WorldWideScience

Sample records for surface-dependent optical properties

  1. Preservation of surface-dependent properties of viral antigens following immobilization on particulate ceramic delivery vehicles.

    Science.gov (United States)

    Kossovsky, N; Gelman, A; Sponsler, E; Rajguru, S; Torres, M; Mena, E; Ly, K; Festekjian, A

    1995-05-01

    B-cell stimulation for the purpose of evoking an effective neutralizing humoral immune response is a surface phenomenon that is exquisitely specific to antigen conformation. Consequently, successful delivery of antigen, such as would be desired in a vaccine, entails preservation of an antigen's apparent native surface (conformational) properties. Prior to testing the actual vaccinating efficacy of delivered antigens, the surface properties could be assessed through a variety of in vitro and in vivo assays in which the measurement standard would be the properties of the antigens in their native state (whole virus). Using surface modified nanocrystalline carbon and calcium-phosphate ceramic particulates (carbon ceramics and brushite), we evaluated the surface activity of immobilized non-nuclear material extracted from HIV-1. Physical characterization showed that the particles with immobilized antigen ("HIV decoys") measured 50 nm in diameter (HIV = 50-100 nm) and exhibited the same zeta potentials as whole (live) HIV. In vitro testing showed that the HIV decoys were recognized by both conformationally nonspecific and specific monoclonal antibodies, were recognized by human IgG from HIV antibody-positive patients, and could promote surface agglomeration among malignant T-cells similar to live HIV. Last, in vivo testing in three vaccinated animal species showed that the HIV decoys elicited humoral and cellular immune responses similar to that evoked by whole (live) HIV.

  2. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  3. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  4. Optical properties of stanene

    Science.gov (United States)

    Pratap Chaudhary, Raghvendra; Saxena, Sumit; Shukla, Shobha

    2016-12-01

    Successful synthesis of graphene has created a runaway effect in the exploration of other similar two-dimensional materials. These materials are important as they provide large surface areas and have led to the exploration of new physical phenomena. Even though graphene has exotic electronic properties, its spin-orbit coupling is very weak. Tin, being one of the heaviest elements in this group, is expected to have enhanced spin-orbit coupling in addition to other exotic properties of graphene. Here we report optical signatures of free standing stanene obtained using UV-vis absorption spectroscopy. Raman measurements were performed on a transmission electron microscope (TEM) grid. Interlayer spacing, phonon frequencies and the imaginary part of the complex dielectric function obtained using first principles methods are in good agreement with the experimental data. Occurrence of parallel bands suggests the possibility of the presence of excitonic effects in stanene.

  5. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  6. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    Nanomaterials have emerged as an area of interest motivated by potential applications of these materials in light emitting diodes, solar cells, polarizers, light – stable colour filters, optical sensors, optical data communication and optical data storage. Nanomaterials are of particular interest as they combine the properties of ...

  7. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  8. Transport Optical and Magnetic Properties of Solids.

    Science.gov (United States)

    Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons

  9. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    Wintec

    Nanomaterials have emerged as an area of interest motivated by potential applications of these materials in light emitting ... the effect of interfacial morphology, interparticle spacing and finite size effects on optical properties of nano- composites. Systematic shift in ... and magnetic multipole oscillations. Mie's (1908) theory.

  10. Optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Durand, G.

    1977-01-01

    Liquid crystals are strongly anisotropic liquids. Their textures are stabilized by a usually weak culvature elasticity. External fields act coherently through induced torques to align the liquid crystal textures. Low fields can have large optical effects. These properties explain the interest of liquid crystals for electrooptical applications. The optical properties of liquid crystals are those of positive uniaxial or biaxial solid crystals. An important parameter is the existence of a possible regular twist, spontaneous or not, on an optical wavelength scale or larger. This results in Bragg scattering of light, a very large associated rotatory power or possibly a wave-guide regime for polarized light. Light scattering is an important source of noise close to the transmitted beam, and it is difficult to filter because of the large associated correlation time. A highly distorted texture which contains all kinds of defects can scatter light like a ground glass. All these properties are used in optical devices. Optical devices using liquid crystal displays are now commercially available. Most of them use nematic materials, in the twisted geometry, in the variable tilt mode or in the dynamic scattering mode. These passive displays are interesting for field application because of their very low power consumption. Their relatively large response time (typically in the millisecond range) is used for a multiplex-type addressing. Smectic materials are potentially interesting for optical applications. Their advantage would be a much larger resolution which is not limited to the thickness of the liquid crystal cell. The response times are also much shorter than in nematics and could soon become compatible with a standard television rate of imaging. Smectics (and cholesterics) present also a memory effect. The ferroelectric chiral smectic C opens up a new field for future investigations. (author)

  11. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    Wintec

    Etchegoin P G, Le Ru E C and Mayer M 2006 J. Chem. Phys. 25 164705. Haridas M, Srivastava S and Basu J K 2008 EPJD (submitted). Inouye H, Tanaka K, Tanahashi I and Hirao K 1998 Jpn J. Appl. Phys. 37 L1520. Johnson P B and Christy R W 1972 Phys. Rev. B6 4370. Kreibig U and Vollmer M 1995 Optical properties ...

  12. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available Semiconductor and metallic nanomaterials and nanocomposites possess interesting linear absorption, photoluminescence emission, and nonlinear optical properties. Nanomaterials having small particle sizes exhibit enhanced optical emission as well...

  14. Optical properties of modified Bragg fiber-optic waveguides

    Science.gov (United States)

    Kulchin, Yu. N.; Zinin, Yu. A.; Nagornyi, I. G.; Voznesenskii, S. S.

    2011-11-01

    A modified form of optical fibers with varying cross section is proposed. A Bragg optical fiber with an additional conic layer between the core and periodic cladding is considered. Oscillating scattering of light through the side surface of such a fiber is predicted. It is shown that the optical properties of spicules of marine glass sponges Hyalonema sieboldi can be explained by the conic shape of the near-axis layer.

  15. Optical properties of proton-irradiated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeok Moo; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-05-15

    Recently, organic semiconducting materials have gained a broad interest due to their potential for organic electronic devices such as organic light emitting diode (OLED), organic photovoltaic devices and organic field-effect transistors (OFETs). Optical properties of organic semiconducting materials are important for practical application. For example, the power conversion efficiency of organic photovoltaic devices is mainly affected by absorption properties of organic materials. Proton irradiation is one of the efficient methods to change the optical properties of organic materials. In this paper, we investigate the changes of optical properties of various polymers using the proton irradiation.

  16. Optical Properties of Nanosatellite Hardware

    Science.gov (United States)

    Finckenor, M. M.; Coker, R. F.

    2014-01-01

    Over the last decade, a number of very small satellites have been launched into space. These have been called nanosatellites (generally of a weight between 1 and 10 kg) or picosatellites (weight Nanosatellite Effect (SMDC-ONE) and the Edison Demonstration of Smallsat Networks (EDSN) nanosatellites. These optical property measurements are documented here in hopes that they may benefit future nanosatellite and picosatellite programs and aid thermal analysis to ensure project goals are met, with the understanding that material properties may vary by vendor, batch, manufacturing process, and preflight handling. Where possible, complementary data are provided from ground simulations of the space environment and flight experiments, such as the Materials on International Space Station Experiment (MISSE) series. NASA gives no recommendation, endorsement, or preference, either expressed or implied, concerning materials and vendors used. Solar absorptance was calculated from spectral reflectance measurements made from 250 to 2,800 nm with an AZ Technology Laboratory Portable Spectroreflectometer (LPSR) model 300. ASTM E-903 was the test method used under normal laboratory conditions, and ASTM E-490 was the solar spectral irradiance data used to calculate solar absorptance. Most of the samples were flat, but stray light was minimized as much as possible with either a blackbody or black cloth as sample background. The LPSR has repeatability of approximately +/-1%, where solar absorptance is given as range, that is, from actual measurements taken across the sample. Infrared emittance measurements were made with an AZ Technology TEMP 2000A infrared reflectometer. This instrument measures the total hemispheric reflectance averaged over 3-35 micrometer wavelengths. ASTM E-408 was the test method used under normal laboratory conditions. 3 Stray light was minimized as much as possible. The TEMP 2000A has repeatability of approximately +/-0.5%, where infrared emittance is given as a

  17. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  18. Radiative properties of optical board embedded with optical black holes

    International Nuclear Information System (INIS)

    Qiu, J.; Liu, L.H.; Hsu, P.-F.

    2011-01-01

    Unique radiative properties, such as wavelength-selective transmission or absorption, have been intensively studied. Historically, geometries for wavelength-selective of light absorption were developed based on metallic periodical structures, which were only applied in the case of TM wave incidence due to the excitation of surface plasmons. In this paper, we develop an alternative approach to selective wavelength of light absorption (both TE and TM waves), based on an optical board periodical embedded with optical black holes. Numerical work was carried out to study such structure's radiative properties within the wavelength range of 1-100 μm. The electromagnetic wave transmission through such a structure is predicted by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. Spectral absorptance varies with the period of optical black holes. When the incidence wavelength is much larger than the inner core radius, most of the light energy will be transmitted through the inner core. Otherwise, the energy will be mainly absorbed. Numerical results of the radiative properties of the optical board with different incidence wavelengths are also obtained. The effect of the oblique incidence wave is investigated. This study helps us gain a better understanding of the radiative properties of an optical board embedded with optical black holes and develop an alternative approach to selective light absorption.

  19. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  20. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    blende InP nanowires. We have constructed the energy band diagram of the resulting multiquantum well heterostructure and have performed detailed quantum mechanical calculations of the electron and hole wave functions. The excitation power dependent blue-shift of the photoluminescence can be explained...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering.......We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...

  1. Terahertz optical properties of nonlinear optical CdSe crystals

    Science.gov (United States)

    Yan, Dexian; Xu, Degang; Li, Jining; Wang, Yuye; Liang, Fei; Wang, Jian; Yan, Chao; Liu, Hongxiang; Shi, Jia; Tang, Longhuang; He, Yixin; Zhong, Kai; Lin, Zheshuai; Zhang, Yingwu; Cheng, Hongjuan; Shi, Wei; Yao, Jianquan; Wu, Yicheng

    2018-04-01

    We investigate the optical properties of cadmium selenide (CdSe) crystals in a wide terahertz (THz) range from 0.2 to 6 THz by THz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy (FTIR). The refractive index, absorption coefficient and transmittance are measured and analyzed. The properties are characterized by several absorption peaks which represent the relevant phonon vibrations modes. The experimental results are in agreement with the theoretical results. The dispersion and absorption properties of CdSe crystal are analyzed in THz range. These properties indicate a good potential for THz sources and THz modulated devices.

  2. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    d core d. ML core monolayer. Coupling of the size and shape dependent optoelectronic properties of nanomaterials. + the intrinsic functionalities of molecular systems. (binding, self-assembly, switching etc.) ...

  3. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  4. Effective Optical Properties of Plasmonic Nanocomposites.

    Science.gov (United States)

    Etrich, Christoph; Fahr, Stephan; Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady; Rockstuhl, Carsten

    2014-01-27

    Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  5. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  6. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  7. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  8. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  9. Optical properties of nano-silicon

    Indian Academy of Sciences (India)

    We investigated the optical properties of silicon clusters and Si nanocrystallites using photoluminescence (PL) and Raman scattering technique. Broad luminescence band in the red region was observed from Si-doped SiO2 thin films deposited by co-sputtering of Si and SiO2 on -type Si (100) substrates, annealed in Ar ...

  10. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  11. Nonlinear optical properties and nonlinear optical probes of organic materials

    Science.gov (United States)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  12. Investigation of optical properties of aging soot

    Science.gov (United States)

    Migliorini, F.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    The optical properties of soot, in particular the propensity of soot to absorb and scatter light as a function of wavelength, are key parameters for the correct interpretation of soot optical diagnostics. An overview of the data available in the literature highlights the differences in the reported optical properties of aging soot. In many cases, the properties of mature soot are used when evaluating in-flame soot but this assumption might not be suitable for all conditions and should be checked. This need has been demonstrated by performed spectral resolved line-of-sight attenuation (Spec-LOSA) measurements on an ethylene/air premixed and non-premixed flame. Transmission electron microscopy of thermophoretically sampled soot was also performed to qualify the soot aging and to establish soot morphology in order to correct light extinction coefficients for the scattering contribution. The measured refractive index absorption function, E( m) λ , showed a very strong spectral dependence which also varied with height above the burner for both flames. However, above 700 nm, the slope of the refractive index function was near zero for both flames and all measurement heights. The upper visible and near infrared wavelengths are therefore recommended for soot optical measurements.

  13. Optical properties of cells with melanin

    Science.gov (United States)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  14. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...

  15. Electronic and optical properties of iron pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Vadkhiya, L. [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur-313 001, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur-313 001, Rajasthan (India)

    2011-02-10

    Research highlights: > First ever theoretical and experimental Compton profiles along with anisotropies in momentum densities. > Computation of electronic properties using LCAO (for the first time) and FP-LAPW (with the latest gradient functionals). > Optical properties (imaginary part of optical dielectric constants and absorption coefficients) and utility of FeS{sub 2} in solar cells. - Abstract: We have computed for the first time the energy bands, density of states and Compton profiles of FeS{sub 2} using linear combination of atomic orbital approach. To interpret the theoretical Compton profiles, we have measured the first ever experimental Compton profiles along [1 1 0] and [1 0 0] directions using 100 mCi {sup 241}Am Compton spectrometer. The absolute profiles and the anisotropies in momentum densities are well explained by the hybridisation of Hartree-Fock scheme and density functional theory. In addition, to explore the utility of FeS{sub 2} in photovoltaics, we have also discussed the optical properties using full potential linearised augmented plane wave method.

  16. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    E-mail: rezakh2025@yahoo.com. MS received 25 October 2013; revised ... The physical properties of semiconductors such as optical, electronic, and thermodynamic properties have become the most ... Recently, optical and electronic properties of semiconductors have attracted consider- able attention in physics. Optical ...

  17. Optical Properties of Polypropylene upon Recycling

    Directory of Open Access Journals (Sweden)

    Felice De Santis

    2013-01-01

    Full Text Available In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  18. Optical Properties of Polypropylene upon Recycling

    Science.gov (United States)

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  19. Optical properties of polypropylene upon recycling.

    Science.gov (United States)

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  20. Optical properties of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aspnes, D.E.; Kelly, M.K.

    1989-01-01

    The authors summarize the present status of optical spectroscopy of high-T c superconductors. The optical properties of these materials resemble those of the more common transition metal oxides except for being highly anisotropic in the infrared (IR). This large IR anisotrophy and a need to rely solely on reflectance techniques has hindered progress in obtaining accurate IR data and interpreting these data in terms of microscopic mechanisms. However, experimental consistency is now being approached with single-crystal samples, although interpretations of these data remain controversial and an unequivocal demonstration of a superconducting gap structure has not yet been achieved. The mid IR exhibits an absorption band whose systematics are neither well established nor understood. The situation in the visible-near-ultraviolet (V-NUV) is better, partly because of greatly reduced optical anisotropy and the availability of alternative measurement techniques that are not strongly affected by the lower optical quality of sintered material. As polycrystalline, sintered samples can be prepared relatively easily over wide ranges of composition, doping, and chemical substitution, most work on studying the chemical systematics of these materials has been done in this spectral range and some of the structure that appears here has been positively identified

  1. Optical properties of quasiperiodically arranged semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Werchner, Marco

    2009-12-18

    This work consists of two parts which are entitled ''One-Dimensional Resonant Fibonacci Quasicrystals'' and ''Resonant Tunneling of Light in Silicon Nanostructures''. A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL.. The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically.Light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close

  2. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  3. Optical properties of relativistic plasma mirrors.

    Science.gov (United States)

    Vincenti, H; Monchocé, S; Kahaly, S; Bonnaud, G; Martin, Ph; Quéré, F

    2014-03-11

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase.

  4. Optical and photoelectronic properties of melanin

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, V. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy)]|[Istituto Nazionale di Fisica della Materia, Sezione di Bari, Via Amendola 173, I-70126 Bari (Italy); Perna, G. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy)]|[Istituto Nazionale di Fisica della Materia, Sezione di Bari, Via Amendola 173, I-70126 Bari (Italy); Carmone, P. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy); Gallone, A. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy); Lastella, M. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy); Mezzenga, E. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy); Quartucci, G. [Dipartimento di Scienze Biomediche, Universita di Foggia, Viale Pinto, I-71100 Foggia (Italy); Ambrico, M. [Istituto di Metodologie Inorganiche e dei Plasmi del C.N.R., Via Orabona 4, I-70126 Bari (Italy); Augelli, V.; Biagi, P.F.; Ligonzo, T.; Minafra, A.; Schiavulli, L. [Istituto Nazionale di Fisica della Materia, Sezione di Bari, Via Amendola 173, I-70126 Bari (Italy)]|[Dipartimento Interateneo di Fisica, Universita di Bari, Via Amendola 173, I-70126 Bari (Italy); Pallara, M. [Dipartimento Geomineralogico, Universita di Bari, via Amendola 173, Bari (Italy); Cicero, R. [Dipartimento di Biochimica Medica e Biologia Medica, Sezione di Biologia Medica, Facolta di Medicina e Chirurgia, Universita di Bari, Policlinico, I-70124 Bari (Italy)

    2006-07-26

    A study of the structural, optical and electrical properties of synthetic and natural melanin by means of X-ray diffraction, absorption and photocurrent techniques is reported. The model of the natural melanin film as a network of nano-aggregates of polymeric units based on the indolic structure is proposed to explain the X-ray diffraction results. The shape of the absorption spectra is similar to that of amorphous and disordered semiconductors, with a very strong, broad band UV and visible absorption and an optical gap value of about 0.5 eV. Photosensitivity to sun spectra has been demonstrated by photoconductivity measurements of synthetic melanin pellets under AM1 light source illumination.

  5. Optical properties of lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M.N.; Sidorov, N.V.; Biryukova, I.V.; Kalinnikov, V.T. [Institute of Chemistry, Kola Science Centre RAS, 26a Fersman str., 184200 Apatity, Murmansk region (Russian Federation); Bormanis, K. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., Riga, LV-1063 (Latvia)

    2005-01-01

    Studies of thermal and {gamma}-irradiation effects on the optical properties in congruous lithium niobate single crystals containing Y, Mg, Gd, B, and Zn dopants including samples with double dopants Y, Mg and Gd, Mg are reported. Formation of defects at irradiation and thermal treatment of the samples is explored by electron absorption spectra. Considerable increase of absorption with the dose of {gamma}-radiation is observed at 500 nm. The changes of absorption examined under different conditions are explained by creation and destruction of Nb{sup 4+} defects. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Optical properties of graphene nanoflakes: Shape matters

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla Wettstein, Candela; Bonafé, Franco P.; Sánchez, Cristián G., E-mail: cgsanchez@fcq.unc.edu.ar [Instituto de Investigaciones Fisicoquímicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INFIQC - CONICET), Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Oviedo, M. Belén [Department of Chemical & Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 (United States)

    2016-06-14

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  7. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... We have reported a theoretical investigation on nonlinear optical behaviour, electronic and optical properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium ptoluenesulphonate(APPTS). The computation has been done using density functional theory (DFT) ...

  8. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Optical Properties of Lead Silver Sulphide Ternary Thin Films Deposited by Chemical Bath Method. ... The optical properties studied include reflectance, absorption coefficient, thickness, refractive index, extinction coefficient, optical conductivity and band gap energy. The films showed very high absorbance in the UV region, ...

  9. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-01-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  10. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  11. Optical storage properties in cast films of an azopolymer

    Directory of Open Access Journals (Sweden)

    Neves Ubaldo Martins das

    2003-01-01

    Full Text Available In this paper we discuss the properties of optically induced birefringence in DR19-MDI cast films that may be used in optical storage applications. The selection of DR19-MDI cast films was based on a comparative study of optical storage properties of Langmuir-Blodgett (LB films from various azopolymers. DR19-MDI possesses a high residual fraction of optical birefringence and good environmental stability, which was corroborated by the data from optical storage experiments. DR19-MDI cast films maintain a reasonable level of birefringence after the initial decay due to chromophore relaxation, thus making them promising candidates for optical storage devices.

  12. Optical properties of amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, Jing Qiu

    Carbon can be formed either as fully crystalline structures, such as diamond, graphite, and fullerene (C60). or as mostly amorphous structures, like amorphous hydrogenated carbon (a-C:H). A study was made of a-C:H films which had been deposited by plasma enhanced chemical vapor deposition (PECVD) using CH4, H2 and Ar (or N2 for doping) gas mixtures. Each film exhibits unique physical, optical and electronic properties dependent upon the specific deposition parameters. The study is intended to extend our understanding of the properties of a-C:H films. Samples prepared by James Johnson, similar to those used in his previous studies (using mainly 4 separate sets of deposition parameters), were evaluated along with other samples which were unique to this study. Film preparation parameters were varied to allow an examination of the effects induced through the variation of deposition power level, partial substitution of nitrogen for methane in the deposition process gasses and post-deposition thermal annealing. The film optical properties were evaluated using combination of non-destructive test methods, including Raman scattering, photoluminescence (PL), optical absorption and photoluminescence excitation (PLE) spectroscopies. Different PL responses at low temperature (6 K) were recorded for doped and/or annealed samples deriving from the main set of samples. Two new features at 564 and 637 nm of nitrogen doped films replaced the 597 and 703 nm of undoped films. For the first time, three Raman phonon peaks were observed in a nitrogen doped and annealed film. Additional FTIR data indicated that the third Raman phonon peak was associated with CH2 and CH3 bonding structures. The Raman scattering data contributed to an improved understanding of the two-phase (sp2, sp3) model developed by Robertson. Optical absorption measurements could only be obtained for the films deposited on fused quartz. All other measurements were made on films deposited on silicon, which is opaque in

  13. SMEX05 Atmospheric Aerosol Optical Properties Data: Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains observations of atmospheric parameters from aerosol optical property measurements collected during the Soil Moisture Experiment 2005 (SMEX05)...

  14. SMEX04 Atmospheric Aerosol Optical Properties Data: Arizona

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains observations of atmospheric parameters from aerosol optical property measurements collected during the Soil Moisture Experiment 2004 (SMEX04)...

  15. Tellurium quantum dots: Preparation and optical properties

    Science.gov (United States)

    Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping

    2017-08-01

    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.

  16. Optical properties and defect structure of crystalline bodies

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Metolidi, Eh.N.

    1989-01-01

    The main features of optical characteristics of ion, semiconductor and metal crystals have been analysed. It is shown that various types of defects resulting from mechanical and thermal action have significant effect on optical properties of materials with various types of interatomic interaction. The main regularities and differences in defect structure effect on optical properties of ion, semiconductor and metal crystal are detected. 52 refs.; 17 figs

  17. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  18. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  19. Optical properties of marine waters and the development of bio-optical algorithms

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    This paper presents the primary optical variables used in the measurement of the optical properties of marine waters. How can in-situ measurements be used in the optical recognition of coastal and open ocean waters. We then look at bio...

  20. Thermo-optical properties of optically stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1995-01-01

    Optically stimulated luminescence processes in feldspars are subject to competing thermal enhancement and quenching processes: this article describes the thermal enhancement effects for orthoclase, albite and plagioclase feldspars. It is demonstrated that certain lattice vibrational modes can...

  1. Infrared/submillimeter optical properties data base

    Science.gov (United States)

    Alley, Phillip W.

    1989-01-01

    The general goal was to build a data base containing optical properties, such as reflectance, transmittance, refractive index, in the far infrared to submillimeter wavelength region. This data base would be limited to selected crystalline materials and temperature between 300 and 2 K. The selected materials were: lithium, lead, and strontium; the bromides of potassium and thallium; the carbides of silicone and tungsten; and the materials of KRS5, KRS6, diamond, and sapphire. Last summer, barium fluoride was selected as prototype material for building the data base. This summer the literature search, preparation of the data for barium fluoride was completed. In addition the literature search for data related to the compounds mentioned was completed. The current status is that barium fluoride is in a form suitable for a NASA internal publication. The papers containing the data on the other materials were xeroxed and they are ready to be reduced. On the reverse side, the top figure is a sample combination of data for the index of refraction at 300 K. The lower figure shows the transmittance vs wavelength at 300 and 80 K. These figures are a sample of many which were developed. Since barium fluoride was studied more than most of the materials listed above, it is clear that additional measurements should be made to fill in the gaps present on both temperature and wavelength data.

  2. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  3. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  4. Optical Properties of Nanoparticle Systems Mie and Beyond

    CERN Document Server

    Quinten, Michael

    2011-01-01

    Unlike other books who concentrate on metallic nanoparticles with sizes less than 100 nm, the author discusses optical properties of particles with (a) larger size and (b) of any material. The intention of this book is to fill the gap in the description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter. The author concentrates on the linear optical properties elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter

  5. Optical Properties of Silver Aluminium Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    NaOH served as pH adjuster. The films were deposited at 300K of temperature. The deposited film properties were studied using a Janway UV – VIS spectrophotometer. From the spectral analysis of absorbance and transmittance, the optical and solid properties were obtained. The properties studied include the reflectance, ...

  6. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  7. Optical properties of the human round window membrane

    Science.gov (United States)

    Höhl, Martin; DeTemple, Daphne; Lyutenski, Stefan; Leuteritz, Georg; Varkentin, Arthur; Schmitt, Heike Andrea; Lenarz, Thomas; Roth, Bernhard; Meinhardt-Wollweber, Merve; Morgner, Uwe

    2017-10-01

    Optical techniques are effective tools for diagnostic applications in medicine and are particularly attractive for the noninvasive analysis of biological tissues and fluids in vivo. Noninvasive examinations of substances via a fiber optic probe need to consider the optical properties of biological tissues obstructing the optical path. This applies to the analysis of the human perilymph, which is located behind the round window membrane. The composition of this inner ear liquid is directly correlated to inner ear hearing loss. In this work, experimental methods for studying the optical properties of the human round window membrane ex vivo are presented. For the first time, a comprehensive investigation of this tissue is performed, including optical transmission, forward scattering, and Raman scattering. The results obtained suggest the application of visible wavelengths (>400 nm) for investigating the perilymph behind the round window membrane in future.

  8. Measurement of Optical Properties of Small Particles

    Science.gov (United States)

    Arakawa, E. T.; Tuminello, P. S.; Khare, B. N.; Millham, M. E.; Authier, S.; Pierce, J.

    1997-01-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  9. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Anuj Kumar

    2017-06-20

    Jun 20, 2017 ... S8 atoms, while the highest negative charge is located over N19 atoms of the pyridine ring. The atoms having the highest positive and negative charges suggest the reactive sites of the molecule [20]. 4. Conclusion. A theoretical investigations on nonlinear optical behaviour, electronic and optical properties ...

  10. Optical properties of lead–bismuth cuprous glasses

    Indian Academy of Sciences (India)

    Unknown

    –x(Bi2O3)50 (x = 2⋅5, 5⋅0, 7⋅5,. 10⋅0, 12⋅5, 15⋅0, 20⋅0). ... be almost the same for different glasses in the same family. Keywords. Optical properties; lead ... and the effects of composition on refractive index, dielec- tric constant and optical ...

  11. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Investigations on structural, optical and magnetic properties of solution-combustion-synthesized nanocrystalline iron molybdate. KRITHIKADEVI RAMACHANDRAN SIVA CHIDAMBARAM BALRAJ BASKARAN ARULMOZHI MUTHUKUMARASAMY JOHN ...

  12. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  13. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  14. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    optical properties depend on the constituents of the water, these data were analysed with the pigment concentration and total suspended matter. The results are compared with those of other investigation using in-vivo methods. A non-linear relationship...

  15. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  16. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  17. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  18. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  19. Optical properties of nanowire metamaterials with gain

    DEFF Research Database (Denmark)

    Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi

    2016-01-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide...

  20. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    of RO oxides in the glass matrix is small and therefore no significant structural changes might have occurred in the glass network. Urbach's energy refers to the width of the tails of localized states in the forbidden gap of a disordered material. According to. Urbach's rule, optical absorption coefficient near the absorption edge ...

  1. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    the applicability of optical techniques for this purpose, the fermentation of milk into yogurt has been used as a model system. Studies have been conducted on commercially available products, but also of on-line measurement of the fermentation process. The second process is from the aquaculture industry...

  2. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    applications in the field of optical fibers, optoelectronic devices; radiation shields, surgical lasers and their glass ceramic counter parts have wide range of applications (Rajasree et al., 2011; Sharma et al., 2007, Limkitjaroenporn et al., 2010). Boric acid. (H3BO3) form stable glasses with alkaline earth oxides (R= MgO, CaO, ...

  3. Optical properties of tetrapod nanostructured zinc oxide by chemical ...

    African Journals Online (AJOL)

    ... deposited onto indium tin oxide (ITO) coated glass substrate by thermal chemical vapor deposition (TCVD) technique. This work studies the effects of annealing temperature ranging from 100–500 ºC towards its physical and optical properties. FESEM images showed that the structural properties of tetrapod nanostructured ...

  4. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    ... 3.20–3.70eV with a direct band gap transition. These properties make ZnS thin films find useful applications as cover plates for solar energy panels and materials in the fabrication of semiconductor devices. In addition, the films were found to exhibit switching potentials. Keywords: Electrical, Optical, Solid state properties, ...

  5. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 3. Effect of Zn doping on optical properties and ... Surprisingly, regardless of doping level, the luminescent properties of films are related to the fundamental bandgap energy and deep levels inside the bandgap. Photoconductivity of the films have been ...

  6. Effect of gamma radiation on optical and electrical properties of ...

    Indian Academy of Sciences (India)

    Wintec

    Gamma radiation induced changes in the optical and electrical properties of tellurium dioxide. (TeO2) thin films ... markable properties related to polarization and polariza- ... aluminium. On the top of these aluminium contacts, thin films of TeO2 of thicknesses 300, 450 and 600 nm were deposited from a molybdenum boat.

  7. Optical and mechanical properties of cellulose nanopaper structures

    Science.gov (United States)

    Tsalagkas, Dimitrios; Zhai, Lindong; Kim, Hyun Chan; Kim, Jaehwan

    2017-04-01

    The objectives of this study are to prepare and investigate the optical and tensile properties of the obtained cellulose nanopaper structures. A ball mill mechanical pretreatment combined with a wet pulverization process by using an aqueous counter collision machine were used to extract CNFs from softwood and hardwood bleached kraft pulps. Cellulose nanofiber (CNF) nanopapers were fabricated via vacuum filtration and oven drying method. The mechanical and optical properties of the fabricated nanopaper were investigated by using tensile test and UV-vis spectrometer. Results have shown that the softwood sample demonstrated better mechanical properties than the hardwood sample. UV-vis transmittance measurements did not indicate significant differences.

  8. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    Science.gov (United States)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  9. Characterization of the optical properties of silver nanoparticle films

    International Nuclear Information System (INIS)

    Choi, Byung-hee; Lee, Hyun-Ho; Jin, Sunmi; Chun, Sangki; Kim, Sang-Ho

    2007-01-01

    To understand the collective properties of nanoparticles, it is necessary to control the particle size, spacing and ordering. Here we describe the chemical synthesis of well-controlled silver nanoparticles, the wet coat preparation and the optical properties of its film. The light incidence angle and polarization dependency of the resonant spectra show distinctive surface plasmon resonance extinction peaks for isolated particles and the coupled modes of neighbouring particles. Furthermore, we discuss the thermal treatment and dielectric surrounding effects on the optical properties of silver nanoparticle film

  10. Magneto-Optical Properties of Paramagnetic Superrotors

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Floß, J.; Averbukh, I. Sh.; Milner, V.

    2015-07-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. An optical centrifuge is used to create dense ensembles of oxygen molecules in ultrahigh rotational states. In is shown, for the first time, that the gas of rotating molecules becomes optically birefringent in the presence of a magnetic field. The discovered effect of "magneto-rotational birefringence" indicates the preferential alignment of molecular axes along the field direction. We provide an intuitive qualitative model, in which the influence of the applied magnetic field on the molecular orientation is mediated by the spin-rotation coupling. This model is supported by the direct imaging of the distribution of molecular axes, the demonstration of the magnetic reversal of the rotational Raman signal, and by numerical calculations.

  11. Optical properties of mice skin for optical therapy relevant wavelengths: influence of gender and pigmentation

    Science.gov (United States)

    Sabino, C. P.; Deana, A. M.; Silva, D. F. T.; França, C. M.; Yoshimura, T. M.; Ribeiro, M. S.

    2015-03-01

    Red and near-infrared light have been widely employed in optical therapies. Skin is the most common optical barrier in non-invasive techniques and in many cases it is the target tissue itself. Consequently, to optimize the outcomes brought by lightbased therapies, the optical properties of skin tissue must be very well elucidated. In the present study, we evaluated the dorsal skin optical properties of albino (BALB/c) and pigmented (C57BL/6) mice using the Kubelka-Munk photon transport model. We evaluated samples from male and female young mice of both strains. Analysis was performed for wavelengths at 630, 660, 780, 810 and 905 nm due to their prevalent use in optical therapies, such as low-level light (or laser) and photodynamic therapies. Spectrophotometric measurements of diffuse transmittance and reflectance were performed using a single integrating sphere coupled to a proper spectrophotometer. Statistic analysis was made by two-way ANOVA, with Tukey as post-test and Levenne and Shapiro-Wilks as pre-tests. Statistical significance was considered when pmale mice present reduced transmittance levels for all wavelengths. The organization and abundance of skin composing tissues significantly influence its scattering optical properties although absorption remains constant. We conclude that factors such as subcutaneous adiposity and connective tissue structure can have statistically significant influence on mice skin optical properties and these factors have relevant variations among different gender and strains.

  12. Investigation of optical properties of Ag: PMMA nanocomposite structures

    Science.gov (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.

    2010-05-01

    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  13. SNF Leaf Optical Properties: Cary-14

    Data.gov (United States)

    National Aeronautics and Space Administration — Reflectance and transmittance properties of the leaves, needles, branches, moss, and litter of 8 major overstory tree species and 3 understory shrubs measured by...

  14. Optical Properties of Synthetic Cannabinoids with Negative Indexes

    OpenAIRE

    Shen, Yao; Chen, Yu-Zhu

    2016-01-01

    Some kinds of psychoactive drugs have the structures which are called split-ring resonators (SRRs). SRRs might result in negative permittivity and permeability simultaneously in electromagnetic field. Simultaneous negative indexes can lead to the famous phenomenon of negative refraction. This optical property makes it possible to distinguish synthetic cannabinoids from other abusive psychoactive drugs in the UV-vis region. This optical method is non-damaged and superior in forensic science. I...

  15. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) prepared using a Sol-Gel Method. ... calculate the absorption coefficient (α) as a function of photon energy (hυ) and the obtained results indicate that the optical band gap energy (Eg) for LCNO sample is smaller than that of LCCO.

  16. Optical and dosimetric properties of zircon.

    Science.gov (United States)

    Kristianpoller, N; Weiss, D; Chen, R

    2006-01-01

    Irradiation effects were investigated in zircon crystals by methods of optical absorption and luminescence. Special attention was given to the effects of vacuum ultraviolet (VUV) radiation. The same main thermoluminescence (TL) peaks with the same thermal activation energies appeared after VUV as after X- or beta irradiation, indicating that the same traps were induced by the different irradiations. TL excitation spectra in the VUV showed an increase zircon was by an order of magnitude lower than that of TLD-100. The 355 K TL peak showed linear dose dependence only up to approximately 500 Gy and the 520 K peak up to approximately 1800 Gy.

  17. Optical properties and structure of liquid water

    International Nuclear Information System (INIS)

    Magat, M.; Reinisch, L.

    1975-01-01

    Information about the structure of liquid water arises from various experimental methods (X-ray and neutron diffraction, neutron scattering, dielectric dispersion, molecular dynamics and so on...). However, optical measurements (and especially spectroscopic ones) are particularly important in this connection. Recent results concerning the refraction index, the electronic absorption spectrum, the vibrational infrared and Raman spectra, the intermolecular modes in the far infrared and Raman spectra, the dielectric relaxation spectrum and its junction with the far infrared spectrum, are given. Conclusions are drawn concerning the structure of water and its modifications with temperature. They are compared to the theoretical previsions of the different models proposed for water [fr

  18. Optical Properties of Bismuth Tellurite Based Glass

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  19. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  20. Theory of the optical properties of semiconductor nanostructures

    Science.gov (United States)

    Koch, S. W.; Meier, T.; Hoyer, W.; Kira, M.

    2002-04-01

    A microscopic many-body theory describing the optical and electronic properties of semiconductors and semiconductor nanostructures is briefly reviewed. At the semiclassical level, the optical response is computed using Maxwell's equations together with the semiconductor Bloch equations which describe the dynamics of the diagonal and the off-diagonal terms of the reduced single-particle density matrix. These equations include the coupling between the semiconductor and the optical field as well as Coulomb many-body interactions among the optically excited carriers. Under quasi-equilibrium conditions, luminescence spectra can be obtained from absorption spectra on the basis of the Kubo-Martin-Schwinger relation for conditions usually limited to the regime of optical gain (lasers). More generally, light emission has to be computed at a fully quantum mechanical level leading to semiconductor luminescence equations.

  1. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  2. Human tissue optical properties measurements and light propagation modelling

    CSIR Research Space (South Africa)

    Dam, JS

    2006-07-01

    Full Text Available characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements. J.S. Dam, N. Yavari, S. Sørensen, and S. Andersson-Engels, Appl. Opt. 44, 4281-4290 (2005). • Comparison of spatially and temporally resolved... diffuse-reflectance measurement systems for determination of biomedical optical properties. J. Swartling, J.S. Dam, and S. Andersson-Engels, Appl. Opt. 42 4612-4620 (2003). • Fiber optic probe for non-invasive real-time determination of tissue optical...

  3. Optical and Electrical Properties of Ar+ Implanted PET

    Science.gov (United States)

    Kumar, Rajiv; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2011-07-01

    In the present work, the effect of 100 keV argon ion implantation on the optical and electrical properties of PET has been studied. A continuous reduction in optical band gap (from 3.63 to 1.93 eV) with increasing implantation dose has been observed as analyzed using UV-Visible absorption spectroscopy. Current-Voltage (I-V) characteristics have been studied which clearly indicate the enhancement in the conductivity of PET specimens as an effect of implantation. This increase in conductivity has been correlated with the decrease in optical band gap.

  4. Optical properties of 3D macroporous silicon structures

    International Nuclear Information System (INIS)

    Garin, M.; Trifonov, T.; Rodriguez, A.; Marsal, L.F.; Alcubilla, R.

    2008-01-01

    We study the optical properties of three-dimensional (3D) microstructures fabricated by electrochemical etching of macroporous silicon with modulated pore diameter. Optical measurements along the pore axis reveal photonic band gaps which are also confirmed by calculations of photonic band dispersion. We investigate numerically and experimentally the evolution of these gaps as a function of pore diameter modulation. In addition, a subsequent anisotropic etching of macroporous silicon in alkaline solutions allows to achieve pores with new shapes of modulation. We compare the optical characteristics of 3D macroporous structures with and without such anisotropic treatment

  5. Tunable terahertz optical properties of graphene in dc electric fields

    Science.gov (United States)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  6. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    Science.gov (United States)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  7. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  8. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  9. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  10. Optical properties of aluminum oxide thin films and colloidal nanostructures

    International Nuclear Information System (INIS)

    Koushki, E.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Majles Ara, M.H.; Oliveira, P.W. de

    2015-01-01

    In this work, we prepared thin films of aluminum oxide (Al 2 O 3 ) with different thicknesses, using a wet chemical process. The Al 2 O 3 nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  11. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  12. Optical and Thermal Properties of In2S3

    Directory of Open Access Journals (Sweden)

    Faycel Saadallah

    2011-01-01

    Full Text Available Photothermal deflection spectroscopy (PDS is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  13. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na2KSb, Na2RbSb, Na2CsSb, K2RbSb, K2CsSb and Rb2CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical properties.

  14. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  15. Scale Closure in Upper Ocean Optical Properties: From Single Particles to Ocean Color

    National Research Council Canada - National Science Library

    Green, Rebecca

    2002-01-01

    .... Models describing the relationship between optical properties and chlorophyll do not account for much of the optical variability observed in natural waters, because of the presence of seawater...

  16. Structural, optical and electrical properties of novel phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gindner, Sarah; Woda, Michael; Kremers, Stephan; Klein, Michael; Wuttig, Matthias [I. Physikalisches Institut (1A), RWTH Aachen, 52056 Aachen (Germany)

    2008-07-01

    Phase Change Materials (PCM) are Te or Sb containing alloys, which show a remarkable property combination. They possess a very large property contrast, e.g. electrical resistivity and optical reflectivity between the amorphous and crystalline state. At the same time they can be switched between these two states very rapidly on a ns timescale using either a laser or current pulse. Hence they are used in rewriteable optical storage media such as DVDs and Blue-ray disks and are promising candidates for non-volatile electronic memories such as Phase Change Random Access Memory (PCRAM). From a scientific point of view it is important to determine their structural properties. In this study possible new PCM including CuInTe{sub 2} and Ge{sub 3}Sb{sub 6}Te{sub 5} are investigated by a variety of techniques to understand the effect of stoichiometric change upon physical properties. From these techniques the suitability of new materials for phase change application is derived and will be discussed. Temperature dependent resistivity is investigated with the van der Pauw technique. XRD measurements reveal the structural properties of the amorphous and crystalline state. The structural changes causing changes in film thickness and density are measured with X-ray reflectometry. Optical properties (0.02 eV to 5.3 eV) of the PCM are determined by FTIR and ellipsometry measurements.

  17. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  18. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  19. Optical properties of proton-irradiated polyacrylonitrile film

    International Nuclear Information System (INIS)

    Lee, Hwa Su; Baek, Ga Young; Jung, Jin Mook; Choi, Jae Hak; Hwang, In Tae; Jung, Chan Hee; Shin, Jun Hwa

    2016-01-01

    In this study, the effect of high-energy proton irradiation on the optical properties of polyacrylonitrile (PAN) films was investigated. PAN thin films spin-coated on a substrate were irradiated 150 keV proton ions at various fluences. The changes in the chemical structure and optical properties were investigated by FT-IR and UV-vis spectroscopy. The results of the FT-IR analysis revealed that the cyclization reaction took place by proton irradiation and the degree of cyclization increased with an increasing fluence. Based on the UV-vis analysis, the optical band gap of PAN decreased from 2.84 to 2.52 eV with an increasing fluence due to the formation of carbon clusters by proton irradiation. In addition, the number of carbon atoms per carbon cluster and the number of carbon atoms per conjugation length were found to be increased with an increasing fluence

  20. Optical properties of proton-irradiated polyacrylonitrile film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwa Su; Baek, Ga Young; Jung, Jin Mook; Choi, Jae Hak [Dept. of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Hwang, In Tae; Jung, Chan Hee; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    In this study, the effect of high-energy proton irradiation on the optical properties of polyacrylonitrile (PAN) films was investigated. PAN thin films spin-coated on a substrate were irradiated 150 keV proton ions at various fluences. The changes in the chemical structure and optical properties were investigated by FT-IR and UV-vis spectroscopy. The results of the FT-IR analysis revealed that the cyclization reaction took place by proton irradiation and the degree of cyclization increased with an increasing fluence. Based on the UV-vis analysis, the optical band gap of PAN decreased from 2.84 to 2.52 eV with an increasing fluence due to the formation of carbon clusters by proton irradiation. In addition, the number of carbon atoms per carbon cluster and the number of carbon atoms per conjugation length were found to be increased with an increasing fluence.

  1. Optical properties of reduced lithium niobate single crystals

    Science.gov (United States)

    Dhar, Ajay; Mansingh, Abhai

    1990-12-01

    The optical transmission of LiNbO3 single crystals has been measured in the wavelength range 200-900 nm, for different degrees of reduction, to study the effect of reduction on the optical characteristics of LiNbO3 near the fundamental absorption edge. The optical transitions in LiNbO3 were found to be indirect and the band gap decreased with increasing degree of reduction. The band observed at 2.48 eV in the absorption spectrum in heavily reduced samples has been attributed to the formation of polarons, and the theoretical model of Reik and Heese [J. Chem. Solids 28, 581 (1967)] for small polarons is used to correlate the optical and electrical properties.

  2. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  3. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    mid-infrared (MIR) spectrum, nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). These films were investigated from their structural, optical and electrical properties point of view. Uniform distribution of grains was clearly observed from the photographs taken by scanning electron microscope.

  4. Synthesis and optical properties of biphenylene ethynylene co ...

    Indian Academy of Sciences (India)

    365–374. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0789-y. Synthesis and optical properties of biphenylene ethynylene co-polymers and their model compounds. OKHIL K NAGa, KAZI M ANIS-UL-HAQUEa, DIPEN DEBNATHa, ROCKSHANA BEGUMa,. MUHAMMAD YOUNUSa,∗, NAZIA CHAWDHURYb, ...

  5. Reliable determination of tissue optical properties from spatially resolved reflectance

    Science.gov (United States)

    Gladytz, Thomas; Hoppe, Alexander; Cantow, Kathleen; Pohlmann, Andreas; Flemming, Bert; Niendorf, Thoralf; Seeliger, Erdmann; Grosenick, Dirk

    2017-03-01

    Spatially resolved reflectance is a frequently used technique to derive optical properties and physiological parameters of tissue. We have evaluated the accuracy of this method by investigations on a set of phantoms with known optical properties derived from time-resolved measurements. The recorded profiles of spatially resolved reflectance were analyzed by a Monte Carlo model of photon transport. When we took only the shape of the measured profiles into account, we got only poor estimates of the optical properties. In particular, the absorption was strongly underestimated. The main reason for failing of this approach is that the shape of the measured profiles can be well described by many combinations of absorption and reduced scattering coefficients. The separation between scattering and absorption was strongly improved when the reflectance data were calibrated by using a reference phantom. We applied both the relative and the calibration based analysis method to reflectance data obtained from in vivo investigations on the kidney of rats. Despite the limited number of only 4 detector positions the calibration based analysis method yielded reliable estimates of the tissue optical properties.

  6. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Optical properties of zinc–vanadium glasses doped with samarium trioxide. B ERAIAH. Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 12 June 2012; revised 6 March 2013. Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x).

  7. Enhancement of nonlinear optical properties of compounds of silica

    Indian Academy of Sciences (India)

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...

  8. Electronic absorption spectra and nonlinear optical properties of CO ...

    Indian Academy of Sciences (India)

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in ...

  9. Effects of reaction temperature on size and optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Effects of reaction temperature on size and optical properties of. CdSe nanocrystals. SHUTANG CHEN, XIAOLING ZHANG*, YANBING ZHAO and QIUHUA ZHANG. Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, P.R. China. MS received 15 March 2009; revised 6 July 2009.

  10. Microstructural and optical properties of transparent conductive ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Microstructural and optical properties of transparent conductive. ZnO :Al : Mo films deposited by template-assisted sol–gel method. H -Y HE*, J -F HUANG, Z HE, J LU and Q SHEN. College of Materials Science and Engineering, Shaanxi University of Science and Technology, China 710021. MS received 11 November 2012 ...

  11. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Effect of Zn doping on optical properties and photoconductivity of SnS2 nanocrystalline thin films. R ETEFAGH1, N .... samples show the effect of both uniform and non-uniform strain in the structure of the films. But, the ... ions creates local states and tails near the edge of conduction band giving rise to decrease in bandgap.

  12. optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Vincent

    reflection coatings on window glass, video screen, camera lenses and other ... potentially important material for antireflection coating for heterojuction ..... REFERENCES. [1] Jyorti, P. B., Barman, J. and Sarma, K. C. (2008). Structural and optical properties of ZnS nanoparticles. Calcogenide Letters, 5 (9), 201-208. [2] Pavan ...

  13. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)

    Administrator

    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to in-.

  14. Effect of copper doping on structural, optical and electrical properties ...

    Indian Academy of Sciences (India)

    SEM pictures have revealed the presence of defects with spherical structure having fibre net- work. The variation of electrical conductivity is explained based on the defects present and by adopting tunneling mechanism. Keywords. Ternary semiconductor compounds; CBD method; structural properties; optical and electrical ...

  15. Study of Optical, Solid State and Structural Properties of Nickel ...

    African Journals Online (AJOL)

    Thin films of Nickel sulphide (NiS) were successfully grown by using the solution growth technique which is cost effective and efficient. Nickel chloride (NiCl2), Sodium sulphate (Na2S2O3) and Ammonia NH3 were used. The optical and solid state properties were obtained from the characterisation done at University of ...

  16. Tailoring of optical and electrical properties of PMMA by ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... cles [2–5]. Such nanocomposites have potential applications in optics [1], electronics [1], photonics [3] and medical sci- ence [2,6]. Poly(methyl methacrylate) (PMMA) is an acrylic polymer with distinct properties such as high transmission of visible light, environmental stability and durability leading to its wide.

  17. Density functional study of : Electronic and optical properties

    Indian Academy of Sciences (India)

    K C Bhamu

    2017-06-20

    Jun 20, 2017 ... the refractive index in zero frequency limits is 2.42. The absorption coefficient predicts the applicability of AgScO2 in solar cells and flat panel liquid crystal display as a transparent top window layer. Keywords. Density functional theory; band structure; optical properties. PACS Nos 71.15.Mb; 71.20.−b; 78.20.

  18. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    These films were investigated from their structural, optical and electrical properties point of view. Uniform distribution of grains was .... were measured using four point measurements technique and accordingly the resistivity was .... the probes (s) was in a few millimeters, whereas the film thickness was in nanometer scale.

  19. Optical absorption and fluorescence properties of Er in sodium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Spectroscopic properties of Er3+ ions in sodium borate glass have been studied. The indirect and direct optical band gaps (Eopt) and energy level parameters (Racah (E1, E2 and E3), spin-orbit (ξ4f) and con- figurational interaction (α)) are evaluated. Spectral intensities for various absorption bands of Er3+ doped.

  20. Electronic absorption spectra and nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    These materials find numerous device applications, from lasers to optical switches and electronics. 1. So far, the organic π-conjugated molecules have been considered mostly for this pur- pose because of their easy functionalization to fine tune the desired properties and the ease of fabrica- tion and integration into devices.

  1. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    In this work, we study the optical properties of spherical quantum dots by using Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numerically solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...

  2. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved

  3. Electronic and optical properties of spodumene gemstone: A theoretical study

    Science.gov (United States)

    de Lima, A. F.; Souza, S. O.; Lalic, M. V.

    2008-03-01

    The spodumene (LiAlSi 2O 6) is a natural silicate with monoclinic structure, interesting for a jewel industry and possible application as a scintillator. In this paper we present the electronic structure and some of the basic optical properties of the pure spodumene crystal, as calculated by the first-principles, density functional based, full potential linear augmented plane wave method.

  4. Effect of conduction band nonparabolicity on the optical properties in ...

    Indian Academy of Sciences (India)

    The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefficients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric field.

  5. Effect of conduction band nonparabolicity on the optical properties in ...

    Indian Academy of Sciences (India)

    Abstract. The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefficients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric field.

  6. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  7. Picosecond nonlinear optical properties of cuprous oxide with ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... physics pp. 321–325. Picosecond nonlinear optical properties of cuprous oxide with different nano-morphologies. P HARSHAVARDHAN REDDY, H SEKHAR and D NARAYANA RAO. ∗. Laser Laboratory, School of Physics, University of Hyderabad, Hyderabad 500 046, India. ∗. Corresponding author.

  8. Effect of gamma radiation on optical and electrical properties of ...

    Indian Academy of Sciences (India)

    Wintec

    current has, however, been found to decrease with further increase in gamma radiation dose. The observed changes in both the optical and electrical properties indicate that TeO2 thin films can be used as the real time gamma radiation dosimeter up to a certain dose, a quantity that depends upon the thickness of the film.

  9. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    The surface morphology of these films was analysed by atomic force microscopy (AFM) and scanning electron ... been investigated using spectrophotometric measurements of absorbance in the wavelength range of 200–. 1100 nm and the ... Phthalocyanine; thin films; optical properties; absorption spectra. 1. Introduction.

  10. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    any order in the films but causes precipitation of S atoms around Sn or Zn ions and concomitantly decreasing the size of grains. 3.2 Optical properties. The absorption coefficient (α) of the films is also evaluated from (1), where t and A are the thickness and absorption of the films, respectively. In order to determine the absorp-.

  11. Electro-optical properties, decomposition pathways and the ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) 13. MEHMET SIMSEK. Volume 40 Issue 5 September 2017 pp 907-915 ...

  12. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we study the optical properties of spherical quantum dots by using. Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numeri- cally solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...

  13. Optical properties of boron-group (V) hexagonal nanowires: DFT ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 1. Optical properties of boron-group (V) ... MAHESH SONI1 ANURAG SRIVASTAVA1. Advanced Materials Research Group, CNT Laboratory, ABV-Indian Institute of Information Technology and Management, Gwalior 474 010, India ...

  14. Inevitable surface dependence of some operator products and integrability

    International Nuclear Information System (INIS)

    Shigemoto, Kazuyasu; Tanaka, Azuma; Taguchi, Yukio; Yamamoto, Kunio.

    1976-01-01

    In general even in local theory the operator products at the same space-time point must be considered as a limit of non-local products. It is natural to confine non-locality on a space-like surface. In this case some operator products with three or more constituents possess an inevitable and purely quantum-mechanical surface dependence. Taking the pion-nucleon system as an example, we explicitly calculate in the order of g 2 this kind of the surface dependence of the interaction Hamiltonian. In order to obtain a consistent theory, this surface is required to be identified with the space-like surface in the Tomonaga-Schwinger equation. Then the interaction Hamiltonian needs an additional, non-canonical and surface-dependent term, which can be derived uniquely from the canonical Hamiltonian. The integrability of the Tomonaga-Schwinger equation is proved by taking account of this surface dependence together with the gradient term in the equal-time commutator. (auth.)

  15. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  16. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  17. Estimation of aerosol optical properties from all-sky imagers

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  18. Assessing mechanical properties with intravascular or endoscopic optical coherence tomography

    Science.gov (United States)

    Lamouche, G.; Azarnoush, H.; Vergnole, S.; Pazos, V.; Bisaillon, C.-E.; Debergue, P.; Boulet, B.; Diraddo, R.

    2011-03-01

    We explore the potential of intravascular or endoscopic optical coherence tomography (OCT) to extract relevant mechanical properties of a tissue deformed by an inflating balloon. Tubular OCT phantoms with different mechanical properties are fabricated. The phantoms are deformed by an inflating balloon, and the deformation is monitored with OCT. A quantitative description of the phantom deformation is obtained by segmenting the OCT images. Two strategies to extract the mechanical properties from this quantitative data are presented: by comparing to a finite-element simulation and by performing a mechanical analysis.

  19. A theoretical study on the optical properties of black silicon

    Science.gov (United States)

    Ma, Shijun; Liu, Shuang; Xu, Qinwei; Xu, Junwen; Lu, Rongguo; Liu, Yong; Zhong, Zhiyong

    2018-03-01

    There is a wide application prospect in black silicon, especially in solar cells and photoelectric detectors. For further optimization of black silicon, it is important to study its optical properties. Especially, the influence of the surface nanostructures on these properties and the light propagation within the nanostructures are relevant. In this paper, two kinds of black silicon models are studied via the finite differences time domain method. The simulated reflectance spectra matches well with the measured curve. Also, the light intensity distribution within the nanostructures shows that near 80% of the incident light are redirected and subjected to internal reflection, which provides powerful support for the good light trapping properties of black silicon.

  20. Radiolytic stabilization on optical properties of polycarbonate

    International Nuclear Information System (INIS)

    Ferreira, Carlas P.R.C.; Araujo, Elmo S.; Aquino, Katia A.S.

    2011-01-01

    Polycarbonate (PC) is an engineering plastic widely used in several industrial segments. However, in medical applications, this material is required to be sterilized by ionizing radiation in doses of 25kGy. PC, when gamma irradiated, undergoes main chain scissions with consequent formation of phenoxy and phenyl radicals. The former remains trapped into the polymer matrix causing undesirable yellowness on material at room temperature. A strategy to minimize such effect is to incorporate additives into the polymer system enabling efficient phenoxy radicals and secondary electrons scavenging. Our results show that, in absorbed dose of 25kGy, change in yellowness index (ΔΥI) decreases from 15.6 to 3.9 for PC containing 0.8% of additives. The color differences (ΔE *) between the non-irradiated sample and that irradiated at 25kGy were 2.4 and 9.8, for PC with additive and PC control, respectively. Mechanical properties of gamma-irradiated PC were also evaluated and showed no significant change, even without stabilizing additives. Thus, this work establishes a new PC formulation stable to gamma irradiation at sterilizing absorbed doses. (author)

  1. Thermo-Optical Properties of Colloids Enhanced by Gold Nanoparticles

    Science.gov (United States)

    Aleali, Hoda; Sarkhosh, Leila; Eslamifar, Mina; Karimzadeh, Rouhollah; Mansour, Nastaran

    2010-08-01

    This work presents a study on the thermo-optical properties of colloidal gold nanoparticles (AuNPs) under a low power laser irradiation at 532 nm. Samples of various gold volume fractions, ranging from 2.5×10-4 to 19.5×10-4%, are synthesized by nanosecond pulsed laser ablation of a pure gold plate in the distilled water. The formation of the AuNPs has been evidenced by optical absorption spectra and transmission electron microscopy. We investigate the effect of the gold nanoparticle concentration on thermo-optical properties of the colloids using the Z-scan technique. The nonlinear optical measurements exhibit a very large nonlinear refraction close to the surface plasmon resonance frequency of the nanoparticles. Our results reveal that the heat diffusion in the colloids is due to nonlocal thermal process. As the gold concentration increases, the temperature change within and around gold nanoparticles greatly enlarges the thermo-optic and thermal nonlinear refractive index coefficients of the samples. This work suggests that thermal nonlinear refraction will play an important role in development of photonic applications involving metal nanoparticles colloids.

  2. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  3. Nonlinear optical properties of biomineral and biomimetical nanocomposite structures

    Science.gov (United States)

    Kulchin, Yu. N.; Bezverbny, A. V.; Bukin, O. A.; Voznesensky, S. S.; Golik, S. S.; Mayor, A. Yu.; Shchipunov, Yu. A.; Nagorny, I. G.

    2011-03-01

    The transmission of laser femtosecond pulses by spicules of marine glass sponges and monolithic amorphous nanocomposite silica biomaterials synthesized on the basis of natural polysaccharides has been experimentally investigated. The strong non-linear optical properties of these biominerals have been revealed in spectral characteristics of transmitted ultra-short pulses (USP). Comparative analysis of the transmission spectra of USP reveals that spicules exhibit much stronger non-linear optical properties than quartz optical fibers. Recently new monolithic nanocomposite silica biomaterials were synthesized on the basis of various natural polysaccharides and completely water-soluble Si-precursor. The shape of transmitted spectrums through both spicules and new nanocomposite biomaterials demonstrates major changes indicating the broadening with formation markedly strong anti-Stokes component in the output spectrum with generation of supercontinuum spectra. The carried out studies have showed that the nature combination of spongin protein with silicon dioxide extracted from seawater by silicatein protein in glass sponge spicules and monolithic nanocomposite silica biomaterials are biological and biomimetical nanocomposite materials with unique optical properties.

  4. Optical Properties of Oxide Films Dispersed with Nanometal Particles

    Science.gov (United States)

    Wakaki, Moriaki; Yokoyama, Eisuke

    Solid materials reveal some special behaviors like quantum effects in semiconductors and surface-enhanced effects in metals by decreasing their diameters. In this review, the enhancement of the optical response due to the electric field of the light is reviewed as the recent active field of plasmonics. The production methods of various metal nanoparticles are summarized for the bared state and for the embedded state within the dielectric medium. The features of the optical properties of these nanoparticles are reviewed, and typical formula to reproduce the absorption spectra due to the surface plasmon resonance is summarized. Several applications of these systems are shortly introduced.

  5. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  6. Thermotropic and optical properties of chiral nematic polymers

    International Nuclear Information System (INIS)

    Tsai, M.L.; Chen, S.H.; Marshall, K.L.; Jacobs, S.D.

    1988-09-01

    The thermotropic and optical properties of methacrylate copolymers and chemically modified poly(γ-benzyl L-glutamate) were investigated as part of our effort to explore the optical applications of these materials. It was found that besides the commonly cited comonomer ratio, physical blending and annealing followed by quenching represent a new and more flexible means to tune the selective reflection wavelength. In the poly (γ-benzyl L-glutamate) systems, it appears that the relatively high melt viscosity is capable of sustaining the cholesteric mesophase, generated by annealing and quenching, up to 100/degree/C. 22 refs., 8 figs

  7. Calculations of optical properties of nanohole systems in metallic films

    Science.gov (United States)

    Johansson, Peter; Miljkovic, Vladimir; Kall, Mikael

    2010-03-01

    We present a computational study of the optical properties of systems of nanohole system in thin (the typical thickness is less than 100 nm) noble metal films. The Green's tensor technique adopted to layered systems forms the analytical framework to the calculations. We have studied individual holes as well as several interacting holes, and calculated quantities related both to far-field properties such as scattering cross sections and near fields and near-field properties such as resonance energy transfer between molecules. The resonance properties of nanoholes are determined by their size and shape[1]. The interaction between two holes can, at a basic level, be understood as a dipole-dipole interaction between the holes, however, the interaction strength is strongly modulated by the properties of the surface plasmons of the metal film[2]. [1]. B. Sepulveda et al., Opt. Express 16, 5609 (2008). [2]. J. Alegret, P. Johansson, and M. K"all, New J. Phys.10, 105004 (2008).

  8. Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics.

    Science.gov (United States)

    Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef

    2017-07-01

    Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.

  9. Optical Properties of Nanostructured Silica Structures From Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ali Mcheik

    2018-04-01

    Full Text Available Light is important for the growth, behavior, and development of both phototrophic and autotrophic organisms. A large diversity of organisms used silica-based materials as internal and external structures. Nano-scaled well-organized silica biomaterials are characterized by a low refractive index and an extremely low absorption coefficient in the visible range, which make them interesting for optical studies. Recent studies on silica materials from glass sponges and diatoms, have pointed out very interesting optical properties, such as light waveguiding, diffraction, focusing, and photoluminescence. Light guiding and focusing have been shown to be coupled properties found in spicule of glass sponge or shells of diatoms. Moreover, most of these interesting studies have used purified biomaterials and the properties have addressed in non-aquatic environments, first in order to enhance the index contrast in the structure and second to enhance the spectral distribution. Although there is many evidences that silica biomaterials can present interesting optical properties that might be used for industrial purposes, it is important to emphases that the results were obtained from a few numbers of species. Due to the key roles of light for a large number of marine organisms, the development of experiments with living organisms along with field studies are require to better improve our understanding of the physiological and structural roles played by silica structures.

  10. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  11. Lanthanides-clay nanocomposites: Synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Celedon, Salvador; Quiroz, Carolina; Gonzalez, Guillermo; Sotomayor Torres, Clivia M.; Benavente, Eglantina

    2009-01-01

    Complexes of Europium(III) and Terbium(III) with 2,2-bipyridine and 1,10-phenanthroline were inserted into Na-bentonite by ion exchange reactions at room temperature. The products display interlaminar distances and stoichiometries in agreement with the ion exchange capacity and the interlayer space available in the clay. The optical properties of the intercalates, being qualitatively similar to those of the free complexes, are additionally improved with respect to exchange processes with the medium, especially in a moist environment. The protection again hydrolysis, together with the intensity of the optical transition 5 D 0 - 5 F 2 observed in the nanocomposite, makes these products promising for the development of novel optical materials

  12. Magneto-optical properties of ABC-stacked trilayer graphene.

    Science.gov (United States)

    Lin, Yi-Ping; Lin, Chiun-Yan; Ho, Yen-Hung; Do, Thi-Nga; Lin, Ming-Fa

    2015-06-28

    The generalized tight-binding model is developed to investigate the magneto-optical absorption spectra of ABC-stacked trilayer graphene. The absorption peaks can be classified into nine categories of inter-Landau-level optical excitations, including three intra-group and six inter-group ones. Most of them belong to the twin-peak structures because of the asymmetric Landau level spectrum. The threshold absorption peak alone comes from a certain excitation channel, and its frequency is associated with a specific interlayer atomic interaction. The Landau-level anticrossings cause extra absorption peaks. Moreover, a simple relationship between the absorption frequency and the field strength is absent. The magneto-optical properties of ABC-stacked trilayer graphene are totally different from those of AAA- and ABA-stacked ones, such as the number, intensity and frequency of absorption peaks.

  13. Optical Properties of the DIRC Fused Silica Cherenkov Radiator

    Energy Technology Data Exchange (ETDEWEB)

    Schwiening, Jochen

    2003-04-30

    The DIRC is a new type of Cherenkov detector that is successfully operating as the hadronic particle identification system for the BABAR experiment at SLAC. The fused silica bars that serve as the DIRC's Cherenkov radiators must transmit the light over long optical pathlengths with a large number of internal reflections. This imposes a number of stringent and novel requirements on the bar properties. This note summarizes a large amount of R&D that was performed both to develop specifications and production methods and to determine whether commercially produced bars could meet the requirements. One of the major outcomes of this R&D work is an understanding of methods to select radiation hard and optically uniform fused silica material. Others include measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to surface contaminants, development of radiator support methods, and selection of good optical glue.

  14. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    Science.gov (United States)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  15. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  16. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  17. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  18. Investigation of the optical properties of phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shportko, Konstantin; Kremers, Stephan; Woda, Michael; Welnic, Wojciech; Wuttig, Matthias [Institute of Physics, RWTH University of Technology Aachen (Germany)

    2008-07-01

    Phase change materials (PCM) have a unique potential as materials for an emerging non-volatile electronic memory. The aim of this study is to investigate the permittivity dispersion and dispersion of refractive and extinction indexes of the certain alloys of group V and group VI elements. Reflectance spectra have been measured in the UV-VIS/IR range. The spectra have been simulated using SCOUT software. The thickness of the PCM layer has been determined independently. We have analyzed and compared the difference between the spectra of the amorphous and crystalline phases. Our experiments reveal very remarkable findings. Dispersion of the refractive and extinction indexes of both phases show pronounced contrast. The analysis of computations and experimental data reveal the correlation between local structural changes and optical properties as well as the origin of the optical contrast in these materials. The change in optical properties cannot be attributed to a smearing of transition energies as commonly assumed for amorphous semiconductors: the optical contrast between the two phases can only be explained by significant changes in the transition matrix elements.

  19. Electrical and Nonlinear Optical Properties of Novel Organic Materials

    Science.gov (United States)

    Navin, Y. Narayana; Bappalige, N.

    2011-07-01

    The single crystals of organic nonlinear optical material 1-(2, 4-dichlorophenyl) -3-(4-dimethyl amino-phenyl)-2-propenone (DDAP ) and 4—Bromo 2-nitro aniline (BNA) were grown by solvent evaporation technique using ethanol as solvent. The grown crystals were characterized by IR, 1H NMR and mass spectroscopy to confirm the formation of the compound. Electrical property and non linear optical (NLO) properties of these two crystals were studied in detail. DDAP crystals crystallize in the monoclinic system with space group P2l/C. The second harmonic generation efficiency of DDAP is found to be 0.07 times that of KDP and that of BNA is 12 times that of KDP. Conductance of BNA is higher than that of DDAP.

  20. Optical properties of implanted Xe color centers in diamond

    Science.gov (United States)

    Sandstrom, Russell; Ke, Li; Martin, Aiden; Wang, Ziyu; Kianinia, Mehran; Green, Ben; Gao, Wei-bo; Aharonovich, Igor

    2018-03-01

    Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. In this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at ∼794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.

  1. Multi-orbital effects in optical properties of vanadium sesquioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, Jan M [Research Institute for Computational Sciences, AIST, Tsukuba 305-8568 (Japan); Biermann, Silke [Japan Science and Technology Agency, CREST (Japan)], E-mail: jan.tomczak@polytechnique.edu

    2009-02-11

    Vanadium sesquioxide, V{sub 2}O{sub 3}, boasts a rich phase diagram whose description necessitates accounting for many-body Coulomb correlations. The spectral properties of this compound have been successfully addressed within dynamical mean field theory to the extent that results of recent angle-resolved photoemission experiments have been correctly predicted. While photoemission spectroscopy probes the occupied part of the one-particle spectrum, optical experiments measure transitions into empty states and thus provide complementary information. In this work, we focus on the optical properties of V{sub 2}O{sub 3} in its paramagnetic phases by employing our recently developed 'generalized Peierls approach'. We obtain results in overall satisfactory agreement with experiments. Further, we rationalize that the experimentally observed temperature dependence stems from the different coherence scales of the charge carriers involved.

  2. Multi-orbital effects in optical properties of vanadium sesquioxide

    Science.gov (United States)

    Tomczak, Jan M.; Biermann, Silke

    2009-02-01

    Vanadium sesquioxide, V2O3, boasts a rich phase diagram whose description necessitates accounting for many-body Coulomb correlations. The spectral properties of this compound have been successfully addressed within dynamical mean field theory to the extent that results of recent angle-resolved photoemission experiments have been correctly predicted. While photoemission spectroscopy probes the occupied part of the one-particle spectrum, optical experiments measure transitions into empty states and thus provide complementary information. In this work, we focus on the optical properties of V2O3 in its paramagnetic phases by employing our recently developed 'generalized Peierls approach'. We obtain results in overall satisfactory agreement with experiments. Further, we rationalize that the experimentally observed temperature dependence stems from the different coherence scales of the charge carriers involved.

  3. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    Diatoms are single cellular algae encapsulate d in an external wall of micro-structured porous silica called the frustule. Diatoms are present in all water environments and contribute with 20-25 % of the global primary production of oxygen by photosynthesis. The appearance of the frustule is very...... species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... frustules. We have observed, when incident light interacts w ith the micro-structured frustule it is multiple diffracted giving rise to wavelength dependent multiple focal points and other optical effects. Experimental results have been simulated and well confirmed by free space FFT propagation routine...

  4. Structural And Optical Properties Of VOx Thin Films

    Directory of Open Access Journals (Sweden)

    Schneider K.

    2015-06-01

    Full Text Available VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  5. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na 2 KSb, Na 2 RbSb, Na 2 CsSb, K 2 RbSb, K 2 CsSb and Rb 2 CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical ...

  6. Effect of copper doping on structural, optical and electrical properties ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/boms/037/01/0053-0060. Keywords. Ternary semiconductor compounds; CBD method; structural properties; optical and electrical studies. Abstract. Cd0.8Zn0.2S:Cu films of 1.3–6.1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique ...

  7. Multi-orbital Effects in Optical Properties of Vanadium Sesquioxide

    OpenAIRE

    Tomczak, Jan M.; Biermann, Silke

    2008-01-01

    Vanadium sesquioxide, V2O3, boasts a rich phase diagram whose description necessitates the accounting for many-body Coulomb correlations. Spectral properties of this compound have been successfully addressed within dynamical mean field theory to an extent that results of recent angle resolved photoemission experiments have been correctly predicted. While photoemission spectroscopy probes the occupied part of the one-particle spectrum, optical experiments measure transitions into empty states ...

  8. Optical properties and electron transport in low-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2011-01-01

    Roč. 54, 2-2 (2011), s. 4-13 ISSN 0021-3411 R&D Projects: GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : quantum dots * electron-photon interaction * optical properties * electron relaxation * DNA molecule Subject RIV: BE - Theoretical Physics http:// elibrary .ru/contents.asp?issueid=1010336

  9. Linear and nonlinear optical properties of azobenzene derivatives.

    Science.gov (United States)

    Krawczyk, P; Kaczmarek, A; Zaleśny, R; Matczyszyn, K; Bartkowiak, W; Ziółkowski, M; Cysewski, P

    2009-06-01

    The results of computations of spectroscopic parameters of lowest-lying electronic excited states of azobenezene derivatives are presented. The analysis of experimentally recorded spectra was supported by quantum chemical calculations using density functional theory. The theoretically determined resonant (two-photon absorption probabilities) and non-resonant (first-order hyperpolarisability) nonlinear optical properties are also discussed, with an eye towards the performance of recently proposed long-range corrected (LRC) schemes (LC-BLYP and CAM-B3LYP functionals).

  10. Optical properties of a single free standing nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K W; Wang, C Y [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 300, Taiwan (China)

    2007-12-15

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm.

  11. Optical properties of a single free standing nanodiamond

    International Nuclear Information System (INIS)

    Sun, K W; Wang, C Y

    2007-01-01

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm

  12. Structural, elastic, electronic and optical properties of bi-alkali

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na 2 KSb, Na 2 RbSb, Na 2 CsSb, K 2 RbSb, K 2 CsSb and Rb 2 CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical ...

  13. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Hirofumi Yoshikawa

    2010-02-01

    Full Text Available Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials, and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  15. Optical and magnetic properties of PAA@Fe nanocomposite films

    Directory of Open Access Journals (Sweden)

    Jing-jing Zhang

    2013-07-01

    Full Text Available A simple method to fabricate porous anodic alumina films embedded with Fe is reported. The films exhibit vivid structural colors and magnetic properties after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The coercivity mechanism of the Fe nanowires in our case is consistent with fanning reversal mode. PAA@Fe films can be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  16. Study of synthesis and optical properties of Cu nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Devi Lodhi, Pavitra; Choudhary, K. K.; Kaurav, Netram

    2017-05-01

    Nanoparticles of Copper (Cu) have attracted great interest in recent years because of their unique physical and optical properties that are of industrial importance. To understand their basic properties, Cu nanoparticles were synthesized by Polyol method. The synthesized powder was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The average particle size and lattice parameter estimated by XRD were found to be ~42.5 nm and 3.617 Å respectively. The results suggest suitability of these nanoparticles as dopants in other materials such as polymer materials and oxides.

  17. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  18. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  19. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  20. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  1. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Zhou, W.

    2010-01-01

    Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA) method, and finite-difference time domain (FDTD) method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL) and focused ion beam (FIB) are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs)-potential Alzheimer's disease (AD) biomarkers, and staphylococcal enterotoxin B (SEB) in nano-Moore per liter (nM) concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  2. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  3. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  4. Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties

    Science.gov (United States)

    Odwuor, A.; Corr, C.; Pusede, S.

    2016-12-01

    Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.

  5. Optical properties of phosphor-in-glass through modification of pore properties for LED packaging

    Science.gov (United States)

    Kim, Sunil; Kim, Hyungsun

    2018-01-01

    The volume and size of the voids present between the frit and the phosphor particles used before sintering determine the pore properties of the resulting phosphor-in-glass (PIG). The pores formed from the voids influence the path of the incident light, thus changing the optical properties of the PIG. Therefore, the trends observed for the shrinkage and the green and sintered densities of the PIG were investigated using SiO2-B2O3-ZnO-K2O glass frit of four sizes to understand the tendency for the pore size, porosity, and optical properties of PIG. It has been demonstrated that variation in the pore properties according to the particle size influences parameters defining the light scattering phenomenon, such as the scattering angle of the light and the scattering coefficient, as well as the color rendering index, correlated color temperature, and package efficacy. The results obtained for the variation in the optical properties with the frit size can be used as a reference to select the appropriate glass frit size to achieve the required optical properties for a light-emitting diode (LED) package.

  6. Optical properties and applications of dendrimer-metal nanocomposites

    Science.gov (United States)

    Goodson, T.; Varnavski, O.; Wang, Y.

    The use of novel nanostructured materials for optical applications continues to be an important issue for the creation of new devices. New materials including metal nanoparticles have played an important role for applications in photonics, biology, as well as medicine. This review primarily concerns the use of one particular metal nanoparticle topology, dendrimer-metal nanocomposites. The focus of this review is to describe the optical properties of dendrimer-metal nanocomposites as well as functionalized dendrimer-metal nanocomposites. The description of various synthetic methodologies to produce transition metal (Au, Ag, Pd, Pt, and Cu) dendrimer nanocomposites as well as lanthanide ion-cored dendrimers are presented in this review, with further details regarding the basic characterization of these systems. The experimental procedures of the optical measurements used to probe the steady-state and time-resolved dynamics in these novel nanoparticle architectures are provided. Analysis of optical properties of dendrimer nanocomposites (DNCs) includes a description of the characterization of the metal nanoparticles as well as the size and distribution of metal nanoparticles formed by use of organic dendrimer template synthetic procedures (such as PAMAM). The non-linear transmission properties of certain dendrimer-metal nanocomposites show promising behaviour, which may be useful for applications involving eye and sensor protection. Reports of non-linear transmission properties of both Au and Ag dendrimer nanocomposites are discussed. Metal nanoparticles have also been suggested as useful materials for biological fluorescence imaging and sensing applications. However, it is well known that the efficiency of metal emission is very small. Recent measurements using ultra-fast spectroscopic techniques (fluorescence upconversion) have shed new light on this matter in metal nanoparticles and in dendrimer-metal nanocomposites. Dendrimer-metal nanocomposites have been used to

  7. Non-linear optical titanyl arsenates: Crystal growth and properties

    Science.gov (United States)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  8. Optical Properties of Single- and Double-Functionalized Small Diamondoids.

    Science.gov (United States)

    Sarap, Chandra Shekar; Adhikari, Bibek; Meng, Sheng; Uhlig, Frank; Fyta, Maria

    2018-03-30

    The rational control of the electronic and optical properties of small functionalized diamond-like molecules, the diamondoids, is the focus of this work. Specifically, we investigate the single- and double- functionalization of the lower diamondoids, adamantane, diamantane, and triamantane with -NH 2 and -SH groups and extend the study to N-heterocyclic carbene (NHC) functionalization. On the basis of electronic structure calculations, we predict a significant change in the optical properties of these functionalized diamondoids. Our computations reveal that -NH 2 functionalized diamondoids show UV photoluminescence similar to ideal diamondoids while -SH substituted diamondoids hinder the UV photoluminescence due to the labile nature of the S-H bond in the first excited state. This study also unveils that the UV photoluminescence nature of -NH 2 diamondoids is quenched upon additional functionalization with the -SH group. The double-functionalized derivative can, thus, serve as a sensitive probe for biomolecule binding and sensing environmental changes. The preserved intrinsic properties of the NHC and the ideal diamondoid in NHC-functionalized-diamondoids suggests its utilization in diamondoid-based self-assembled monolayers (SAM), whose UV-photoluminescent signal would be determined entirely by the functionalized diamondoids. Our study aims to pave the path for tuning the properties of diamondoids through a selective choice of the type and number of functional groups. This will aid the realization of optoelectronic devices involving, for example, large-area SAM layers or diamondoid-functionalized electrodes.

  9. Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2011-01-01

    Full Text Available Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu3(Fe, Ga/Al5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.

  10. Optical properties of fly ash. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  11. Optical properties of mineral dust aerosol in the thermal infrared

    Science.gov (United States)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  12. Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography

    OpenAIRE

    Zhang, Yuqing; Wu, Guoyong; Wei, Huajiang; Guo, Zhouyi; Yang, Hongqin; He, Yonghong; Xie, Shusen; Liu, Ying

    2014-01-01

    The objective of this study was to evaluate the effects of blood glucose concentration (BGC) on in vivo human skin optical properties after oral intake of different sugars. In vivo optical properties of human skin were measured with a spectral domain optical coherence tomography (SD-OCT). Experimental results show that increase of BGC causes a decrease in the skin attenuation coefficient. And the maximum decrements in mean attenuation coefficient of skin tissue after drinking glucose, sucrose...

  13. Determination of petrophysical properties of sedimentary rocks by optical methods

    Science.gov (United States)

    Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.

    2017-04-01

    Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.

  14. Optical properties of metallic nanoparticles basic principles and simulation

    CERN Document Server

    Trügler, Andreas

    2016-01-01

    This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructu...

  15. Optical and luminescence properties of zinc oxide (Review)

    Science.gov (United States)

    Rodnyi, P. A.; Khodyuk, I. V.

    2011-11-01

    We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

  16. Magneto-Optical Properties of InSb Semiconductor Heterostructures

    Science.gov (United States)

    Pan, X.; Saha, D.; Sanders, G. D.; Stanton, C. J.; Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.

    2011-12-01

    We have theoretically and experimentally studied the spin-dependent Landau levels for electrons and holes in narrow-gap InSb/AlInSb quantum well systems. We use the envelope function approximation for the electronic and magneto-optical properties of InSb/AlInSb. Our model includes the conduction electrons, heavy holes, light holes and spin-orbit split-off holes for a total of 8 bands taking spin into account. The Pidgeon-Brown model is generalized to include the effects of confinement in the quantum wells. In addition, strain effects are taken into account by assuming pseudomorphic growth conditions. Comparing our calculated electronic structures with experimental magneto-absorption measurements, we obtain excellent agreement. Our results demonstrate that in addition to the major transitions, strong band mixing in the narrow gap material leads to several optical transitions which normally are forbidden.

  17. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  18. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    Science.gov (United States)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-07-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  19. Strain-induced optical absorption properties of semiconductor nanocrystals.

    Science.gov (United States)

    Zhang, Ai; Luo, Sheng; Ouyang, Gang; Yang, Guowei

    2013-06-28

    As comparable to the spherical nanocrystals, the nanocrystals with non-spherical shape have fascinating properties induced by a large fraction of under-coordinated atoms located at end parts, including edges, vertexes, and side facets. Herein, taking into account the shell-core configuration of semiconductor nanospheres, nanocubes, and nanorods, we investigate the self-equilibrium strain on optical absorption properties from the perspective of atomistic origin. It has been found that the band gap of nanocrystals exhibits a pronounced blueshift compared with that of the bulk counterpart, and further shown that the band gap of nanospheres is different from that of naoncubes and nanorods. Moreover, we demonstrate that the shape effects have weak influences on the absorption coefficient when the crystal size approaches to a threshold value that is much smaller than the exciton Bohr radius at short wavelengths. Remarkably, the nanocubes have the largest deformation potential compared to the nanorods and nanospheres at fixed strain. The physical origin can be ascribed to the self-equilibrium strain induced by end effects that changes the bonding identifies, which leads to the variations of cohesive energy and entire Hamiltonian of nanocrystals. Our theoretical predictions not only are consistent with the experimental measurements and simulations, but also indicate the possible method on tunable optical properties of semiconductor nanocrystals.

  20. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  1. Optical properties of erbium-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)]. E-mail: joel.charier@univ-rennes1.fr; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)

    2006-12-15

    Planar and buried channel porous silicon waveguides (WG) were prepared from p{sup +}-type silicon substrate by a two-step anodization process. Erbium ions were incorporated into pores of the porous silicon layers by an electrochemical method using ErCl{sub 3}-saturated solution. Erbium concentration of around 10{sup 20} at/cm{sup 3} was determined by energy-dispersive X-ray analysis performed on SEM cross-section. The luminescence properties of erbium ions in the IR range were determined and a luminescence time decay of 420 {mu}s was measured. Optical losses were studied on these WG. The increased losses after doping were discussed.

  2. The effects of biodegradation and photodegradation on DOM optical properties

    Science.gov (United States)

    Hansen, A.; Moll, L.; Kraus, T. E.

    2012-12-01

    In aquatic environments, dissolved organic matter (DOM) plays a central role in ecosystem biogeochemistry and is important because it affects light penetration, food web dynamics, and pollutant transport. While knowing DOM concentration is important, it is also critical to characterize DOM composition because its chemical make-up determines how it reacts in the environment. Furthermore, the ability to determine the origin of DOM can help inform watershed management and predict future trends. The main factors affecting DOM composition include (1) original source material, (2) biodegradation, and (3) photodegradation. Many studies use optical properties (absorbance and fluorescence) to infer DOM composition and source, however there are few controlled laboratory studies using endmember sources. Here DOM optical properties of eight endmember sources-including soil, plant and algal leachates-from San Francisco Bay Delta wetlands were investigated following biological and photochemical degradation during a three month incubation period. The effects of photoexposure were examined at various points along the biodegradation curve to simulate photodegradation occurring as microorganisms consumed and transformed the bioavailable DOM. Samples were analyzed for dissolved organic carbon (DOC) concentration, absorbance, and fluorescence. While our results showed little change in DOC concentration in the soil leachate over the 3 month study period, DOC concentrations in plant and algal leachates decrease by over 70% within the first three days of biodegradation. As expected, biodegradation led to an increase in fluorescence index (FI), humic index (HIX), and specific absorbance (SUVA) values. Carbon-normalized fluorescence values increased for humic-like components associated with Peaks C and A, but decreased for more labile material, which is associated with Peak T. While the initial FI for plant and algal leachates was similar to soil, the FI for both of these sources increased

  3. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    1990-01-01

    The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in sem

  4. Optical properties and the structure of the Saturn atmosphere

    International Nuclear Information System (INIS)

    Tejfel', V.G.

    1980-01-01

    The recent state of the chemical composition and structure of the atmosphere of Saturn is analyzed taking into account the observational and theoretical data received mainly during 1973-1977. One of the major problems of the study of the atmosphere of Saturn is the physical nature of the aerosol component (condensated particles and dust) and its distribution in height and different latitudes. Optical properties of the observable cloud cover of Saturn and their influence on spectral estimates of the content of absorbing gases are discussed. Data on the atmosphere reflecting power, polarization measurements, photometry composition in the atmosphere are presented. Scheme of a possible atmosphere structure is given

  5. Thin nanodiamond membranes and their microstructural, optical and photoelectrical properties

    Czech Academy of Sciences Publication Activity Database

    Mortet, V.; D´Haen, J.; Potměšil, Jiří; Kravets, Roman; Drbohlav, Ivo; Vorlíček, Vladimír; Rosa, Jan; Vaněček, Milan

    2005-01-01

    Roč. 14, - (2005), s. 393-397 ISSN 0925-9635 R&D Projects: GA MŠk(CZ) LN00A015; GA ČR(CZ) GA202/05/2233; GA MŠk(CZ) LC510 EU Projects: European Commission(XE) HPRN-CT-1999-00139 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanodiamond * structural characterization * optical properties * defect spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.988, year: 2005

  6. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  7. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  8. Optical and electrical properties of thin superconducting films

    Science.gov (United States)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  9. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  10. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    Science.gov (United States)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  11. Optical properties of cosmic dust analogs: a review

    Science.gov (United States)

    Henning, Thomas; Mutschke, Harald

    2010-04-01

    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.

  12. Optical properties of metallic multi-layer films

    International Nuclear Information System (INIS)

    Dimmich, R.

    1991-09-01

    Optical properties of multi-layer films consisting of alternating layers of two different metals are studied on the basis of the Maxwell equations and the Boltzmann transport theory. The influence of free-electron scattering at the film external surface and at the interfaces is taken into account and considered as a function of the electromagnetic field frequency and the structure modulation wavelength. Derived formulas for optical coefficients are valid at low frequencies, where the skin effect is nearly classical, as well as in the near-infrared, visible and ultraviolet spectral ranges, where the skin effect has the anomalous nature. It is shown that the obtained results are apparently dependent on the values of the scattering parameters. What is more, the oscillatory nature of analyzed spectra is observed, where the two oscillation periods may appear on certain conditions. The oscillations result from the electron surface and interface scattering and their amplitudes and periods depend on the boundary conditions for free-electron scattering. Finally, the application of the interference phenomenon in dielectric layers is proposed to obtain the enhancement of the non distinct details which can appear in optical spectra of metallic films. (author). 31 refs, 6 figs

  13. Effect of radiation on the optical properties of some ferroelectrics

    International Nuclear Information System (INIS)

    Pirogova, G.N.; Kritskaya, V.E.; Malov, N.A.; Ryabov, A.I.; Voronin, Y.V.

    1986-01-01

    This paper studies the effect of gamma-irradiation and impulsive irradiation with electrons on the optical properties of crystals used in nonlinear optics: potassium dihydrophosphate KH 2 PO 4 , and cesium dihydroarsenate CsH 2 AsO 4 . The authors used two types of crystals obtained by extraction of the condensate, lowering of the temperature and recirculation. The content of iron-group impurity atoms (A1, Cu, and Mg) were determined with the help of atomic absorption spectrometry and was less than 1.10 -3 mole %. The samples were irradiated with a Co 60 gamma-ray source and impulsive irradiation with electrons was performed with a U-12 linear accelerator. A comparison of the spectra of gamma-irradiated single crystals and crystals irradiated with electrons shows that they are identical in the UV region. The impulse technique, however, enables observing the absorption bands which under gamma-irradiation are lost owing to the large increment of the optical density in the ultraviolet region and the shift of the absorption edge into the long-wavelength region

  14. Optical and electrical properties of a spiral LED filament

    Science.gov (United States)

    Wang, Liping; Zou, Jun; Yang, Bobo; Li, Wenbo; Li, Yang; Shi, Mingming; Zhu, Wei; Zhang, Canyun; Wang, Fengchao; Lin, Yujie

    2018-02-01

    This paper introduces a new type of spiral white light-emitting diodes (WLED) filament with high luminous efficiency and uniform optical performance. The optical and thermal properties of the flexible filament were investigated at different stretching heights, namely 0, 1, 2, and 3 cm. The results indicated that the filament showed the best optical characteristics at the stretching height of 2 cm, because of good heat dissipation. In addition, the radiation temperature of the filament was inversely proportional to the output luminous flux. The reliability of the filament at a stretching height of 2 cm was also evaluated after 1000 h of use. The result demonstrated that the luminous flux decay of the bulb was only 0.85%. The flexible spiral WLED filament exhibiting high luminous flux and good reliability could be adapted to promote industrial development in the near future. Project supported by the National Nature Science Foundation of China (No. 51302171), the Science and Technology Commission of Shanghai Municipality (CN) (No. 14500503300), the Shanghai Municipal Alliance Program (No. Lm201547), the Shanghai Cooperative Project (No. ShanghaiCXY-2013-61), and the Jiashan County Technology Program (No. 20141316).

  15. Optical Fibres in the Modeling of Translucent Concrete Blocks

    OpenAIRE

    M.N.V.Padma Bhushan, D.Johnson, Md. Afzal Basheer Pasha And Ms. K. Prasanthi

    2013-01-01

    Translucent concrete is a concrete based material with light-transmissive properties, obtained due to embedded light optical elements like Optical fibers in it. Light is conducted through the stone from one end to the other. This results into a certain light pattern on the other surface, depending on the fibre structure. Optical fibres transmit light so effectively that there is virtually no loss of light conducted through the fibres. Our paper deals with the modelling of such translucent or ...

  16. Optical properties of likely constituents of interstellar dust

    International Nuclear Information System (INIS)

    Dayawansa, I.J.

    1977-07-01

    Optical properties of polyoxymethylene (POM) at room temperature have been measured from the near ultra-violet to infrared as an initial stage of a link between interstellar dust and organic matter, and the results, which are particularly relevant to interstellar extinction, are reported. There is a strong possibility of a more complex organic component which could significantly contribute to the interstellar extinction. Measurements have also been made of the effect of fast neutron bombardment on the optical properties of quartz (SiO 2 ). At a high total flux of neutrons the crystalline quartz will change to its amorphous form which has extinction properties that resemble the interstellar extinction. Extinction due to small particles of several forms of SiO 2 has been measured and among them the hydrated mineral, opal, behaved like an amorphous silica. Neutron irradiated olivine showed a stronger and a broader 10μm band in addition to weaker bands towards the longer wavelengths which indicated that atomic damage has been produced. At high fluxes more atomic damage is expected to change the crystalline structure and thereby cause changes in the infrared absorption properties. Extinction measurements were also made for smoke particles of MgO in the infrared. When the measurements were made with the particles deposited on substrates, in addition to a very broad surface mode absorption feature around 20μm an extinction maximum was observed typical of the bulk mode at 25μm. Extinction measurements for MgO smoke particles in air also showed similar results. However when the particles were dispersed in a non-absorbing medium, the bulk absorption mode was not observed. This implies that the appearance of the bulk mode is due to clumping. (author)

  17. Geometry, electronic structures and optical properties of phosphorus nanotubes

    International Nuclear Information System (INIS)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Using a first principles approach, we investigated the geometry, electronic structures, and optical properties of phosphorus nanotubes (PNTs). Two possible 1D configurations, the so-called α-PNTs and β-PNTs, are proposed, which are structurally related to blue and black phosphorus monolayers, respectively. Hereby, we predict that both armchair and zigzag geometries can be synthesized in α-PNTs, but the zigzag form of β-PNT is highly unfavorable because of large strain and conformation energies. The band gap of α-PNTs is expected to be ∼2.67 eV, and this is insensitive to the chirality when the tube’s inner diameter is larger than 1.3 nm, while the armchair β-PNTs have a much smaller band gap. Interestingly, we find nearly flat band structures in the zigzag α-PNT system. This may indicate that an excited particle–hole pair has a huge effective mass. We also find asymmetric optical properties with respect to the polarization direction. The armchair α-PNT for parallel polarization shows a large refractive index of 2.6 near the ultraviolet wavelength, and also we find that the refractive index can be even smaller than 1 in certain frequency ranges. The zigzag tubes show very weak reflectivity for parallel polarization, while the armchair tube displays high reflectivity. (paper)

  18. Optical spectral properties of active galactic nuclei and quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1981-01-01

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  19. Optical properties of alumina membranes prepared by anodic oxidation process

    International Nuclear Information System (INIS)

    Li Zhaojian; Huang Kelong

    2007-01-01

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F + centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane

  20. Linkage between [|#11#|]morphology and optical properties of soot

    Science.gov (United States)

    Scarnato, B.; Richard, D. T.; vahidinia, S.; Hillyard, P.; Strawa, A. W.; Kirchstetter, T. W.; Preble, C.; Cuzzi, J. N.

    2011-12-01

    Black Carbon (BC) containing aerosols that are generally hydrophobic upon emission become increasingly mixed with other aerosol material through condensation and coagulation. In polluted urban air, BC becomes internally mixed with organics and sulfate on a time scale of about 12 hours. Recent studies have indicated that the photo-absorption by BC is enhanced as a consequence of the internal mixing of BC with these other aerosol materials. To estimate this absorption enhancement, we have undertaken laboratory studies involving the mixing of initially uncoated BC produced from the combustion of a methane diffusion flame with inorganic and organic compounds. Particle size distributions are used as a first indicator of coating. We use Scanning Electron Microscopy (SEM) to characterize the fractal and shape factors of the generated uncoated and coated BC (see Fig.1 and Fig.2). We create modeled aggregates with the same characteristics as those analyzed at the SEM and we initialize a radiation transfer model (ddscatt) to estimate optical properties of uncoated and coated BC. We quantify absorption enhancement due to coating as a function of aggregate morphology. We use Transmission Electron Microscopy (TEM) to determine the mixing state and to aid in distinguishing between absorption enhancement caused by fractal collapse and surface coating. This paper will show the relationships between soot morphology, coating and optical properties. SEM and TEM imaged of uncoated and coated soot a will be presented.

  1. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  2. Properties of optically selected BL Lacertae candidates from the SDSS

    Science.gov (United States)

    Kügler, S. D.; Nilsson, K.; Heidt, J.; Esser, J.; Schultz, T.

    2014-09-01

    Context. Deep optical surveys open the avenue for finding large numbers of BL Lac objects that are hard to identify because they lack the unique properties classifying them as such. While radio or X-ray surveys typically reveal dozens of sources, recent compilations based on optical criteria alone have increased the number of BL Lac candidates considerably. However, these compilations are subject to biases and may contain a substantial number of contaminating sources. Aims: In this paper we extend our analysis of 182 optically selected BL Lac object candidates from the SDSS with respect to an earlier study. The main goal is to determine the number of bona fide BL Lac objects in this sample. Methods: We examine their variability characteristics, determine their broad-band radio-UV spectral energy distributions (SEDs), and search for the presence of a host galaxy. In addition we present new optical spectra for 27 targets with improved signal-to-noise ratio with respect to the SDSS spectra. Results: At least 59% of our targets have shown variability between SDSS DR2 and our observations by more than 0.1-0.27 mag depending on the telescope used. A host galaxy was detected in 36% of our targets. The host galaxy type and luminosities are consistent with earlier studies of BL Lac host galaxies. Simple fits to broad-band SEDs for 104 targets of our sample derived synchrotron peak frequencies between 13.5 ≤ log 10(νpeak) ≤ 16 with a peak at log 10 ~ 14.5. Our new optical spectra do not reveal any new redshift for any of our objects. Thus the sample contains a large number of bona fide BL Lac objects and seems to contain a substantial fraction of intermediate-frequency peaked BL Lacs. Based on observations collected with the NTT on La Silla (Chile) operated by the European Southern Observatory under proposal 082.B-0133.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck-Institut für Astronomie and the

  3. Optical Properties and Biological Applications of Electromagnetically Coupled Metal Nanoparticles

    Science.gov (United States)

    Sheikholeslami, Sassan Nathan

    The optical properties of metallic particles change dramatically as the size shrinks to the nanoscale. The familiar mirror-like sheen of bulk metals is replaced by the bright, sharp, colorful plasmonic resonances of nanoparticles. The resonances of plasmonic metal nanoparticles are highly tunable throughout the visible spectrum, depending on the size, shape, local dielectric environment, and proximity to other optical resonances. Fundamental and applied research in the nanoscience community in the past few decades has sought to understand and exploit these phenomena for biological applications. In this work, discrete nanoparticle assemblies were produced through biomolecular interactions and studied at the single particle level with darkfield spectroscopy. Pairs of gold nanoparticles tethered by DNA were utilized as molecular rulers to study the dynamics of DNA bending by the restriction enzyme EcoRV. These results substantiated that nanoparticle rulers, deemed "plasmon rulers", could measure the dynamics of single biomolecules with high throughput, long lifetime, and high temporal resolution. To extend these concepts for live cell studies, a plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle was synthesized and utilized to optically follow cell signaling pathways in vivo at the single molecule level. The signal provided by these plasmon rulers allowed continuous observation of caspase-3 activation at the single molecule level in living cells for over 2 hours, unambiguously identifying early stage activation of caspase-3 in apoptotic cells. In the last section of this dissertation, an experimental and theoretical study of electomagnetic coupling in asymmetric metal nanoparticle dimers is presented. A "heterodimer" composed of a silver particle and a gold particle is observed to have a novel coupling between a plasmon mode (free electron oscillations) and an inter-band absorption process (bound electron transitions). The

  4. Linear and nonlinear optical properties of organic semiconductors

    Science.gov (United States)

    Craig, Ian Munro

    The optical properties of highly conjugated organic semiconductors can reveal quite a bit about their underlying chemistry and physics. This dissertation considers four different systems and applies both experimental and theoretical optical tools to understand them. Using absorption, emission, NMR, and quantum mechanical calculations, I first show how a non-aromatic to aromatic transition drives a large spectroscopic change in 2-methyl-1,4-diphenyl-2H-benzo[g]isoquinolin-3-one (MDP-BIQ) in the presence of hydrogen-bond donating impurities, and how this change might be used as an acid-base sensor. Second, I study poly(2-methoxy-5-(2'-ethylhexyloxy)p-phenylenevinylene) (MEH-PPV), a conjugated semiconducting polymer used as the emissive layer in organic light emitting diodes (OLEDs). By modeling the electric field distributions in two different MEH-PPV thin film architectures and comparing them to experiment, I show how the natural diffusion of individual polymer chains into a silica mesopore matrix creates graded-index waveguides that dramatically lower amplified spontaneous emission (ASE) thresholds. In the third case, I show how ASE quenching in neat MEH-PPV films cannot be attributed to optical effects, but instead must be due to chemical doping at the interface. Finally, using second harmonic generation (SHG), 2D x-ray diffraction, and optical modeling, I show that the crystallinity of neat MEH-PPV films can be measured with SHG and that the source of the SHG is due to electric quadrupole polarization from the bulk of the film rather than the more common electric dipole polarization from the interface.

  5. Structural, optical and electrical properties of WO3-Ag nanocomposites for the electro-optical devices

    Science.gov (United States)

    Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak

    2018-01-01

    The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.

  6. Substituent Effects on the Optical Properties of Free Base (Alpha,Beta, Gamma,Delta)-Tetraphenylporphyrin

    National Research Council Canada - National Science Library

    Wohlwend, Kirsten

    1998-01-01

    .... The purpose of this project was to study the optical properties of various substituted groups on TPP and use the information obtained to improve materials under investigation for potential use as optical limiting dyes...

  7. Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique

    CSIR Research Space (South Africa)

    Zongo, S

    2015-08-01

    Full Text Available We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer...

  8. Laser remote heating in vacuum environment to study temperature dependence of optical properties for bulk materials

    Science.gov (United States)

    Minissale, Marco; Bisson, Regis; Gallais, Laurent

    2016-12-01

    The knowledge of optical and thermal properties of materials at high temperatures is of crucial importance in the field of high power laser/material interactions. We report in this contribution on the development of a spectroscopic ellipsometry system dedicated to the measurement of optical properties of solid materials from the ambient to high temperatures (optic spectrometer to measure reflected light and optical pyrometers for temperature monitoring.

  9. Optical and Physical Properties of ONP Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Iman Akbarpoor

    2012-01-01

    Full Text Available Enzymes are protein molecules with complex structures that accelerate the biochemical reactions. Activity of these chemical compounds is accomplished at limited range of pH, temperature and concentration. In this study, the effects of different concentrations of cellulose enzyme were investigated on deinking of old newsprint. Old newsprint (ONP was repulped at 5% consistency for 10 minutes in disintegrator with total revolution number of 26500. Enzymatic treatments of recycled ONP pulp were done under constant conditions (10% consistency,treatment time of 15 minutes, pH range of 5-5.5 at different cellulose concentrations of 0.025, 0.05, 0.1 and 0.2% (based on oven-dry waste paper. The optical and physical properties of the standard paper (60g/m2 made at different concentrations of cellulose were evaluated in comparison with control pulp (untreated ONP pulp with cellulase. Overall, the results achieved by comparison the optical properties of the paper produced indicated that using cellulase in deinking of ONP led to increase the brightness and the yellowness and decrease the opacity. The brightness was improved to a maximum level of 47.5 ISO %, but the yellowness was decreased to a minimum level of 11.3 ISO %, while the brightness reduced and the yellowness increased at higher concentrations than 0.05% cellulase. The highest opacity of 99.3 ISO % was achieved using 0.1% cellulase even higher than control pulp. The results gained by comparison the physical properties of the paper showed that using cellulase resulted in decrease of paper calliper, air resistance and density and improve the freeness of pulp

  10. Optical and photoelectrical properties of nanostructured thin ZnO films for UV-sensors

    Science.gov (United States)

    Grigoryev, L. V.; Kulakov, S. V.; Nefedov, V. G.; Shakin, O. V.; Grigoryeva, M. L.; Moskalenko, S. D.

    2017-05-01

    The article presents the results investigations of the optical and photoelectric properties thin films zinc oxide obtained by the reactive ion-plasma method. It is shown that the optical and photoelectric properties of thin ZnO films has equivalent characteristics to the properties of single crystal zinc oxide and can be used to create UV-photoresistors.

  11. Optical and Transport Properties of Organic Molecules: Methods and Applications

    Science.gov (United States)

    Strubbe, David Alan

    Organic molecules are versatile and tunable building blocks for technology, in nanoscale and bulk devices. In this dissertation, I will consider some important applications for organic molecules involving optical and transport properties, and develop methods and software appropriate for theoretical calculations of these properties. Specifically, we will consider second-harmonic generation, a nonlinear optical process; photoisomerization, in which absorption of light leads to mechanical motion; charge transport in junctions formed of single molecules; and optical excitations in pentacene, an organic semiconductor with applications in photovoltaics, optoelectronics, and flexible electronics. In the Introduction (Chapter 1), I will give an overview of some phenomenology about organic molecules and these application areas, and discuss the basics of the theoretical methodology I will use: density-functional theory (DFT), time-dependent density-functional theory (TDDFT), and many-body perturbation theory based on the GW approximation. In the subsequent chapters, I will further discuss, develop, and apply this methodology. 2. I will give a pedagogical derivation of the methods for calculating response properties in TDDFT, with particular focus on the Sternheimer equation, as will be used in subsequent chapters. I will review the many different response properties that can be calculated (dynamic and static) and the appropriate perturbations used to calculate them. 3. Standard techniques for calculating response use either integer occupations (as appropriate for a system with an energy gap) or fractional occupations due to a smearing function, used to improve convergence for metallic systems. I will present a generalization which can be used to compute response for a system with arbitrary fractional occupations. 4. Chloroform (CHCl3) is a small molecule commonly used as a solvent in measurements of nonlinear optics. I computed its hyperpolarizability for second

  12. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  13. Aerosol Optical Properties and Direct Radiative Effects over Central China

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-09-01

    Full Text Available Central China is important for aerosols and climate because it is among the worst regions for air pollution in China. However, it is understudied due to a lag in establishing an atmospheric monitoring network. So we did a comprehensive analysis using multiple techniques to improve the understanding of aerosol optical properties and their radiative effect in this region. The results showed that high aerosol optical depth (AOD was generally found in the northern and central parts, whereas low values were observed in the southern and western parts. Most regions were predominantly loaded with small aerosol particles and a significant influence of long-distance transported dust was found in springtime. A strong and significantly decreasing trend was observed with a maximum decrease rate of −0.08 per year in the northern and western parts, related to the decreasing emission of aerosols and increasing rainfall. Aerosol optical properties and radiative effects were compared between an urban site, Wuhan, and a rural site, Dengfeng. The seasonal variations of AOD and Ångström exponent (AE are similar for Wuhan and Dengfeng, but both values are larger in Wuhan than in Dengfeng. A greater dominance of coarse-mode and absorbing aerosols was found over Dengfeng. Annual averaged aerosol radiative effect (ARE in shortwave spectrum (ARESW and its efficiency (REE are −48.01 W/m2 and −51.38 W/m2, respectively, in Wuhan, −40.02 W/m2 and −53.26 W/m2, respectively, in Dengfeng. The dependence of REE on aerosol absorptive and size properties was studied; the results showed that REE was strongly influenced by the aerosol absorptivity and size of fine-mode particles, but there was not a strong correlation between REE and AE. The percentage of ARE in visible spectrum (AREVIS in ARESW in Wuhan was 3% lower than in Dengfeng. The AREVIS percentage depended largely on aerosol particle size, but was less influenced by aerosol absorptivity.

  14. Effects of haemodilution on the optical properties of blood during coagulation studied by optical coherence tomography

    Science.gov (United States)

    Liu, B.; Liu, Y.; Wei, H.; Yang, X.; Wu, G.; Guo, Z.; Yang, H.; He, Y.; Xie, S.

    2016-11-01

    We report an investigation of the effects of blood dilution with hypertonic (7.5 %) and normal (0.9 %) saline on its optical properties during coagulation in vitro using optical coherence tomography. The light penetration depth and attenuation coefficient are obtained from the dependences of reflectance on the depth. Normal whole blood has served as the control group. The average coagulation time is equal to 420 +/- 16, 418 +/- 16 and 358 +/- 14 {\\text{s}} with blood volume replacement of 2 %, 11 %, and 20 % by 0.9 % normal saline, respectively. With 2 %, 11% and 20% blood volume replacement with 7.5 % hypertonic saline, the average coagulation time is 422 +/- 17, 1160 +/- 45 and 1730 +/- 69 {\\text{s}}, respectively. For normal whole blood, the average coagulation time amounts to 425 +/- 19 {\\text{s}}. it is shown that dilution with normal saline has a procoagulant effect when it replaces 20 % of blood volume, and hypertonic saline has an anticoagulant effect if it replaces 11 % or more of blood volume. It is concluded that optical coherence tomography is a potential technique to quantify and monitor the liquid - gel transition during the coagulation process of blood diluted by normal and hypertonic saline.

  15. Tunable Bandgap and Optical Properties of Black Phosphorene Nanotubes

    Directory of Open Access Journals (Sweden)

    Chunmei Li

    2018-02-01

    Full Text Available Black phosphorus (BP, a new two-dimensional material, has been the focus of scientists’ attention. BP nanotubes have potential in the field of optoelectronics due to their low-dimensional effects. In this work, the bending strain energy, electronic structure, and optical properties of BP nanotubes were investigated by using the first-principles method based on density functional theory. The results show that these properties are closely related to the rolling direction and radius of the BP nanotube. All the calculated BP nanotube properties show direct bandgaps, and the BP nanotubes with the same rolling direction express a monotone increasing trend in the value of bandgap with a decrease in radius, which is a stacking effect of the compression strain on the inner atoms and the tension strain on the outer atoms. The bending strain energy of the zigzag phosphorene nanotubes (zPNTs is higher than that of armchair phosphorene nanotubes (aPNT with the same radius of curvature due to the anisotropy of the BP’s structure. The imaginary part of the dielectric function, the absorption range, reflectivity, and the imaginary part of the refractive index of aPNTs have a wider range than those of zPNTs, with higher values overall. As a result, tunable BP nanotubes are suitable for optoelectronic devices, such as lasers and diodes, which function in the infrared and ultra-violet regions, and for solar cells and photocatalysis.

  16. Roughness, optical, and wetting properties of nanostructured thin films

    Science.gov (United States)

    Schröder, Sven; Coriand, Luisa; Duparré, Angela

    2013-09-01

    Roughness structures are essential for a variety of functional surfaces, for example surfaces with extreme wetting behavior like superhydrophobicity or superhydrophilicity. On the other hand, roughness also gives rise to light scattering, and thus limits the usability of such surfaces for optical applications. Our approach is based on using small-scale intrinsic roughness components of thin film coatings to achieve the desired functional properties while keeping the light scattering at acceptable levels. A comprehensive measurement and analysis methodology for effectively predicting, defining and controlling the structural and wetting properties of stochastically rough superhydrophobic surfaces is presented. Power Spectral Density (PSD) functions determined from atomic force microscopy data are used for thorough roughness analysis as well as to predict the wetting and light scattering properties. Dynamic contact angle analysis is performed by measuring advancing, receding, roll-off, and bounce-off angles. Examples of natural and technical superhydrophobic surfaces like the Lotus leaf and thin film coatings with stochastic nanoroughness are given. These surfaces reveal high advancing contact angles, low contact angle hysteresis, low roll-off angles, and, consequently, the effect of self-cleaning.

  17. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.

    Science.gov (United States)

    Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan

    2015-06-23

    A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    Science.gov (United States)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  19. Iron nanoparticles embedded in carbon films: structural and optical properties

    Science.gov (United States)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  20. Structural, Optical and Electrical Properties of ITO Thin Films

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-02-01

    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  1. Quality of Rapeseed Bio-Fuel Waste: Optical Properties

    Science.gov (United States)

    Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena

    2014-04-01

    The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.

  2. Optical properties of nanocomposites: Percolation films, nanowires, and nanoholes

    Science.gov (United States)

    Podolskiy, Viktor Anatolyevich

    The optical properties of percolation films, nanowires, nanowire composites, and nanoholes composites were studied theoretically. Developed theory predicts the existence of localized plasmon modes in metal-dielectric percolation films when the metal concentration is close to the percolation threshold. Due to the plasmon localization local fields, local field fluctuations are extremely enhanced on the surface of percolation composite. This explains enormous enhancement of the nonlinear diffuse scattering by the percolation film. Also, localization of the plasmon modes and their coupling to optical phonon modes leads to the enhanced absorption by thick percolation composites. Our simulations show that spatial plasmon modes localization and unique local spectral characteristics of these modes make it possible to produce extremely sharp responses using the percolation composites. The developed technique suggests the existence of propagating polariton modes in the metal nanowire, which explains the unique spatial distribution of the electromagnetic field around the metal nanowire. Our simulations show the existence of sharp plasmon resonance in single nanowire and localized plasmon modes in nanowire percolation composite. The specific nanowire composite, which has negative refractive index is suggested. Development of recent Generalized Ohm's Law (GOL) approach allows us to explain extraordinary light transmittance by metal-nanoholes composite. The theory predicts large local field enhancement in such composite close to the transmittance resonance. The theory also predicts the plausibility of light nano-management using metal-holes composites.

  3. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  4. Optical and electronic properties of semiconducting Sn2S3

    Science.gov (United States)

    Singh, David J.

    2016-07-01

    We report the electronic and optical properties of Sn2S3 as obtained from first principles calculations with the modified Becke-Johnson potential. The electronic structure shows that Sn occurs in both divalent and tetravalent forms. The fundamental band gap of 0.82 eV is indirect. The direct gap is 0.97 eV, but the onset of strong optical absorption is much higher at ˜1.75 eV. This is as a consequence of the Sn2+ s and Sn4+ s characters of the valence and conduction band extrema, respectively. We also find strong and different anisotropies for conduction in p- and n-type Sn2S3. This should be taken into account in device structures in order to obtain efficient charge collection. The thermopowers are reasonably high for both p- and n-type materials. p-type Sn2S3 shows complex corrugated isosurface sections, while the n-type material shows multiple band extrema.

  5. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    Directory of Open Access Journals (Sweden)

    Hui Che

    2012-01-01

    Full Text Available ZnO is emerging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on MgxZn1−xO and ZnS1−xOx nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg0.3Zn0.7O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg0.3Zn0.7O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS0.76O0.24 and ZnS0.16O0.84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS0.16O0.84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.

  6. Optical properties of electron-irradiated gallium phosphide

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Grigoryan, N.E.; Eritsyan, G.N.

    1980-01-01

    Results of optical absorption and photoconductivity measurements in the 0.1 to 2.4 eV range of GaP crystals irradiated with 7.5 and 50 MeV electrons are presented. The absorption of irradiated crystals near the edge can be represented by two exponential regions. In the free carrier absorption region one can observe as a result of irradiation a decrease of the power index p in the dependence α proportional to lambdap. Photoconductivity with long-time relaxation takes place in the spectral interval where the additional absorption is observed. The quenching of residual conductivity can be observed at hν=1.0eV. Variations in absorption and photoconductivity are attributed to the 'tails' of density states near the zone edges arising at introduction of both point defects and disordered regions. At hν=2.1eV one can observe a resonance band which is attributed to intra-centre transitions on point defects. A recovery of the optical properties of GaP at annealing is studied. In heavily irradiated GaP crystals point defects can form gatherings which display themselves as disordered regions. (author)

  7. Optical Property Evaluation of Next Generation Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  8. Electro-optical properties of phosphorene quantum dots

    Science.gov (United States)

    Saroka, V. A.; Lukyanchuk, I.; Portnoi, M. E.; Abdelsalam, H.

    2017-08-01

    We study the electronic and optical properties of single-layer phosphorene quantum dots with various shapes, sizes, and edge types (including disordered edges) subjected to an external electric field normal to the structure plane. Compared to graphene quantum dots, in phosphorene clusters of similar shape and size there is a set of edge states with energies dispersed at around the Fermi level. These states make the majority of phosphorene quantum dots metallic and enrich the phosphorene absorption gap with low-energy absorption peaks tunable by the electric field. The presence of the edge states dispersed around the Fermi level is a characteristic feature that is independent of the edge morphology and roughness.

  9. Mechanical properties of a giant liposome studied using optical tweezers

    Science.gov (United States)

    Shitamichi, Yoko; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2009-09-01

    The mechanical properties of a micrometer-sized giant liposome are studied by deforming it from the inside using dual-beam optical tweezers. As the liposome is extended, its shape changes from a sphere to a lemon shape, and finally, a tubular part is generated. The surface tension σ and the bending rigidity κ of the lipid membrane are obtained from the measured force-extension curve. In a one-phase liposome, it was found that σ increases as the charged component increases but κ remains approximately constant. In a two-phase liposome, the characteristic deformation and the force-extension curve differ from those observed for the one-phase liposome.

  10. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  11. Tunable Fabrication and Optical Properties of Metal Nano Hole Arrays.

    Science.gov (United States)

    Yan, Wei-Guo; Li, Zu-Bin; Tian, Jian-Guo

    2015-02-01

    Large area polystyrene sphere (PS) arrays with different diameters were prepared by an interface self-assembly method. The inter-particle spacing of PSs was reduced by O2-plasma treatment. When O2-plasma treatment time was long enough, the space of PS arrays could be relatively large. After deposition of Au film and removing the PS masks, we obtained the Au holes arrays instead of Au triangle arrays as normal. The period and the diameter of the hole arrays can be adjusted by the PS with different size and by the O2-plasma treatment time. Then their optical property can be tuned effectively due to the surface plasmon resonance on these structures.

  12. Optical properties of cyanine dyes in nanotubes of chrysotile asbestos

    Science.gov (United States)

    Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.

    2017-08-01

    Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.

  13. Effect of dielectric confinement on optical properties of colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodina, A. V., E-mail: anna.rodina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Efros, Al. L., E-mail: efros@nrl.navy.mil [Naval Research Laboratory (United States)

    2016-03-15

    We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

  14. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    Science.gov (United States)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  15. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  16. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    Science.gov (United States)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  17. Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry.

    Science.gov (United States)

    Cheng, Yi; Li, Sinan; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2015-01-01

    Tissue optical and mechanical properties are correlated to tissue pathologic changes. This manuscript describes a dual-mode ultrasound modulated optical imaging system capable of sensing local optical and mechanical properties in reflection geometry. The optical characterisation was achieved by the acoustic radiation force assisted ultrasound modulated optical tomography (ARF-UOT) with laser speckle contrast detection. Shear waves generated by the ARF were also tracked optically by the same system and the shear wave speed was used for the elasticity measurement. Tissue mimicking phantoms with multiple inclusions buried at 11 mm depth were experimentally scanned with the dual-mode system. The inclusions, with higher optical absorption and/or higher stiffness than background, were identified based on the dual results and their stiffnesses were quantified. The system characterises both optical and mechanical properties of the inclusions compared with the ARF-UOT or the elasticity measurement alone. Moreover, by detecting the backward scattered light in reflection detection geometry, the system is more suitable for clinical applications compared with transmission geometry.

  18. First principles calculations of optical properties of the armchair SiC ...

    Indian Academy of Sciences (India)

    Dao-Bang Lu

    2018-02-13

    principles; optical properties; ... quality graphene, a single layer carbon sheet with a honeycomb structure, quasi-one-dimensional nanoma ... electron mobility, excellent mechanical properties, etc., are expected to be ideal materials for ...

  19. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    Science.gov (United States)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  20. Band gap engineering and optical properties of tungsten trioxide

    Science.gov (United States)

    Ping, Yuan; Li, Yan; Rocca, Dario; Gygi, Francois; Galli, Giulia

    2012-02-01

    Tungsten trioxide (WO3) is a good photoanode material for water oxidation but it is not an efficient absorber of sunlight because of its large band gap (2.6 eV). Recently, stable clathrates of WO3 with interstitial N2 molecules were synthesized [1], which are isostructural to monoclinic WO3 but have a substantially smaller bang gap, 1.8 eV. We have studied the structural, electronic, an vibrational properties of N2-WO3 clathrates using ab-initio calculations and analyzed the physical origin of their gap reduction. We also studied the effect of atomic dopants, in particular rare gases. Substantial band gap reduction has been observed, especially in the case of doping with Xe, due to both electronic and structural effects. Absorption spectra have been computed by solving the Bethe-Salpeter Equation [2] to gain a thourough insight into the optical properties of pure and doped tungsten trioxide. [1] Q. Mi, Y. Ping, Y. Li., B.S. Brunschwig, G. Galli, H B. Gray, N S. Lewis (preprint) [2]D. Rocca, D. Lu and G. Galli, J. Chem. Phys. 133, 164109 (2010)

  1. Analysis of nonlinear optical properties in donor–acceptor materials

    International Nuclear Information System (INIS)

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-01-01

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au 2 S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude

  2. An Innovative Context-Based Module to Introduce Students to the Optical Properties of Materials

    Science.gov (United States)

    Testa, I.; Lombardi, S.; Monroy, G.; Sassi, E.

    2011-01-01

    A context-based module to introduce secondary school students to the study of the optical properties of materials and geometric optics is presented. The module implements an innovative teaching approach in which the behaviour of the chosen application, in this article, the optical fibre, is iteratively explored and modelled by means of a…

  3. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature.

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Ferrara

    Full Text Available Some natural structures show three-dimensional morphologies on the micro- and nano-scale, characterized by levels of symmetry and complexity well far beyond those fabricated by best technologies available. This is the case of diatoms, unicellular microalgae, whose protoplasm is enclosed in a nanoporous microshell, made of hydrogenated amorphous silica, called frustule. We have studied the optical properties of Arachnoidiscus sp. single valves both in visible and ultraviolet range. We found photonic effects due to diffraction by ordered pattern of pores and slits, accordingly to an elaborated theoretical model. For the first time, we experimentally revealed spatial separation of focused light in different spots, which could be the basis of a micro-bio-spectrometer. Characterization of such intricate structures can be of great inspiration for photonic devices of next generation.

  4. Structural, electrical, thermal and optical properties of the nonlinear optical crystal L-Arginine Fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Mohandoss, R.; Dhanuskodi, S. [School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India); Jayalakshmy, M.S.; Philip, J. [Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Cochin-682 002 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, Materials Characterization Division, National Physical Laboratory, New Delhi-110 012 (India)

    2012-06-15

    Single crystals of L-Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz-5 MHz) and temperature (307-368K) and the activation energy is 77 {mu}eV. The thermal transport properties such as thermal conductivity (0.88 {+-} 0.02 W/mK) and specific heat capacity (482{+-}24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n{sub 2}, is found to be of the order of 10{sup -13} cm{sup 2}/W by the Z-scan technique. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Acetylenic dithiafulvene derived donor-pi-acceptor dyads: synthesis, electrochemistry and non-linear optical properties

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Petersen, Jan Conrad; Thorup, Niels

    2005-01-01

    A selection of donor-acceptor chromophores containing the redox-active dithiafulvene unit about acetylenic and aryl scaffolds has been synthesized. The molecules were studied for their optical, redox and structural properties. Moreover, third-order non-linear optical properties were investigated ...

  6. Radiation-optical properties of the glasses for the space application

    International Nuclear Information System (INIS)

    Akishin, A.I.; Tseplyaev, L.I.

    2006-01-01

    The data are presented and generalized on variations of optical properties of glass and light guides under simulative cosmic ionizing radiation. It is shown that changes in optical properties (coloration, bleaching, opacity, luminescence) under ionizing radiation are associated with color centers formation and annealing [ru

  7. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  8. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    Science.gov (United States)

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  9. Morphological and optical properties of n-type porous silicon: effect ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Morphological and optical properties of n-type porous silicon: effect of etching current density. M DAS D SARKAR. Volume 39 Issue 7 ... Calculated crystallite size shows decreasing trend with increasing J value. The optical properties of these samples have ...

  10. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  11. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  12. Optical properties of potential condensates in exoplanetary atmospheres

    Science.gov (United States)

    Kitzmann, Daniel; Heng, Kevin

    2018-03-01

    The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large-size parameters (˜107) using a single computational treatment. We validate LX-MIE against the classical MIEVO code as well as previous studies. Secondly, we embark on an expanded survey of the published literature for both the real and imaginary components of the refractive indices of 32 condensate species. As much as possible, we rely on experimental measurements of the refractive indices and resort to obtaining the real from the imaginary component (or vice versa), via the Kramers-Kronig relation, only in the absence of data. We use these refractive indices as input for LX-MIE to compute the absorption, scattering and extinction efficiencies of all 32 condensate species. Finally, we use a three-parameter function to provide convenient fits to the shape of the extinction efficiency curve. We show that the errors associated with these simple fits in the Wide Field Camera 3 (WFC3), J, H, and K wavebands are ˜ 10 per cent. These fits allow for the extinction cross-section or opacity of the condensate species to be easily included in retrieval analyses of transmission spectra. We discuss prospects for future experimental work. The compilation of the optical constants and LX-MIE is publicly available as part of the open-source Exoclime Simulation Platform (http://www.exoclime.org).

  13. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  14. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  15. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  16. Optical and microphysical properties of atmospheric aerosols in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 =0.25 Range of Ångström parameter : 0.14 (440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban-industrial and mixed' in accordance with the classification of aerosol type models systematized and developed by AERONET team (O.Dubovik et al., 2002, J. Atmosph. Sci., 59, 590-608) on the basis of datasets acquired from worldwide observations at the

  17. Variability of aerosol optical properties in the Western Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    M. Pandolfi

    2011-08-01

    Full Text Available Aerosol light scattering, absorption and particulate matter (PM concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR. Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm were 26.6±23.2 Mm−1 and 4.3±2.7 Mm−1, respectively and the mean aerosol absorption coefficient (@ 637 nm was 2.8±2.2 Mm−1. Mean values of Single Scattering Albedo (SSA and Ångström exponent (å (calculated from 450 nm to 635 nm at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g−1 and 11.8±2.2 m2 g−1, respectively, while the mean aerosol absorption cross section (MAC was 10.4±2.0 m2 g−1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1 while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly

  18. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    OpenAIRE

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on ...

  19. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties

    International Nuclear Information System (INIS)

    Tomilin, S V; Berzhansky, V N; Shaposhnikov, A N; Prokopov, A R; Milyukova, E T; Karavaynikov, A V; Tomilina, O A

    2016-01-01

    In present work the results of investigation of optical (transmission spectra) and plasmonic (surface plasmon-polariton resonance) properties of ultrathin and nanostructured Au films are presents. Methods and techniques for the syntheses of samples of ultrathin and nanostructured metallic films, and for the experimental studies of optical and plasmonic properties are representative. Au films on SiO 2 (optic glass) substrates were investigated. (paper)

  20. Optical switching property of a light-induced pinhole in antimony thin film

    Science.gov (United States)

    Fukaya, Toshio; Tominaga, Junji; Nakano, Takashi; Atoda, Nobufumi

    1999-11-01

    Optical near-field recording, called a super-resolution near-field structure, records and retrieves small marks beyond the diffraction limit. A thin layer of an antimony (Sb) film, added to the usual phase-change optical disk, is the key material of this technique. Nonlinear optical properties of an Sb film, especially optical switching, were studied in the stationary state using a nanosecond pulse laser. Clear switching was observed under microscopic measurement.

  1. Optical properties of Cd Se thin films obtained by pyrolytic dew

    International Nuclear Information System (INIS)

    Perez G, A.M.; Tepantlan, C.S.; Renero C, F.

    2006-01-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na 2 SSeO 3 ) and Cadmium Chloride (CdC 12 ) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  2. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrakis, George [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States); Rannou, Fernando R [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, Santiago (Chile); Chatziioannou, Arion F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States)

    2006-04-21

    Inevitable discrepancies between the mouse tissue optical properties assumed by an experimenter and the actual physiological values may affect the tomographic localization of bioluminescent sources. In a previous work, the simplifying assumption of optically homogeneous tissues led to inaccurate localization of deep sources. Improved results may be obtained if a mouse anatomical map is provided by a high-resolution imaging modality and optical properties are assigned to segmented tissues. In this work, the feasibility of this approach was explored by simulating the effect of different magnitude optical property errors on the image formation process of a combined optical-PET system. Some comparisons were made with corresponding simulations using higher spatial resolution data that are typically attainable by CCD cameras. In addition, simulation results provided insights on some of the experimental conditions that could lead to poor localization of bioluminescent sources. They also provided a rough guide on how accurately tissue optical properties need to be known in order to achieve correct localization of point sources with increasing tissue depth under low background noise conditions.

  3. Methods of studying the optical properties of landscapes

    Directory of Open Access Journals (Sweden)

    Владислав Малышев

    2016-10-01

    Full Text Available The definition and systematization of dynamical changes and temporal variants of geosystems, comparative analysis and typological classification of geosystems based on the nature and totality of their conditions present one of the central problems in landscapes dynamics and the most important aspect of dynamic modelling problem. Currently, spectral characteristics of geosystems obtained by remote sensing techniques can be used in the study of landscape areas dynamic processes with considerable success, as the integrated value. The study of the landscapes properties on the basis of their optical properties was carried out in the test section of the Kursk aerospace polygon that includes Streletski site of the Central Chernozem V.V. Alekhin state biospheric natural reserve, a site of Kursk biospheric station and agribusinesses Panino. It included spectral and phytometric measurements in soil-vegetation cover by land and from the aircraft AN-2. Measurements of spectral characteristics with simultaneous obtaining of digital colour image in RJB channels and parameters of soil and vegetation cover in the mode in-situ were carried out on the experimental sites located in three areas of protected steppes with natural vegetation and different modes of nature use: not mowed, mowed, grazing; as well as agricultural systems with different crops. The spectral characteristics of images were obtained with photospectroscopic system FSS-M1 and the spectroradiometer of the FSR–M. Vegetation samples were taken from the experimental sites for further processing in laboratory conditions. In chamber conditions total phytomass and phytomass fractions (leaves, stems, stalks, flowers were measured. The leaf area and the projected area of the plants were calculated. The results of simultaneous ground-based and flight measurements are recorded in the field book (after treatment, in a specially designed book in Excel to create the database and conduct

  4. Barrier, mechanical and optical properties of whey protein concentrate films

    Directory of Open Access Journals (Sweden)

    Viviane Machado Azevedo

    2014-08-01

    Full Text Available Whey is recognized as a valuable source of high quality protein and, when processed as protein concentrate, may be used in the production of biodegradable films. The objective of the study was to develop films of whey protein concentrate 80% (WPC at concentrations of 6, 8, 10 and 12% and evaluate the influence of this factor in the barrier, mechanical and optical properties of the films. Treatments showed moisture content with a mean value of 22.10% ± 0.76and high solubility values between 56.67 to 62.42%. Thus, there is little or no influence of varying the concentration of WPC in these properties and high hydrophilicity of the films. With increasing concentration of WPC, increases the water vapor permeability of the films (7.42 x 10-13 to 3.49 x 10-12 g.m-1.s-1.Pa-1. The treatment at the concentration of 6% of WPC showed a higher modulus of elasticity (287.90 ± 41.79 MPa. Thegreater rigidity in films with higher concentrations is possibly due to the greater number of bonds between molecules of the polymeric matrix. The films have the same puncture resistance. The increased concentration of WPC promotes resistance to the action of a localized force. In general, films of whey protein concentrate in the tested concentrations exhibited slightly yellowish color and transparency, and can be used in food packaging that requiring intermediate permeability to water vapor, to keep moisture and texture desired.

  5. Neutral hydrogen and optical properties of three amorphous galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Woerden, Hugo Van; Gallagher, John S., III

    1994-01-01

    (exp 9) solar mass for NGC 1800 at 1.5 R(sub H). At approximately R(sub 25) to the east there is a large H I shell. Also at approximately R(sub 25) on both sides the velocity gradient switches by 90 deg, and in the interior the rotation is about the major axis. The central gas density is low and falls off slowly. In the inner regions NGC 4670 resembles an S0/a galaxy seen rather edge-on. It contains a central supergiant H II region with very high velocity widths (FWHM less than or equal to 180 km/s) and complex velocity structures. It is a radio continuum source as well. The H I gas is a single spherical cloud or a disk at low inclination centered on the galaxy with a slight elongation along the optical major axis and rotation about the minor axis. The central gas density is high, and there is a high degree of concentration. The rotation speed indicates a total mass of 5 x 10(exp 10) solar mass at 1.1 R(sub H). We compare these characteristics with properties of gas in the presence of stellar bar potentials, gas warps, and interacting and merging galaxy models. Although there are inconsistencies and uncertainties, we conclude that NGC 1140 is a spiral of low surface brightness that has undergone a merger, while NGC 1800 and NGC 4670 are, respectively, probably an Im system and a spiral that had an encounter of the Noguchi (1988a) kind.

  6. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  7. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  8. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2014-09-01

    In the present investigation an ecofriendly approach and a simple homogeneous solution casting method led to the development of biodegradable chitosan/graphene oxide bionanocomposites. The formation of bionanocomposite was confirmed by UV-vis, FT-IR, Raman spectroscopy, XRD, and further evaluated by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The circular dichroism (CD) study of chitosan/graphene oxide revealed that the intensity of the negative transition band at wavelength of 200-222 nm decreased with the different pH of chitosan/graphene oxide solutions. It was also found that the pH conditions affect the interaction between chitosan and graphene oxide. Optical properties of chitosan/graphene oxide are evaluated by photoluminescence (PL) spectroscopy which showed blue shift at excitation wavelength of 255 nm compared to graphene oxide. These results strongly suggest that the bionanocomposite materials may open new vistas in biotechnological, biosensor and biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Optical properties of inversion domain boundaries in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kure, Thomas; Kirste, Ronny; Callsen, Gordon; Reparaz, Juan Sebastian; Hoffmann, Axel [Technische Universitaet Berlin, Berlin (Germany); Collazo, Ramon; Sitar, Zlatko [North Carolina State University, Raleigh, North Carolina (United States); HexaTech Inc., Raleigh, North Carolina (United States); Rice, Anthony [North Carolina State University, Raleigh, North Carolina (United States); Mita, Seji; Xie, Jinqiao [HexaTech Inc., Raleigh, North Carolina (United States)

    2011-07-01

    Influenced by the growth method and growth parameters the polarity of epitaxial grown GaN films can be manipulated to form pure N- or Ga-polarity or states of mixed polarity. GaN grown on heterosubstrates can even form spatially adjacent areas of different polarities differentiated by an inversion domain boundary (IDB). Besides their structural differences each of the areas has unique optical properties, likewise the IDB itself. Furthermore, due to a polar selective doping behaviour, it is possible to fabricate a lateral p/n junction. Using spatially-resolved photoluminescence spectroscopy ({mu}-PL) we revealed a temperature dependant enhancement of the luminescence by one order of magnitude at the IDB. Thereby, we confirmed an earlier published model. Samples intentionally doped with Mg, which led to a p/n-junction, revealed an unexpected difference of the enhancement compared to the undoped samples. In addition, we used spatially-resolved electroluminescence spectroscopy ({mu}-EL) to investigate the influence of an external electric field.

  10. A new Cu–cysteamine complex: structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius

    2014-06-07

    Here we report the structure and optical properties of a new Cu–cysteamine complex (Cu–Cy) with a formula of Cu3Cl(SR)2 (R ¼ CH2CH2NH2). This Cu–Cy has a different structure from a previous Cu–Cy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  11. Mechanism of photonic band gap, optical properties, tuning and applications

    International Nuclear Information System (INIS)

    Tiwari, A.; Johri, M.

    2006-05-01

    Mechanism of occurrence of Photonic Band Gap (PBG) is presented for 3-D structure using close packed face centered cubic lattice. Concepts and our work, specifically optical properties of 3-D photonic crystal, relative width, filling fraction, effective refractive index, alternative mechanism of photonic band gap scattering strength and dielectric contrast, effect of fluctuations and minimum refractive index contrast, are reported. The temperature tuning and anisotropy of nematic and ferroelectric liquid crystal infiltrated opal for different phase transitions are given. Effective dielectric constant with filling fraction using Maxwell Garnet theory (MG), multiple modified Maxwell Garnet (MMMG) and Effective Medium theory (EM) and results are compared with experiment to understand the occurrence of PBG. Our calculations of Lamb shifts including fluctuations are given and compared with those of literature values. We have also done band structure calculations including anisotropy and compared isotropic characteristic of liquid crystal. A possibility of lowest refractive index contrast useful for the fabrication of PBG is given. Our calculations for relative width as a function of refractive index contrast are reported and comparisons with existing theoretical and experimental optimal values are briefed. Applications of photonic crystals are summarized. The investigations conducted on PBG materials and reported here may pave the way for understanding the challenges in the field of PBG. (author)

  12. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    KAUST Repository

    Greil, J.

    2016-06-08

    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

  13. Synthesis and optical property of zinc aluminate spinel cryogels

    Directory of Open Access Journals (Sweden)

    Lifen Su

    2016-06-01

    Full Text Available Zinc aluminate spinel cryogels with various molar ratio of Al/Zn are synthesized by sol–gel technology followed by vacuum freeze drying. The structures and optical properties are both found to be affected by the molar ratios of Al/Zn and annealed temperatures. The peaks of zinc oxide (ZnO and zinc dialuminum oxide (ZnAl2O4 are both obtained for the samples with more Zn content annealed at 750 °C or upward. The composites have a large surface area (137 m2/g with mesoporous structure after annealing at 750 °C. The SEM images reveal that the ZnAl2O4 crystals formed a multilayer structure with redundant ZnO particles which deposited on it. Furthermore, the maximum infrared reflectance is about 80% with an improvement of 35% in the infrared region after annealing at 950 °C compared with that of 450 °C, which indicates that these porous cryogels have a potential application as thermal insulating materials at a high temperature.

  14. Optical and biochemical properties of a southwest Florida whiting event

    Science.gov (United States)

    Long, Jacqueline S.; Hu, Chuanmin; Robbins, Lisa L.; Byrne, Robert H.; Paul, John H.; Wolny, Jennifer L.

    2017-09-01

    ;Whiting; in oceanography is a term used to describe a sharply defined patch of water that contains high levels of suspended, fine-grained calcium carbonate (CaCO3). Whitings have been reported in many oceanic and lake environments, and recently have been reported in southwest Florida coastal waters. Here, field and laboratory measurements were used to study optical, biological, and chemical properties of whiting waters off southwest Florida. No significant difference was found in chlorophyll a concentrations between whiting and outside waters (non-whiting water), but average particle backscattering coefficients in whiting waters were double those in outside waters, and remote sensing reflectance in whiting waters was higher at all wavelengths (400-700 nm). While other potential causes cannot be completely ruled out, particle composition and biochemical differences between sampled whiting water, contiguous water, and outside water indicate a biologically precipitated mode of whiting formation. Taxonomic examination of marine phytoplankton samples collected during a whiting event revealed a community dominated by autotrophic picoplankton and a small (cells and autotrophic picoplankton cells. Although carbonate parameters differed from whiting and contiguous to outside water, more sampling is needed to determine if these results are statistically significant.

  15. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  16. Comparison of aerosol optical properties from Beijing and Kanpur

    Science.gov (United States)

    Wang, Shupeng; Fang, Li; Gu, Xingfa; Yu, Tao; Gao, Jun

    2011-12-01

    Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and almucantar retrievals (single scattering albedo (SSA) and aerosol size distribution) from 2005-2009 in Beijing and Kanpur are used to analyze differences and similarities in aerosol optical properties over these two regions. The examination of monthly mean AOD (440 nm) shows that maximum and minimum values occurred in summer and winter, respectively, for Beijing, while the range in AOD in Kanpur was lower. Precipitation in both Beijing and Kanpur peaked in summer; however, the columnar water vapor (CWV) exhibited a high correlation with AOD in Beijing ( R2 = 0.79) but had a weak relationship with AOD in Kanpur ( R2 = 0.13). The Angstrom exponent ( α, 440-870 nm) generally increased linearly as the fine mode fraction (FMF) of AOD (500 nm) increased for FMF 0.96. However a clear decrease in α for FMF > 90% found in Beijing is not shown distinctly in Kanpur, and is mainly due to the higher aerosol loading in this FMF bin at Beijing (AOD at 440 nm > 2.2) which results in a stronger coagulation of fine mode particles. Bimodal seasonally-averaged size distributions reveals similar aerosol mixtures composed of fine pollution particles and coarse dust particles in both regions. The analysis of spectral SSA as a function of α is emphasized in this paper. The average SSA at 440 nm in both regions shows a similar low dynamic range of ˜0.03 for α 1.4 in both regions can be attributed to a higher FMF leading to fine mode coagulation. However, the distinctly smaller increase in Kanpur suggests that fine mode aerosols at Beijing are less absorbing than those at Kanpur. The visibly lower SSA at 675 nm at Kanpur compared to that at Beijing for α > 0.4 is due to a larger find-coarse mode separation radius of ˜0.76 μm in Beijing versus a value lower than ˜0.58 μm in Kanpur. Another reason lies in the weaker absorption by fine mode aerosols in Beijing. The distinctly lower near-infrared SSA in Kanpur when

  17. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    2009-01-01

    This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...

  18. SMEX03 Atmospheric Aerosol Optical Properties Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  19. Structural and optical properties of Gd implanted GaN with various crystallographic orientations

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Jagerová, Adéla; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Pristovsek, M.; Mikulics, M.; Lorinčík, Jan; Bottger, R.; Akhmadaliev, S.

    2017-01-01

    Roč. 638, SEP (2017), s. 63-72 ISSN 0040-6090 R&D Projects: GA ČR GA13-20507S; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:67985882 ; RVO:61389005 Keywords : GaN implantation * RBS channelling * optical properties of Gd implanted GaN Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BH - Optics, Masers, Lasers (URE-Y) OBOR OECD: 1.3 Physical sciences; Optics (including laser optics and quantum optics) (URE-Y) Impact factor: 1.879, year: 2016

  20. Synthesis, electronic and optical properties of Si nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L.N.

    1996-09-01

    Silicon and silicon oxide nanostructures have been deposited on solid substrates, in an ultra high vacuum (UHV) chamber, by laser ablation or thermal vaporization. Laser ablation followed by substrate post annealing produced Si clusters with average size of a few nanometers, on highly oriented pyrolytic graphite (HOPG) surfaces. This technique, which is based on surface diffusion, is limited to the production of less than one layer of clusters on a given surface. The low coverage of Si clusters and the possibility of nonradiative decay of excitation in the Si cores to the HOPG substrates in these samples rendered them unsuitable for many optical measurements. Thermal vaporization of Si in an Ar buffer gas, on the contrary, yielded multilayer coverage of Si nanoclusters with a fairly narrow size distribution of about 2 nm, full width at half maximum (FWHM). As a result, further study was performed only on Si nanoclusters synthesized by thermal vaporization in a buffer gas. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) revealed that these nanoclusters were crystalline. However, during synthesis, if oxygen was the buffer gas, a network of amorphous Si oxide nanostructures (an-SiO{sub x}) with occasional embedded Si dots was formed. All samples showed strong infrared and/or visible photoluminescence (PL) with varying decay times from nanoseconds to microseconds depending on synthesis conditions. There were differences in PL spectra for hydrogen and oxygen passivated nc-Si, while many common PL properties between oxygen passivated nc-Si and an SiO{sub x} were observed. The observed experimental results can be best explained by a model involving absorption between quantum confined states in the Si cores and emission for which the decay times are very sensitive to surface and/or interface states.

  1. Optical properties of composite restorations influenced by dissimilar dentin restoratives.

    Science.gov (United States)

    Marjanovic, Jovana; Veljovic, Djordje N; Stasic, Jovana N; Savic-Stankovic, Tatjana; Trifkovic, Branka; Miletic, Vesna

    2018-02-02

    To evaluate optical properties (color and translucency) of 'sandwich' restorations of resin-based composites and esthetically unfavorable dentin restoratives. Cylindrical 'dentin' specimens (8mm in diameter and 2mm thick, N=5/group) were prepared using EverX Posterior (GC), Biodentine (Septodont), experimental hydroxyapatite (HAP) or conventional composites (Gradia Direct Posterior, GC; Filtek Z250 and Filtek Z500, 3M ESPE). Capping 'enamel' layers were prepared using composites (Gradia Direct Posterior, Filtek Z250 or Z550) of A1 or A3 shade and the following thickness: 0.6, 1 or 2mm. Color (ΔE) and translucency parameter (TP) were determined using a spectrophotometer (VITA Easyshade Advance 4.0, VITA Zahnfabrik). Data were statistically analyzed using analysis of variance with Tukey's post-hoc tests (α=0.05). TP was greatly affected by layer thickness, whilst ΔE depended on shade and layer thickness of the capping composite. HAP and Biodentine showed significantly lower TP and higher ΔE (deviation from 'ideal white') than composites (pcomposite groups than in corresponding control groups of the same shade and thickness. TP of composites combined with Biodentine or HAP was below 2, lower than the corresponding control groups (pcomposite groups. EverX_Gradia and EverX_FiltekZ250 combinations showed the most comparable ΔE with the control groups. A 2mm thick layer of composite covering dentin restoratives with unfavorable esthetics is recommended for a final 'sandwich' restoration that is esthetically comparable to a conventional, mono-composite control restoration. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Radiation effects on optical and electrical properties of diamond

    International Nuclear Information System (INIS)

    Morono, A.; Gonzalez de Vicente, S.M.; Hodgson, E.R.

    2006-01-01

    CVD diamond is the prime candidate material for use as windows in the ITER ECRH system, and could also be used as transmission component in ECE diagnostics. Hence dielectric behaviour, electrical conductivity, radioluminescence, and optical absorption are important properties for the use of this material. Particularly important for ECRH use are the dielectric properties and thermal conductivity, however electrical conductivity is also an important factor. During operation in ITER and future fusion reactors the window will be subjected to neutron and gamma radiation and also to bombardment by energetic ions produced by sputtering and residual gas ionization. Such bombardment could degrade the surface electrical resistivity of the material, thus increasing the microwave absorption and may provoke window failure due to thermal strain. In the case of use for ECE diagnostics the main issues are absorption and radioluminescence. Radioluminescence is produced by excitation of defects which are in the material before irradiation or defects generated by the radiation itself. Hence radioluminescence in addition to being a problem, may serve as a way to monitor production of defects during irradiation. CVD diamond was electron irradiated in the beam line of a 2 MeV Van de Graaff accelerator, and radioluminescence from 200 to 800 nm was measured at a dose rate of 700 Gy/s at room temperature. In order to assess possible surface electrical degradation a CVD diamond sample was implanted with 54 keV He + at 50 o C up to a dose of 1017 ions/cm 2 . Two gold electrodes placed on the implanted surface permitted the surface electrical conductivity to be measured during implantation. After implantation the electrical conductivity was measured as a function of temperature from 20 to 450 o C. Intense radioluminescence bands associated with nitrogen aggregates and carbon vacancies are observed from the onset of irradiation. Radioluminescence intensity decreases with irradiation dose

  3. Theory of electronic and optical properties of nanostructures

    Science.gov (United States)

    Hewageegana, Prabath S.

    "There is plenty of room at the bottom." This bold and prophetic statement from Nobel laureate Richard Feynman back in 1950s at Cal Tech launched the Nano Age and predicted, quite accurately, the explosion in nanoscience and nanotechnology. Now this is a fast developing area in both science and technology. Many think this would bring the greatest technological revolution in the history of mankind. To understand electronic and optical properties of nanostructures, the following problems have been studied. In particular, intensity of mid-infrared light transmitted through a metallic diffraction grating has been theoretically studied. It has been shown that for s-polarized light the enhancement of the transmitted light is much stronger than for p-polarized light. By tuning the parameters of the diffraction grating enhancement can be increased by a few orders of magnitude. The spatial distribution of the transmitted light is highly nonuniform with very sharp peaks, which have the spatial widths about 10 nm. Furthermore, under the ultra fast response in nanostructures, the following two related goals have been proved: (a) the two-photon coherent control allows one to dynamically control electron emission from randomly rough surfaces, which is localized within a few nanometers. (b) the photoelectron emission from metal nanostructures in the strong-field (quasistationary) regime allows coherent control with extremely high contrast, suitable for nanoelectronics applications. To investigate the electron transport properties of two dimensional carbon called graphene, a localization of an electron in a graphene quantum dot with a sharp boundary has been considered. It has been found that if the parameters of the confinement potential satisfy a special condition then the electron can be strongly localized in such quantum dot. Also the energy spectra of an electron in a graphene quantum ring has been analyzed. Furthermore, it has been shown that in a double dot system some

  4. Optical properties of semiconductor nanostructures in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Grochol, M.

    2007-04-03

    In this work, the near bandgap linear optical properties of semiconductor quantum structures under applied magnetic field are investigated. First, the exciton theory is developed starting with the one-electron Hamiltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamiltonian, and ending with the exciton Hamiltonian in the envelope function approximation. Further, concentrating on the quantum well and thus assuming strong confinement in the growth direction, the motion parallel and perpendicular to the xy-plane is factorized leading to the well-known single sublevel approximation. A magnetic field perpendicular to the xy-plane is applied, and a general theorem describing the behavior of the energy eigenvalues is derived. The strain calculation within the isotropic elasticity approach is described in detail. The Schroedinger equation is solved numerically for both the full model and the factorization with artificially generated disorder potentials. Furthermore the statistical properties of the disorder in a real quantum well have been analyzed. In particular, temperature dependent photoluminescence spectra and diamagnetic shift statistics, have been compared with the experimental ones and very good agreement has been found. The second part of this thesis deals predominantly with highly symmetrical structures embedded in the quantum well: namely quantum rings and dots. First, adopting an ansatz for the wave function, the Hamiltonian matrix is derived discussing which matrix elements are non-zero according to the symmetry of the potential. Additionally, the expectation values of the current and magnetization operators are evaluated. Then, concentrating on the case of the highest (circular) symmetry, the model of zero width ring is introduced. Within this model the close relation between the oscillatory component of the exciton energy (exciton Aharonov-Bohm effect) and the persistent current is revealed. Examples for different material systems follow

  5. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    characteristic DRL lines D1 to D4 has been detected, indicating the dislocations in the Alile sample are relatively clean. Test p-n junction diodes with dislocation networks (DNs) produced by silicon wafer direct bonding have been investigated by EBIC technique. Charge carriers collection and electrical conduction phenomena by the DNs were observed. Inhomogeneities in the charge collection were detected in n- and p-type samples under appropriate beam energy. The diffusion lengths in the thin top layer of silicon-on-insulator (SOI) have been measured by EBIC with full suppression of the surface recombination at the buried oxide (BOX) layer and at surface of the top layer by biasing method. The measured diffusion length is several times larger than the layer thickness. Silicon nanostructures are another important subject of this work. Electrical and optical properties of various silicon based materials like silicon nanowires, silicon nano rods, porous silicon, and Si/SiO{sub 2} multi quantum wells (MQWs) samples were investigated in this work. Silicon sub-bandgap infrared (IR) luminescence around 1570 nm was found in silicon nanowires, nano rods and porous silicon. PL measurements with samples immersed in different liquid media, for example, in aqueous HF (50%), concentrated H{sub 2}SO{sub 4} (98%) and H{sub 2}O{sub 2} established that the subbandgap IR luminescence originated from the Si/SiO{sub x} interface. EL in the sub-bandgap IR range has been observed in simple devices prepared on porous silicon and MQWs at room temperature. (orig.)

  6. Synthesis, field emission properties and optical properties of ZnSe nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, S.L., E-mail: slxue@dhu.edu.cn [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Wu, S.X.; Zeng, Q.Z.; Xie, P.; Gan, K.X.; Wei, J.; Bu, S.Y.; Ye, X.N.; Xie, L. [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Zou, R.J. [State Key Laboratory for Modification and Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhang, C.M.; Zhu, P.F. [Department of Physics, School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-03-01

    Graphical abstract: Unique ZnSe nanoflowers have been successfully synthesized by reaction of Se powder with Zn substrates. They are characterized by XRD, SEM, TEM, XPS, EDS and Raman spectroscopy and were single crystals with cubic zinc blende (ZB) structure. They also have excellent field emission properties and optical properties. - Highlights: • Novel ZnSe nanoflowers are grown on Zn foils. • ZnSe nanoflowers are characterized by XRD, SEM, TEM, XPS and Raman spectra. • ZnSe nanoflowers on Zn foils as cathodes possess good FE properties. - Abstract: ZnSe nanoflowers have been synthesized by reaction of Se powder with Zn substrates at low temperature. The as-prepared ZnSe nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray energy dispersive spectroscope (EDS) and Raman spectroscopy measurements. It was found that the morphologies of the as-prepared samples highly depended on reaction time. ZnSe nanoclusters and nanoflowers formed at 573 K when the reaction time was 20 and 60 min, respectively. The as-prepared ZnSe nanoflowers were composed of radically aligned ZnSe nanorods with smooth surfaces. The results of XRD, XPS, EDS, TEM and Raman showed that the as-prepared ZnSe nanocrystals were single crystals with cubic zinc blende (ZB) structure. The formation mechanism of the as-prepared ZnSe nanoflowers was also discussed. In addition, the as-prepared ZnSe nanoflowers had excellent electron emission properties. The turn-on field of the as-prepared ZnSe nanoflowers was 3.5 V/μm and the enhancement factor was 3499. The optical properties of the as-prepared ZnSe nanoflowers were also investigated. The results demonstrated that the as-prepared ZnSe nanoflowers were potential candidates for optoelectronic devices.

  7. Electro-optical properties of tetragonal KNbO3

    Indian Academy of Sciences (India)

    Solid State Physics Division, Bhabha Atomic Research Centre, Trombay,. Mumbai 400 085, India. E-mail: psastry@apsara.barc.ernet.in. MS received 12 November 2006; revised 6 March 2007; accepted 16 March 2007. Abstract. Linear electro-optical tensor coefficients and optical susceptibility of tetrag- onal KNbO3 are ...

  8. Optical Variability Properties of High Luminosity AGN Classes C. S. ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We present the results of a comparative study of the intra- night optical variability (INOV) characteristics of radio-loud and radio- quiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift range z ≃ 0.2 to z ≃ 2.2. The sample, matched in the ...

  9. Effects of Deposition Potentialon the Optical Properties of Zinc ...

    African Journals Online (AJOL)

    Thin films of Zinc Sulphide (ZnS) were grown on glass substrate by electrodeposition technique. The optical characterization of the grown films (ZnS) was done by using a Janway 6405 UV-VIS spectrophotometer in the range of 300-900nm using a step size of 20. The effect of deposition potential variationon the films optical ...

  10. Electronic structure and optical properties of prominent phases of ...

    Indian Academy of Sciences (India)

    Santosh singh

    2017-06-19

    Jun 19, 2017 ... behaviour of the optical spectra in the optical region for transparent conducting application. Keywords. Optoelectronic; titanium .... and (b) anatase phases of TiO2. Red and gray ball indicate O and Ti atoms respectively. .... [11] H Fox, K E Newman, W F Schneider and S A Corcelli,. J. Chem. Theory Comput.

  11. Optical properties of alkaline earth borate glasses | Rao ...

    African Journals Online (AJOL)

    Borate glasses containing fixed concentrations of heavy metal oxides (MO= ZnO, PbO, TeO2, Bi2O3) and alkaline earth oxides (R= Mg, Ca, Sr, Ba) are prepared by melt quenching technique. The optical band gap values are estimated from the optical absorption spectra using absorption spectrum fitting (ASF) method.

  12. Architectonics and Optical Properties of Dentin and Dental Enamel

    Science.gov (United States)

    Zolotarev, V. M.; Grisimov, V. N.

    2001-05-01

    The optical polarization method is used to study the distribution of tubules in human dentin. Horizontal sections of molars display circular local regions 1 mm in diameter and inclined with respect to the section surface, which are continuations of the pulp horns towards the crown cusps. They exhibit specific optical effects resembling conoscopic patterns, revealing the highly hierarchical structure of the crown dentin.

  13. Picosecond nonlinear optical properties of cuprous oxide with ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... various important applications in the field of material research. In brief, nanotechnology is one of the most active research areas which find useful applications in different fields of science. Intense research is also pursued to develop new nonlinear optical materials with high optical nonlinearities and fast ...

  14. Approximate quantum statistical properties of a nonlinear optical coupler

    Czech Academy of Sciences Publication Activity Database

    Mandal, S.; Peřina, Jan

    2004-01-01

    Roč. 328, - (2004), s. 144-156 ISSN 0375-9601 R&D Projects: GA MŠk LN00A015 Keywords : nonlinear optical couplers * photon bunching Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.454, year: 2004

  15. Optical properties of lead–tellurite glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 1 March 2009; ... variations of the above optical parameters are discussed with respect to samarium concentration. Keywords. Optical bandgap ... glasses continue to intrigue both academic and industry researchers not only because of ...

  16. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  17. A fresh study of optical and thermal properties of polystyrene solutions

    Indian Academy of Sciences (India)

    Polymers have immense practical applications and one such polymer is polystyrene. It is a linear polymer and useful for plastic optical components. The optical and thermal properties of polystyrene solutions are investigated in this paper making use of the ultrasonic velocity and fluid parameters. The results reveal a number ...

  18. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  19. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Borca, C. N.; Rechendorff, Kristian

    2016-01-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti co...... root of the electrical resistivity...

  20. Influence of crystal structure on the optically stimulated luminescence properties of feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Ypma, P.J.M.

    1994-01-01

    Work is presented showing that the crystal structure of feldspar plays an important role in determining the energy positions at which optically stimulated luminescence transitions can occur, their thermo-optical behavior, the transport properties of charge in the conduction and valence bands...

  1. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium (Conference Presentation)

    Science.gov (United States)

    Yi, Ji; Zhang, Lei

    2017-02-01

    Melanosome is an organelle for synthesis, storage and transport the melanin, a major intrinsic pigment. In retinal pigmented epithelium (RPE), it is generally accepted that melanosome plays a critical photoprotective role, and it has been shown that that loss of melanin from RPE could be an early event towards age-related macular degeneration (AMD). Meanwhile, melanosome is also the major contributor to the optical properties of RPE, due to its high refractive index and the strong optical absorption of melanin. Therefore, a characterization and understanding the optical properties of melanin is of great interest to relate the physical and chemical changes of melanosomes, and their fundamental roles in RPE-related retinal diseases such as AMD. Here, we present a theoretical study to characterize the full optical properties of melanosomes. We modeled melanosomes as uniformly melanin filled spheroids, based on their morphology under transmission electron microscopy. T-matrix method was used to simulate the wavelength dependent total scattering, backscattering, absorption cross sections, and anisotropy factor. We verified our simulation on backscattering cross section of melanosome by comparing optical coherence tomography taken in visible and NIR ranges. In addition, we studied the changes of the optical properties of melanosomes on melanin bleaching. The results suggested a spectroscopic mechanism for optical detection of melanin loss by inverse spectroscopic optical coherence tomography.

  2. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    desired luminescent features. Based on previous reports, obtaining good optical and magnetic properties from the nanomaterials is fully based on the doping of selective elements only. Among various RE ions, Yb is one of the interesting elements which exhibit unique optical features with their partially filled f electron states.

  3. Structural and optical properties of Zn doped CuInS2 thin films

    Indian Academy of Sciences (India)

    The effects of Zn (0–5%)molecular weight compared with CuInS2 Source and different substrate temperatures on films properties were investigated using X-ray diffraction (XRD) and optical transmission spectra. Optical characteristics of the CuInS2 films have been analysed using spectrophotometer in the wavelength range ...

  4. Optical properties, electronic structure and magnetism of alpha '-NaxV2O5

    NARCIS (Netherlands)

    Konstantinovic, MI; Popovic, ZV; Presura, C; Gajic, R; Isobe, M; Ueda, Y; Moshchalkov, VV

    2002-01-01

    The optical properties of sodium-deficient alpha'-NaxV2O5 (0.85 less than or equal to x less than or equal to 1.00) single crystals are analyzed using ellipsometry, and infrared reflectivity techniques. In sodium deficient samples, the optical absorption peak associated to the fundamental electronic

  5. Fibre-optical techniques for measuring various properties of shock waves

    NARCIS (Netherlands)

    Prinse, W.C.; Esveld, R.J. van; Oostdam, R. van; Rooijen, M. van; Bouma, R.H.B.

    1999-01-01

    For the past years we have developed several optical techniques to measure properties of shock waves. The fibre optic probe (FOP) is developed to measure the shock-wave velocity and/or the detonation velocity inside an explosive. The space resolution can be as small as 0.5 mm. Single fibres are used

  6. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, ...

  7. Inherent optical properties of pollen particles: a case study for the morning glory pollen.

    Science.gov (United States)

    Liu, Chao; Yin, Yan

    2016-01-25

    Biological aerosols, such as bacteria, fungal spores, and pollens, play an important role on various atmospheric processes, whereas their inherent optical property is one of the most uncertainties that limit our ability to assess their effects on weather and climate. A numerical model with core-shell structure, hexagonal grids and barbs is developed to represent one kind of realistic pollen particles, and their inherent optical properties are simulated using a pseudo-spectral time domain method. Both the hexagonal grids and barbs substantially affect the modeled pollen optical properties. Results based on the realistic particle model are compared with two equivalent spherical approximations, and the significant differences indicate the importance of considering pollen geometries for their optical properties.

  8. Determination of the optical properties of PNIPAAm gels used in biological applications

    CSIR Research Space (South Africa)

    Singh, A

    2009-07-01

    Full Text Available which has significant consequences in cell culturing. The first known measurements of the optical properties that is absorption (µa) and reduced scattering (µ's) coefficients, as a function of temperature, of a series of crosslinked PNIPAAm gels, using...

  9. Compact All Solid State Oceanic Inherent Optical Property Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  10. Ab initio model of optical properties of two-temperature warm dense matter

    International Nuclear Information System (INIS)

    Holst, B.; Recoules, V.; Mazevet, S.; Torrent, M.

    2014-01-01

    We present a model to describe thermophysical and optical properties of two-temperature systems consisted of heated electrons and cold ions in a solid lattice that occur during ultrafast heating experiments. Our model is based on ab initio simulations within the framework of density functional theory. The optical properties are obtained by evaluating the Kubo-Greenwood formula. By applying the material parameters of our ab initio model to a two-temperature model we are able to describe the temperature relaxation process of femtosecond-laser-heated gold and its optical properties within the same theoretical framework. Recent time-resolved measurements of optical properties of ultrafast heated gold revealed the dynamics of the interaction between femtosecond laser pulses and solid state matter. Different scenarios obtained from simulations of our study are compared with experimental data. (authors)

  11. Properties of Siloxane Based Optical Waveguides Deposited on Transparent Paper and Foil

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2016-06-01

    Full Text Available In this paper, we present the properties of flexible planar optical waveguides made of siloxane-based polymer deposited on Xerox transparent paper and PLEXIGLAS foil substrate. Measurement of optical properties such as the waveguiding properties and refractive index is carried out by the prism coupling technique for five wavelengths (473, 632.8, 964, 1311 and 1552 nm and propagation optical loss were measured by the fibre probe technique at a wavelength of 632.8 nm (He-Ne laser. The measurement proved waveguiding properties for all measured wavelengths and the losses generally did not exceed 0.40 dB/cm; the best samples had optical losses around 0.24 dB/cm.

  12. Analysis of intensive aerosol optical properties measured at the Jungfraujoch station

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Nyeki, S.; Baltensperger, U.; Weingartner, E.; Lugauer, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Characterisation of atmospheric aerosol optical properties at the Jungfraujoch has been conducted to deliver basic data for comparison with those from NOAA baseline atmospheric monitoring stations. (author) 2 figs., 2 refs.

  13. Compact All Solid State Oceanic Inherent Optical Property Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work concerns the development of a prototype of a Volume Scattering Function (VSF) sensor for measurement of this inherent optical property(IOP) of seawater....

  14. Variability of Optical Properties within the Littoral Environment

    National Research Council Canada - National Science Library

    Zaneveld, Ronald

    1997-01-01

    The goals of the proposed research are to: (1) determine the regions within the water column that have the highest variability in optical and hydrographic parameters as a function of total water depth, (2...

  15. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  16. Optical and physical properties of ceramic crystal laser materials

    Science.gov (United States)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  17. Theory of Electro-Optical Properties of Graphene Nanoribbons

    OpenAIRE

    Gundra, Kondayya; Shukla, Alok

    2010-01-01

    We present calculations of the optical absorption and electro-absorption spectra of graphene nanoribbons (GNRs) using a $\\pi-$electron approach, incorporating long-range Coulomb interactions within the Pariser-Parr-Pople (PPP) model Hamiltonian. The approach is carefully bench marked by computing quantities such as the band structure, electric-field driven half metallicity, and linear optical absorption spectra of GNRs of various types, and the results are in good agreement with those obtaine...

  18. Characterization and optical properties of Pr2O3-doped ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... yMoO3–xPr2O3 (where x = 0.5 and 1.0 mol% and y = 0 and 5 mol%) were prepared by conventional melt-quenching technique. Thermal, optical and structural analyses are carried out using DSC, UV and FTIR spectra. The physical parame- ters, like glass transition (Tg), stability factor (T), optical energy ...

  19. Investigation on surface, electrical and optical properties of ITO-Ag-ITO coated glass

    International Nuclear Information System (INIS)

    Aslan Necdet; Sen, Tuba; Coruhlu Turgay; Senturk Kenan; Keskin Sinan; Seker Sedat; Dobrovolskiy Andrey

    2015-01-01

    The aim of this work was to study the optical and electrical properties of thick ITO-Ag-ITO multilayer coating onto glass. ITO-Ag-ITO coatings with thickness of ITO layers 110 nm, 185 nm and intermediate Ag layer thickness 40 nm were prepared by magnetron sputtering. The optical, electrical and atomic properties of the coating were examined by scanning electron microscope, atomic force microscope, X-ray diffraction analysis and ultraviolet-visible spectroscopy

  20. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College, Hiriadka, Udupi - 576 113 (India); Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Byrappa, K. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India); Sangappa, Y., E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2016-05-23

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  1. The statistical average of optical properties for alumina particle cluster in aircraft plume

    Science.gov (United States)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  2. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  3. Investigation of the electronic, magnetic and optical properties of newest carbon allotrope

    Science.gov (United States)

    Kazemi, Samira; Moradian, Rostam

    2018-05-01

    We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.

  4. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties

    NARCIS (Netherlands)

    de Bruin, Daniel M.; Bremmer, Rolf H.; Kodach, Vitali M.; de Kinkelder, Roy; van Marle, Jan; van Leeuwen, Ton; Faber, Dirk J.

    2010-01-01

    Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and

  5. Monitoring transformer oil insulation using optical absorption properties

    Science.gov (United States)

    Rose, Benjamin P.

    As the electrical power distribution system ages, new methods of determining the quality of electrical transformer units are needed. Due to the relatively high expense of loss of service and safety hazards, a relatively cheap sensor to track the age of the insulation would aide in the progress of an intelligent power grid. The degradation of solid insulating paper releases some of the age indicating organic compounds into the oil. At present, the only available method to determine the concentration of those compounds is to perform high performance liquid chromatography (HPLC) testing in a laboratory. This is an expensive and time consuming activity that also requires transformer to be taken offline. Currently there are no sensors that can directly (on-line) measure the chemical integrity of the material. This research was focused upon one of the well known organic compounds released by paper into the transformer oil - 2-furfuraldehyde (2FAL). Previous methods of 2FAL detection were explored and expounded upon. A device was constructed to utilize light emitting diodes to optically interrogate solid discs made out of chemically active material in multiple tests. A 10 kVA distribution transformer was fitted with a special device allowing a continuous oil circulation and the optical setup. The transformer was tested while being loaded under accelerated ageing conditions. A premature failure of the distribution transformer did not allow any correlation between concentration of 2FAL and the optical signals. Previously sampled oils for a current transformer (CT) were also tested for chemical analysis in the laboratory and optical signals from the newly developed optical device were obtained. A 95% linear correlation was found between the age of the CT oil and the output of the optical device. Although the technique was validated and does seem to have merit, more tests are needed before the optical device can be recommended for use in the field.

  6. Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography.

    Science.gov (United States)

    Zhang, Yuqing; Wu, Guoyong; Wei, Huajiang; Guo, Zhouyi; Yang, Hongqin; He, Yonghong; Xie, Shusen; Liu, Ying

    2014-04-01

    The objective of this study was to evaluate the effects of blood glucose concentration (BGC) on in vivo human skin optical properties after oral intake of different sugars. In vivo optical properties of human skin were measured with a spectral domain optical coherence tomography (SD-OCT). Experimental results show that increase of BGC causes a decrease in the skin attenuation coefficient. And the maximum decrements in mean attenuation coefficient of skin tissue after drinking glucose, sucrose and fructose solution are 47.0%, 36.4% and 16.5% compared with that after drinking water, respectively (p differences in the time delays after oral intake of different sugars. The time delay between mean attenuation coefficient and BGC after drinking glucose solution is evidently larger than that after drinking sucrose solution, and that after drinking sucrose solution is larger than that after drinking fructose solution. Our pilot studies indicate that OCT technique is capable of non-invasive, real-time, and sensitive monitoring of skin optical properties in human subjects during oral intake of different sugars.

  7. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  8. Containerless laser-induced flourescence study of vaporization and optical properties for sapphire and alumina

    Science.gov (United States)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Evaporation of aluminum oxide was studied from 1800 to 2327 K by laser-induced flourescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO2 laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al2O3. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  9. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  10. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  11. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  12. Effect of 200 keV Ar+ implantation on optical and electrical properties of polyethyleneterepthalate (PET)

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-01-01

    In the present paper we have discussed the effect of 200 keV Ar + ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar + ions to various doses ranging from 1×10 15 to 1×10 17 Ar + cm 2 . The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET

  13. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET)

    Science.gov (United States)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-01

    In the present paper we have discussed the effect of 200 keV Ar+ ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar+ ions to various doses ranging from 1×1015 to 1×1017 Ar+ cm2. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  14. Optical Properties of the DIRC Fused Silica Radiator

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mark R

    2003-04-15

    The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This note summarizes the optical R&D test results.

  15. Optical properties and remote sensing of optically diverse waters in Pomeranian Region (Poland)

    Science.gov (United States)

    Ficek, Dariusz

    2015-04-01

    been distinguished for Pomeranian lakes. The first type has a broad reflectance peak in the 560 - 580 nm region and is recorded in waters with the lowest absorption of light by CDOM and the lowest levels of chlorophyll a. The second type is characterized by low values right across the whole spectral range as well as two quite pronounced peaks at wavelengths ca 650 and 690 - 710 nm. This type is characteristic of darkly-coloured waters with a very high coefficient of light absorption by CDOM. Finally, the third type always exhibits three peaks: a broad one at 560- 580 nm, a smaller one at ca 650 nm and a distinct one at 690 - 720 nm. Spectra of this kind are typical of lacustrine waters with a high level of chlorophyll a and a lower level of light absorption by CDOM than in the second type. Using the available empirical data base, containing the records obtained in Pomeranian lake waters, I was able to derive a packet of new, original formulas enabling the concentrations Caand CSPM and the coefficient aCDOM(440 nm) to be determined from remote reflectance values for selected wavelengths. Using these new formulas, the above OACs in the waters of Pomeranian lakes can be determined with a far smaller error than the formulas derived by other authors for the waters of other regions. The statistical errors determined for these formulas are: for concentration Ca , σ+ ˜36% , for concentration CSPM , σ+ ˜56% and for coefficient aCDOM(440nm), σ+ ˜46%. In this work I also discuss the bio-optical properties of Lake Pyszne, a so-called 'humus' lake, which contains large amounts of CDOM. My investigations have shown that in most cases the data acquired from measurements made in this lake diverge significantly from those of the other water. Moreover, the data from Lake Pyszne do not fit the trends observed in lakes containing lower levels of CDOM. The characteristically low values of the upward radiation and remote reflectance from such lakes, due to their dark colour, means

  16. Nanostructure arrays in free-space: optical properties and applications

    International Nuclear Information System (INIS)

    Collin, Stéphane

    2014-01-01

    Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light–matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays. (review article)

  17. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics

    Czech Academy of Sciences Publication Activity Database

    Jágerská, J.; Le Thomas, N.; Houdré, R.; Bolten, J.; Moormann, C.; Walhbrink, T.; Čtyroký, Jiří; Waldow, M.; Först, M.

    2007-01-01

    Roč. 32, č. 18 (2007), s. 2723-2725 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GA102/05/0987 Grant - others:European Commission(XE) ePIXnet IST-004525; European Commission(XE) Funfox IST-004582 Institutional research plan: CEZ:AV0Z20670512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : integrated optics * light propagation * optical waveguides Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.711, year: 2007

  18. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  19. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  1. Aerosol optical properties at SORPES in Nanjing, east China

    Science.gov (United States)

    Shen, Yicheng; Virkkula, Aki; Ding, Aijun; Wang, Jiaping; Chi, Xuguang; Nie, Wei; Qi, Ximeng; Huang, Xin; Liu, Qiang; Zheng, Longfei; Xu, Zheng; Petäjä, Tuukka; Aalto, Pasi P.; Fu, Congbin; Kulmala, Markku

    2018-04-01

    Aerosol optical properties (AOPs) and supporting parameters - particle number size distributions, PM2.5 mass concentrations, and the concentrations of trace gases (NOx and NOy) - were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp = 403 ± 314 Mm-1, the absorption coefficient σap = 26 ± 19 Mm-1, and the single-scattering albedo SSA = 0.93 ± 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370-950 nm was 1.04 and the AAE range was 0.7-1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and low ones in summer: the averages were σsp = 544 ± 422 and σap = 36 ± 24 Mm-1 in winter and σsp = 342 ± 281 and σap = 20 ± 13 Mm-1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high σsp and σap are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3-7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more

  2. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy

    Science.gov (United States)

    Rajaram, Narasimhan; Tunnell, James W.

    2012-01-01

    Abstract. Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively. PMID:22612140

  3. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    International Nuclear Information System (INIS)

    Karthikeyan, B.; Hariharan, S.; Udayabhaskar, R.

    2016-01-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  4. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion 4070386 (Chile)

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  5. Structural, morphological, optical and opto-thermal properties of Ni ...

    Indian Academy of Sciences (India)

    The effect of Ni concentration on the structural, morphological, optical and pho- ... catalytic [3], solar cells [4], gas sensors [5] and transparent ..... larger wavelength. This phenomenon indicates that the opti- cal energy gap decreases with doping concentration. It is well. Figure 4. Transmission spectra of sprayed ZnO : Ni thin ...

  6. Optical Variability Properties of High Luminosity AGN Classes C. S. ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2IRAF is distributed by the National Optical Astronomy Observatories, which is operated ..... which is applied to the colour of the object, can affect the differen- ... Any such effect is thus less than the photometric error of individual data points on the DLCs, and so we conclude that the colour differences between our sets of ...

  7. Optical properties of lead–bismuth cuprous glasses

    Indian Academy of Sciences (India)

    Unknown

    #Department of Chemistry, Dr Panjabrao Deshmukh Polytechnic, Amravati 444 603, India. MS received 28 April 2003; revised 11 August 2003. Abstract. The optical transmission and .... found to be compositionally dependent on PbO and CuO. The refractive index (nD) calculated in the region 350–. 800 nm is found to be ...

  8. Tailoring of optical and electrical properties of PMMA by ...

    Indian Academy of Sciences (India)

    Silver–poly(methyl methacrylate) (Ag–PMMA) nanocomposite films were prepared via ex situ chemical routeby employing sodium borohydride (NaBH 4 ) as a reducing agent. In this study, PVP-stabilized Ag nanoparticles were prepared and mixed with PMMA solution. Optical and structural characterizations of resulting ...

  9. Optical properties of CeO2 thin films

    Indian Academy of Sciences (India)

    TECS

    The values of absorption coefficient, extinction coefficient, refractive index, dielectric constant, phase angle and loss angle have been calculated from the optical measurements. The X-ray diffraction of the film showed that the film is crystalline in nature. The crystallite size of CeO2 films have been evaluated and found to be.

  10. Magneto-Optical properties of GaP single crystal

    Directory of Open Access Journals (Sweden)

    MS Omar

    2010-03-01

    Full Text Available The temperature dependence of magneto-optical and magneto-photoconductivity measurements were carried out in the range of (200-330 K. A home made optical cryostat was used for the measurements. The measured room temperature value of the energy gap was found to be 2.211 eV. The temperature coefficient of energy gap was found to be -5.48×10-4 eV/K obtained by the optical absorption method and -4.90×10-4 eV/K from the measurements of photoconductivity. The magnetic field coefficient of energy gap was found to be temperature dependent with values of 1.34×10-3 eV/Tesla at 202 K and 2.67×10-3 eV/Tesla at room temperature, when the field used was up to 2.2 Tesla. The reduced effective mass of carriers are also calculated from both techniques and found to be changing from 0.034 m0 to 0.021 m0 when magneto-optical data was used in the calculations and from 0.052 m0 to 0.032 m0 when magneto-photoconductivity data was used as the temperature changed from 220 K to 330 K respectively.

  11. Influence of drying conditions on the optical and structural properties ...

    Indian Academy of Sciences (India)

    [15–17]. The topography and surface roughness of the samples were investigated using atomic force microscope (AFM, Nano Surf 2006). The optical emission studies on the. ZnO nanocrystalline films were carried out by photoluminescence (PL) spectroscopy using a JASCO FP-6200 spectrofluorometer. The IR spectra of ...

  12. optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Vincent

    showed that the materials are transparent to visible light, opaque to ultraviolet radiation and near infra red radiation. The electrical conductivity decreases as the energy increases while the optical ... possible usage as computer memory as well as pharmaceutical applications especially during drug delivery. [6, 7]. Deposition ...

  13. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Pisarski et al 2005; Das et al 2006). Therefore, the aim of the present study is to investigate the effect of Sm2O3 content on optical bandgap, density, molar volume, refractive index and polarizability in zinc–vanadium glasses doped with Sm2O3.

  14. Magneto-optical properties of manganese ferrite films

    Czech Academy of Sciences Publication Activity Database

    Šimša, Zdeněk; Thailhades, P.; Presmanes, L.; Bonningue, C.

    242-245, - (2002), s. 381-383 ISSN 0304-8853 Grant - others:project BARRANDE(XX) 88057 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferrite s spinel * Faraday rotation * magneto-optical films thin films sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  15. Experimental and theoretical investigation of optical properties of dysprosium monopnictides

    Czech Academy of Sciences Publication Activity Database

    Schoenes, J.; Repond, P.; Hulliger, F.; Ghosh, D. B.; De, S. K.; Kuneš, Jan; Oppeneer, P. M.

    2003-01-01

    Roč. 68, č. 8 (2003), s. 085102-1 - 085102-11 ISSN 0163-1829 Grant - others:INT/ DST /DAAD(IN) P-49/2001; DAAD(DE) 0026524 Institutional research plan: CEZ:AV0Z1010914 Keywords : optical response * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  16. Effect of gamma radiation on electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The increase of the current with the gamma radiation dose may be attributed partly to the healing effect and partly to the lowering of the optical bandgap. Attempts are on to understand the ... A simple hand-held real-time radiation dosimeter is usually not available, though it is highly needed. Gene- rally, policemen take ...

  17. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Glasses with the composition, (Sm2O3)x(ZnO)(40–x)(TeO2)(60), were prepared by conventional melt quenching method. The density, molar volume, and optical energy band gap of these glasses have been measured. The refractive index, molar refraction and polarizability of oxide ion have been calculated by ...

  18. Shedding light on the optical properties of spider silk fiber

    OpenAIRE

    Chow, Desmond M.; Tow, Kenny Hey; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thevenaz, Luc

    2015-01-01

    Optical characterisation of a Nephila edulis spider dragline silk is performed. The silk fiber transmits light up to 1400 nm with a propagation loss of ∼9 dB/cm and birefringence of 8×10−3 measured at 1302 nm.

  19. Optical properties of samarium doped zinc–tellurite glasses

    Indian Academy of Sciences (India)

    Unknown

    Optical absorption in solids occurs by various mecha- nisms, in all of which the photon energy will be absorbed by either the lattice or by electrons where the transferred energy is covered. The lattice (or phonon) absorption will give information about atomic vibrations involved and this absorption of radiation normally occurs ...

  20. Symmetry, Optical Properties and Thermodynamics of Neptunium(V Complexes

    Directory of Open Access Journals (Sweden)

    Linfeng Rao

    2009-12-01

    Full Text Available Recent results on the optical absorption and symmetry of the Np(V complexes with dicarboxylate and diamide ligands are reviewed. The importance of recognizing the “silent” feature of centrosymmetric Np(V species in analyzing the absorption spectra and calculating the thermodynamic constants of Np(V complexes is emphasized.

  1. Seasonal variations in aerosol optical properties over China

    Science.gov (United States)

    Yuesi Wang; Jinyuan Xin; Zhanqing Li; Shigong Wang; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Hongbin Chen; Lili Wang; Yang Sun

    2012-01-01

    Seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0....

  2. Effect of annealing treatment on optical properties and ...

    Indian Academy of Sciences (India)

    68

    transparent in the visible region and reflective in IR range. WO3 films have been widely used in solar energy conversion, storage cells, EC displays, transparent conductors and optical recording and image storage [11]. Hasan et. al. has studied a multilayer system of WO3/Ag/WO3 to evaluate the intermixing between layers ...

  3. Effect of power variation on wettability and optical properties of co ...

    Indian Academy of Sciences (India)

    Surface energy decreases as the film properties change from hydrophilic to hydrophobic due to greater contact angle values. The optical properties were measured by UV–Vis–NIR spectrophotometer, transmission spectra and bandgap values show variation with respect to change in elemental composition as determined ...

  4. Electromagnetic Properties of Tissue in the Optical Region

    National Research Council Canada - National Science Library

    Yaws, K. M; Mixon, D. G; Roach, W. P

    2007-01-01

    .... Currently, voids exist in frequency specific electromagnetic properties such as the complex dielectric permittivity and conductivity necessary to define refractive index and attenuation values...

  5. Development of optical properties restoring techniques of materials irradiated under hard radiation

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Beliakova, E.; Red'kin, A.

    1996-01-01

    The target of the proposed project is a substantiation of the possibility of restoring of optical properties of materials irradiated under hard radiation by methods in a basis of which is elimination of radiating defects ( c olor centers ) using combined thermal/optical annealing techniques with utilizing of powerful sources of coherent and non-coherent radiation.The main tasks of the Project are: - measurement of transmission coefficient of the restored samples of various optical materials as a function of power, spectral structure of radiation and annealing duration. - investigation of possibility of definition of criterion of choice of regime annealing for determined optical materials on the basis of analysis of the experimental data and physics of the phenomenon of derivation and annihilation of C olor centers . The Project fulfillment will allow to: - determine regimes of optical and combined thermal/ optical annealing (temperature, spectral range, duration and intensity of radiation); - receive the data of transmission coefficients of various materials as a function of irradiation power and regimes optical and optical and thermal/optical annealing; - formulate the main requirements for optical materials selection for operation in fields of strong neutron and gamma radiation

  6. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  7. Synthesis and Optical Properties of Trioxatriangulenium Dyes with One and Two Peripheral Amino Substituents

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Laursen, Bo Wegge

    2010-01-01

    -substituted triphenylmethylium (TPM) compounds by aromatic nucleophilic substitution with secondary amines and subsequent intramolecular ring closure. The optical properties of the new triangulenium dyes and their TPM precursors were investigated and compared to those of known TPM and xanthenium dyes. The optical properties...... were found to be dependent on symmetry and charge localization in the conjugated framework. The trioxatriangulenium dye with two amino groups (A2-TOTA+) was found to be a strong fluorophore with properties as a blue-shifted rhodamine B. The mono-substituted compound (A1-TOTA+) was found to be only...

  8. Luminescent colloidal carbon dots: optical properties and effects of doping [Invited].

    Science.gov (United States)

    Reckmeier, C J; Schneider, J; Susha, A S; Rogach, A L

    2016-01-25

    We review the effect of doping on the optical properties of luminescent colloidal carbon dots. They are considered as a hybrid material featuring both molecular and semiconductor-like characteristics, where doping plays an important role. Starting from the short overview of synthetic strategies, we consider the evolution of carbon dots from molecular precursors to fluorescent nanoparticles, and the relevant structural properties of carbon dots. Choice of the reactant materials, dopant atoms and reaction parameters provide carbon dots with varying optical properties. High chemical stability, bright luminescence and customizable surface functionalization of carbon dots open their use in a broad range of applications, which are exemplary presented at the end of this review.

  9. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  10. Proton disorder in cubic ice: Effect on the electronic and optical properties

    International Nuclear Information System (INIS)

    Garbuio, Viviana; Pulci, Olivia; Cascella, Michele; Kupchak, Igor; Seitsonen, Ari Paavo

    2015-01-01

    The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation

  11. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    Science.gov (United States)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  12. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  13. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture.

    Science.gov (United States)

    Nadkarni, Seemantini K

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  14. Structural and nonlinear optical properties of as-grown and annealed metallophthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)

    2013-10-31

    The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.

  15. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  16. Site location and optical properties of Eu implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2005-01-01

    Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 x 10 16 cm -2 . Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 deg. C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 deg. C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements

  17. Structural and optical properties of zinc titanates synthesized by ...

    Indian Academy of Sciences (India)

    presence of functional groups, structural aspects and optical bandgaps with respect to calcination temperature were studied by thermal analysis, ... on various substrates.17,18 In molten salt synthesis, ratio of molten salt to oxides is main- .... accounting for another 1 mole of Zn.13,16,31,32 Solubility of ZnO in Zn2Ti3O8 is not ...

  18. Synthesis and optical properties of biphenylene ethynylene co ...

    Indian Academy of Sciences (India)

    The model compounds C6H5-4-C6H4-C≡C-C6H2(2,5-OR)2-4-C6H4-. C6H5 (R = C4H9 ..... well with the value of 29.2◦ observed in M2. Of the ... the molecular chains. 3.3 Optical spectroscopy (absorption and photoluminescence) of the polymers and model monomers. Figure 4a–d shows the absorption and photolumines-.

  19. Optical properties of double-layer structure phthalocyanine-tetracyanoquinodimethane

    Czech Academy of Sciences Publication Activity Database

    Bortchagovsky, E. G.; Kazantseva, Z. I.; Koshets, I. A.; Nešpůrek, Stanislav; Jastrabík, Lubomír

    2004-01-01

    Roč. 460, 1-2 (2004), s. 269-273 ISSN 0040-6090 R&D Projects: GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : organic semiconductors * ellipsometry * optical spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.647, year: 2004

  20. Optical properties of some terrestrial rocks and glasses.

    Science.gov (United States)

    Pollack, J. B.; Toon, O. B.; Khare, B. N.

    1973-01-01

    The optical constants of five naturally occurring rocks have been determined in the spectral range between 0.2 and 50 microns. Between 0.2 and 5 microns, the real and imaginary parts of the index of refraction were found from a combination of reflectivity and transmission measurements by using Beer's law and the Fresnel reflectivity equation. At wavelengths beyond 5 microns, only reflectivity measurements could be made and both constants were found from an application of classical dispersion theory.

  1. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    [13] J Yumoto, S Fukushima and K Kubodera, Opt. Lett. 12, 832 (1987). [14] Y Liu, D Li, R Y Zhu and G J You, Appl. Phys. B: Lasers and Optics 76, 435 (2003). [15] Y Takeda, V T Gritsyna, N Umeda, C G Lee and N Kishimoto, Nucl. Instrum. Methods B 148,. 1029 (1999). [16] S Jafari, H Shahmirzaee and A Gharaati, ...

  2. Sputter-Coated Microparticle Additives for Tailored Optical Properties

    Science.gov (United States)

    2016-09-01

    Images of the coated spheres can be seen in Fig. 7. To the naked eye , the spheres appear a uniform color . However, as seen in Fig. 7, a microscopic...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently...software was used to predict what material combinations and thicknesses would produce the optical reflectance spectra for a given color . In this study

  3. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    Science.gov (United States)

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  4. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Science.gov (United States)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  5. Studies on crystal growth, vibrational and optical properties of organic nonlinear optical crystal: p-Aminoazobenzene

    Science.gov (United States)

    Eazhilarasi, G.; Nagalakshmi, R.; Krishnakumar, V.

    2008-11-01

    p-Aminoazobenzene ( p-AAZB), an organic nonlinear optical (NLO) crystal having good optical quality has been grown by slow evaporation solution technique using ethanol as a solvent. Solubility studies were performed at different temperatures. The structural characterization of the grown crystals was carried out by X-ray diffraction. Group theoretical analysis was carried out to calculate the number of modes of vibration. The lowering of the wave numbers of azo group suggests the existence of strong intermolecular N-H⋯H hydrogen bonding. This has been analysed based on the vibrational spectral features. Optical absorption studies show the effective transmission in the entire UV-vis region. The second harmonic generation results show the suitability of this material for NLO applications.

  6. Analytic Study of Optical, Electro-optical and Magnetooptical Properties of Cabon Nanotubes

    DEFF Research Database (Denmark)

    Zarifi, Abbas

    studies and predictions that preceded the experimental observation of SWCNs. In this thesis, we have used a tight binding model with nearest neighbor interactions to investigate the electric dipole matrix elements and subsequently the linear susceptibility as a function of optical frequency for SWCNs. We...... have derived an analytic expression for the linear optical susceptibility of single wall zigzag CNs for light polarized parallel to the nanotube axis. For light polarized perpendicular to the nanotube axis, a closed-form expression for the electric dipole matrix element has been obtained. Hence......, numerical evaluation of the perpendicular susceptibility has been greatly simplified. By simplifying the long-axis linear susceptibility, analytic expression for the quadratic electro-optic effect in semiconducting zigzag CNs including the transitions between all pairs of valence and conduction bands has...

  7. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    International Nuclear Information System (INIS)

    Lashgari, Hamed; Boochani, Arash; Shekaari, Ashkan; Solaymani, Shahram; Sartipi, Elmira; Mendi, Rohollah Taghavi

    2016-01-01

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  8. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    Lin Zeng; Gao Ding; Ba Dechun; Wang Feng; Liu Chunming

    2013-01-01

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp 2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp 3 content of the coatings

  9. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lashgari, Hamed [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Boochani, Arash, E-mail: arash_bch@yahoo.com [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Shekaari, Ashkan [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Solaymani, Shahram [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Sartipi, Elmira [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Mendi, Rohollah Taghavi [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-04-30

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  10. Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T)

    Science.gov (United States)

    Rinehart, Stephen

    2010-01-01

    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate materials.

  11. Rainbow Perylene Monoimides : Easy Control of Optical Properties

    NARCIS (Netherlands)

    Li, Chen; Schoeneboom, Jan; Liu, Zhihong; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Muellen, Klaus; Müllen, Klaus

    2009-01-01

    Perylene dyes have been widely used as photoreceptors in organic photovoltaics because of their outstanding photo-, thermal and chemical stability as well as their excellent photophysical properties. Herein we describe a novel generation of perylene dyes based on

  12. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering

    Science.gov (United States)

    Müllerová, Jarmila; Šutta, Pavol; Medlín, Rostislav; Netrvalová, Marie; Novák, Petr

    2017-12-01

    In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.

  13. Laser Induced Modification of the Optical Properties of Nano-ZnO Doped PVC Films

    Directory of Open Access Journals (Sweden)

    Tagreed K. Hamad

    2014-01-01

    Full Text Available The effect of continuous CO2 laser radiation on the optical properties of pure polyvinyl chloride and doped of ZnO nanoparticles with two different concentrations (10, 15% has been investigated. All samples were prepared using casting method at room temperature. Optical properties (absorption, transmission, absorption coefficient, extinction coefficient, refractive index, and optical conductivity of all films after CO2 laser irradiated have been studied as a function of the wavelength in the range (200–800 nm for three energies (300, 400 and 500 mJ. It has been found that the transmission, energy gap, and refractive index increase with increasing laser energy. The values of absorption, Urbach energy, absorption coefficient, extinction coefficient, and optical conductivity were decreased.

  14. Neptune's New Dark Vortex: Aerosol Properties from Optical Data

    Science.gov (United States)

    Tollefson, J.; Luszcz-Cook, S.; Wong, M. H.; De Pater, I.

    2016-12-01

    Over the past year, amateur and professional astronomers alike have monitored the appearance of a new dark vortex on Neptune, dubbed SDS-2015 for "southern dark spot discovered in 2015" (Wong et al. 2016; CBET 4278). The discovery of SDS-2015 is fortuitous, being one of only five dark spots observed on Neptune since Voyager 2 imaged the Great Dark Spot (Smith et al. 1989, Science 246, 1422). A companion abstract (Wong et al., this meeting) will present Hubble Space Telescope images of SDS-2015, showcasing the discovery of the vortex in September 2015 and subsequent observations in May 2016. These observations span the optical regime. Longer wavelengths track bright companion clouds thought to form as air is diverted around SDS-2015. Shorter wavelengths reveal the dark spot itself. Combined, these data probe the vertical extent of the dark spot and Neptune's surrounding upper atmosphere. We present preliminary radiative transfer analyses of SDS-2015 using our multispectral data. Our model is the same as that in Luszcz-Cook et al. (2016, Icarus 276, 52) but extended to optical wavelengths. Prior to this work, little was known about the composition and vertical extent of Neptune's dark spots. Only data at optical wavelengths reveal these vortices, suggesting they consist of clearings in the background of fine, evenly-distributed haze particle. Alternatively, the spots may consist of low-albedo aerosols, causing their apparent darkness. Radiative transfer modeling is also one way to determine the vortex top altitude. Simulations of the Great Dark Spot by Stratman et al. (2001, Icarus 151, 275) found that the vortex top altitude is coupled to the brightness of companion clouds, where cloud opacity weakened as the top of the vortex reached higher into the tropopause region. The modeling presented here will compare these hypotheses and provide the first glimpses into the vertical structure of SDS-2015.

  15. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    Science.gov (United States)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  16. Non-equilibrium carrier efect in the optical properties of semiconductors

    International Nuclear Information System (INIS)

    Teschke, O.

    1980-01-01

    The time-resolved reflectivity of picosecond pulses from optically excited carrier distributions can provide important information about the energy relaxation rates of hot electrons and holes in semiconductors. the basic optical properties of non-equilibrium carrier distributions of GaAs are discussed. A semi-empirical analysis of the reflectivity spectrum is presented and the contributions of different effects are estimated. The results are in qualitative agreement with recent experiments employing dye lasers. (Author) [pt

  17. Morphology, structure and optical properties of sol-gel ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Teodorescu, V.S.; Blanchin, M.G.; Stoica, T.A.; Gartner, M.; Losurdo, M.; Zaharescu, M

    2003-08-15

    The alkoxidic route and the spinning deposition were used to prepare monolayer sol-gel indium tin oxide (ITO) films. The morphology and crystalline structure were investigated by cross-section transmission electron microscopy (XTEM) and atomic force microscopy (AFM). The ITO sol-gel mono-layer contains three regions of different porosities. The basic crystalline structure is that of the In{sub 2}O{sub 3} lattice. The optical properties have been studied by optical transmission and spectroscopic ellipsometry.

  18. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.; Galiano, F.

    1990-01-01

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  19. Effects of sterilization methods on key properties of specialty optical fibers used in medical devices

    Science.gov (United States)

    Stolov, Andrei A.; Slyman, Brian E.; Burgess, David T.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve

    2013-03-01

    Optical fibers with different types of polymer coatings were exposed to three sterilization conditions: multiple autoclaving, treatment with ethylene oxide and treatment with gamma rays. Effects of different sterilization techniques on key optical and mechanical properties of the fibers are reported. The primary attention is given to behavior of the coatings in harsh sterilization environments. The following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.

  20. Classical and quantum properties of optical parametric oscillators

    CERN Document Server

    Martinelli, M; Nussenzveig, P; Souto-Ribeiro, P H

    2001-01-01

    We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the quantum correlation between the light beams generated by this oscillator. We show the construction of an OPO using a Potassium Titanyl Phosphate crystal, pumped by a frequency doubled Nd:YAG laser, and discuss the stability of the system and related thermal effects. We have measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise correlation level 39 % below the shot noise level.

  1. Magneto optical properties of silver doped magnetic nanocomposite material

    Directory of Open Access Journals (Sweden)

    N. Abirami

    2017-11-01

    Full Text Available Magnetic composite materials challenge traditional materials in broad applications such as transformer, sensors and electrical motors. In this work by studying the permittivity and permeability spectra of silver doped magnetic nanocomposite system, the variation of the effective refractive index with frequency is investigated for different filling factor. It is found that the value of resonance frequency decrease with filling factor. The polariton dispersion of the system is also studied. This study of the nanocomposite system can be exploited in designing modern optical devices.PACS: 75.50-y, 71.36.+c, 78.67.Sc, 78.20.Ci. Keywords: Permittivity, Permeability, Nanocomposite system, Polariton

  2. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    Science.gov (United States)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  3. Optical and structural properties of Ge-Ga-Te amorphous thin films fabricated by magnetron sputtering

    Science.gov (United States)

    Dong, Ning; Chen, Yimin; Wei, Ningning; Wang, Guoxiang; Wang, Rongping; Shen, Xiang; Dai, Shixun; Nie, Qiuhua

    2017-11-01

    We deposited amorphous Ge-Ga-Te thin films by the magnetron sputtering method, and investigated the corresponding structural and optical properties by various diagnosis tools. The as-deposited film is amorphous, while crystalline features appear gradually with increasing annealing temperature. The optical band-gap and refractive index for the as-deposited and annealed films were analyzed as a function of chemical composition. It was also found that, with increasing Te and decreasing Ge and Ga content, the films usually exhibited a higher refractive index as well as a smaller optical band gap, and the optical band gap decreased with increasing annealing temperature. These results are useful to the fabrication of integrated optical devices for the biomedical sensing applications.

  4. Soft exfoliation of 2D SnO with size-dependent optical properties

    Science.gov (United States)

    Singh, Mandeep; Della Gaspera, Enrico; Ahmed, Taimur; Walia, Sumeet; Ramanathan, Rajesh; van Embden, Joel; Mayes, Edwin; Bansal, Vipul

    2017-06-01

    Two-dimensional (2D) materials have recently gained unprecedented attention as potential candidates for next-generation (opto)electronic devices due to their fascinating optical and electrical properties. Tin monoxide, SnO, is an important p-type semiconductor with applications across photocatalysis (water splitting) and electronics (transistors). However, despite its potential in several important technological applications, SnO remains underexplored in its 2D form. Here we present a soft exfoliation strategy to produce 2D SnO nanosheets with tunable optical and electrical properties. Our approach involves the initial synthesis of layered SnO microspheres, which are readily exfoliated through a low-power sonication step to form high quality SnO nanosheets. We demonstrate that the properties of 2D SnO are strongly dependent on its dimensions. As verified through optical absorption and photoluminescence studies, a strong size-dependent quantum confinement effect in 2D SnO leads to substantial variation in its optical and electrical properties. This results in a remarkable (>1 eV) band gap widening in atomically thin SnO. Through photoconductivity measurements, we further validate a strong correlation between the quantum-confined properties of 2D SnO and the selective photoresponse of atomically thin sheets in the high energy UV light. Such tunable semiconducting properties of 2D SnO could be exploited for a variety of applications including photocatalysis, photovoltaics and optoelectronics in general.

  5. Study optical properties of biological tissue in the presence of microbubbles

    Science.gov (United States)

    Assadi, Homa; Lee, Vincent; Karshafian, Raffi; Douplik, Alexandre

    2015-03-01

    Optical contrast agents introduce distinct features to induce detectable changes in native tissue properties [1]. In ultrasound imaging, microbubbles (MBs) - a gas-core shell-encapsulated agent - are used clinically as contrast agents. The working hypothesis of this study is that microbubbles can be employed as an intravascular contrast agent in optical imaging systems. Microbubbles can produce a refractive index mismatch which makes it distinguishable from surrounding media. In this work, the interaction of collimated light and microbubbles in a [1] biological phantom solution was investigated. The biological medium was comprised of intralipid and human blood which was constructed to cover the range of soft tissue optical properties. The effect of microbubbles on the optical properties such as reduced scattering and absorption coefficients were considered. Diffuse reflectance (DR) and total transmittance (TT) of a biological phantom solution were measured using a spectroscopic integrating sphere system in the absence and presence of Definity® microbubbles. The optical properties were computed using the inverse adding doubling (IAD) software. The presence of microbubbles increased DR and decreased TT of the phantom. In the presence of MB's (2.5% volume concentration), the reflectance of the phantom increased by 25% in the optical window. There is no absorption event and only scattering happened after light-microbubbles interactions. The reduced scattering coefficient increased significantly (30%) indicating the potential use of MBs as optical contrast agents. In conclusion, reflectance of a media can be enhanced by adding microbubbles to increase scattering properties and more light was detected returning to the surface of tissue.

  6. Study on time of flight property of electron optical systems by differential algebraic method

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Yao Zhenhua

    2002-01-01

    Differential algebraic method is a powerful and promising technique in computer numerical analysis. When applied to nonlinear dynamics systems, the arbitrary high-order transfer properties of the systems can be computed directly with high precision. In this paper, the principle of differential algebra is applied to study on the time of flight (TOF) property of electron optical systems and their arbitrary order TOF transfer properties can be numerically calculated out. As an example, TOF transfer properties of a uniform magnetic sector field analyzer have been studied by differential algebraic method. Relative errors of the first-order and second-order TOF transfer coefficients of the magnetic sector field analyzer are of the order 10 -11 or smaller compared with the analytic solutions. It is proved that differential algebraic TOF method is of high accuracy and very helpful for high-order TOF transfer property analysis of electron optical systems. (author)

  7. Investigating solvent effects on aggregation behaviour, linear and nonlinear optical properties of silver nanoclusters

    Science.gov (United States)

    Bhavitha, K. B.; Nair, Anju K.; Perumbilavil, Sreekanth; Joseph, Saju; Kala, M. S.; Saha, Abhijit; Narayanan, R. Aravinda; Hameed, Nishar; Thomas, Sabu; Oluwafemi, Oluwatobi S.; Kalarikkal, Nandakumar

    2017-11-01

    We herein report the solvent effects on the aggregation, linear and nonlinear optical properties of silver nanoclusters synthesised using three solvents namely; ethanol, acetone and isopropanol. The Ag clusters were characterized using UV-Visible (UV-vis) and photoluminescence (PL) spectroscopy, Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS), and open aperture Z-Scan measurements. Density functional theory (DFT) calculations at the B3PW91 level of theory, were done to compute the electric dipole, quadrupole, octapole and hexadecapole moment of mercaptosuccinic acid and mercaptosuccinic acid-Ag9 cluster in three solvents. Linear optical properties show characteristic absorption profile with quantum confinement at different wavelengths for all the three clusters. The Open aperture Z-scan measurement in Ag clusters establishes the optical limiting properties which arise mostly from excited state absorption (ESA) and relatively weak saturable absorption (SA). The nonlinear optical behaviour varies within the three clusters with maximum optical limiting value obtained for the clusters synthesised using acetone. The theoretically computed hyperpolarizabilities together with z-scan measurements establish the solvent effect on the clusters and their potential applications in optical limiting devices.

  8. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  9. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  10. The effect of oxidation on physical properties of porous silicon layers for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pirasteh, Parasteh [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Charrier, Joel [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France)]. E-mail: joel.charrier@univ-rennes1.fr; Soltani, Ali [Institut d' Electronique, de Microemectronique et de Nanotechnologie, CNRS-UMR 8520, Cite Scientifique Avenue Poincare, BP 69, 59652 Villeneuve d' Ascq Cedex (France); Haesaert, Severine [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Haji, Lazhar [Laboratoire d' Optronique, CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT Tecnhopole Anticipa, 6 rue de Kerampont, BP 447, 22305 Lannion Cedex (France); Godon, Christine [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France); Errien, Nicolas [Laboratoire de Physique Crystalline, Institut des Materiaux Jean Rouxel, 44322 Nantes Cedex 3 (France)

    2006-12-15

    In order to understand the optical loss mechanisms in porous silicon based waveguides, structural and optical studies have been performed. Scanning and transmission electron microscopic observations of porous silicon layers are obtained before and after an oxidation process at high temperature in wet O{sub 2}. Pore size and shape of heavily p-type doped Si wafers are estimated and correlated to the optical properties of the material before and after oxidation. The refractive index was measured and compared to that determined by the Bruggeman model.

  11. Optically tuned dielectric property of barium titanate thin film by THz spectroscopy

    Science.gov (United States)

    Zhou, Siyan; Ji, Jie; Tian, Yue; Ling, Furi; Yu, Wenfeng

    2017-11-01

    The dielectric property of ferroelectric barium titanate (BaTiO3) thin film with optical field was investigated by terahertz time-domain spectroscopy at room temperature. Experimental results showed that dielectric constant of BTO film was increased with the optical pump powers, and tunability of the real part of dielectric constant could be reached to74%. The reason of realizing high modulation depth could be explained as photorefractive and photothermal effects. Furthermore, the variation of refractive index displayed a monotonically increase with the optical powers.

  12. On the theory of optical properties of the dimensionally quantized semiconductor structures

    CERN Document Server

    Rasulov, R Y; Kambarov, D; Abdullaeva, D; Kokanbaev, I N

    2002-01-01

    Optical properties of the dimensionally quantized structures were studied with taking into account a degree of the light polarization. The forbidden optical transitions between dimensionally quantized states of conduction and valence bands were shown to be permitted when the effective Hamiltonian of holes involves the non-relativistic linear and cubic terms with respect to wave vectors in addition to the quadratic ones. Each type of optical transitions possesses its own transition rules that depend on the choice of the effective Hamiltonian of holes. (author)

  13. Ab initio study of the structural, electronic and optical properties of ZnTe compound

    Energy Technology Data Exchange (ETDEWEB)

    Bahloul, B. [Material Physics Laboratory, Faculty of Physical Sciences, USTHB, 16000 Algiers (Algeria); LCVRN laboratory, University of Bordj Bou-Arreridj, 34000 (Algeria); Deghfel, B., E-mail: b-deghfel@yahoo.fr [Physics Department, Faculty of Sciences, University of M’sila, 28000 M’Sila (Algeria); Amirouche, L.; Bounab, S. [Theoretical Physics Laboratory, Faculty of Physical Sciences, USTHB, 16000 Algiers (Algeria); Bentabet, A. [LCVRN laboratory, University of Bordj Bou-Arreridj, 34000 (Algeria); Bouhadda, Y. [Unit of Applied Research in Renewable Energy, 47000 Ghardaïa (Algeria); Fenineche, N. [LERMPS, UTBM University, Belfort (France)

    2015-03-30

    Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.

  14. Stress and strain effects on the electronic structure and optical properties of ScN monolayer

    Science.gov (United States)

    Tamleh, Shirin; Rezaei, Ghasem; Jalilian, Jaafar

    2018-02-01

    Based on the density functional theory, electronic and optical properties of a monolayer scandium nitride structure have been studied under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change the band gap of this structure with different rates. Also, optical absorption spectrum peaks experience an obvious red and blue shifts with the exerting of tensile and compressive strains, respectively. Our results express that ScN monolayer can be the promising candidate for the future nano-base electrical and optical devices.

  15. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  16. Role of impurities on the optical properties of rectangular graphene flakes

    Science.gov (United States)

    Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.

    2018-01-01

    We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.

  17. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  18. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  19. Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9

    Science.gov (United States)

    Xu, B.; Li, X.; Sun, J.; Yi, L.

    2008-12-01

    Using first-principles calculations based on density-functional theory in its local-density approximation, we investigated the Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9 (CBT) for the first time. It is found that CBT compound has an indirect band gap of 3.114 eV and the O 2s and 2p states are strongly hybridized with the 6s states of Bi which belong to the (Bi2O2)2+ planes. The quite strong Ta-O and Bi-O hybridization is the primary source for ferroelectricity. Our results imply that the interaction between Bi and O is highly covalent. The anisotropy occurs mainly above 4 eV in the optical properties. The different optical properties have been discussed.

  20. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    Science.gov (United States)

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Electrical, optical, and structural properties of semitransparent metallic layers

    Science.gov (United States)

    Kar, S.; Varghese, R.; Bhattacharya, S.

    1983-09-01

    MOS solar cells have been fabricated with Ag and Au barrier metals on n-type silicon and with Al barrier metal on p-type silicon. The short-circuit current density Jsc was measured as a function of the average metal layer thickness tm; and the optical transmittance was measured as a function of the wavelength with tm as a parameter. It is shown that in the case of Ag and Au the film network structure attained electrical continuity at a lower value of tm than in the case of Al, and the surface covered by the film was lower. Mainly for this reason, optical transmittance was higher in the case of Ag and Au than in the case of Al. Jsc(tm) profiles were peaked with the maximum occurring around 55 angstroms for Ag and Au and around 70 angstroms for Al. A higher rate of degradation for Ag and Au than for Al MOS cells is found which is associated with the presence of large discontinuity in Ag and Au films.

  2. Ultra-High Temperature Sensors Based on Optical Property

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  3. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    Science.gov (United States)

    Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; Baribeau, F.; Leclair, S.; Bouchard, J.-P.; Noiseux, I.; Gallant, P.; Mermut, O.; Farina, A.; Pifferi, A.; Torricelli, A.; Cubeddu, R.; Ho, H.-C.; Mazurenka, M.; Wabnitz, H.; Klauenberg, K.; Bodnar, O.; Elster, C.; Bénazech-Lavoué, M.; Bérubé-Lauzière, Y.; Lesage, F.; Khoptyar, D.; Subash, A. A.; Andersson-Engels, S.; Di Ninni, P.; Martelli, F.; Zaccanti, G.

    2014-01-01

    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable. PMID:25071947

  4. Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host

    Science.gov (United States)

    Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.

    2008-04-01

    In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.

  5. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Suppa, M; Dhaenens, F.

    2016-01-01

    -definition optical coherence tomography (HD-OCT) appears to offer additional structural and cellular information on melanocytic lesions complementary to that of RCM. However, the diagnostic potential of HD-OCT seems to be not high enough for ruling out the diagnosis of melanoma if based on morphology analysis....... The aim of this paper is first to quantify in vivo optical properties such as light attenuation in melanocytic lesions by HD-OCT. The second objective is to determine the best critical value of these optical properties for melanoma diagnosis. The technique of semi-log plot whereby an exponential function......-architectural structures with in vivo analysis of optical properties of tissue scatterers in melanocytic lesions. In vivo HD-OCT analysis of optical properties permits melanoma diagnosis with higher accuracy than in vivo HD-OCT analysis of morphology alone....

  6. Electronic absorption spectra and nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    To calculate the spectroscopic and NLO properties, we use correction vector method,. 24 which implicitly ... Lewis acid–Lewis base interactions within the CO2 molecules. The O–C–O angle in this case becomes ..... Ishii R, Okazaki S, Odawara O, Okada I, Misawa M and Fukunaga T 1995 Fluid Phase Equilibria 104 291. 16.

  7. Effect of capping agents on optical and antibacterial properties of ...

    Indian Academy of Sciences (India)

    ... spectra of CdSe QDs confirmed that the particles are poly-dispersed and possess enhanced luminescent property, depending upon the chemical nature of capping agents. The QDs have been characterized by Fourier-transform infrared spectroscopy, atomic absorption spectroscopy and transmission electron microscopy.

  8. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Anuj Kumar

    2017-06-20

    Jun 20, 2017 ... Other important molecular properties like rotational constant, zero-point vibrational energy, total ... molecules offer great potential for use in third-order. NLO devices [1], thus stimulating the research of ... of useful materials and devices. In the present communication, we report theoretically evaluated NLO ...

  9. Linear and nonlinear optical properties of borate crystals as ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. With the development of the state-of-the-art band calculation scheme and massively parallel pro- cessing in the high performance computing, we are now able to calculate all important physical properties, including (i) the nonlinear susceptibility; (ii) the multiphoton absorption rate; (iii) the birefringence; and (iv).

  10. Structural, thermal and optical properties of Cu doped methacrylic ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... The amorphous feature of the copolymer was depicted using X-ray diffraction scans and degree of crystallinity was found to vary ... ties, mechanical and electrical properties of the polymer films viz., polymer blending .... are due to the extensive degradation of the polymer backbone. According to Zain et al ...

  11. Optical properties of boron-group (V) hexagonal nanowires: DFT ...

    Indian Academy of Sciences (India)

    B Santhibhushan

    2017-06-20

    Jun 20, 2017 ... global warming, the search for highly efficient clean renewable energy sources such as solar cells is in high demand. Studying the properties of III–V compound nanowires [1–4] for their application in photovoltaics, optoelectronics and nanoelectronic devices is on rise and has become an extensive area of ...

  12. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    and efficient method for the calculation of the ground-state properties of materials [22 ... Murnaghan equation of state [28]. The optimization curves for the compounds are shown in figure 2. In the ground state, a (Å), B (GPa) and Bo are evaluated. The calculated ... the cubic structure only three elastic constants are required.

  13. Effect of gamma radiation on electrical and optical properties of ...

    Indian Academy of Sciences (India)

    We have studied in detail the gamma radiation induced changes in the electrical properties of the (TeO2)0.9 (In2O3)0.1 thin films of different thicknesses, prepared by thermal evaporation in vacuum. The current–voltage characteristics for the as-deposited and exposed thin films were analysed to obtain current versus dose ...

  14. On structural, optical and dielectric properties of zinc aluminate ...

    Indian Academy of Sciences (India)

    with a normal spinel structure having all zinc cations in the tetrahedral and all aluminium cations in the octahedral ... rrite in the nano-regime show anomalous magnetic properties in that zinc ions instead of occupying ... (Roy et al 2006). Zinc aluminate can be con- sidered as the non-magnetic counterpart of zinc ferrite and.

  15. Optical and mechanical properties of diamond like carbon films ...

    Indian Academy of Sciences (India)

    The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and ...

  16. Investigation of optical, structural and morphological properties of ...

    Indian Academy of Sciences (India)

    Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of ...

  17. Electro-optical properties, decomposition pathways and the ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... are limited and alternatives need to be found. Hydrogen is one of the alternative energy sources, which has most remark- able properties such as being the most abundant element in the universe and also an environment friendly renewable energy carrier [1–4]. We know that today's hydrogen energy.

  18. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    Science.gov (United States)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  19. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  20. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  1. Structure and Optical Properties of Nanocrystalline Hafnium Oxide Thin Films (PostPrint)

    Science.gov (United States)

    2014-09-01

    AFRL-RX-WP-JA-2014-0214 STRUCTURE AND OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) Neil R. Murphy AFRL...OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...publication is available at http://dx.doi.org/10.1016/j.optmat.2014.08.005 14. ABSTRACT Hafnium oxide (HfO2) films were grown by sputter-deposition by

  2. A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band

    Directory of Open Access Journals (Sweden)

    Liu Xiaoming

    2018-02-01

    Full Text Available To fulfill the requirements of the dielectric property measurement in the terahertz band, herein, a broadband quasi-optical system was designed and verified utilizing a planar scanning system. Additionally, the method of retrieving the dielectric parameters was discussed. Our experimental findings indicated that the measurement results were in good agreement with the theoretical results. Boron silicon, and deionized water were used for verifying the measurement, and the permittivity was obtained using a numerical method. We found that the dielectric properties were in good agreement with the typical values. This indicated that the proposed quasi-optical method effectively characterized the permittivity.

  3. Synthesis and Optical Properties of Pentamethine Cyanine Dyes With Carboxylic Acid Moieties

    Directory of Open Access Journals (Sweden)

    Tyler L Dost

    2017-05-01

    Full Text Available Cyanine dyes possessing carboxylic acid groups have been used in many different fields of study. The acid groups can act as handles for bioconjugation or as metal chelators. Several pentamethine cyanine dyes with propionic acid handles were synthesized and their optical properties were studied to determine their usefulness as fluorescent probes. The optical properties studies performed include the absorbance and emission maxima values as well as the calculation of quantum yield and molecular brightness levels. Molecular models were also calculated to help analyze the dyes’ behavior and were compared with similar dyes with varying alkyl chain lengths replacing the acid moieties.

  4. Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films

    Science.gov (United States)

    Furio, A.; Landi, G.; Altavilla, C.; Sofia, D.; Iannace, S.; Sorrentino, A.; Neitzert, H. C.

    2017-02-01

    In this work the preparation of flexible polymeric films with controlled electrical conductivity, light transmission and surface wettability is reported. A drop casted graphene oxide thin film is photo-reduced at different levels by UV light or laser irradiation. Optical microscopy, IR spectroscopy, electrical characterization, Raman spectroscopy and static water contact angle measurements are used in order to characterize the effects of the various reduction methods. Correlations between the optical, electrical and structural properties are reported and compared to previous literature results. These correlations provide a useful tool for independently tuning the properties of these films for specific applications.

  5. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  6. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  7. Nitrogen doped germania glasses with enhanced optical and mechanical properties

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Poulsen, Christian; Leistiko, Otto

    1997-01-01

    A new type of ultraviolet photosensitive germanium doped glass has been developed for use in the fabrication of optical waveguide structures. By adding ammonia to the source gases during a plasma enhanced chemical vapor deposition of these glasses, ultraviolet induced refractive index changes of up...... to 3.5 x 10(-3) have been obtained. Although this is, to the best of our knowledge, a record for germanium doped silica films not photosensitized by hydrogen loading, our results show that even larger changes in the refractive index can be induced. Stable glasses with refractive indexes from 1.460 to 1.......518 have been formed throughout the composition range from 0 to 30% germanium by including ammonia in the deposition process Not only is it possible to increase the photosensitivity, but it is also possible to control stress in these films. Depending on the deposition and annealing conditions, these glass...

  8. Design of optical fibres with advanced modal control properties

    DEFF Research Database (Denmark)

    Muliar, Olena

    an experimental characterisation of the modelled 19-cell HC PBGF was conducted. A modal content evaluation within a broad wavelength range was performed by a modified S 2 technique with a spectrogram approach. Results of the experimental and numerical fibre analysis were compared. It was revealed, that in 10m...... has increased interest to HOMs as independent spatial data channels for mode division multiplexing (MDM). The primary aim of this thesis is the investigation, modelling and experimental evaluation of HOMs in an optical fibre of advanced design, suitable for a MDM implementation. In order to achieve...... this goal, an interferometric-based fibre characterisation technique, known as a cross-correlated (C 2 ) imaging, was explored. An alternative modal reconstruction approach by 2D Fourier transform was presented, that allowed to extract intensity and phase distributions of the fibre mode from a single...

  9. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    Science.gov (United States)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  10. Radiation - induced changes in the optical properties of hemoglobin molecule

    International Nuclear Information System (INIS)

    Selim, N.S; El-Marakby, S.M.

    2009-01-01

    Adult male albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 hrs after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200 to 700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross section, transition dipole moment , dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule

  11. Study on third-order nonlinear optical properties of 4-methylsulfanyl chalcone derivatives using picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    D' silva, E.D., E-mail: deepak.dsilva@gmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India); Podagatlapalli, G. Krishna [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: soma_venu@yahoo.com [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Dharmaprakash, S.M. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India)

    2012-11-15

    Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.

  12. Modeling Optical Properties of Polluted Dust and its Morphological Effects by T-Matrix Method

    Science.gov (United States)

    Xu, G.; Yang, P.; Brooks, S. D.

    2015-12-01

    Dust storms largely contribute to regional or global aerosol loads, influence radiative energy budget, and air quality, and cause atmospheric environmental, public health problems. As dusts are transported long distances, aerosols such as black carbon can pollute the air mass along the transport path. Two mixing processes, externally and semi-externally (sticking) mixing may substantially affect the single-scattering and radiative properties of polluted dust particles compared to the unpolluted counterparts. This study focuses on quantifying the changes in the optical properties of dust aerosols due to black carbon contamination. The dust model we use is an irregular polyhedron, which is in good agreement with the laboratory measurement. The black carbon model is spherules aggregate defined with a cluster-cluster aggregation algorithm. Specifically, we define the degree of pollution in terms of two variables, the adhesion degree of pollutants and their mixing ratios, since both can alter the optical properties of polluted dust in different ways. By applying the Invariant Imbedding T-matrix Method (II-TM), we obtain the scattering phase matrix and other optical properties of dust aerosols with different degrees of contamination. Furthermore, the morphological effects on the optical properties of polluted dust are quantified by considering different fractal dimensions of black carbon as particles age. The overall changes due to different degrees of pollution by black carbon are investigated at various wavelengths.

  13. Shift in optical properties of Mn doped CdS (A DFT+U study)

    Science.gov (United States)

    khan, M. Junaid Iqbal; Kanwal, Zarfishan; Nauman Usmani, M.

    2018-01-01

    Current study is based on PBE-GGA and GGA+U computational approach for calculating optical properties of Mn doped CdS. Cd atom in host CdS lattice (rocksalt structure) are substituted with Mn at various lattice positions and shift in optical properties is observed by increasing supercell size by employing PBE-GGA and Hubbard term. Optical properties vary with changing supercell size and show significant change for GGA+U. Blue shift in absorption spectrum and plots for PDOS, TDOS are in accordance with existing reported work. Moreover strong p-d hybridization is observed due to Mn and S orbital interactions and localization of d-states are scrutinized in vicinity of Fermi level or conduction band minima. GGA+U absorption curve shows redshift and a tremendous change in optical properties is observed due to different bonding. Doping Mn into CdS host lattice illustrates enhancement in Opto-electrical properties which maximizes CdS:Mn system scope in optoelectronic devices.

  14. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  15. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy

    Science.gov (United States)

    De Luca, Marta; Polimeni, Antonio

    2017-12-01

    Thanks to their peculiar shape and dimensions, semiconductor nanowires (NWs) are emerging as building components of novel devices. The presence of wurtzite (WZ) phase in the lattice structure of non-nitride III-V NWs is one of the most surprising findings in these nanostructures: this phase, indeed, cannot be found in the same materials in the bulk form, where the zincblende (ZB) structure is ubiquitous, and therefore the WZ properties are poorly known. This review focuses on WZ InP NWs, because growth techniques have reached a high degree of control on the structural properties of this material, and optical studies performed on high-quality samples have allowed determining the most useful electronic properties, which are reviewed here. After an introduction summarizing the reasons for the interest in WZ InP nanowires (Sec. I), we give an overview on growth process and structural and optical properties of WZ InP NWs (Sec. II). In Sec. III, a complete picture of the energy and symmetry of the lowest-energy conduction and valence bands, as assessed by polarization-resolved photoluminescence (PL) and photoluminescence-excitation (PLE) studies is drawn and compared to all the available theoretical information. The elastic properties of WZ InP (determined by PL under hydrostatic pressure) and the radiative recombination dynamics of spatially direct and indirect (namely, occurring across the WZ/ZB interfaces) transitions are also discussed. Section IV, focuses on the magneto-optical studies of WZ InP NWs. The diagram of the energy levels of excitons in WZ materials—with and without magnetic field—is first provided. Then, all theoretical and experimental information available about the changes in the transport properties (i.e., carrier effective mass) caused by the ZB→WZ phase variation are reviewed. Different NW/magnetic field geometrical configurations, sensitive to polarization selection rules, highlight anisotropies in the diamagnetic shifts, Zeeman splitting

  16. Investigation on Growth, Structural, Spectral, Optical, and Mechanical Properties of an Organic Nonlinear Optical Material: Morpholinium Hydrogen Tartrate

    Directory of Open Access Journals (Sweden)

    R. Renugadevi

    2014-01-01

    Full Text Available Organic nonlinear optical crystal morpholinium hydrogen tartrate (MHT, with molecular formula [C8H15NO7], has been grown by slow evaporation solution technique. Single crystal X-ray diffraction study confirms that MHT crystallizes in orthorhombic system with noncentrosymmetric space group P212121. FTIR spectrum was recorded to identify the various functional groups of MHT. The various kinds of protons and carbons of MHT have been identified using 1H and 13C NMR spectral analyses. The range of optical absorption was ascertained by recording UV-Vis-NIR spectral studies. The TG/DTA studies revealed that the grown crystal is thermally stable up to 159.26°C. The mechanical property of the grown crystal was studied using Vickers microhardness studies. The relative second harmonic generation efficiency of MHT was determined using Kurtz and Perry powder technique; it was observed to be greater than that of KDP crystal.

  17. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    Science.gov (United States)

    Suresh, Sagadevan

    2016-11-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  18. Gamma radiation effect study in polycarbonate optical and mechanics properties

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1991-02-01

    Polycarbonates (PC) are used in different industrial applications due to their excellent dielectric characteristics, impact resistance, and high temperature resistance. In some of these applications, the polycarbonates are exposed to gamma radiation which produces molecular scissions, causing changes in the polycarbonate properties. To estimate the radiation effects in the Durolon polycarbonate, samples were irradiated with 60 Co gamma rays with doses between 0,2 kGy and 300 kGy. The results obtained showed that the PC mechanical properties are not changed due to the gamma radiation. However the results showed an expressive variation in the yellowness index for doses above 1 kGy. The results showed that it is possible to use the gamma sterilization of PC in applications where the coloration of PC is not critical. (author). 21 refs, 25 figs, 3 tabs

  19. Diffusive, Structural, Optical, and Electrical Properties of Defects in Semiconductors

    CERN Multimedia

    Wagner, F E

    2002-01-01

    Electronic properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photoluminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect, that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness", the present approach is to use radioactive isotopes as a tracer. Moreover, the recoil energies involved in $\\beta$ and $\\gamma$-decays can be used to create intrinsic isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. The understanding and the co...

  20. ZnS-Graphene nanocomposite: Synthesis, characterization and optical properties

    Science.gov (United States)

    Pan, Shugang; Liu, Xiaoheng

    2012-07-01

    A ZnS-Graphene nanocomposite was prepared by a facile one-step hydrothermal method using zinc nitrate hexahydrate, ethylenediamine and carbon disulfide as precursors, graphene oxide as a template. The composite was characterized by X-ray power diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier transform infrared, Raman spectra and fluorescence spectroscopy. The results show that graphene oxide was reduced to graphene in the hydrothermal reaction process. Simultaneously, the graphene sheets in the composite are exfoliated and decorated with ZnS nanoparticles. Furthermore, Raman and fluorescence properties of the composite were observed. ZnS-Graphene nanocomposite displays surface-enhanced Raman scattering activity for graphene oxide, and fluorescence enhancement property compared with pure ZnS sample.