WorldWideScience

Sample records for surface-emitting lasers vecsels

  1. 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.; Sigrist, M. W.

    2010-08-01

    Mid-IR tunable VECSELs (Vertical External-Cavity Surface-Emitting Lasers) emitting at 4-7 μm wavelengths and suitable for spectroscopic sensing applications are described. They are realized with lead-chalcogenide (IV-VI) narrow band gap materials. The active part, a single 0.6-2-μm thick PbTe or PbSe gain layer, is grown onto an epitaxial Bragg mirror consisting of two or three Pb1- y Eu y Te/BaF2 quarter-wavelength layer pairs. All layers are deposited by MBE in a single run employing a BaF2 or Si substrate, no further processing is needed. The cavity is completed with an external curved top mirror, which is again realized with an epitaxial Bragg structure. Pumping is performed optically with a 1.5-μm laser. Maximum output power for pulsed operation is currently up to >1 Wp at -173°C and >10 mW at 10°C. In continuous wave (CW) operation, 18 mW at 100 K are reached. Still higher operating temperatures and/or powers are expected with better heat-removal structures and better designs employing QW (Quantum-Wells). Advantages of mid-IR VECSELs compared to edge-emitting lasers are their very good beam quality (circular beam with 15 μm are accessible with Pb1- y X y Z (X=Sr, Eu, Sn, Z=Se, Te) and/or including QW.

  2. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  3. 21.2% wall-plug efficiency green laser based on an electrically pumped VECSEL through intracavity second harmonic generation

    Science.gov (United States)

    Zhao, Pu; Xu, Bing; van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Zhou, Delai; Seurin, Jean-Francois; Gao, Peng; Xu, Guoyang; Wang, Qing; Ghosh, Chuni

    2015-03-01

    We have achieved a 21.2% wall-plug efficiency green laser at 532 nm based on an electrically pumped vertical externalcavity surface emitting laser (VECSEL) through intracavity second harmonic generation. The continuous-wave green output power was 3.34 W. The VECSEL gain device is cooled by using a thermoelectric cooler, which can greatly benefit packaging. Both power and efficiency can be further scaled up by optimizing external-cavity design and improving the performance of VECSEL gain device.

  4. Extended Tunability in a Two-Chip VECSEL (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Zakharian, Aramais R; Hader, Joerg; Moloney, Jerome V; Bedford, Robert; Murray, James T; Stolz, Wolfgang; Koch, Stephan W

    2007-01-01

    We demonstrate a widely tunable vertical-external cavity surface-emitting laser (VECSEL) with a W-shaped cavity, in which two VECSEL chips serve as fold mirrors and a birefringent filter is inserted at Brewster's angle...

  5. Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene

    Science.gov (United States)

    2015-07-16

    Vertical External Cavity Surface Emitting Lasers). 2)! Installation of a FTIR based temperature dependent reflectivity setup for characterizing VECSELs...and SESAMs (Semiconductor Saturable Absorber Mirrors). 3)! Demonstration of up to 6 Watts CW with InAs QD (Quantum Dot) VECSELs (1250 nm) and 15...AFRL and at other university collaborators such as the University of Arizona. 2.#Installation#of#a# FTIR #based#temperature#dependent#reflectivity

  6. Modular PbSrS/PbS mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Zogg, H.; Cao, D.; Kobayashi, S.; Yokoyama, T.; Ishida, A.

    2011-07-01

    A mid-infrared vertical external cavity surface emitting laser (VECSEL) based on undoped PbS is described herein. A 200 nm-thick PbS active layer embedded between PbSrS cladding layers forms a double heterostructure. The layers are grown on a lattice and thermal expansion mismatched Si-substrate. The substrate is placed onto a flat bottom Bragg mirror again grown on a Si substrate, and the VECSEL is completed with a curved top mirror. Pumping is done optically with a 1.55 μm laser diode. This leads to an extremely simple modular fabrication process. Lasing wavelengths range from 3-3.8 μm at 100-260 K heat sink temperature. The lowest threshold power is ˜210 mWp and highest output power is ˜250 mWp. The influence of the different recombination mechanism as well as free carrier absorption on the threshold power is modeled.

  7. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  8. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  9. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  10. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  11. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  12. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  13. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  14. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  15. Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Hader, Joerg; Zakharian, Aramais R; Moloney, Jerome V; Stolz, Wolfgang; Koch, Stephan W; Bedford, Robert; Murray, James T

    2007-01-01

    The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an optically pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted Fabry-Perot...

  16. Above Room Temperature Lead Salt VECSELs

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Chappuis, D.; Zogg, H.

    2010-01-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSEL) were developed for the wavelength range 4 to 5 μm. The devices are based on lead salt materials grown by MBE on BaF2 or Si substrate. The VECSELs are optically pumped with a 1.55 μm wavelength laser. They are operating up to above room temperature. An output power 6 mWp was reached at a temperature of +27°C. The VECSELs are temperature tunable and lasing is observed from ˜4.8 μm at -60°C down to ˜4.2 μm at +40°C heat sink temperature.

  17. Optically pumped VECSELs: review of technology and progress

    Science.gov (United States)

    Guina, M.; Rantamäki, A.; Härkönen, A.

    2017-09-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) are the most versatile laser sources, combining unique features such as wide spectral coverage, ultrashort pulse operation, low noise properties, high output power, high brightness and compact form-factor. This paper reviews the recent technological developments of VECSELs in connection with the new milestones that continue to pave the way towards their use in numerous applications. Significant attention is devoted to the fabrication of VECSEL gain mirrors in challenging wavelength regions, especially at the yellow and red wavelengths. The reviewed fabrication approaches address wafer-bonded VECSEL structures as well as the use of hybrid mirror structures. Moreover, a comprehensive summary of VECSEL characterization methods is presented; the discussion covers different stages of VECSEL development and different operation regimes, pointing out specific characterization techniques for each of them. Finally, several emerging applications are discussed, with emphasis on the unique application objectives that VECSELs render possible, for example in atom and molecular physics, dermatology and spectroscopy.

  18. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR

    Science.gov (United States)

    Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud

    2017-02-01

    Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.

  19. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  20. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  1. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form......-factor, mechanical stability and low cost when combined with a monolithically integrated photodiode detector....

  2. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  3. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    of the mode selection properties of the new structure is rigorously analyzed and compared to other structures reported in the literature. The possibility of engineering the emission shape while retaining strong single mode operation is highly desirable for low-cost mid-range optical interconnects applications......A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  4. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  5. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  6. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  7. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  8. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  9. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    Science.gov (United States)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  10. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  11. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  12. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  13. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  14. Transverse mode dynamics in vertical-cavity surface-emitting lasers: Spatiotemporal versus modal expansion descriptions

    International Nuclear Information System (INIS)

    Mulet, Josep; Balle, Salvador

    2002-01-01

    We discuss the range of validity of a modal description for the spatiotemporal dynamics of the optical field in vertical-cavity surface-emitting lasers. We focus on the secondary pulsations that appear during the turn-off transients when the injection current is modulated by a square-wave signal. We compare the results obtained with both a full spatiotemporal model [J. Mulet and S. Balle, IEEE J. Quantum. Electron. 38, 291 (2002)] and a modal expansion derived from this model. We find that the results obtained from the two descriptions agree for strong lateral guiding. However, for weak lateral guiding we find differences because the optical-field profile changes significantly due to spatial changes in the refractive index induced by the carrier density. The reason is that in the full spatiotemporal model a shrinkage of the mode profile occurs, which leads to an enhancement of the secondary pulsations. This effect is not included in the modal expansion, and it determines the limits of validity of such an approach for gain-guided devices

  15. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector.

    Science.gov (United States)

    Lee, Seung-Min; Gong, Su-Hyun; Kang, Jin-Ho; Ebaid, Mohamed; Ryu, Sang-Wan; Cho, Yong-Hoon

    2015-05-04

    Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices.

  16. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  17. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  18. Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism

    Science.gov (United States)

    Fördös, T.; Jaffrès, H.; Postava, K.; Seghilani, M. S.; Garnache, A.; Pištora, J.; Drouhin, H. J.

    2017-10-01

    We present a general method for the modeling of semiconductor lasers such as a vertical-cavity surface-emitting laser and a vertical-external-cavity surface-emitting laser containing multiple quantum wells and involving anisotropies that may reveal (i) a local linear birefringence due to the strain field at the surface or (ii) a birefringence in quantum wells due to phase amplitude coupling originating from the reduction of the biaxial D2 d symmetry group to the C2 v symmetry group at the III-V ternary semiconductor interfaces. From a numerical point of view, a scattering S-matrix recursive method is implemented using a gain or amplification tensor derived analytically from the Maxwell-Bloch equations. It enables one to model the properties of the emission (threshold, polarization, and mode splitting) from the laser with multiple quantum well active zones by searching for the resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is presently used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments. The method can be generalized to find the laser eigenmodes in the most general case of circular polarized pumps (unbalance between the spin-up and spin-down channels) and/or dichroism allowing an elliptically polarized light emission as recently demonstrated experimentally when the linear birefringence is almost compensated [Joly et al., Opt. Lett. 42, 651 (2017), 10.1364/OL.42.000651].

  19. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  20. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  1. Vertical-cavity surface-emitting lasers enable high-density ultra-high bandwidth optical interconnects

    Science.gov (United States)

    Chitica, N.; Carlsson, J.; Svenson, L.-G.; Chacinski, M.

    2015-03-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELs) are key components enabling power- and cost-efficient, high-density, ultra-high bandwidth parallel optical interconnects for data center and high-performance computing applications. This paper presents recent developments at TE Connectivity (TE) in the area of 25 Gb/s per channel-class VCSEL and optical transmitter technology for applications such as 100G and 400G Ethernet and Enhanced Data Rate InfiniBand pluggable and mid-board connectivity solutions.

  2. High-beam-quality, efficient operation of passively Q-switched Yb:YAG/Cr:YAG laser pumped by photonic-crystal surface-emitting laser

    Science.gov (United States)

    Guo, Xiaoyang; Tokita, Shigeki; Fujioka, Kana; Nishida, Hiro; Hirose, Kazuyoshi; Sugiyama, Takahiro; Watanabe, Akiyoshi; Ishizaki, Kenji; Noda, Susumu; Miyanaga, Noriaki; Kawanaka, Junji

    2017-07-01

    A passively Q-switched Yb:YAG/Cr:YAG laser pumped by a photonic-crystal surface-emitting laser (PCSEL) was developed. Yb:YAG crystal was cryogenically cooled by liquid nitrogen at 77 K. Excellent Gaussian beam profile ( M 2 = 1.02) and high slope efficiency of 58% were demonstrated without using a coupling optics between a laser material and PCSEL.

  3. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E. [Sandia National Labs., Albuquerque, NM (United States). Nanostructure and Semiconductor Physics Dept.; Gourley, M.F. [Washington Hospital Center, DC (United States); Bellum, J. [Coherent Technologies, Boulder, CO (United States)

    1997-08-01

    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  4. IV-VI mid-infrared VECSEL on Si-substrate

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Rodriguez, R.; Zogg, H.; Ishida, A.

    2012-03-01

    Optically pumped VECSEL (vertical external cavity surface emitting lasers) based on IV-VI semiconductors grown on Si cover the entire wavelength range between 3.0 and 10 μm. Thanks to their simple structure and large wavelength coverage they are an interesting alternative laser technology to access the mid-infrared wavelength region. The active layers consist either of homogeneous "bulk" layers, double heterostructures or quantum well structures of the PbSe, PbTe or PbS material system. Maximum operation temperatures of 325 K are achieved with output powers above 200 mWp. Further, continuously tunable VECSEL are presented, emitting between 3.2 and 5.4 μm. The single emission mode is continuously tunable over 50-100 nm around the center wavelength, yielding an output power > 10 mWp. The axial symmetric emission beam has a half divergence angle of < 3.3°.

  5. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  6. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  7. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle

    Science.gov (United States)

    Yeh, P. S.; Chang, C.-C.; Chen, Y.-T.; Lin, D.-W.; Liou, J.-S.; Wu, C. C.; He, J. H.; Kuo, H.-C.

    2016-12-01

    A GaN-based vertical-cavity surface emitting laser (VCSEL) structure featuring a silicon-diffusion-defined current blocking layer for lateral confinement is described. Sub-milliamp threshold currents were achieved for both 3- and 5-μm-aperture VCSELs under continuous-wave operation at room temperature. The vertical cavity was defined by a top dielectric distributed Bragg reflector (DBR) and a bottom epitaxial DBR. The emission spectrum exhibited a single peak at 411.2 nm with a linewidth of 0.4 nm and a side mode suppression ratio of more than 10 dB before device packaging. The full-width-at-half-maximum divergence angle of the 3-μm-aperture VCSEL was as small as approximately 5° which is the lowest number reported. These results implied the 3-μm-aperture VCSEL was in near single-mode operation.

  8. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  9. Steady-state characteristics of lateral p-n junction vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Ryzhii, V.; Tsutsui, N.; Khmyrova, I.; Ikegami, T.; Vaccaro, P. O.; Taniyama, H.; Aida, T.

    2001-09-01

    We developed an analytical device model for lateral p-n junction vertical-cavity surface-emitting lasers (LJVCSELs) with a quantum well active region. The model takes into account the features of the carrier injection, transport, and recombination in LJVCSELs as well as the features of the photon propagation in the cavity. This model is used for the calculation and analysis of the LJVCSEL steady-state characteristics. It is shown that the localization of the injected electrons primarily near the p-n junction and the reabsorption of lateral propagating photons significantly effects the LJVCSELs performance, in particular, the LJVCSEL threshold current and power-current characteristics. The reincarnation of electrons and holes due to the reabsorption of lateral propagating photons can substantially decrease the threshold current.

  10. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  11. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems

    Science.gov (United States)

    Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.

    2016-03-01

    A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.

  12. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Science.gov (United States)

    Rey, J. M.; Fill, M.; Felder, F.; Sigrist, M. W.

    2014-12-01

    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content.

  13. Theory and Modeling of Lasing Modes in Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Klein

    1998-01-01

    modes that the VCSEL can support are then determined by matching the gain necessary for the optical system in both magnitude and phase to the gain available from the laser's electronic system. Examples are provided.

  14. Near-infrared wafer-fused vertical-cavity surface-emitting lasers for HF detection

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Zelinger, Zdeněk; Nevrlý, V.; Dorogan, A.; Ferus, Martin; Iakovlev, V.; Sirbu, A.; Mereuta, A.; Caliman, A.; Suruceanu, G.; Kapon, E.

    2014-01-01

    Roč. 147, NOV 2014 (2014), s. 53-59 ISSN 0022-4073 R&D Projects: GA MŠk(CZ) LD14022 Grant - others:Ministerstvo financí, Centrum zahraniční pomoci(CZ) PF049 Institutional support: RVO:61388955 ; RVO:68081707 Keywords : High resolution absorption spectroscopy * Monitoring of hydrogen fluoride, methane , and ammonia * Tunable diode laser spectroscopy (TDLS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.645, year: 2014

  15. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  16. Tradeoffs of vertical-cavity surface emitting lasers modeling for the development of driver circuits in short distance optical links

    Science.gov (United States)

    Sialm, Gion; Erni, Daniel; Vez, Dominique; Kromer, Christian; Ellinger, Frank; Bona, Gian-Luca; Morf, Thomas; Jäckel, Heinz

    2005-10-01

    In short-distance optical links, the development of driving circuits for vertical-cavity surface-emitting lasers (VCSELs) requires precise and computationally efficient VCSEL models. A small-signal model of a VCSEL is computationally efficient and simple to implement; however, it does not take into account the nonlinear output behavior of the VCSEL. In contrast, VCSEL models that are highly based on first principles cannot be implemented in standard circuit device simulators, because the simulation of eye diagrams becomes too time consuming. We present another approach using VCSEL models, which are based on the 1-D rate equations. Our analysis shows that they combine efficient extraction and short simulation time with an accurate calculation of eye diagrams over a wide range of ambient temperatures. As different implementations of the rate equations exist, tradeoffs between three different versions are presented and compared with measured GaAs oxide-confined VCSELs. The first model has a linear and the second a logarithmic function of the gain versus the carrier density. The third model considers the additional transport time for carriers to reach the active region with quantum wells. For parameter extraction, a minimum set of parameters is identified, which can be determined from fundamental measurements.

  17. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.

  18. Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls.

    Science.gov (United States)

    Peng, Chao; Liang, Yong; Sakai, Kyosuke; Iwahashi, Seita; Noda, Susumu

    2011-11-21

    The coupled-wave theory (CWT) is extended to a photonic crystal structure with arbitrary sidewalls, and a simple, fast, and effective model for the quantitatively analysis of the radiative characteristics of two-dimensional (2D) photonic-crystal surface-emitting lasers (PC-SELs) has been developed. For illustrating complicated coupling effects accurately, sufficient numbers of waves are included in the formulation, by considering their vertical field profiles. The radiation of band-edge modes is analyzed for two in-plane air-hole geometries, in the case of two types of sidewalls: i.e. "tapered case" and "tilted case." The results of CWT analysis agree well with the results of finite-difference time-domain (FDTD) numerical simulation. From the analytical solutions of the CWT, the symmetry properties of the band-edge modes are investigated. In-plane asymmetry of the air holes is crucial for achieving high output power because it causes partial constructive interference. Asymmetric air holes and tilted sidewalls help in inducing in-plane asymmetries. By breaking the symmetries with respect to the two orthogonal symmetric axes of the band-edge modes, the two factors can be tuned independently, so that the radiation power is enhanced while preserving the mode selectivity performance. Finally, top-down reactive ion etching (RIE) approach is suggested for the fabrication of such a structure. © 2011 Optical Society of America

  19. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  20. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    Science.gov (United States)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  1. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  2. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  3. Research of the use of silver nanowires as a current spreading layer on vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Guo, Xia; Shi, Lei; Li, Chong; Dong, Jian; Liu, Bai; Hu, Shuai; He, Yan

    2016-11-01

    Silver nanowire (AgNW) film was proposed to apply on the surface of the vertical-cavity surface-emitting lasers (VCSELs) with large aperture in order to obtain a uniform current distribution in the active region and a better optical beam quality. Optimization of the AgNW film was carried out with the sheet resistance of 28.4 Ω/sq and the optical transmission of 94.8% at 850 nm. The performance of VCSELs with and without AgNW film was studied. When the AgNW film was applied to the surface of VCSELs, due to its better current spreading effect, the maximum output optical power increased from 23.4 mW to 24.4 mW, the lasing wavelength redshift decreased from 0.085 nm/mA to 0.077 nm/mA, the differential resistance decreased from 23.95 Ω to 21.13 Ω, and the far field pattern at 50 mA decreased from 21.6° to 19.2°. At the same time, the near field test results showed that the light in the aperture was more uniform, and the far field exhibited a better single peak characteristic. Various results showed that VCSELs with AgNW on the surface showed better beam quality. Project supported by the National Natural Science Foundation of China (Grant Nos. 61335004 and 61505003), the National High Technology Research and Development Program of China (Grant No. 2015AA017101), and the National Key Research and Development of China (Grant No. 2016YFB0400603).

  4. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  5. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window

    Energy Technology Data Exchange (ETDEWEB)

    Čermák, P., E-mail: cermak@fmph.uniba.sk [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava (Slovakia); Chomet, B. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France); Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Ferrieres, L.; Denet, S.; Lecocq, V. [Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Vasilchenko, S. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Laboratory of Molecular Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Science, 1 Academician Zuev Square, 634021 Tomsk (Russian Federation); Mondelain, D.; Kassi, S.; Campargue, A. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Myara, M.; Cerutti, L.; Garnache, A. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France)

    2016-08-15

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10{sup −11} cm{sup −1}) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm{sup −1} around 4300 cm{sup −1} together with a powerful (∼5 mW) TEM{sub 00} diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  6. Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector

    Science.gov (United States)

    Liu, Yuh-Shiuan; Saniul Haq, Abul Fazal Muhammad; Mehta, Karan; Kao, Tsung-Ting; Wang, Shuo; Xie, Hongen; Shen, Shyh-Chiang; Yoder, P. Douglas; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2016-11-01

    An optically pumped vertical-cavity surface-emitting laser with an electrically conducting n-type distributed Bragg reflector was achieved at 374.9 nm. An epitaxially grown 40-pair n-type AlGaN/GaN distributed Bragg reflector was used as the bottom mirror, while the top mirror was formed by a dielectric distributed Bragg reflector composed of seven pairs of HfO2/SiO2. A numerical simulation for the optical mode clearly demonstrated that a high confinement factor was achieved and the threshold pumping power density at room temperature was measured as 1.64 MW/cm2. The achieved optically pumped laser demonstrates the potential of utilizing an n-type distributed Bragg reflector for surface-emitting optical devices.

  7. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon (Open Access Publisher’s Version)

    Science.gov (United States)

    2016-01-04

    beam shape, catastrophic optical damage free, and two-dimensional integration capabilities with CMOS electronics , vertical-cavity surface-emitting...longitudinal and transverse mode over a large lasing area , narrow linewidth, high power output, small beam divergence angle, polarization control...crystal lasers—ultimate nanolasers and broad - area coherent lasers [Invited]. J. Opt. Soc. Am. B 27, B1–B8 (2010). 13. Painter, O. et al. Two-dimensional

  8. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Liu, W. J.; Hu, X. L.; Ying, L. Y.; Chen, S. Q.; Zhang, J. Y.; Akiyama, H.; Cai, Z. P.; Zhang, B. P.

    2015-04-01

    Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs.

  9. Non-paraxial contributions to the far-field pattern of surface-emitting lasers: a manifestation of the momentum-space wavefunctions of quantum billiards

    International Nuclear Information System (INIS)

    Yu, Y T; Huang, Y J; Chiang, P Y; Lin, Y C; Huang, K F; Chen, Y F

    2011-01-01

    We investigated experimentally non-paraxial contributions to the high-order far-field pattern of large-area vertical-cavity surface-emitting lasers in order to explore by analogy the momentum-space wave distributions of quantum billiards. Our results reveal that non-paraxial contributions significantly influence the morphology of the high-order far-field pattern. A fast reliable method is developed for transforming the experimental far-field patterns to the correct Fourier transform of the corresponding near-field lasing modes. In this way we visualize the momentum-space (p–q) wavefunctions of quantum billiards

  10. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  11. A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser

    Science.gov (United States)

    Li, Chung-Yi; Tsai, Wen-Shing

    2018-02-01

    This study proves that an underwater wireless optical communication (UWOC) based on a 6 m/5.2 Gbps 68 nm vertical-cavity surface-emitting laser (VCSEL)-based system is superior to a 405 nm UWOC system. This UWOC application is the first to use a VCSEL at approximately 680 nm. The experiment also proved that a 680 nm VCSEL has the same transmission distance as that of an approximately 405 nm laser diode. The 680 nm VCSEL has a 5.2 Gbps high transmission rate and can transmit up to 6 m. Thus, the setup is the best alternative solution for high-speed UWOC applications.

  12. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Weng, Guoen; Mei, Yang; Liu, Jianping; Hofmann, Werner; Ying, Leiying; Zhang, Jiangyong; Bu, Yikun; Li, Zengcheng; Yang, Hui; Zhang, Baoping

    2016-07-11

    Low threshold continuous-wave (CW) lasing of current injected InGaN quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs) was achieved at room temperature. The VCSEL was fabricated by metal bonding technique on a copper substrate to improve the heat dissipation ability of the device. For the first time, lasing was obtained at yellow-green wavelength of 560.4 nm with a low threshold of 0.61 mA, corresponding to a current density of 0.78 kA/cm2. A high degree of polarization of 94% were measured. Despite the operation in the range of "green gap" of GaN-based devices, single longitudinal mode laser emission was clearly achieved due to the high quality of active region based on InGaN QDs and the excellent thermal design of the VCSELs.

  13. Dynamics of 1.55 μm Wavelength Single-Mode Vertical-Cavity Surface-Emitting Laser Output under External Optical Injection

    Directory of Open Access Journals (Sweden)

    Kyong Hon Kim

    2012-01-01

    Full Text Available We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM vertical-cavity surface-emitting lasers (VCSELs induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS, and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.

  14. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  15. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, G. M. T. [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Hosea, T. J. C., E-mail: j.hosea@surrey.ac.uk [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J. [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bachmann, A.; Arafin, S.; Amann, M.-C. [Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall 4, D-85748 Garching (Germany)

    2014-01-07

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices.

  16. Investigation of single-mode vertical-cavity surface-emitting lasers with graphene-bubble dielectric DBR

    Science.gov (United States)

    Guan, Baolu; Li, Pengtao; Arafin, Shamsul; Alaskar, Yazeed; Wang, Kang L.

    2018-02-01

    An inter-cavty contact single mode 850 nm VCSEL was fabricated with a graphene assisted self-assembly curved dielectric bubble Bragg mirror for the first time. Taking the advantage of graphene's uniform low surface energy, the low cost dielectric bubble DBR (Si3N4/SiO2) was deposited on top of the graphene/half-VCSEL structure via van der Waals Force (vdWF) without using any additional spacing elements and sacrificial layer release-etch process. The continuous-wave operating VCSELs with an aperture diameter of 7 μm exhibit single-mode output power of more than 1 mW with a slope efficiency of 0.2 W/A. The sidemode suppression ratios are >40 dB. This novel modification into the lasers can also be applied to a variety of other optoelectronic devices, such as resonance photodetecter and super narrow linewidth VCSEL.

  17. Surface photovoltage spectroscopy as a valuable nondestructive characterization technique for GaAs/GaAlAs vertical-cavity surface-emitting laser structures

    CERN Document Server

    Liang, J S; Huang, Y S; Tien, C W; Chang, Y M; Chen, C W; Li, N Y; Tiong, K K; Pollak, F H

    2003-01-01

    We have investigated an 850 nm GaAs/GaAlAs (001) vertical-cavity surface-emitting laser (VCSEL) structure using angle- and temperature-dependent surface photovoltage spectroscopy (SPS). The SPS measurements were performed as functions of angle of incidence (0 deg. <= theta <= 60 deg.) and temperature (25 deg. C <= T <= 215 deg. C) for both the metal-insulator-semiconductor (MIS) and wavelength-modulated MIS configurations. Angle-dependent reflectance (R) measurements have also been performed to illustrate the superior features of the SPS technique. The SPS spectra exhibit both the fundamental conduction to heavy-hole excitonic transition of quantum well and cavity mode (CM) plus a rich interference pattern related to the mirror stacks, whereas in the R spectra only the CM and interference features are clearly visible. The variations of SPS spectra as functions of incident angle and temperature enable exploration of light emission from the quantum well confined in a microcavity with relation to the...

  18. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  19. Fabrication Processes for Surface-Emitting via External 45-DEGREE Reflectors, High-Power via Arrayed Ridge - Single-Mode Phase-Locked Aluminum Gallium Arsenide/gallium Arsenide Semiconductor Laser Sources.

    Science.gov (United States)

    Porkolab, Gyorgy Arpad

    The fabrication of monolithically integrated configurations of semiconductor lasers incorporating multiple functions is still an open issue today in engineering. A useful set of functions to integrate are: surface-emitting, high -power, phase-locked, single-mode, and collimated laser beam output. In this work new materials and advanced fabrication processes are developed for integrating the first four of the five functions listed. The interest in semiconductor lasers is due to their greater than 90% internal quantum efficiency in converting current-flux to photon-flux, their small size and weight, and their wavelength range from 400 to 1,550 nm. Multitudes of applications are possible for semiconductor laser sources ranging from the low-volume market of satellite-based communications systems to the high-volume market of image display screens. Semimetallic amorphous carbon (SMAC) thin film is introduced as an etch mask for chemically assisted ion beam etching (CAIBE) resulting in smooth etched facets in AlGaAs/GaAs at normal- and 45-degrees- incidence angles. A self-aligned etch technique is introduced using 4 separate photoresist selector-masks on top of a fixed SMAC master -mask on top of the AlGaAs/GaAs substrate to perform 4 separate CAIBE etches at 3 different angles and to 3 different depths to create self-aligned 3-dimensional microstructures of 1.3-μm deep ridge waveguides (RWG), 6-μm deep laser facets, and 11- μm long back-to-back 45-degree reflectors arranged in 3 by 100 arrays. Trenches on topside and underside of laser facets are introduced to deflect current away from laser facets. Silicon-rich nitro-oxide thin film is introduced as triple-use encapsulation to provide chemical passivation of AlGaAs/GaAs, optical anti-reflection coating by being refractive-index matched to AlGaAs/GaAs, and electrical insulation. A pincer-action sample-holder for CAIBE is introduced allowing samples to heat up by ion beam heating. Various surface preparations

  20. Investigation of cavity mode and excitonic transition in an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser structure by variable-temperature micro-photoluminescence, reflectance and photomodulated reflectance

    International Nuclear Information System (INIS)

    Yu, J L; Chen, Y H; Jiang, C Y; Zhang, H Y

    2012-01-01

    Variable-temperature micro-photoluminescence (μ-PL), reflectance (R) and photomodulated reflectance (PR) have been used to study an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser (VCSEL) structure. μ-PL and R spectra have been recorded at different temperatures between 80 K and 300 K By comparing μ-PL with R spectra, both the excitonic transition and cavity mode are clearly identified. The Variable-temperature μ-PL and PR results of the etched sample with the top distributed Bragg reflectors (DBR) being removed further confirmed our identification. Our results demonstrate that variable-temperature μ-PL is a powerful noninvasive tool to measure accurate the quantum well transition and the cavity mode alignment.

  1. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  2. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  3. Broad tunable photonic microwave generation based on period-one dynamics of optical injection vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Ji, Songkun; Hong, Yanhua; Spencer, Paul S; Benedikt, Johannes; Davies, Iwan

    2017-08-21

    Photonic microwave generation based on period-one dynamics of an optically injected VCSEL has been study experimentally. The results have shown that the frequency of the generated microwave signal can be broadly tunable through the adjustment of the injection power and the frequency detuning. Strong optical injection power and higher frequency detuning are favorable for obtaining a high frequency microwave signal. These results are similar to those found in systems based on distributed feedback lasers and quantum dot lasers. The variation of the microwave power at the fundamental frequency and the second-harmonic distortion have also been characterized.

  4. Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth

    Science.gov (United States)

    Hamaguchi, Tatsushi; Fuutagawa, Noriyuki; Izumi, Shouichiro; Murayama, Masahiro; Narui, Hironobu

    2016-02-01

    We have succeeded in achieving continuous-wave operation of gallium nitride (GaN) based vertical-cavity surfaceemitting lasers (VCSELs), which was fabricated by epitaxial lateral overgrowth (ELO) using dielectric distributed Bragg reflectors(DBRs) as masks for selective growth. The device exhibited CW operation at a wavelength of 453.9nm. The maximum output power was 1.1 mW, which is the highest value reported in previously published articles. The ELO process used for this study represents a breakthrough for challenges which were indicated by other former reports for GaN-based VCSELs and is suitable for mass production.

  5. (In,Ga,Al)P-GaP laser diodes grown on high-index GaAs surfaces emitting in the green, yellow and bright red spectral range

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Shernyakov, Yu M.; Kulagina, M. M.; Payusov, A. S.; Gordeev, N. Yu; Maximov, M. V.; Cherkashin, N. A.

    2017-02-01

    We report on low threshold current density (<400 A cm-2) injection lasing in (Al x Ga1-x )0.5In0.5P-GaAs-based diodes down to the green spectral range (<570 nm). The epitaxial structures are grown on high-index (611)A and (211)A GaAs substrates by metal-organic vapor phase epitaxy and contain tensile-strained GaP-enriched insertions aimed at reflection of the injected nonequilibrium electrons preventing their escape from the active region. Extended waveguide concept results in a vertical beam divergence with a full width at half maximum of 15° for (611)A substrates. The lasing at the wavelength of 569 nm is realized at 85 K. In an orange-red laser diode structure low threshold current density (190 A cm-2) in the orange spectral range (598 nm) is realized at 85 K. The latter devices demonstrated room temperature lasing at 628 nm at ˜2 kA cm-2 and a total power above 3 W. The red laser diodes grown on (211)A substrates demonstrated a far field characteristic for vertically multimode lasing indicating a lower optical confinement factor for the fundamental mode as compared to the devices grown on (611)A. However, as expected from previous research, the temperature stability of the threshold current and the wavelength stability were significantly higher for (211)A-grown structures.

  6. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay

    2017-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.

  7. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  8. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  9. PbSe Quantum Well VECSEL on Si

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-12-01

    Vertical external cavity surface emitting lasers in the wavelength region from 3-5 μm are presented. They are based on PbSe quantum wells grown on Si substrates. As host material Pb1-xEuxSe and Pb1-xSrxSe are used. With Pb1-xSrxSe as host material maximum operation temperatures of 325 K are achieved, while with Pb1-xEuxSe an operation temperature of 245 K could not be overcome. This may be explained by a band alignment transition from type I to type II with increasing temperature.

  10. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  11. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  12. Near Field and Far Field Effects in the Taguchi-Optimized Design of AN InP/GaAs-BASED Double Wafer-Fused Mqw Long-Wavelength Vertical-Cavity Surface-Emitting Laser

    Science.gov (United States)

    Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.

    Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.

  13. Influence of Coulomb screening on lateral lasing in VECSELs.

    Science.gov (United States)

    Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor

    2015-12-14

    Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures.

  14. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    and high tuning rate. The VCSEL is highly single-mode and inherently polarization stable due to the use of a High-index Contrast subwavelength Grating (HCG). HCG VCSELs are presented with 1.5% relative tuning range at a tuning rate of 850 kHz. The thesis reports on the analysis of narrow linewidth Fabry...

  15. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  16. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  17. THz wave parametric oscillator with a surface-emitted ring-cavity configuration

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Tang, Longhuang; Xu, Wentao; Duan, Pan; Yan, Chao; Yao, Jianquan

    2016-11-01

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning. Through the special optical design with a Galvano optical scanner and four-mirror ring-cavity structure, a maximum THz output of 12.9 μJ/pulse is achieved at 1.359 THz under the pump pulse energy of 172.8 mJ with the repetition rate of 10 Hz. A further research on the performance of the SE ring-cavity TPO has done to explore more characteristics of THz output. The THz pulse instability and the influence of cavity loss has analyzed. Moreover, the pump depletion rate of the ring-cavity configuration is much lower than the conventional surface-emitted terahertz wave parametric oscillator at the same experimental conditions.

  18. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  19. Broadband subwavelength grating mirror and its application to vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Gilet, Philippe

    2008-01-01

    Various high-index-contrast sub-wavelength grating (HCG) mirror designs have been investigated. It reveals that transverse magnetic (TM-) and transverse electric (TE-) HCG reflect the incident fields in quite different ways and that the TM-HCG enables very thin gap below the grating. Based...... on these results, a new HCG VCSEL design with a thin oxide gap has been suggested. The thin oxide gap structure has a number of advantages including easier fabrication, better mechanical stability, and very strong single-mode properties....

  20. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array

    Science.gov (United States)

    Xun, Meng; Sun, Yun; Xu, Chen; Xie, Yi-Yang; Jin, Zhi; Zhou, Jing-Tao; Liu, Xin-Yu; Wu, De-Xin

    2018-03-01

    Not Available Supported by the ‘Supporting First Action’ Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302.

  1. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    transmission link with real-time demodulation. Furthermore, advanced modulation formats are considered in this thesis to expand the state-of-the-art in high-speed short-range data transmission system based on VCSELs. First, directly modulation of a VCSEL with a 4-level pulse amplitude modulation (PAM-4) signal...... at 50 Gb/s is achieved. This is the highest data rate ever transmitted with a single VCSEL at the time of this thesis work. The capacity of this system is increased to 100 Gb/s by using polarization multiplexing emulation and forward error correction techniques. Compared to a non return-to-zero on-off...

  2. Broadband subwavelength grating mirror and its application to vertical-cavity surface-emitting laser

    OpenAIRE

    Chung, Il-Sug; Mørk, Jesper; Gilet, Philippe; Chelnokov, Alexei

    2008-01-01

    Various high-index-contrast sub-wavelength grating (HCG) mirror designs have been investigated. It reveals that transverse magnetic (TM-) and transverse electric (TE-) HCG reflect the incident fields in quite different ways and that the TM-HCG enables very thin gap below the grating. Based on these results, a new HCG VCSEL design with a thin oxide gap has been suggested. The thin oxide gap structure has a number of advantages including easier fabrication, better mechanical stability, and very...

  3. Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum

    OpenAIRE

    Huang, Jingqing; Kim, Se-Heon; Scherer, Axel

    2010-01-01

    We analyze metal-clad disk cavities designed for nanolasers in the visible red spectrum with subwavelength device size and mode volume. Metal cladding suppresses radiation loss and supports low order modes with room temperature Q of 200 to 300. Non-degenerate single-mode operation with enhanced spontaneous emission coupling factor β is expected with the TE_(011) mode that has a 0.46(λ_0/n)^3 mode volume and Q = 210 in a device of size 0.12λ_0^3. Threshold gain calculations show that room temp...

  4. Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon.

    Science.gov (United States)

    Zhao, S; Djavid, M; Mi, Z

    2015-10-14

    To date, it has remained challenging to realize electrically injected light sources in the vacuum ultraviolet wavelength range (∼200 nm or shorter), which are important for a broad range of applications, including sensing, surface treatment, and photochemical analysis. In this Letter, we have demonstrated such a light source with molecular beam epitaxially grown aluminum nitride (AlN) nanowires on low cost, large area Si substrate. Detailed angle dependent electroluminescence studies suggest that, albeit the light is TM polarized, the dominant light emission direction is from the nanowire top surface, that is, along the c axis, due to the strong light scattering effect. Such an efficient surface emitting device was not previously possible using conventional c-plane AlN planar structures. The AlN nanowire LEDs exhibit an extremely large electrical efficiency (>85%), which is nearly ten times higher than the previously reported AlN planar devices. Our detailed studies further suggest that the performance of AlN nanowire LEDs is predominantly limited by electron overflow. This study provides important insight on the fundamental emission characteristics of AlN nanowire LEDs and also offers a viable path to realize an efficient surface emitting near-vacuum ultraviolet light source through direct electrical injection.

  5. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  6. Thermal lensing effects on lateral leakage in GaN-based vertical-cavity surface-emitting laser cavities.

    Science.gov (United States)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Calciati, Marco; Goano, Michele; Haglund, Åsa

    2017-05-01

    Lateral leakage of light has been identified as a detrimental loss source in many suggested and experimentally realized GaN-based VCSELs. In the present work we include thermal effects to realistically account for the substantial Joule heating in these devices. In contrast to what could be expected from the previous results, the induced thermal lensing does not make antiguided cavities more positively guided, so that they approach the unguided regime with extremely high lateral leakage. Rather, thermal lensing strongly suppresses lateral leakage for both antiguided and guided cavities. This is explained in terms of lowered launch of power from the central part of the cavity and/or lower total internal reflection in the peripheral part; the former effect is active in all cavities whereas the latter only contributes to the very strongly reduced leakage in weakly antiguided cavities. Thermal lensing suppresses lateral leakage both for the fundamental and the first higher order mode, but a strong modal discrimination is still achieved for the antiguided cavities. Thus, strongly antiguided cavities could be used to achieve single-mode devices, but at the cost of slightly higher threshold gain and stronger temperature dependent performance characteristics.

  7. Flattop mode shaping of a vertical cavity surface emitting laser using an external-cavity aspheric mirror.

    Science.gov (United States)

    Yang, Zhaohui; Leger, James

    2004-11-01

    Both square-shaped and circular-shaped flattop modes were experimentally demonstrated in extended-cavity broad-area VCSELs using aspheric feedback mirrors. These refractive aspheric mirrors were fabricated by electron-beam lithography on curved substrates. Excellent single-mode operation and improved power extraction efficiency were observed. The three-mirror structure of the VCSEL and the state-of-the-art fabrication of the aspheric mirror contribute to the superior VCSEL performance. The modal loss analysis using a rigid three-mirror-cavity simulation method is discussed.

  8. Source of ultra-short laser pulses at 1,55μm in vertical-external-cavity for linear optical sampling applications

    International Nuclear Information System (INIS)

    Khadour, A.

    2009-12-01

    The objectives of this thesis were, in a first step, to develop and implement VECSEL structures containing an active zone formed by GaAlInAs/InP quantum wells located at the anti-nodes of the resonant electric field, positioned on a Bragg mirror, all this being bonded to a substrate of good thermal conductivity. For this, we have designed structures optimizing the evacuation of heat generated in the active zone. This has greatly improved the VECSEL performances, especially their output power. The VECSEL performances were evaluated in a simple cavity with two mirrors (plane-concave). The second point was to develop and implement SESAM structures which, owing to their nonlinear characteristics, would allow a passively mode-locked laser operation. The structures contained InGaAsN/GaAs quantum wells. The studied parameters were the number of quantum wells, and the resonant or anti-resonant behavior of the structure. The linear and nonlinear optical characterizations were used to optimize the SESAM structure and estimate their performances. Finally, the compatibility between the VECSEL and SESAM structures, in terms of modulation depth and resonance wavelength, made it possible to obtain the passive mode locking operation. The obtained pulses show two different behaviors depending on the dispersion properties of the structures. With low dispersion, we have made the first demonstration of a passively mode-locked VECSEL at 1550 nm, operating at room temperature. An all-optical sampling device implementing the linear optical sampling technique using short laser pulses has been realized and tested. This device will allow displaying eye diagrams and constellation diagrams with an expected sensitivity around -20 dBm of average power. Testing the device allowed to visualize the acquisition of very high repetition rate signals (40 Gb/s). (author)

  9. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal.

    Science.gov (United States)

    Wang, Weitao; Zhang, Xingyu; Wang, Qingpu; Cong, Zhenhua; Chen, Xiaohan; Liu, Zhaojun; Qin, Zengguang; Li, Ping; Tang, Guanqi; Li, Ning; Wang, Cong; Li, Yongfu; Cheng, Wenyong

    2014-02-15

    A MgO:LiNbO₃ slab configuration for the surface-emitted terahertz-wave parametric oscillator (TPO) is presented. The pump and the oscillating Stokes beams were totally reflected at the slab surface and propagated zigzaggedly in the slab MgO:LiNbO₃ crystal. Up to five terahertz beams were emitted perpendicularly to the surface of the crystal. The total output energy of the five THz-wave beams was 3.56 times as large as that obtained from the conventional surface-emitted TPO at the same experimental conditions. The intensity distributions of the THz wave beams were measured, and they were unsymmetrical in the horizontal direction while symmetrical in the vertical direction.

  10. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  11. Growth and Optimization of 2 Micrometers InGaSb/AlGaSb Quantum-Well-Based VECSELs on GaAs/AlGaAs DBRs

    Science.gov (United States)

    2013-08-01

    active region consists of nine In0.2Ga0.8Sb QWs separated by pump absorbing Al0.25Ga0.75 Sb barriers. An AlSb confinement layer on each side of the...by pump absorbing Al0.25Ga0.75Sb barriers and AlSb top/bottom clad. The key feature of the antimonide VECSEL based on the GaAs/AlGaAs DBRs is the...also enhanced by the AlSb carrier con- finement layers. However, the “ABC” empirical model is not adequate to model the carrier losses at high carrier

  12. Novel Applications of High Speed Optical-Injection Locked Lasers

    Science.gov (United States)

    2010-07-31

    modulated vertical-cavity surface-emitting laser (VCSELs) are attractive candidates as cost-effective optical transmitters for metro -area networks (MANs...local area networks (LANs) and high-speed Ethernet applications. A directly modulated VCSEL is desirable because it is compact, cost-effective and

  13. Lasers

    OpenAIRE

    Passeron, Thierry

    2012-01-01

    International audience; Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be succesfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-aulait macules should not b...

  14. Laser

    OpenAIRE

    Du, K.; Loosen, P.; Herziger, G.

    1991-01-01

    Laser, consisting of a beam path multiple-folded by means of two cavity end mirrors and having at least one reflector folding the laser beam retroreflectively, the axis of which is arranged offset in parallel to the axis of a further reflector. So that the laser exhibits an improved beam quality while retaining its comparatively low adjustment sensitivity, the beam path is folded at least twice by means of the retoreflective reflector.

  15. Electrical Spin Injection and Threshold Reduction in a Semiconductor Laser

    Science.gov (United States)

    Holub, M.; Shin, J.; Saha, D.; Bhattacharya, P.

    2007-04-01

    A spin-polarized vertical-cavity surface-emitting laser is demonstrated with electrical spin injection from an Fe/Al0.1Ga0.9As Schottky tunnel barrier. Laser operation with a spin-polarized current results in a maximum threshold current reduction of 11% and degree of circular polarization of 23% at 50 K. A cavity spin polarization of 16.8% is estimated from spin-dependent rate equation analysis of the observed threshold reduction.

  16. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  17. Lasers.

    Science.gov (United States)

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. [Lasers].

    Science.gov (United States)

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella

    2008-01-01

    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  20. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  1. A radiation tolerant 5 Gb/s Laser Driver in 130 nm CMOS technology

    Science.gov (United States)

    Mazza, G.; Rivetti, A.; Moreira, P.; Wyllie, K.; Soos, C.; Troska, J.; Gui, P.

    2012-01-01

    The GigaBit Transceiver (GBT) project aims at the design of a radiation tolerant chip set for high speed optical data transmission. The chipset includes the GigaBit Laser Driver (GBLD), a radiation tolerant ASIC designed in a standard CMOS 130 nm technology. The GBLD is a laser driver designed to work to up to 5 Gb/s and capable to drive both Vertical Cavity Surface Emitting Lasers (VCSELs) and Edge Emitting Lasers (EELs). The GBLD can provide a modulation current up to 24 mA and a bias current up to 43 mA with the pre-emphasis function to compensate for external capacitive load.

  2. High-Q, Low-Threshold Monolithic Perovskite Thin-Film Vertical-Cavity Lasers.

    Science.gov (United States)

    Chen, Songtao; Zhang, Cheng; Lee, Joonhee; Han, Jung; Nurmikko, Arto

    2017-04-01

    A vertical-cavity surface-emitting perovskite laser is achieved using a microcavity configuration where CH 3 NH 3 PbI 3 thin solid films are embedded within a custom GaN-based high-quality (Q-factor) resonator. This single-mode perovskite laser reaches a low threshold (≈7.6 µJ cm -2 ) at room temperature and emits spatially coherent Gaussian laser beams. The devices allow direct access to the study of perovskite gain dynamics and material robustness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Optical Polarization Modulation and Gain Anisotropy in an Electrically Injected Spin Laser

    Science.gov (United States)

    Basu, D.; Saha, D.; Bhattacharya, P.

    2009-03-01

    The effects of spin-induced gain anisotropy on output polarization and threshold current reduction of electrically pumped spin-polarized lasers have been studied. Analytical forms of these parameters are derived by considering diffusive transport from the spin injector to the active region. The calculated values of the parameter are in excellent agreement with values obtained from measurements made at 200 K on an InAs/GaAs quantum dot spin-polarized vertical cavity surface-emitting laser. Electrical modulation of the output polarization of the laser is demonstrated with a peak modulation index of 0.6.

  4. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.

  5. Laser Science and Applications

    Science.gov (United States)

    El-Nadi, Lotfia M.; Mansour, Mohy S.

    2010-04-01

    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  6. Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K

    Science.gov (United States)

    Basu, D.; Saha, D.; Wu, C. C.; Holub, M.; Mi, Z.; Bhattacharya, P.

    2008-03-01

    A spin-polarized vertical cavity surface emitting laser, with InAs /GaAs self-organized quantum dots as the active gain media, has been fabricated and characterized. Electron spin injection is achieved via a MnAs /GaAs Schottky tunnel contact. The laser is operated at 200K and, at this temperature, the degree of circular polarization in the output is 8% and the maximum threshold current reduction is 14%. These effects are not observed in identical control devices with nonmagnetic contacts.

  7. Quantum dots: lasers and amplifiers

    CERN Document Server

    Bimberg, D

    2003-01-01

    Continuous wave room-temperature output power of approx 3 W for edge emitters and of 1.2 mW for vertical-cavity surface-emitting lasers is realized for GaAs-based devices using InAs quantum dots (QDs) operating at 1.3 mu m. Characteristic temperatures up to 170 K below 330 K are realized. Simultaneously, differential efficiency exceeds 80% for these devices. Lasers emitting up to 12 W at 1140-1160 nm are useful as pump sources for Tm sup 3 sup + -doped fibres for frequency up-conversion to 470 nm. Both types of lasers show transparency current densities of 6 A cm sup - sup 2 per dot layer, eta sub i sub n sub t = 98% and alpha sub i around 1.5 cm sup - sup 1. Long operation lifetimes (above 3000 h at 50 deg C heatsink temperature at 1.5 W CW) and improved radiation hardness as compared to quantum well (QW) devices are manifested. Cut-off frequencies of about 10 GHz at 1100 nm and 6 GHz at 1300 nm and low alpha factors resulting in reduced filamentation and improved M sup 2 values in single-mode operation are ...

  8. Reliability of vertical-cavity lasers at Hewlett-Packard

    Science.gov (United States)

    Herrick, Robert W.; Lei, Chun; Keever, Mark R.; Lim, Sui F.; Deng, Hongyu; Dudley, Jim J.; Bhagat, Jay K.

    1999-04-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELs) have rapidly been adopted for use in data communications modules due largely to the improvement in reliability over that of competing compact disc lasers. While very long mean lifetimes for VCSELs have been published elsewhere (> 5 X 106 h MTTF at 40C), telecommunications switching applications require further reduction in the early failure rate to meet targets of < 0.5% failures over 25 years at 50 - 70 degree(s)C. Therefore, a extensive reliability program is needed to measure both the wear-out lifetime and the random failure rate of the devices. The results of accelerated life tests will be presented, and we will discuss the methodology used to estimate the failure rate. Models of current and thermal acceleration will be presented. Degradation mechanisms observed in HP lasers will be briefly discussed. We also present preliminary results from HP oxide-aperture VCSELs.

  9. Fundamentals of metasurface lasers based on resonant dark states

    Science.gov (United States)

    Droulias, Sotiris; Jain, Aditya; Koschny, Thomas; Soukoulis, Costas M.

    2017-10-01

    Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. Here, we give a detailed discussion of the key functionality and benefits of this design, such as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. We examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.

  10. Photonics technology development for optical fuzing.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.J. (U.S. Army Research Laboratory, Adelphi, MD); Geib, Kent Martin; von der Lippe, C.M. (U.S. Army ARDEC, Adelphi, MD); Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.

  11. InGaAs/GaAs frequency tunable twin-guide quantum-well laser designed for steerable surface emission

    Science.gov (United States)

    Rosenberger, Matthias; Koeck, Anton; Gmachl, Claire F.; Gornik, Erich; Riechert, Henning; Bernklau, D.

    1993-11-01

    Based on a frequency tunable twin-guide (TTG) InGaAs/GaAs multiple quantum well (MQW) laser structure, we developed a novel design concept for a surface emitting laser device enabling spatial beam steering. Utilizing a change in the refractive index of the parallel monolithically integrated modulator diode due to carrier injection, we observe a continuous emission frequency (wavelength) shift up to (Delta) f equals 85 GHz ((Delta) (lambda) equals -0.35 nm). For this preliminary structure the experimental results are consistent with our model calculations. Based on the theoretical model, for an optimized device a tuning range of (Delta) f equals 1600 GHz ((Delta) (lambda) >= 5 nm) is expected. For the novel surface emitting device design, we make use of an additional structure on top of the TTG laser including a second waveguide and a grating. This will enable a wavelength dependent surface emission angle, i.e., continuous beam steering, by coupling the laser and the surface mode. A calculational model was developed to estimate the steering characteristics in dependence on the dielectric device structure including mode guiding and the surface grating shape.

  12. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    International Nuclear Information System (INIS)

    Torcini, Alessandro; Barland, Stephane; Giacomelli, Giovanni; Marin, Francesco

    2006-01-01

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realistic values of the linewidth enhancement factor α, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high α values

  13. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  14. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  15. Photonics technology development for optical fuzing

    Science.gov (United States)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  16. Ultrahigh-speed hybrid laser for silicon photonic integrated chips

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Park, Gyeong Cheol; Ran, Qijiang

    2013-01-01

    and light-emitting diode (LED) structures have been proposed so far. Our hybrid laser is one of these efforts [2]. The hybrid laser consists of a dielectric reflector, a III-V semiconductor active material, and a high-index-contrast grating (HCG) reflector formed in the silicon layer of a silicon......-oninsulator (SOI) wafer. ‘Hybrid’ indicates that a III-V active material is wafer-bonded to a silicon SOI wafer. In the hybrid laser, light is vertically amplified between the dielectric and the HCG reflectors, while the light output is laterally emitted to a normal Si ridge waveguide that is connected to the HCG...... reflector. The HCG works as a vertical mirror as well as a vertical-to-lateral coupler. Very small field penetration into the HCG allows for 3-4 times smaller modal volume than typical vertical-cavity surface-emitting lasers (VCSELs). This leads to high direct modulation speed. Details on device operating...

  17. A hybrid CATV/16-QAM-OFDM visible laser light communication system

    International Nuclear Information System (INIS)

    Lin, Chun-Yu; Li, Chung-Yi; Lu, Hai-Han; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-01-01

    A visible laser light communication (VLLC) system employing a vertical cavity surface emitting laser and spatial light modulator with hybrid CATV/16-QAM-OFDM modulating signals over a 5 m free-space link is proposed and demonstrated. With the assistance of a push-pull scheme, low-noise amplifier, and equalizer, good performances of composite second-order and composite triple beat are obtained, accompanied by an acceptable carrier-to-noise ratio performance for a CATV signal, and a low bit error rate value and clear constellation map are achieved for a 16-QAM-OFDM signal. Such a hybrid CATV/16-QAM-OFDM VLLC system would be attractive for providing services including CATV, Internet and telecommunication services. (paper)

  18. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  19. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser

    Science.gov (United States)

    Ellis, Bryan; Mayer, Marie A.; Shambat, Gary; Sarmiento, Tomas; Harris, James; Haller, Eugene E.; Vučković, Jelena

    2011-05-01

    Efficient, low-threshold and compact semiconductor laser sources are under investigation for many applications in high-speed communications, information processing and optical interconnects. The best edge-emitting and vertical-cavity surface-emitting lasers have thresholds on the order of 100 µA (refs 1,2), but dissipate too much power to be practical for many applications, particularly optical interconnects. Optically pumped photonic-crystal nanocavity lasers represent the state of the art in low-threshold lasers; however, to be practical, techniques to electrically pump these structures must be developed. Here, we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p-i-n junction formed by ion implantation. Continuous-wave lasing is observed at temperatures up to 150 K. Thresholds of only 181 nA at 50 K and 287 nA at 150 K are observed--the lowest thresholds ever observed in any type of electrically pumped laser.

  20. Microfabrication in free-standing gallium nitride using UV laser micromachining

    International Nuclear Information System (INIS)

    Gu, E.; Howard, H.; Conneely, A.; O'Connor, G.M.; Illy, E.K.; Knowles, M.R.H.; Edwards, P.R.; Martin, R.W.; Watson, I.M.; Dawson, M.D.

    2006-01-01

    Gallium nitride (GaN) and related alloys are important semiconductor materials for fabricating novel photonic devices such as ultraviolet (UV) light-emitting diodes (LEDs) and vertical cavity surface-emitting lasers (VCSELs). Recent technical advances have made free-standing GaN substrates available and affordable. However, these materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high-resolution processing for these materials is increasingly important. In this paper, we report the fabrication of microstructures in free-standing GaN using pulsed UV lasers. An effective method was first developed to remove the re-deposited materials due to the laser machining. In order to achieve controllable machining and high resolution in GaN, machining parameters were carefully optimised. Under the optimised conditions, precision features such as holes (through holes, blind or tapered holes) on a tens of micrometer length scale have been machined. To fabricate micro-trenches in GaN with vertical sidewalls and a flat bottom, different process strategies of laser machining were tested and optimised. Using this technique, we have successfully fabricated high-quality micro-trenches in free-standing GaN with various widths and depths. The approach combining UV laser micromachining and other processes is also discussed. Our results demonstrate that the pulsed UV laser is a powerful tool for fabricating precision microstructures and devices in gallium nitride

  1. Toward continuous-wave operation of organic semiconductor lasers.

    Science.gov (United States)

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  2. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.

    2004-01-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  4. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum.

    Science.gov (United States)

    Seghilani, Mohamed S; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-05

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  5. Thermal annealing effects on AlGaAsSb/GaSb laser structure: Bandgap energy blueshift and thermal conductivity enhancement

    Science.gov (United States)

    Ilahi, S.; Yacoubi, N.; Genty, F.

    2017-07-01

    In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of AlGaAsSb/GaSb laser structure using photo-thermal deflection spectroscopy PDS. In fact, optical absorption spectrum and thermal conductivity have been determined by comparison between experimental and theoretical phase of PDS signal. We have found that band gap energy is blue shifted of 70 meV for the as grown to the sample annealed for 1 h. Indeed, the highest thermal conductivity is found around of 11 W/m.K for AlGaAsSb/GaSb annealed for 1 h, which presents a promising result for vertical-cavity surface-emitting lasers (VCSELs).

  6. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  7. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Zachary, E-mail: zabryan@ncsu.edu; Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Mita, Seiji [HexaTech, Inc., 991 Aviation Pkwy., Suite 800, Morrisville, North Carolina 27560 (United States); Tweedie, James [Adroit Materials, 2054 Kildaire Farm Rd., Suite 205, Cary, North Carolina 27518 (United States)

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  8. Laser Therapy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  9. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  10. Laser Dyes

    Indian Academy of Sciences (India)

    treatments, including port-wine stain and tattoo removal, diag- nostic measurements, lithotripsy, activation of photosensitive drugs for photodynamic therapy, etc. In the field of medical applications, dye lasers have potential advantages over other lasers. Dye lasers are unique sources of tunable coherent radiation, from the ...

  11. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  12. Mirrorless lasers

    Indian Academy of Sciences (India)

    wavelength of operation thereby tuning the laser. Another way of ... of operation. Considering the crucial role of mirrors in a laser, the phrase 'mirrorless lasers' seems to be a paradoxical one. However, in what follows, we will see how one can indeed ..... A possible military application is to have a small area in a person's.

  13. Lasers (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1969-01-01

    A laser is an instrument that produces an enormously intense pencil-thin beam of light. In this booklet we shall learn what there is about the laser that gives it so much promise. We shall investigate what it is, how it works, and the different kinds of lasers there are.

  14. Microchip Lasers

    Science.gov (United States)

    2016-10-31

    USA E-mail: zayhowski@ll.mit.edu Abstract Microchip lasers are a rich family of solid-state lasers defined by their small size, robust integration...reliability, and potential for low-cost mass production. Continuous-wave microchip lasers cover a wide range of wavelengths, often operate single

  15. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    Science.gov (United States)

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  16. High-Speed, Radiation-Tolerant Laser Drivers in 0.13 μm CMOS Technology for HEP Applications

    Science.gov (United States)

    Mazza, Giovanni; Tavernier, Filip; Moreira, Paulo; Calvo, Daniela; De Remigis, Paolo; Olantera, Lauri; Soos, Csaba; Troska, Jan; Wyllie, Ken

    2014-12-01

    The gigabit laser driver (GBLD) and low-power GBLD (LpGBLD) are two radiation-tolerant laser drivers designed to drive laser diodes at data rates up to 4.8 Gb/s. They have been designed in the framework of the gigabit-transceiver (GBT) and versatile-link projects to provide fast optical links capable of operation in the radiation environment of future high-luminosity high-energy physics experiments. The GBLD provides laser bias and modulation currents up to 43 mA and 24 mA, respectively. It can thus be used to drive vertical cavity surface emitting laser (VCSEL) and edge-emitting laser diodes. A pre-emphasis circuit, which can provide up to 12 mA in 70 ps pulses, has also been implemented to compensate for high external capacitive loads. The current driving capabilities of the LpGBLD are 2 times smaller that those of the GBLD as it has been optimized to drive VCSELs in order to minimize the power consumption. Both application-specific integrated circuits are designed in 0.13 μm commercial complementary metal-oxide semiconductor technology and are powered by a single 2.5 V supply. The power consumption of the core circuit is 89 mW for the GBLD and 55 mW for the LpGBLD.

  17. High-Speed, Radiation-Tolerant Laser Drivers in 0.13 $\\mu$m CMOS Technology for HEP Applications

    CERN Document Server

    AUTHOR|(CDS)2073369; Moreira, Paulo; Calvo, Daniela; De Remigis, Paolo; Olantera, Lauri; Soos, Csaba; Troska, Jan; Wyllie, Ken

    2014-01-01

    The gigabit laser driver (GBLD) and low-power GBLD (LpGBLD) are two radiation-tolerant laser drivers designed to drive laser diodes at data rates up to 4.8 Gb/s. They have been designed in the framework of the gigabit-transceiver (GBT) and versatile-link projects to provide fast optical links capable of operation in the radiation environment of future high-luminosity high-energy physics experiments. The GBLD provides laser bias and modulation currents up to 43 mA and 24 mA, respectively. It can thus be used to drive vertical cavity surface emitting laser (VCSEL) and edge-emitting laser diodes. A pre-emphasis circuit, which can provide up to 12 mA in 70 ps pulses, has also been implemented to compensate for high external capacitive loads. The current driving capabilities of the LpGBLD are 2 times smaller that those of the GBLD as it has been optimized to drive VCSELs in order to minimize the power consumption. Both application-specific integrated circuits are designed in 0.13 m commercial complementary metal-o...

  18. Laser photocoagulation - eye

    Science.gov (United States)

    Laser coagulation; Laser eye surgery; Photocoagulation; Laser photocoagulation - diabetic eye disease; Laser photocoagulation - diabetic retinopathy; Focal photocoagulation; Scatter (or pan retinal) photocoagulation; Proliferative ...

  19. High-frequency dynamics of spin-polarized carriers and photons in a laser

    Science.gov (United States)

    Saha, D.; Basu, D.; Bhattacharya, P.

    2010-11-01

    The high-frequency dynamics of spin-polarized carriers and photons in a spin laser have been studied. The transient response of the device obtained from the rate equations is characterized by two sets of relaxation oscillations in the carrier and photon distributions corresponding to the two polarization modes. Consequently two distinct resonant peaks are observed in the small-signal modulation response. The calculated transient characteristics indicate that the best results are obtained from a spin laser when only the favored polarization mode, with lower threshold, is operational. Under this condition the small-signal modulation bandwidth is higher than that in a conventional laser, the threshold current is lower and the output polarization can be 100% with appropriate bias conditions, independent of the spin polarization of carriers in the active region. Measurements were made at 230 K on a InAs/GaAs quantum dot spin vertical cavity surface emitting laser. A time-averaged output polarization of 55% is measured with an active region spin polarization of 5-6% . The experimental results are in good agreement with calculated data.

  20. [Pigmentary lasers].

    Science.gov (United States)

    Passeron, Thierry; Toubel, Gérard

    2009-10-01

    The pigmentary disorders are a very heterogeneous group with a high therapeutic demand from the patients. The lasers have provided a major advance in the treatment of some pigmentary lesions. The indication and the optimal parameters are actually quite well defined. However, pigmentary lasers have limits and some dermatosis can even be worsened after laser treatment. Those limitations as well as the potential side effects have to clearly be explained to the patients that often seek for a miracle cure.

  1. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  2. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  3. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  4. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  5. Mirrorless lasers

    Indian Academy of Sciences (India)

    conventional laser, the random laser had one partially reflecting mirror for providing an output port, and a surface or volume scatterer at the other end to provide non-resonant feedback. The volume scatterer was a suspension of chalk particles (about 20 microns di- ameter), in water and surface scatterer was a plate with a ...

  6. excimer laser

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... is necessary to deposit one order higher input electric power into gas medium than those required for XeCl and KrF lasers. ... neon/helium at a pressure of a few bars was excited by transverse electric discharge. The. Figure 6. Laser pulse ... and also to drive discharge rapidly. The discharge chamber was ...

  7. Laser yellowing

    Indian Academy of Sciences (India)

    environmental degradation of surfaces. Pulsed lasers are generally used for ... sorb contamination very strongly while the underlying substrate is left untouched thus rendering the process self-limiting. ... contaminated with two different encrustations, using short free running Nd:YAG and long Q-switched Nd:YAG laser ...

  8. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  9. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  10. Laser Refractography

    CERN Document Server

    Rinkevichyus, B.S; Raskovskaya, I.L

    2010-01-01

    This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest t...

  11. Laser Dentistry

    Science.gov (United States)

    ... a Better Job? Start by Visiting the Dentist Pacifiers Have Negative and Positive Effects Temporomandibular Joint Disorder ... speed up tooth whitening procedures. What are the benefits of using dental lasers? There are several advantages. ...

  12. Laser accelerators

    International Nuclear Information System (INIS)

    Willis, W.J.

    1977-01-01

    A brief discussion is given on the feasibility of using lasers to accelerate particle beams. A rough theory of operation is developed, and numerical results are obtained for an example equivalent to the Fermilab Accelerator

  13. Laser endoscopy.

    Science.gov (United States)

    McElvein, R B

    1981-11-01

    A carbon dioxide laser operating in the invisible infrared range (10.6 mu) generates a beam of energy that is almost completely absorbed by biological tissue with release of intense heat and rapid destruction. A laser attached to a rigid bronchoscope has been used in 18 patients ranging in age from 21 to 62 years to treat a variety of causes of airway obstruction. These include tracheal stenosis and granulation tissue (6 patients), adenoma (1), web (2), and carcinoma (9). The results were good in 15 and poor in 3 patients. However, all patients had an improved airway after laser treatment with the best results occurring in patients with benign, inflammatory disease. The advantages of the laser are a lack of bleeding, minimal edema after treatment, and minimal scar formation. The disadvantages are the expense of the machine, and the need for general anesthesia and direct visualization of the lesion.

  14. Il laser

    CERN Document Server

    Smith, William V

    1974-01-01

    Verso il 1960, il laser era ancora "una soluzione alla ricerca di un problema", ma fin dagli anni immediatamente successivi si è rivelato uno strumento insostituibile per le applicazioni più svariate.

  15. Laser bronchoscopy.

    Science.gov (United States)

    Duhamel, D R; Harrell, J H

    2001-11-01

    Because the lung cancer epidemic shows no signs of abating, little doubt exists that the need for interventional bronchoscopists will persist for many years to come. The Nd:YAG laser and the rigid bronchoscope remain crucial weapons in the fight against lung cancer. With more than 4000 published interventions pertaining to it, this combination is ideal for treating central airways obstruction. The safety and efficacy of laser bronchoscopy has been well established, and the reported incidence of complications is impressively low. If complications were to arise, a skilled bronchoscopist can manage them easily by using the beneficial attributes of the rigid bronchoscope. Many complications can be avoided by implementing the established safety procedures and techniques. A solid understanding of laser physics and tissue interactions is a necessity to anyone performing laser surgery. The team approach, relying on communication among the bronchoscopist, anesthesiologist, laser technician, and nurses, leads to a safer and more successful procedure. It is important to remember, however, that this is typically a palliative procedure, and therefore the focus should be on alleviating symptoms and improving quality of life. Unfortunately, because not every patient is a candidate for laser bronchoscopy, there are specific characteristics of endobronchial lesions that make them more or less amenable to resection. Each year a promising new technology is being developed, such as argon plasma coagulation, cryotherapy, and endobronchial electrosurgery. Although it is unclear what role these technologies will have, prospective controlled studies must be done to help clarify this question. The future may lay in combining these various technologies along with Nd:YAG laser bronchoscopy to maximize the therapeutic, palliative, and possibly even curative effect. As the experience of the medical community with Nd:YAG laser bronchoscopy continues to grow and as more health-care professionals

  16. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  17. Chinese marketplace of lasers and laser materials

    Science.gov (United States)

    Zhu, Huanan

    1992-05-01

    Today I want to introduce the subject of laser materials in China. I will discuss the general background of lasers and laser materials in China. Second, I want to show you some recent rapid development of lasers and laser materials in China. Third, I want to give you an overview of key R&D centers and manufacturers of lasers and laser materials. Fourth, I want to analyze some important export trends from China. Finally, I want to say something about the active international cooperation in the field of lasers and laser materials.

  18. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  19. Laser-Vorrichtung

    OpenAIRE

    Klein, J.

    1992-01-01

    The laser device has a laser oscillator and a downstream laser amplifier which has an entry zone for the laser beam, which comes from the laser oscillator before it is amplified, and an exit for the amplified laser beam. The laser amplifier also has a convolutional mirror which is opposite the entry zone for the laser beam to be amplified. The laser device is designed so that the amplifying medium in the laser amplifier can be optimally utilized if the laser device has a compact design. To th...

  20. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  1. Laser Dyes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Laser Dyes. G S Shankarling K J Jarag. General Article Volume 15 Issue 9 September ... Author Affiliations. G S Shankarling1 K J Jarag1. Dyestuff Technology, Department Institute of Chemical Technology, Matunga Mumbai 400 019, India.

  2. Laser heterodyning

    National Research Council Canada - National Science Library

    Protopopov, V. V

    2009-01-01

    ..., radiometry, laser radars and lidars, microscopy and other areas. Therefore, it is remarkable that such a widely used optical phenomenon has never before been comprehensively reviewed in a single work, as has been done many times for other subjects such as interferometry. I think there are several possible reasons for this. Perhap...

  3. Laser yellowing

    Indian Academy of Sciences (India)

    Author Affiliations. M B Sai Prasad1 Salvatore Siano2. Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; CNR-IFAC, Polo Scientifico di Sesto Fiorentino, Via Madonna del Piano, 10, Sesto Fiorentino (FI)-50019, Italy ...

  4. Laser device

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material...

  5. Mirrorless lasers

    Indian Academy of Sciences (India)

    Abstract. Experimental realization of mirrorless lasers in the last decade have resulted in hectic activity in this field, due to their novelty, simplicity and ruggedness and their great potential for application. In this article, I will review the various developments in this field in roughly chronological order, and discuss some possible ...

  6. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  7. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  8. Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor.

    Science.gov (United States)

    Hangauer, A; Chen, J; Strzoda, R; Fleischer, M; Amann, M-C

    2014-06-02

    In this paper we show the suitability of a miniaturized tunable diode laser spectroscopy (TDLS)-based carbon-monoxide (CO) sensor for fire detection applications. The sensor utilizes a vertical-cavity surface-emitting laser (VCSEL) and inherent calibration scheme with reference gas filled in the photodetector housing. The fire-detection experiments are carried out under realistic conditions as described in the European standard EN54. The CO generation of all class C fires (according to EN54) could be well resolved. The cross-sensitivity to other substances was found to be very low: the maximum CO false response from cigarette smoke, hairspray and general aerosols reaches a low value of a few μL/L and only if the substance is directly applied into the sensor gas inlet. Therefore this sensor overcomes the disadvantage of high false alarm rate given by smoke detectors and is also in small size which is suitable for household and industrial applications. Hence, the VCSEL-based TDLS sensor is shown to have sufficient performance for fire-detection. It has advantages such as capability for fail-safe operation and, low cross-sensitivities as compared to existing point fire detector technology which is presently limited by these factors.

  9. Deep in situ dry-etch monitoring of III-V multilayer structures using laser reflectometry and reflectivity modeling

    CERN Document Server

    Moussa, H; Meriadec, C; Manin, L; Sagnes, I; Raj, R

    2002-01-01

    Deep reactive ion etching of III-V multilayer structures is an important issue for long wavelength vertical cavity surface emitting laser (VCSELs) where full laser structures are usually very thick. Test etchings were performed on GaAs/Al sub x Ga sub 1 sub - sub x As Bragg mirror structures and monitored using laser reflectometry at 651.4 nm. In order to perform very deep etching, up to 9 mu m, we designed and fabricated a special two-level mask made up of a thick nitride layer and a thin nickel layer. The etching rate is a complex function of many parameters and may change from run to run for similar structures. Therefore, it is important to have a method to control accurately the process in situ by continuously matching, experimental curves with the results of the reflectivity modeling. Here, we present a model, based on the Abeles matrix method, of the normal incidence reflectivity of a multilayer stack as a function of etch depth. Comparison between the model and the observed reflectivity variation durin...

  10. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    Science.gov (United States)

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  11. Laser Accelerator

    Science.gov (United States)

    2014-09-01

    Photocathode emitters eject electrons from the cathode by the photoelectric effect. A drive laser source shines light energy onto a metal or...synchronized so that the electrons ejected via the photoelectric effect are properly accelerated. 15 Figure 2.4: Cross-section of a triple spoke cavity, from...2.3: Available Pulsed Magnets at PFF LANL. SP = Short Pulse. MP = Mid-Pulse, after [19] Cell No. Magnet Pulse Duration (ms) Bore (mm) 1 50 T SP 25 24

  12. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  13. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  14. Laser therapy for cancer

    Science.gov (United States)

    ... Yag lasers. These lasers are used to treat cancer of the uterus, colon, and esophagus. The laser-emitting fibers are put inside a tumor to heat up and damage the cancer cells. This treatment has been used to shrink ...

  15. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  16. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  17. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  18. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  19. Laser satellite power systems

    Energy Technology Data Exchange (ETDEWEB)

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  20. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  1. Laser Protection TIL

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  2. Laser technology (selected articles)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-09

    This paper presents high-energy CW HF/DF chemical lasers developed under the U.S. Navy Sealite program and the Alpha program of the DARPA Triad program, and a brief account of Soviet chemical lasers. Continuous wave HF/DF chemical lasers were developed starting in the late sixties as high-power lasers of consistent interest to military circles. These are lasers that have the most matured technology among present-day high-energy lasers. It is hoped that in the near future CW HF/DF chemical lasers can be developed into a space laser weapon to deal with ICBMs. CW HF/DF chemical lasers are an integration of technologies in gas dynamics, chemistry, fluid chemistry, optics, and lasers. By using the branching chain reaction of heat liberation, inversion of the population ratio is generated to obtain lasers.

  3. The Geoscience Laser Altimeter System Laser Transmitter

    Science.gov (United States)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  4. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  5. Laser safety and practice

    International Nuclear Information System (INIS)

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  6. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  7. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  8. Laser EXAFS

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Schwenzel, R.E.; Campbell, B.E.

    1983-01-01

    Apparatus for obtaining EXAFS data of a material, comprising means for directing radiant energy from a laser onto a target in such manner as to produce X-rays at the target of a selected spectrum and intensity, suitable for obtaining the EXAFS spectrum of the material, means for directing X-rays from the target onto spectral dispersive means so located as to direct the spectrally resolved X-rays therefrom onto recording means, and means for positioning a sample of material in the optical path of the X-rays, the recording means providing a reference spectrum of X-rays not affected by the sample and absorption spectrum of X-rays modified by transmission through the sample

  9. Laser Microdissection.

    Science.gov (United States)

    Frost, Andra R; Eltoum, Isam-Eldin; Siegal, Gene P; Emmert-Buck, Michael R; Tangrea, Michael A

    2015-10-01

    Laser microdissection (LM) offers a relatively rapid and precise method of isolating and removing specified cells from complex tissues for subsequent analysis of their RNA, DNA, protein or metabolite content, thereby allowing assessment of the role of different cell types in the normal physiological or disease processes being studied. In this unit, protocols for the preparation of mammalian frozen tissues, fixed tissues, and cytologic specimens for LM, including tissue freezing, tissue processing and paraffin embedding, histologic sectioning, cell processing, hematoxylin and eosin staining, immunohistochemistry, and image-guided cell targeting are presented. Also provided are recipes for generating lysis buffers for the recovery of nucleic acids and proteins. The Commentary section addresses the types of specimens that can be utilized for LM and approaches to staining of specimens for cell visualization. Emphasis is placed on the preparation of tissue or cytologic specimens as this is critical to effective LM. Copyright © 2015 John Wiley & Sons, Inc.

  10. Current military laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Flinchbaugh, D.E.

    1975-08-01

    Several important military applications with the predominant laser type used are reviewed. Most of these lasers are infrared lasers of one sort or another. Airborne tactical programs utilizing laser designator/illuminators are pictorially summarized, including range finding, target seeking, designation, tracking, reconnaissance, and surveillance. A typical designator optical system configuration is presented and discussed. Examples of operational laser systems are given. It is seen that many of the laser applications in the civilian community have either direct or indirect analogs in the military field. A self-contained HF/DF chemical laser weapon that recirculates its by-products is examined.

  11. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    -laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single......The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre...

  12. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    Science.gov (United States)

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  13. Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)

    Science.gov (United States)

    Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2017-02-01

    Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)

  14. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  15. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2017-08-01

    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  16. Infrared laser system

    Science.gov (United States)

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  17. Laser-surface interactions

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    This book is about the interaction of laser radiation with various surfaces at variable parameters of radiation. As a basic principle of classification we chose the energetic or intensity level of interaction of laser radiation with the surfaces. These two characteristics of laser radiation are the most important parameters defining entire spectrum of the processes occurring on the surfaces during interaction with electromagnetic waves. This is a first book containing a whole spectrum of the laser-surface interactions distinguished by the ranges of used laser intensity. It combines the surface response starting from extremely weak laser intensities (~1 W cm-2) up to the relativistic intensities (~1020 W cm-2 and higher). The book provides the basic information about lasers and acquaints the reader with both common applications of laser-surface interactions (laser-related printers, scanners, barcode readers, discs, material processing, military, holography, medicine, etc) and unusual uses of the processes on t...

  18. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  19. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  20. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  1. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  2. Excimer laser applications

    International Nuclear Information System (INIS)

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  3. Lasers in ophthalmology.

    Science.gov (United States)

    Gilmour, Margi A

    2002-05-01

    Laser technology continues to progress with the addition of new lasers, new delivery systems, and new applications. The introduction of lasers to veterinary ophthalmology has radically changed the level of care that we can provide to our patients. The development of the diode laser has particularly had an impact on veterinary ophthalmology. The diode's affordability, portability, and broad applications for veterinary patients have allowed laser surgery to become a routine part of veterinary ophthalmology practice. Educating the public and veterinary community in available laser techniques will generate improved ophthalmic care and provide more data on which to build future applications.

  4. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  5. 1982 laser program annual report

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications

  6. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  7. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  8. Laser in operative dentistry

    Directory of Open Access Journals (Sweden)

    E. Yasini

    1994-06-01

    Full Text Available Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry, etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks around the region of laser radiation. Also due to high temperature of these lasers, pulp damage is inevitable. So today, by using the Excimer laser especially the argon floride type with a wavelength of 193 nm, the problem of heat stress have been solved, but the use of lasers in dentistry, especially for cavity preparation needs more researches and evaluations.

  9. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  10. Laser surgery - skin

    Science.gov (United States)

    Surgery using a laser ... used is directly related to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , sunspots, and ...

  11. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  12. Waveguide gas laser

    Science.gov (United States)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO2 laser is described.

  13. LASIK - Laser Eye Surgery

    Science.gov (United States)

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center ... Glaucoma Education Center Pediatric Ophthalmology Education Center Oculofacial Plastic ... Center Laser Surgery Education Center Redmond Ethics Center ...

  14. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    of single mode fiber laser power. Burr free cuts in 1 mm steel and aluminum and in 1 and 2 mm AISI 304 stainless steel is demonstrated over a wide range of cutting rates. The industrial realization of this approach is foreseen to be performed by either beam patterning by diffractive optical elements......The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  15. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  16. Laser Journal (Selected Articles),

    Science.gov (United States)

    1982-09-10

    chronic -33- "ś 7, laryngitis, vocal chord nodule etc, and obtained good results. TREATMENT OF CHRONIC LARYNGITIS WITH HeNe LASER OPTICAL FIBRE Lu Junan...decrease, and excessive menstruation. OBSERVATION ON THE EFFECT OF YAG LASER OPTICAL NEEDLE UPON CANINE VOCAL CHORD AND TONGUE TISSUE Laser Medicine...Research Laboratory, Shanghai Medical School Number 1 Irradiation of canine vocal chord and tongue tissue with a 1.06 micron YAG laser through an optical

  17. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  18. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  19. Laser induced pyrolysis techniques

    International Nuclear Information System (INIS)

    Vanderborgh, N.E.

    1976-01-01

    The application of laser pyrolysis techniques to the problems of chemical analysis is discussed. The processes occurring during laser pyrolysis are first briefly reviewed. The problems encountered in laser pyrolysis gas chromatography are discussed using the analysis of phenanthrene and binary hydrocarbons. The application of this technique to the characterization of naturally occurring carbonaceous material such as oil shales and coal is illustrated

  20. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...

  1. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  2. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    minimal collateral thermal damage over conventional tissue welding. 7.6 Summary and future scope. Laser joining is one of the earliest recorded applications of laser material processing. That laser can heat a material irrespective of its chemistry, state, bonding or size/geometry, is obviously a big advantage in joining a ...

  3. Introducing the Yellow Laser

    Science.gov (United States)

    Lincoln, James

    2018-01-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye…

  4. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  5. Laser processing of materials

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/sadh/028/03-04/0495-0562. Keywords. Laser processing; laser–matter interaction; laser surface vitrification. Abstract. Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with ...

  6. LaserFest Celebration

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  7. Lasers in Cancer Treatment

    Science.gov (United States)

    ... Off-Label Drug Use in Cancer Treatment Complementary & Alternative Medicine (CAM) CAM for Patients CAM for Health Professionals Questions to Ask about Your Treatment Research Lasers in Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it used in cancer treatment? ...

  8. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  9. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  10. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  11. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  12. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  13. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  14. Laser beam shaping techniques

    Energy Technology Data Exchange (ETDEWEB)

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  15. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  16. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  17. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  18. Adiabatic soliton laser.

    Science.gov (United States)

    Bednyakova, Anastasia; Turitsyn, Sergei K

    2015-03-20

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity-the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  19. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  20. Laser safety in dentistry

    Science.gov (United States)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  1. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  2. Lasers in space

    Science.gov (United States)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  3. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  4. All-Polymer Lasers

    Science.gov (United States)

    Wu, Yeheng; Lott, Joseph; Kazmierczak, Tomasz; Song, Hyunmin; Baer, Eric; Singer, Kenneth; Weder, Christoph

    2008-03-01

    We have fabricated all-polymer lasers both as distributed feedback lasers (DFB) and distributed Bragg reflector (DBR) lasers. For the DBR lasers, a layer of polymer doped with the laser dye is laminated between two multilayer polymer mirrors. The mirrors were made using the co-extrusion process combining PMMA alternated with polystyrene with 128 layers for each mirror. Two dyes were employed, Rhodamine 6G (R6G), and 1,4-bis-(α-cyano-4-methoxystyryl)-2,5-dimethoxybenzene (C1RG). They were pumped with a nanosecond laser and emitted at about 570 and 510 nm respectively. For DFB lasers, the low refractive index layers were doped with C1RG or R6G. PMMA and PMMA-PVDF were the hosts for the C1RG and R6G respectively. A total of eight co-extruded 32-layer films were stacked together to make a DFB laser. For the DBR lasers, we were able to observe thresholds as low as 100nJ. The highest conversion efficiency obtained about 14% in the forward direction. We also observed trends of lasing threshold, even spaced lasing modes and penetration of the film. Matrix method simulations taking into account layer thickness variations were consistent with experimental results. For the DFB lasers, the lowest lasing threshold observed was 52 μW.

  5. Frequency comb swept lasers.

    Science.gov (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  6. Laser scanning laser diode photoacoustic microscopy system.

    Science.gov (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing

    2018-03-01

    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  7. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out....... The studies presented in this work open novel possibilities for alternative and simple strategies for surpassing the state-of-the-art laser stabilization and for realizing active light sources involving collective emission from narrow-line atoms....

  8. High power lasers in manufacturing

    OpenAIRE

    Chatwin, Chris R

    2017-01-01

    Lecture covers a brief history of lasers and the important beam parameters for manufacturing applications. It introduces the main laser types that are appropriate for manufacturing: carbon dioxide lasers, Nd YAG, Diode and fibre lasers, excimer lasers. It then looks at applications to different products and also micro-engineering

  9. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  10. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  11. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  12. Principles of Lasers

    CERN Document Server

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  13. Lasers Fundamentals and Applications

    CERN Document Server

    Thyagarajan, K

    2010-01-01

    Lasers: Fundamentals and Applications, serves as a vital textbook to accompany undergraduate and graduate courses on lasers and their applications. Ever since their invention in 1960, lasers have assumed tremendous importance in the fields of science, engineering and technology because of their diverse uses in basic research and countless technological applications. This book provides a coherent presentation of the basic physics behind the way lasers work, and presents some of their most important applications in vivid detail. After reading this book, students will understand how to apply the concepts found within to practical, tangible situations. This textbook includes worked-out examples and exercises to enhance understanding, and the preface shows lecturers how to most beneficially match the textbook with their course curricula. The book includes several recent Nobel Lectures, which will further expose students to the emerging applications and excitement of working with lasers. Students who study lasers, ...

  14. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  15. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  16. Methods of laser spectroscopy

    International Nuclear Information System (INIS)

    Prior, Y.; Ben-Reuven, A.; Rosenbluh, M.

    1986-01-01

    This book presents information on the following topics: the one-atom maser and cavity quantum electrodynamics; Rydberg atoms and radiation; investigation of nonthermal population distributions with femtosecond optical pulses; intra- and intermolecular energy transfer of large molecules in solution after picosecond excitation; new techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses; spectral linewidth of semiconductor lasers; the hydrogen atom in a new light; laser frequency division and stabilization; modified optical Bloch equations for solids; CARS spectroscopy of transient species; off resonant laser induced ring emission; UV laser ionization spectroscopy and ion photochemistry; laser spectroscopy of proton-transfer in microsolvent clusters; recent advances in intramolecular electronic energy transfer; and photoionization and dissociation of the H 2 molecule near the ionization threshold

  17. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  18. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  19. Laser Hydrography in Australia.

    Science.gov (United States)

    1982-02-01

    r#00-Ails 584 ELECTRONICS RESEARCH LAO ADELAIDE IAUSTRALIA) F/S B/10 LASER HYDfiORAPHY IN AUSTRALIA . (U) FEB 82 M F PENNYJIJNCLASSIFIED ERLO Z B 9...RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ERL-0229-TR LASER HYDROGRAPHY IN AUSTRALIA M.F. PENNY LJ--.I LA. Approved for Public Releae...ERL-0229-TR LASER HYDROGRAPHY IN AUSTRALIA M.F. Penny SUMMARY In response to a Royal Australian Navy requirement, the Electronics Research Laboratory

  20. Space laser components reliability

    OpenAIRE

    Riede, Wolfgang; Schroeder, Helmut

    2015-01-01

    Space environment presents unique challenges for operation of optics and optical coatings as part of laser systems. Besides testing components and sub-systems on the component qualification level, the extended testing of complete laser systems like flight modules under acceptance level conditions is an effective way to determine the reliability and long term stability, mitigating the mission risk. Hence, optics as part of high power space laser systems have to be extensively tested in view...

  1. Laser In Veterinary Medicine

    Science.gov (United States)

    Newman, Carlton; Jaggar, David H.

    1982-12-01

    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  2. Laser precision microfabrication

    CERN Document Server

    Sugioka, Koji; Pique, Alberto

    2010-01-01

    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  3. Polarization feedback laser stabilization

    Science.gov (United States)

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  4. Laser eye injuries.

    Science.gov (United States)

    Barkana, Y; Belkin, M

    2000-01-01

    Laser instruments are used in many spheres of human activity, including medicine, industry, laboratory research, entertainment, and, notably, the military. This widespread use of lasers has resulted in many accidental injuries. Injuries are almost always retinal, because of the concentration of visible and near-infrared radiation on the retina. The retina is therefore the body tissue most vulnerable to laser radiation. The nature and severity of this type of retinal injury is determined by multiple laser-related and eye-related factors, the most important being the duration and amount of energy delivered and the retinal location of the lesion. The clinical course of significant retinal laser injuries is characterized by sudden loss of vision, often followed by marked improvement over a few weeks, and occasionally severe late complications. Medical and surgical treatment is limited. Laser devices hazardous to the human eye are currently in widespread use by armed forces. Furthermore, lasers may be employed specifically for visual incapacitation on future battlefields. Adherence to safety practices effectively prevents accidental laser-induced ocular injuries. However, there is no practical way to prevent injuries that are maliciously inflicted, as expected from laser weapons.

  5. Jet laser ion source

    International Nuclear Information System (INIS)

    Dem'yanov, A.V.; Sidorov, S.V.

    1994-01-01

    External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs

  6. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  7. Trends in laser micromachining

    Science.gov (United States)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  8. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff

    2012-01-01

    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  9. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  10. Lasers in materials processing

    International Nuclear Information System (INIS)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  11. Transscleral laser for ophthalmology

    Science.gov (United States)

    Pekarik, Alexander S.; Linnik, Leonid A.; Kadan, Victor N.

    1997-05-01

    Transscleral laser (YAG:Nd, (lambda) equals 1.06 micrometers ) for ophthalmology has been developed and assembled for pulse laser transscleral treatment of eyes structures by means of adaptive optical fibers tip. `Adaptivity' means that we have used some exactly defined levels of optical fiber tip contact pressure to eyes surface to replace intertissues liquid. Such kind of fiber tip permit us apply more laser irradiation power due to decreasing of laser beam absorption in the liquid of eyes tissue. The different laser power levels, pulse duration, exposure time have been considered in correspondence with many types of adaptive fiber optical tips to optimize both transscleral coagulation and cutting process. To exactly determine the dependencies of laser irradiation spatial distributions behind sclera via contact tips pressure levels we have used as a adequate enough model He-Ne laser and eyes tissue samples. Laser system consist of power supply, control unit, laser head with cooling system, adapter for different kind of optical fibers tips. All of the above has been mounted as one case.

  12. High power lasers

    CERN Document Server

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  13. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  14. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  15. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  16. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  17. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  18. Laser aircraft. [using kerosene

    Science.gov (United States)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  19. The ring laser gyro

    Science.gov (United States)

    Chow, W. W.; Gea-Banacloche, J.; Pedrotti, L. M.; Sanders, V. E.; Schleich, W.; Scully, M. O.

    1985-01-01

    This paper presents a review of both active and passive ring laser devices. The operating principles of the ring laser are developed and discussed, with special emphasis given to the problems associated with the achievement of greater sensitivity and stability. First-principle treatments of the nature of quantum noise in the ring laser gyro and various methods designed to avoid low-rotation-rate lock-in are presented. Descriptions of state-of-the-art devices and current and proposed applications (including a proposed test of metric theories of gravity using a passive cavity ring laser) are given.

  20. Monolithic integration of dual optical elements on high power semiconductor lasers

    Science.gov (United States)

    Vaissie, Laurent

    This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11 nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of

  1. LASERS: A cryogenic slab CO laser

    Science.gov (United States)

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  2. Laser Program annual report 1987

    International Nuclear Information System (INIS)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  3. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  4. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  5. [Characteristics of laser light].

    Science.gov (United States)

    Takac, S; Stojanović, S

    1999-01-01

    Laser is one of the greatest technical discoveries of the 20th century. It is important in basic sciences, but particularly in diagnosis and therapy of various pathologic conditions of human organism. It is electromagnetic radiation, not X-irradiation and, as such, it is not expected to produce new generation of iatrogenic malignancies. Laser falls between infrared and ultraviolet on the spectrum mainly in the visible light spectrum. Properties of laser light are: monochromacity (the same color), coherence (all of the light waves are in phase both spatially and temporally), collimation (all rays are parallel to each other and do not diverge significantly even over long distances). Lasers were first conceived by Einstein in 1917 when he wrote his "Zur Quantum Theorie der Strahlung" (the quantum theory of radiation) which enumerated concepts of stimulated and spontaneous emission and absorption. Drs. Arthur Schawlow and Charles Townes, in 1956, extended lasers into the optical frequency range and Maiman, in 1960, operated the first laser using ruby as the active medium (ruby laser). Laser is an acronym for Light Amplification by Stimulated Emission of Radiation. To understand the acronym, it is necessary to understand the basic physics of the atom. However, if the atom that is in the excited state is struck by another photon of energy before it returns to the ground state, two photons of equal frequency and energy, travelling in the same direction and in perfect spatial and temporal harmony, are produced. This phenomenon is termed stimulated emission of radiation. An external power source hyperexcites the atoms in the laser medium so that the number of atoms possessing upper energy levels exceeds the number of atoms in a power energy level, a condition termed a population inversion. This "pumping system" which imparts additional energy to the atoms may be optical, mechanical, or chemical. These atoms in a hyperexcited state spontaneously emit photons of light. The

  6. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  7. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  8. LIL laser performance status

    International Nuclear Information System (INIS)

    Julien, X.; Adolf, A.; Bar, E.; Beau, V.; Bordenave, E.; Chies, Th.; Courchinoux, R.; Feral, Ch.; Gendeau, P.; Graillot, H.; Grosset-Grange, C.; Henry, O.; Higonenq, V.; Journot, E.; Lacampagne, L.; Lafond, E.; Le Deroff, L.; Martinez, A.; Patissou, L.; Roques, A.; Thauvin, L.; Di-Nicola, J.M.; Thiell, G.

    2011-01-01

    The Laser Integration Line (LIL) was first designed as a prototype to validate the concepts and the laser architecture of the Laser MegaJoule (LMJ). The LIL facility is a 4-beam laser representing a quad structure of the LMJ. A set of test campaigns were conducted to safely ramp up laser performance. The main goal was to measure quad-specific features such as beam synchronization and focal spot (size, smoothing contrast ratio or irradiation nonuniformity) versus the LMJ requirements. Following the laser commissioning, the LIL has become a major instrument dedicated to the achievement of plasma physics experiments for the French Simulation Program and was also opened to the academic scientific community. One of the attributes of the LIL facility is to be very flexible to accommodate the requests of plasma physicists during campaigns. The LIL is constantly evolving to best meet the needs of target physicists. Changes made or planned are either to improve the quality of laser beams, or to increase the LIL Energy-Power operating space. To optimize preparation and design of shot campaigns, the LIL performance status has been elaborated. It gives information about the characteristics of the laser in terms of near field and far field, defines the steps to maintain performance, explains how the facility responds to the request, details settings (smoothing, shaping of the focal spot, energy, temporal pulse shaping, beam pointing) and gives the limits in energy and power. In this paper, an overview of the LIL performance is presented. (authors)

  9. (308 nm) excimer laser

    Indian Academy of Sciences (India)

    have been found to be 2 × 106 shots for 20% reduction of energy without any halogen ... Excimer laser; xenon chloride; discharge pumped; C–C energy ... Construction. The cross sectional view of the laser system and the photograph of the developed system are shown in figures 1 and 2, respectively. The system mainly ...

  10. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  11. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  12. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  13. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  14. Coaxial short pulsed laser

    International Nuclear Information System (INIS)

    Nelson, M.A.; Davies, T.J.

    1975-01-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors

  15. Coherent Polariton Laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  16. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2016-03-01

    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  17. Laser processing of materials

    Indian Academy of Sciences (India)

    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wavelength, energy/power and beam-modes/configurations. As a result, lasers find wide applications ...

  18. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  19. Learning about Lasers

    Science.gov (United States)

    Roberts, Larry

    2011-01-01

    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  20. Laser biostimulation in pediatrics

    Science.gov (United States)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  1. Electrodeless excimer laser

    International Nuclear Information System (INIS)

    Lisi, N.

    2001-01-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse ( 2 excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field [it

  2. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  3. Lasers: principles, applications and energetic measures; Lasers: principes, applications et mesures energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Subran, C.; Sagaut, J. [Opton Laser International, 91 - Orsay (France); Lapointe, S. [Gentec Electro-Optique (Canada)

    2009-12-15

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  4. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  5. Auricular Acupuncture with Laser

    Science.gov (United States)

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  6. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  7. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...... and finally data analysis based on the ISO approach. The device was calibrated and tested on commercially available laser systems. It showed good reproducibility. It was the target to be able to measure CW lasers with a power up to 200 W, focused down to spot diameters in the range of 10µm. In order...

  8. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  9. Introducing the yellow laser

    Science.gov (United States)

    Lincoln, James

    2018-02-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye protection for the young and inexperienced. It is important to note that 589 nm is the same wavelength as the Sodium-D line (doublet). This allows for the laser to serve as a replacement for sodium lamps, and, considering its rather high price, this added value should be balanced against its cost. What follows is a list of activities that showcase the yellow laser's unique promise as an engaging piece of technology that can be used in the teaching of physics.

  10. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  11. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  12. X-Ray Lasers

    Science.gov (United States)

    Eder, David C.

    1998-05-01

    We provide an overview of the status of x-ray laser development worldwide with particular attention given to activities at LLNL. Since the demonstration of x-ray lasing 14 years ago there has been major progress in achieving shorter wavelengths, higher energies per pulse, higher efficiency, shorter pulse durations, etc. Original x-ray lasers used large kJ class lasers to achieve lasing in mid-Z materials with electron collisional pumping in the highly stripped ion being the most successful process for populating the upper-laser state. The two most common electron configurations for these collisional x-ray lasers are Ne-like and Ni-like ions. Through the use of prepulses and short picosecond driving pulses, transient collisional x-ray lasing schemes have been demonstrated using lasers with only a few Joules per pulse. An interesting aspect of these lasers is the time lag in reaching ionization equilibrium helps in obtaining high gain coefficients. A different approach to x-ray lasing is also being studied where lasing occurs in a singly ionized ion following innershell photoionization. The major requirement of the driving laser in this case is an ultrashort pulse duration (rise time to achieve lasing prior to collisional ionization of outershell electrons. In the area of applications, most of the work has been for single pulse experiments such as plasma and biological imaging. However, many of the new x-ray lasers achieve high average power by having a reasonable repetition rate of order 10 Hz and we briefly discuss relevant applications for these x-ray lasers. This work performed under the auspices of US DOE by LLNL under Contract No. W-7405-Eng-48.

  13. Laser autodyne angioscopy

    Science.gov (United States)

    Gordov, Eugeni P.; Makogon, Michail M.; Pekarskii, Vikentii V.; Shipulin, Vladimir M.

    1994-07-01

    A novel approach to imagination of inner surface of arteria during performing laser and balloon angioplasty is suggested. To this end the laser light was transmitted via fiber to the zone of interest and radiation diffused by the walls of the vessel was adopted by receiver. Known technique to determine of contours of an object by measuring the time of the laser pulse propagation is unusable due to the small geometrical scales. Using the CW laser and feeding a portion of the backscattered signal power into the laser cavity (this kind of device was referred to as laser autodyne coherent receiver), the authors have been able to measure the object contour with spatial resolution of up to 2 microns. Such resolution and high sensitivity inherent to this technique should allows one to detect early in the development of the atherosclerosis. To obtain the 3D image of the vessel inside surface we offer two methods. In the first case the vessel side is scanned by moving the end of light quid. In the second one multimode laser is used and the image is drawing by scanning the transverse modes of this laser. The vessel side and atherosclerotic plaques have the different reflectivity spectrum and this fact can be used to increase the image contrast. The correct selection of the laser wavelength makes possible to work into the vessel with circulation of the blood. The calculation of laser autodyne intrascope performance and tentative experimental results are presented in this report. The advantages of this method for the angiography are in speed and adequately of control during performing angioplasty.

  14. Lasers in Materials Processing

    Science.gov (United States)

    Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.

    Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.

  15. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K.

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. Consistency analysis on laser signal in laser guided weapon simulation

    Science.gov (United States)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  18. Measurements of laser parameters for the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  19. Laser Transmitter Design for the Geoscience Laser Altimeter System

    Science.gov (United States)

    Afzal, R. S.; Yu, A. W.; Mamakos, W.; Lukemire, A.; Dallas, J. L.; Schroeder, B.; Green, J. W.

    1998-01-01

    NASA is embarking on a new era of laser remote sensing instruments from space. This paper focuses specifically on the laser technology involved in one of the present NASA missions. The Geoscience Laser Altimeter System (GLAS) scheduled to launch in 2001 is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter for this space-based remote sensing instrument is discussed in the context of the mission requirements.

  20. [Lasers in dentistry 1. What is special about lasers?].

    Science.gov (United States)

    ten Bosch, J J

    2002-03-01

    Diagnosis and treatment with lasers is becoming widely spread in dentistry. This article is an introduction to a series of articles that deal with the many dental applications of lasers. The article contains a summary of presently used lasers. It also describes the pertinent features of laser radiation: parallelism of the beam and narrow line shape in the spectrum of electromagnetic radiation. Finally, it summarizes the relevant processes of interaction of laser radiation with tissue: scattering, absorption, fluorescence and frequency-doubling.

  1. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A

    2000-01-01

    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  2. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  3. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems ...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).......High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...

  4. 1982 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  5. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  6. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  7. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  8. Free-electron lasers

    International Nuclear Information System (INIS)

    Brau, C.A.

    1990-01-01

    Free-electron lasers represent an altogether new and exciting class of coherent optical sources. Making use of a simple and elegant gain medium - an electron beam in a magnetic field - they have already demonstrated broad wavelength tunability and excellent optical-beam quality. For the future they offer the possibility of generating the greatest focused power ever achieved by a laser. But even before this is achieved, the unique advantages of free-electron lasers, especially their tunability, will make them useful for a variety of important applications in science, medicine, and industry. (author)

  9. Chemical laser systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, J.R.

    1988-11-01

    This paper presents a means by which the chemical laser device weight can be minimized with respect to its performance and the device power minimized with respect to the target range. Chemical laser performance parameters such as the specific power and nozzle power flux are then used in conjunction with weight and propagation models to determine system effectiveness. A measure of merit is given by which systems can be contrasted. An illustrative example is included in which DF and Iodine laser systems are compared for an airborne scenario. 14 references.

  10. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  11. Laser undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki E-mail: y-kawa@fit.ac.jp; Li, Dianjun; Ruschin, Shlomo; Tanabe, Toshiya; Toyoda, Koichi

    2000-05-01

    Various characteristics such as the number of photons, the wavelength, and the solid angle of the laser undulator radiation have been measured quantitatively. It was performed in the visible wavelength region using the interaction between a high-power pulsed CO{sub 2} laser and a high-quality electron beam having an energy of 0.65-0.85 MeV. The experimental results were in good agreement with the theoretical calculations. A criterion to determine the limitation to the number of periods of the laser undulator was also proposed.

  12. Optimising laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Kabir Sardana

    2015-01-01

    Full Text Available Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  13. Diatomic gasdynamic lasers

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1971-12-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant over-populations of upper vibrational states. When mixtures of CO and N 2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N 2 expansions. The resulting CO-N 2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO 2 lasers

  14. Diatomic gasdynamic lasers.

    Science.gov (United States)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  15. Laser propagation code study

    OpenAIRE

    Rockower, Edward B.

    1985-01-01

    A number of laser propagation codes have been assessed as to their suitability for modeling Army High Energy Laser (HEL) weapons used in an anti- sensor mode. We identify a number of areas in which systems analysis HEL codes are deficient. Most notably, available HEL scaling law codes model the laser aperture as circular, possibly with a fixed (e.g. 10%) obscuration. However, most HELs have rectangular apertures with up to 30% obscuration. We present a beam-quality/aperture shape scaling rela...

  16. Optimising Laser Tattoo Removal

    Science.gov (United States)

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  17. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  18. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  19. LASER safety course

    CERN Multimedia

    HR Department

    2008-01-01

    Two sessions of the LASER safety course will be held in October IN ENGLISH. PLEASE SIGN-UP! -\t"Laser Users", on 27 October, 08:30-12:30. -\t"Laser Experts", on 27-28 October, 08:30-17:30 (including practical session) specifically aimed at LSOs. To register, go to: https://edh.cern.ch/Document/TRN/new?course=077X10 You will receive an invitation via e-mail once your EDH document has been completed and fully signed. For further information, please contact Safety Training (73811).

  20. Regenerative laser system

    International Nuclear Information System (INIS)

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  1. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  2. Laser applications in neurosurgery

    Science.gov (United States)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  3. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  4. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  5. Blackbody metamaterial lasers

    KAUST Repository

    Liu, Changxu

    2015-01-01

    We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.

  6. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  7. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  8. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  9. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  10. Photobiomodulation and Lasers.

    Science.gov (United States)

    Chiari, Susanne

    2016-01-01

    Photobiomodulation is discussed to be a noninvasive method to accelerate orthodontic tooth movement. The stimulatory effect of low-level laser therapy is well known and includes enhancement in tissue growth and tissue regeneration, resolvement of inflammation and pain. In recent research projects, the effect of laser therapy was tested regarding the stimulatory effect on bone remodeling with the potential to influence the tooth movement rate. The results are divers. The effect of laser regarding the reduction of the postadjustment pain could be proved, but not all authors describe the acceleration of tooth movement. Depending on the protocol, low-level laser therapy with low dosage increases the amount of tooth movement while high dosage seems to result in inhibitory effects. In conclusion, future studies are necessary to find the right protocol delivering beneficial results regarding the influence on bone remodeling and tooth movement to implement this therapy in daily orthodontic routine. © 2016 S. Karger AG, Basel.

  11. Lasers and optical engineering

    CERN Document Server

    Das, P

    1991-01-01

    A textbook on lasers and optical engineering should include all aspects of lasers and optics; however, this is a large undertaking. The objective of this book is to give an introduction to the subject on a level such that under­ graduate students (mostly juniors/seniors), from disciplines like electrical engineering, physics, and optical engineering, can use the book. To achieve this goal, a lot of basic background material, central to the subject, has been covered in optics and laser physics. Students with an elementary knowledge of freshman physics and with no formal courses in electromagnetic theory should be able to follow the book, although for some sections, knowledge of electromagnetic theory, the Fourier transform, and linear systems would be highly beneficial. There are excellent books on optics, laser physics, and optical engineering. Actually, most of my knowledge was acquired through these. However, when I started teaching an undergraduate course in 1974, under the same heading as the title of th...

  12. Lasers and holography

    CERN Document Server

    Kock, Winston E

    1981-01-01

    Accessible, illustrated introduction covers wave patterns and coherence, summarizes the development of lasers and the phenomenon of wave diffraction, and describes zone plates and properties of holograms. 1981 edition.

  13. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities – requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  14. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections...

  15. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  16. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  17. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  18. [Laser Iridectomy (author's transl)].

    Science.gov (United States)

    Stiegler, G

    1982-05-01

    During the period mentioned 150 laser iridectomies were performed using the pulsed argon laser (BRITT Corp). With the help of a specially developed three mirror glass, (Stiegler) it is possible, without exception, to penetrate the iris in one session, regardless of its color or the depth of the anterior chamber. The technique used, and the tonographic and histologic investigations and results are discussed. The findings provide a new insight into the mechanism of out flow in glaucoma.

  19. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  20. Laser Processed Heat Exchangers

    Science.gov (United States)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  1. Pulsed chemical laser

    International Nuclear Information System (INIS)

    Jacobson, T.V.; Kimbell, G.H.

    1975-01-01

    A hydrogen fluoride laser capable of operating super radiantly and at atmospheric pressure is described. A transverse electrical discharge is utilized to energize the reaction of a hydrogen donor to provide hydrogen fluoride in a metastable energy state which reverts to a stable state by laser action. A large range of hydrogen and fluorine donors is disclosed. A preferred pair of donors is sulphur hexafluoride and propane. Helium is frequently added to the gas mix to act as a buffer. (U.S.)

  2. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  3. Infrared laser isotope separation

    International Nuclear Information System (INIS)

    Lyman, J.L.; Rockwood, S.D.

    1976-01-01

    An evaluation of isotope separation by selective molecular dissociation using CO 2 laser radiation is presented. Results of gaseous SF 6 irradiation in cylindrical cells are tabulated. The experiments were conducted using 25 percent SF 6 in H 2 irradiated by CO 2 laser pulses at 10.6 μm. Results show enhancements in reaction yield as high as 50, corresponding to a photon utilization efficiency of 0.5 percent

  4. SHIVA laser: nearing completion

    International Nuclear Information System (INIS)

    Glaze, J.A.; Godwin, R.O.

    1977-01-01

    Construction of the Shiva laser system is nearing completion. This laser will be operating in fall 1977 and will produce over 20 terawatts of focusable power in a subnanosecond pulse. Fusion experiments will begin early in 1978. It is anticipated that thermonuclear energy release equal to one percent that of the incident light energy will be achieved with sub-millimeter deuterium-tritium targets. From other experiments densities in excess of a thousand times that of liquid are also expected

  5. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  6. Laser radiation protection

    International Nuclear Information System (INIS)

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  7. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser...

  8. Underwater laser detection system

    Science.gov (United States)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  9. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  10. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  11. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers ; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  12. Laser Ablation for Medical Applications

    Science.gov (United States)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  13. Greco Laser-matter interaction

    International Nuclear Information System (INIS)

    1986-01-01

    Research program in 1985 at GRECO ILM (Group of Coordinated Research: Interaction Laser Matter) continued with its principal direction in fundamental physics of laser inertial confinement; also researches on X-ray lasers hare been undergone and new high power laser application fields with particle acceleration, material processing and X-ray sources. A six beam laser was operated. Wavelength effects were studied. Atomic physics was deeply stressed as dense medium diagnostics from multicharged ions. Research development in ultra-dense medium was also important X-ray laser research gave outstanding results. New research fields were developed this year: laser acceleration of particles by wave beating or Raman instability; dense laser produced plasma use as X-ray source; material processing by laser shocks [fr

  14. Lasers in endodontics: an overview

    Science.gov (United States)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  15. Laser use in veterinary dentistry.

    Science.gov (United States)

    Bellows, Jan

    2002-05-01

    Lasers have been used in human dentistry since the 1960's. Lasers can provide a veterinary dentist access to difficult to reach areas with a relatively bloodless surgical field. Due to vaporization of nerve endings, human patients undergoing laser dental treatment reveal less pain compared to scalpel driven procedures. Dental applications for the commonly used lasers are discussed, as are special safety precautions. Many dental procedures enhanced by a carbon dioxide laser are covered. Future applications for the laser in veterinary dentistry are also discussed.

  16. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  17. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  18. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  19. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  20. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  1. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  2. Laser Transmitter for the Lunar Orbit Laser Altimeter (LOLA) Instrument

    Science.gov (United States)

    Yu, Anthony W.; Novo-Gradac, Anne-Marie; Shaw, George B.; Li, Steven X.; Krebs, Danny C.; Ramos-Izquierdo, Luis A.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators on a single bench, each capable of providing one billion plus shots.

  3. The lunar orbiter laser altimeter (LOLA) laser transmitter

    Science.gov (United States)

    Yu, Anthony W.; Novo-Gradac, Anne Marie; Shaw, George B.; Unger, Glenn; Ramos-Izquierdo, Luis A.; Lukemire, Alan

    2008-02-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators with co-aligned outputs on a single bench, each capable of providing one billion plus shots.

  4. Laser scattering measurement for laser removal of graffiti

    Science.gov (United States)

    Tearasongsawat, Watcharawee; Kittiboonanan, Phumipat; Luengviriya, Chaiya; Ratanavis, Amarin

    2015-07-01

    In this contribution, a technical development of the laser scattering measurement for laser removal of graffiti is reported. This study concentrates on the removal of graffiti from metal surfaces. Four colored graffiti paints were applied to stainless steel samples. Cleaning efficiency was evaluated by the laser scattering system. In this study, an angular laser removal of graffiti was attempted to examine the removal process under practical conditions. A Q-switched Nd:YAG laser operating at 1.06 microns with the repetition rate of 1 Hz was used to remove graffiti from stainless steel samples. The laser fluence was investigated from 0.1 J/cm2 to 7 J/cm2. The laser parameters to achieve the removal effectiveness were determined by using the laser scattering system. This study strongly leads to further development of the potential online surface inspection for the removal of graffiti.

  5. [The use of lasers in dermatology].

    Science.gov (United States)

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E

    2013-01-01

    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  6. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  7. Novel oral laser applications

    Science.gov (United States)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-03-01

    In dental hard tissue ablation, ultra-short laser pulses have proven sufficiently their potential for material ablation with negligible collateral damage providing many advantages. The absence of micro-cracks and the possibility to avoid overheating of the pulp during dental cavity preparation may be among the most important issues, the latter opening up an avenue for potential painless treatment. Beside the evident short interaction time of laser radiation with the irradiated tissue, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of required quality and shape. Additionally, long-pulsed laser systems have demonstrated successfully their suitability for decontamination purposes. In this paper, an overview of different indications for laser application in dental therapies in both pulse regimes is presented. A special focus is set on the decontamination of dental implants in periimplantitis therapy. Having employed commercially available long pulse systems for dental applications and ultra-short 330 fs pulses, we present first results for temperature development and corresponding ablation thresholds for dental implants, as in the future more gentle implant cleaning by ultra-short laser pulses could become of interest.

  8. Industrial lasers in Japan

    Science.gov (United States)

    Karube, Norio

    1991-03-01

    I am to report on some aspects of industrial lasers in Japan. Mostly centering on the market. In Japan, the history of laser developnent is rather profound. And long. Ever since the first invention of the laser in this country in 1960. This is partly because of the fact that in Japan the spectroscopic studies of the ruby was very popular in the late 1950's. Ever since niost of the work has been done in the research laboratories of the industry, not in the universities or not in the governmental laboratories. And since that time our first activity was mainly centering on the basic research, but after that time we have the evolution of the technology. One of the features in Japan is that the activity of developement and research of laser technology from the very basic phase up to the present commercialization has been done by the same group of people, including ine. We had a national project which ended about six years ago which was sponsored by MITI. MITI is Ministry of International Trade and Industry in Japan. And because of this national project, the effect of this project had a very enlightening effect in Japan. And after that our Japanese laser market became very flourishing.

  9. HF-laser program

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Sandia's HF-laser program for FY 77 and FY 78 was revised in June 1977 in order to meet several new program milestones. Research progress is reported on: objective of HF oscillator-amplifier studies using H 2 -F 2 gas mixtures; characteristics of large-volume oscillator using H 2 -F 2 mixtures; characteristics of large-volume amplifier using H 2 -F 2 mixtures; experimental results of the oscillator-amplifier study; objective of high-quality discharge-initiated SF 6 -HI oscillator-preamplifier system; pin-discharge-initiated oscillator and first beam expander; fast-discharge-initiated preamplifiers; reflecting beam expanders for oscillator-preamplifier system; beam quality of discharge-initiated oscillator-preamplifier system; short pulse option for discharge initiated SF 6 -HI system; H 2 -F 2 electron-beam-initiated oscillator-preamplifier system; chamber for HF-laser focusing experiments; computer study of parasitic oscillations in HF amplifiers and oscillators; kinetics upgrade of HF-laser code; repetitivey ignited flowing H 2 -F 2 -O 2 mixtures; spontaneous detonations in multiatmosphere H 2 -F 2 -O 2 mixtures; high-pressure H 2 -F 2 laser studies; and time sequenced energy extraction on the high xenon laser

  10. Laser tissue interactions: an update for otolaryngology

    Science.gov (United States)

    Reinisch, Lou

    2000-05-01

    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  11. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  12. The application of laser plasma in ophthalmology

    International Nuclear Information System (INIS)

    He Yujiang; Luo Le; Sun Yabing

    2000-01-01

    The production and development of laser plasma are introduced, and the contribution of laser biomedicine and laser plasma technology to ophthalmology is analyzed. The latest three progresses (laser photocoagulation, photo-refractive keratotomy and laser iridectomy) of laser plasma applications in ophthalmology are presented

  13. Lasers in atomic, molecular and nuclear physics

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1986-01-01

    This book presents papers on laser applications in atomic, molecular and nuclear physics. Specifically discussed are: laser isotope separation; laser spectroscopy of chlorophyll; laser spectroscopy of molecules and cell membranes; laser detection of atom-molecule collisions and lasers in astrophysics

  14. Iodine laser program: SAIL-1

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The iodine laser is the most highly developed near-infrared gas laser available for large-scale laser development. Its fast-repetition-rate potential and prospects for improvements in efficiency make it a primary laser candidate to meet mid-term laser-fusion requirements. It may have adequate efficiency for commercial laser-fusion applications in a hybrid fission/fusion reactor, for fusion-fuel breeding and for laser-fusion power generation using complex pellets. Research progress is reported on: (1) SAIL-1; (2) iodine laser-code development; (3) collision and radiation coupling for iodine atoms; (4) development of multilevel Block-Maxwell equations; (5) approximations for iodine amplifiers; and (6) studies based on the ISTAR code

  15. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  16. Reduced Power Laser Designation Systems

    National Research Council Canada - National Science Library

    Sherlock, Barry

    2009-01-01

    This work contributes to the Micropulse Laser Designation (MPLD) project. The objective of this project is to develop a 6-lb eye-safe micro-pulse laser system to locate, identify, range, mark, and designate stationary and moving targets...

  17. Polarisation effects in fibre lasers

    OpenAIRE

    Lin, J.T.; Morkel, P.R.; Reekie, L.; Payne, D.N.

    1987-01-01

    Two orthogonal polarisation eigenmodes have been observed in a single-mode fibre laser. Experimental investigation shows good agreement with theoretical analysis. Both Nd3+ and Er3+-doped single-polarisation single-mode fibre lasers have been demonstrated

  18. Excimer lasers for refractive surgery

    Science.gov (United States)

    Vartapetov, Serge K.

    2003-10-01

    Over the last decade excimer lasers have been broadly used for technological and medical processes. One of the most widespread applications of excimer laser is the clinical use for refractive surgery. Refractive surgery with excimer lasers is the prevalent method for the eye acuity correction. Operation at 193 nanometers, the excimer laser is able to precisely sculpt the corneal surface to correct refractive errors. Both the increase in the accuracy of sculpturing and the predictability of procedures are the key elements of the excimer laser designed for refractive surgery. The novel excimer laser for refractive surgery is offered for small aberration treatment. The excimer laser with both a full aperture Gaussian beam and fly spot system is described. The comparison of different systems of laser correction is reviewed.

  19. Laser sources for object illumination

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  20. Laser Transmission Through Cirrus Clouds

    National Research Council Canada - National Science Library

    Liou, Kuo-Nam

    2004-01-01

    Laser transmission model development. We developed a number of 2D radiative transfer models based on the successive-order-of-scattering approach for the computation of airborne high-energy laser transmission and backscattering...

  1. NASA's laser-propulsion project

    Science.gov (United States)

    Jones, L. W.; Keefer, D. R.

    1982-01-01

    Design concepts, study results, and research directions toward development of CW laser heating of remotely flying spacecraft fuels to provide high impulse thrust are presented. The incident laser radiation would be absorbed by hydrogen through a medium of a laser-supported plasma. The laser energy could be furnished from an orbiting solar-powered laser platform and used to drive the engines of an orbital transfer vehicle (OTV) at costs less than with a chemical propulsion system. The OTV propulsion chamber would be reduced in size comparable to the volume addition of the incident laser energy absorber. The temperatures in the hydrogen-fueled system could reach 5000-15,000 K, and studies have been done to examine the feasibility of ion-electron recombination. Kinetic performance, temperature field, and power necessary to sustain a laser thrust augmented system modeling results are discussed, along with near-term 30 kW CO2 laser system tests.

  2. Lasers and pediatric dental care.

    Science.gov (United States)

    Kotlow, Lawrence

    2008-01-01

    There are several types of lasers that will allow pediatric dentists to remove soft tissue (such as diode or Neodynium:Yttrium-Aluminum-Garnet (Nd:YAG) lasers) or remove both hard and soft tissue (such as the Erbium:YAG laser), in addition to photobiostimulation or therapeutic lasers that produce their healing benefits without producing heat. Lasers allow pediatric dentists to provide optimal care without many of the fear factors that result from conventional dental techniques. Lasers are extremely safe and effective when the user has a proper understanding of laser physics. Using lasers for caries removal, bone removal, and soft tissue treatment can reduce postoperative discomfort and infection and make it possible for dentists to provide safe, simple treatments.

  3. Neutral polypropylene laser welding

    Science.gov (United States)

    Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla

    2016-10-01

    The joining of polymeric materials is a technology used in many industrial applications, from transport to telecommunications and the medical sector. A new technology for the joining of polymers is the laser welding process. In particular, fibre laser welding is a flexible technology which allows high process speed and the realization of good quality joints. Despite its application becoming more widespread in the production of assemblies of high precision, the application of laser technology for the welding of polymers has not been the subject of many studies up to now. This study focused on the welding of neutral polypropylene. The window process parameter was identified, without the use of additives to increase radiation absorption, and a mechanical characterization was conducted in order to evaluate the quality of the joints realized.

  4. The laser scanning camera

    International Nuclear Information System (INIS)

    Jagger, M.

    The prototype development of a novel lenseless camera is reported which utilises a laser beam scanned in a raster by means of orthogonal vibrating mirrors to illuminate the field of view. Laser light reflected from the scene is picked up by a conveniently sited photosensitive device and used to modulate the brightness of a T.V. display scanned in synchronism with the moving laser beam, hence producing a T.V. image of the scene. The camera which needs no external lighting system can act in either a wide angle mode or by varying the size and position of the raster can be made to zoom in to view in detail any object within a 40 0 overall viewing angle. The resolution and performance of the camera are described and a comparison of these aspects is made with conventional T.V. cameras. (author)

  5. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    Colour generation by plasmonic nanostructures and metasurfaces has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours. However, plasmonic colour patterns need to be pre-designed and printed either by e......-beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  6. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  7. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  8. Laser Processing of Materials

    Science.gov (United States)

    Narayan, J.

    1980-06-01

    Laser beams provide a controlled source of heat by which surface layers of semiconductors and metals can be rapidly melted and cooled with rates exceeding 108C°/s. This rapid melting and solidification has been used to produce unique microstructural modifications and to obtain novel physical properties. This article summarizes the annealing of displacement damage in ion-implanted semiconductors to make superior p-n junctions and solar cells; removal of dislocation loops and precipitates to improve thermally diffused junctions; laser-induced diffusion to form p-n junctions in semiconductors deposited (instead of implanted or thermally diffused) with dopants; and fundamental studies on growth of dislocations, cell formation and alloying.1,2 Other areas — particularly in the field of metals, where laser processing may find wide applications — are covered briefly.

  9. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  10. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  11. Visible laser dazzle

    Science.gov (United States)

    Eberle, B.; Forster, D.

    2016-10-01

    The presented work gives an overview on the efforts of the NATO SET-198 research task group. It comprises nonrestricted material, which is already published or is to be published in journals. Main topics are the development and validation of computer models in order to understand the impact of laser dazzling on the detection of objects in a scene but also on the accomplishment of visual-based tasks. The work includes laboratory and field dazzling tests on sensors and humans, computer eye-dazzle modeling, automatic character recognition and laboratory observer trials for validation purposes of the used algorithms. The impact of dazzling is studied in dependence of laser wavelength, laser power and camera type.

  12. Lasers in clinical ophthalmology

    Science.gov (United States)

    Ribeiro, Paulo A.

    1992-03-01

    The clinical application of lasers in ophthalmology is schematized, showing for each anatomic eye structure, pathologies that may be treated through this procedure. In the cornea, the unusual laser practice for suture removals and the promising possibility of the excimer laser in refractive surgery are discussed. In the iris, the camerular angle, and the ciliary body, the laser application is essentially used to treat the glaucoma and other situations that are not so frequent. The capsulotomy with YAG LASER is used in the treatment of structures related with crystalline and, at least, the treatment of the retina and choroid pathology is expanded. A. A. explained the primordial interest and important of laser in the diabetic retinopathy treatment and some results in patients with more than 5 years of evolution are: 55 of the patients with proliferative diabetic retinopathy (RDP) treated for more than 5 years noticed their vision improved or stabilized; 5 years after treating patients with PDR, 49.3 had their vision stabilized or even improved, provided the diabetics had declared itself more than 20 years ago, versus 61.7 provided the diabetics had declared itself less than 20 years before; finally, 53.8 of the patients under 40-years-old when the diabetics was diagnosed, had their vision improved or at least stabilized 5 years after the beginning of the treatment. On the other side, when patients were over 40 years old when the diabetics was diagnosed percentage increased to 55.9. This study was established in the follow-up of 149 cases over 10 years.

  13. Laser vaccine adjuvants

    Science.gov (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  14. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  15. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  16. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms...... a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  17. Laser diagnostics of biofractals

    International Nuclear Information System (INIS)

    Ushenko, A G

    1999-01-01

    An optical approach to the problem of modeling and diagnostics of the structures of biofractal formations was considered in relation to human bone tissue. A model was proposed for the optical properties of this tissue, including three levels of fractal organisation: microcrystaline, macrocrystallne, and architectural. The studies were based on laser coherent polarrimetry ensuring the retrieval of the fullest information about the optical and polarisation properties of bone tissue. A method was developed for contactless noninvasive diagnostics of the orientational and mineralogical structure of bone tissue considered as a biofractal. (lasers in medicine)

  18. Lasers in oral implantology

    Science.gov (United States)

    Arnabat-Domingeuz, Josep

    2016-03-01

    Nowadays the use of implants as a increasing therapy in dentistry and it has become a usual treatment in dental offices. More and more dentists have dental implants included in treatment plans for patients with missing teeth. Therefore is necessary that all dentists know all the possibilities of these treatments. Together with the emergence of dental implants, it is also beginning to see an increase in the onset of lasers in dentistry. These two new techniques in dentistry can be supplemented because as we will see the use of lasers in different cases can improve implant treatment.

  19. Laser-chirurgie

    OpenAIRE

    КУБЛАНОВА А.А.; САПАРГАЛИЕВА С.А.; ДЕНИСОВА О.С.

    2015-01-01

    Das Wort „Laser“ steht für „Light Amplification by Stimulated Emission of Radiation“. Laserstrahlen sind starke Lichtstrahlen, die durch elektrische Stimulation eines bestimmtes Stoffs (fest, flüssig oder gasförmig) erzeugt werden.Laser werden nach dem Stoff benannt, mit dem sie den Strahl erzeugen. Weitverbreitete Laser sind u. a. Kohlendioxidlaser und Argonlaser.Die Kombination aus der Stärke eines Lichtstrahls und der Fähigkeit, diesen auf eine kleine Fläche zu konzentrieren, verhilft Lase...

  20. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  1. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  2. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  3. Isotope separation using lasers

    International Nuclear Information System (INIS)

    Guers, K.

    1976-01-01

    In laser isotope separation atoms or molecules of a specific isotopic species are selectively excited in a gaseous mixture by means of laser light and then separated from the mixture by physical or chemical methods. The methods of excitation and separation are described and compared in terms of their effectiveness. The use of molecules is investigated by analysing the possibility of the selective excitation of UF 6 . Finally, developments in this field are discussed together with the cost of research incurred in the United States and the economic benefit expected from this research. (author)

  4. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  5. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...

  6. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  7. New laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    New types of lasers must be developed to provide the desired energy per pulse, pulse length, pulse shape, wavelength, and efficiency for laser-fusion applications. This advanced laser research has focused on rare-gas oxides and on Hg 2 excimers

  8. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  9. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  10. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  11. Ho:YLF Laser Pumped by TM:Fiber Laser

    Directory of Open Access Journals (Sweden)

    Mizutani Kohei

    2016-01-01

    Full Text Available A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  12. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  13. Lasers in dental traumatology and low level laser therapy (LLLT).

    Science.gov (United States)

    Caprioglio, C; Olivi, G; Genovese, M D

    2011-04-01

    Dental trauma in children is a frequent and often complex clinical event in which laser-assisted therapy, particularly using erbium lasers, can offer new treatment possibilities, improving the outcomes and reducing the associated complications. In particular, it is worth considering that the use of laser-assisted therapies is associated with a marked reduction in the use of analgesics and anti-inflammatory medications compared with conventional procedures. Laser anaesthesia is another interesting and challenging area. Given the paucity of data on laser-assisted dental trauma therapy in the international literature and the absence of well-structured guidelines, this is an area ripe for scientific research.

  14. Laser technologies. KrF laser

    International Nuclear Information System (INIS)

    Owadano, Yoshiro; Okuda, Isao; Matsushima, Isao; Yashiro, Hidehiko; Matsumoto, Yuji

    1994-01-01

    Krypton-fluoride (KrF) laser is one of the promising driver for inertial confinement fusion because of its short wavelength, broad band width, high efficiency and capability of high repetition-rate operation. A high gain double-pass amplifier can yield a high, heavily saturated output intensity (5 to 6 times saturation intensity, > 10MW/cm 2 ) with nearly maximum efficiency (> 10%) and high stage gain (> 50) at the same time. The high gain can be achieved by cylindrical electron-beam pumping configuration without external magnetic field. Angular pulse multiplexing enables efficient pulse compression and amplification of beams with broad spectral width. The broad band width is required for irradiation smoothing methods, BRP (broad-band Random Phase Irradiation) or ISI (Induced Spatial Incoherence). Multi-kJ KrF laser, Super-ASHURA (Electrotechnical Laboratory, 8kJ), NIKE (at Naval Research Laboratory, 3kJ) and TITANIA (Rutherford Appleton Laboratory, 2kJ) are being developed and close to completion. (author)

  15. Diode-pumped neodymium lasers

    Science.gov (United States)

    Albers, Peter

    1990-08-01

    Since the invention of diode lasers in the early 1960's there had been continuous investigations in laser diode pumped solid state lasers as has been reviewed in detail by a number of papers ( see e.g. [1] ). There are two main advantages of using diode lasers instead of flashlaraps as a pump source for solid state lasers: First the emission of the diode lasers matches well with the absorption bands of several Rare Earth ions that are doped in laser crystals ( mainly Nd3+, but also Er3, Tm3, Dy3', and others ) . This summary will report only about diode lasers at a wavelength of around BlOnm, which fits to an absorptionband of Nd3t Second diode lasers provide the possibility of longitudinally pumped configurations and therefore an excellent mode matching with the solid state laser mode. For both reasons the efficiency of a diode laser puniped solid state laser is nuch higher than of a flashlamp pumped one. Since the early 1980's a much wider interest in diode laser pumped solid state lasers arose. It was stimulated by the improved performance of the new generation of diode lasers in terms of reliability , operational lifetime and output power [21. Two important steps in direction to the diode lasers at present time were the developments of double hetero (DH) structure- and graded index separate confinement hetero (GrInSCH) structurediode lasers. In the same way the development of new production techniques were necessary to ensure the reliability of the diode lasers. Starting with the liquid phase epitaxy (LPE) the (GaAl)As structures are now grown by the molecular beam epitaxy (MBE), mainly used for very high precision laboratory investigations, and metal organic chemical vapour deposition (MOCVD), mainly used for commercial production. As a first commercial product SDL introduced a 100mW array in 1984. Since then the output power of the commercially available diode lasers increased by two orders of magnitude to lOW. These diode lasers are multi stripe bar arrays

  16. The vulnerability of laser warning systems against guided weapons based on low power lasers

    OpenAIRE

    Al-Jaberi, Mubarak

    2006-01-01

    Laser assisted weapons, such as laser guided bombs, laser guided missiles and laser beam-riding missiles pose a significant threat to military assets in the modern battlefield. Laser beam-riding missiles are particularly hard to detect because they use low power lasers. Most laser warning systems produced so far can not detect laser beam-riding missiles because of their weak emissions which have signals less than 1% of laser range finder power . They are even harder to defeat because current ...

  17. Joint Laser Interoperability, Tomorrow's Answer to Precision Engagement

    National Research Council Canada - National Science Library

    Neuenswander, David

    2001-01-01

    .... This includes a brief discussion of how a laser works and what constitutes the basic parts of a laser system, laser range finders, laser designators, laser spot trackers, and laser guided weapons...

  18. Emerging technologies for compact visible laser sources

    International Nuclear Information System (INIS)

    Forrest, G.T.

    1988-01-01

    A number of laser and non-linear optical technologies and converging on commercial designs. High power laser diodes and non-linear materials are being incorporated in prototype lasers, many of which will become commercially available products during the next 1-5 years. This paper reviews the output characteristics of such lasers. Lasers which are discussed include direct doubling of laser diodes based on proton exchanged lithium niobate, fiber lasers, frequency doubled diode pumped Nd:YAG lasers, and sum frequency mixed Nd:YAG lasers. Such lasers are capable of providing milliwatt output powers in the green and/or blue spectral regions

  19. Focus issue introduction: Laser Ignition Conference.

    Science.gov (United States)

    Taira, Takunori; Furutani, Hirohide; Guo, Chunlei; Wintner, Ernst; Akamatsu, Fumiteru; Lucht, Robert; Washio, Kunihiko

    2014-03-10

    The purpose of this feature issue is to share information on laser ignition and related sciences and technologies. This feature offers five papers in the field that cover aspects of laser-induced laser ignition, including novel giant pulse micro-lasers, new phenomena of laser breakdown, advanced combustion systems and applications. These topics were chosen from the first Laser Ignition Conference (LIC) covering the topics of high brightness lasers for ignition and diagnostics, laser ignited engines for power generators and vehicles, and from a joint symposium with the Laser Display Conference covering applications of high brightness lasers.

  20. The material system (AlGaIn)(AsSb). Properties and suitability for GaSb based vertical-resonator laser diodes

    International Nuclear Information System (INIS)

    Dier, Oliver

    2008-01-01

    The present thesis studies the particular properties of GaSb-based materials, where they differ from pure arsenides or phosphides, and also the impact of theses properties on long-wavelength vertical-cavity surface-emitting lasers (VCSELs). The goal is the first realisation of an electrically pumped VCSEL with a current aperture in this material system. After the basics, which are necessary for the understanding of the physical effects, the special features of antimony-containing materials are discussed with a focus on topics like band-structure, doping issues and miscibility gaps, which are relevant for devices. A VCSEL-structure optimized for long-wavelength applications is presented using an appropriate description of the device in its optical, electrical and thermal properties. A focus of this work is on the growth of laser-structures by molecular beam epitaxy. Annealing studies on this material showed a good prediction of the final wavelength after the temperature step, which is necessary due to the overgrowth of the tunnel-junction. The full-width at half maximum of the low-temperature photoluminescence signal shows a very low value of 3.95 meV for the quaternary active region. By using the type-II-band alignment of GaSb:Si and InAsSb:Si a low-resistive tunneljunction has been realised. After completion of the device processing a strong electroluminescence outside the DBR stopband and resonant modes within the stopband were found. A linear shift of the emission wavelength with temperature of 0.23 nm/K between -11 C and +30 C was found. (orig.)

  1. Miniature Laser Tracker

    Science.gov (United States)

    Vann, Charles S.

    2003-09-09

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  2. Laser conservation of art.

    Science.gov (United States)

    Nevin, Austin; Pouli, Paraskevi; Georgiou, Savas; Fotakis, Costas

    2007-05-01

    Focusing a laser on the dirt covering a precious work of art may seem like a dangerous thing to do, but this unexpected technique has found a variety of cleaning applications. Analogies from other fields of materials science can provide guidance for its use, and model experiments ensure it doesn't all end in disaster.

  3. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.

    1991-09-01

    Laser Surveillance System (LASSY) is a beam of laser light which scans a plane above the water or under-water in a spent-fuel pond. The system can detect different objects and estimates its coordinates and distance as well. LASSY can operate in stand-alone configuration or in combination with a video surveillance to trigger signal to a videorecorder. The recorded information on LASSY computer's disk comprises date, time, start and stop angle of detected alarm, the size of the disturbance indicated in number of deviated points and some other information. The information given by the laser system cannot be fully substituted by TV camera pictures since the scanning beam creates a horizontal surveillance plan. The engineered prototype laser system long-term field test has been carried out in Soluggia (Italy) and has shown its feasibility and reliability under the conditions of real spent fuel storage pond. The verification of the alarm table on the LASSY computer with the recorded video pictures of TV surveillance system confirmed that all alarm situations have been detected. 5 refs

  4. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available -of-magnitude reduction in launch costs. American, German and Japanese experimental ‘lightcraft’ are described as well as the Orion programme to de-orbit space debris. Marx’s seminal paper on laser-driven, relativistic space propulsion and the ensuing controversy was also...

  5. Laser sensor system documentation.

    Science.gov (United States)

    2017-03-01

    Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...

  6. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  7. Atmospheric and laser propagation

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Stein, K.

    2017-01-01

    This paper reviews three phenomena that affect the propagation of electro-optical radiation through the atmosphere: absorption and scattering, refraction and turbulence. The net effect on imaging or laser systems is a net reduction of the effective range, or a degradation of the information

  8. YAG laser in ophthalmology

    Science.gov (United States)

    Jelinkova, Helena; Pasta, Jiri; Sulc, Jan; Nemec, Michal; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2002-10-01

    A summary of using near (Nd) and middle (Er) infrared YAG laser systems in ophthalmology surgery is given in the paper. The report on twelve years of clinical experience with the ophthalmic Nd:YAG laser system (λ=1.06 μm) operating alternatively on Q-switched or mode-locked regimes is accomplished. From statistical data processing of more than 1000 interventions it follows that better results in a posterior capsule opacification cure are achieved with the use of short, near-infrared mode-locked 25 ps long pulses, while 4 ns long giant pulses of the same wavelength are useful for iridectomy creations. Middle infrared radiation generated by the Er:YAG laser system (λ-2.94 μm) was used for pre-clinical interaction experiments (in vitro). Differences in results of cornea, lens and sclera ablation by a free running (110 μs long) and Q-switched (250 ns long) mid-infrared pulses are presented. The radiation was delivered to the interaction place either by a system of reflected mirrors (used for Nd:YAG laser), or by a special sealed waveguide (in the case of Er:YAG system).

  9. Laser Welding in Space

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  10. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  11. Oxazine laser dyes

    Science.gov (United States)

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  12. Uranyl chelate lasers, realization

    International Nuclear Information System (INIS)

    Macheteau, Y.; Coste, A.; Luce, M.; Rigny, P.

    1975-01-01

    The absorption fluorescence and excitation spectra of uranyle chelates were determined. The corresponding fluorescence decay was measured at low temperature. The possibility of obtaining a stimulated emission with uranyl chelates is examined from the consideration made on the properties of Eu chelates (B 4 EuNa and B 4 Eu piperidine) which give the laser effect [fr

  13. Laser surveillance system (LASSY)

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    The development progress during the reporting period 1988 of the laser surveillance system of spent fuel pools is summarized. The present engineered system comes close to a final version for field application as all technical questions have been solved in 1988. 14 figs., 1 tab. (Author)

  14. Laser machining wood composites

    Science.gov (United States)

    Vladimir Barnekov; Henry A. Huber; Charles W. McMillin

    1989-01-01

    This practical, nonstatistical experiment using commercial equipment demonstrated that nominal 3/4-inch compositep anelsf or furniture consisting of a particleboard core,h igh density melamine crossbands, and walnut veneer face plies can be cut with a carbon dioxide/airjet-assisted laser to produce surfaces with minimal nonparallelism and char compared to previous...

  15. Holmium laser thermokeratoplasty.

    Science.gov (United States)

    Moreira, H; Campos, M; Sawusch, M R; McDonnell, J M; Sand, B; McDonnell, P J

    1993-05-01

    Corneal curvature can be altered by shrinking stromal collagen with a pulsed solid-state holmium: YAG laser in a procedure termed laser thermokeratoplasty. The authors performed laser thermokeratoplasty in 40 human cadaver eyes using a ring pattern of 32 spots, each spot having a diameter of 300 microns. The amount of induced corneal steepening decreased as ring diameter was increased in 1 mm increments, with 22.2 +/- 3.3 and 3.7 +/- 2.0 diopters (D) of central steepening with diameters of 3 and 7 mm, respectively. Results of histologic examination showed a cone-shaped zone of increased stromal hematoxylin uptake extending posteriorly for 90% of stromal thickness. Energy levels greater than those needed to induce topographic changes produced limited endothelial injury in rabbit corneas and, in some cases, intraocular inflammation. A computerized, finite element model of the globe demonstrated central corneal steepening as a result of heat-induced stromal contraction to a depth of 75% corneal thickness. These data support previous studies indicating that central corneal topography can be modified by heating corneal stroma in a controlled fashion with the mid-infrared holmium:YAG laser.

  16. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  17. Dielectric Waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Orlovic, V.A.; Pachenko, V.; Scherbakov, I.A.

    2007-01-01

    Our recent results on planar and channel waveguide fabrication and lasers in the dielectric oxide materials Ti:sapphire and rare-earth-ion-doped potassium yttrium double tungstate (KYW) are reviewed. We have employed waveguide fabrication methods such as liquid phase epitaxy and reactive ion etching

  18. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  19. Advanced Laser Source Research.

    Science.gov (United States)

    1987-06-01

    E E -L- CTE JUL 10 01987COTET ;Z, Nonlinear Spectroscopy: Arthur L. Schawlow, Principal Investigator (2) Tunable Lasers and Coherent Light Techniques...spin), i.e., they will tend to rotate clockwise versus counterclockwise. When a football is thrown at high speed and lands on a grass field, it almost

  20. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  1. Nanomagnetics with lasers

    Indian Academy of Sciences (India)

    Both liquid and vapour phase pulsed laser deposition (PLD) techniques have been used to synthesize nanophase magnetic alloys of CoPt. While the liquid route results in soft phase (disordered ) nanoparticles of CoPt near equiatomic composition dispersed in a surfactant–polymer matrix, the conventional vapour ...

  2. Laser Soap Fountain

    Science.gov (United States)

    Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.

    2015-01-01

    We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which…

  3. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  4. Nanomagnetics with lasers

    Indian Academy of Sciences (India)

    Wintec

    phase imparts tensile strain to the films whose morphological manifestations can be suppressed at high growth rates. Keywords. Nanomagnetics; lasers. 1. Introduction. Magnetic materials ... presented by effects such as giant magnetoresistance. (GMR) (Hartman 2000; Hirota et al 2002), tunneling magnetoresistance (TMR) ...

  5. Laser etching as an alternative

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Kelly, R.

    1989-01-01

    Atoms and molecules are removed from surfaces by intense laser beams. This fact has been known almost since the discovery of the laser. Within the present overall area of interest, namely understanding ion-beam-induced sputtering, it is equally important both to contrast laser etching to ion sputtering and to understand the underlying physics taking place during laser etching. Beyond some initial broad observations, the specific discussion is limited to, and aimed at, two areas: (i) short wavelength, UV, laser-pulse effects and (ii) energy fluences sufficiently small that only monolayers (and not microns) of material are removed per pulse. 38 refs.; 13 figs.; 5 tabs

  6. Laser Program annual report 1984

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs

  7. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  8. Gasdynamic lasers and photon machines.

    Science.gov (United States)

    Christiansen, W. H.; Hertzberg, A.

    1973-01-01

    The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.

  9. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  10. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  11. Interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  12. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  13. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  14. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  15. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  16. Subwavelength micropillar array terahertz lasers.

    Science.gov (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  17. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  18. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  19. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    Science.gov (United States)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  20. Improving the laser brightness of a commercial laser system

    Science.gov (United States)

    Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2016-02-01

    We investigate the selection of a flat-top beam and a Gaussian beam inside a laser cavity on opposing mirrors. The concept is tested external to the laser cavity in a single pass and double pass regime where the latter mimics a single round trip in the laser. We implement this intra-cavity selection through the use of two 16 level diffractive optical elements. We consider a solid-state diode side-pumped laser resonator in a typical commercial laser configuration that consists of two planar mirrors where the DOEs are positioned at the mirrors. We out couple the Gaussian and flat-top distributions and we show that we improve the brightness of the laser with active mode control. We also demonstrate that the quality of the beam transformations determine the brightness improvement.