonance correction study, the operating tune is scanned as a function of time so that a bunch goes through a resonance. The performance of the resonance correction system is demonstrated. We optimize the system parameters which satisfy the emittance budget of the HEB, taking into account the realistic hardware requirement.