WorldWideScience

Sample records for surface-controlled drop oscillations

  1. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  2. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  3. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  4. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy; Zhu, Y.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  5. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  6. Linear Oscillations of a Supported Bubble or Drop

    Czech Academy of Sciences Publication Activity Database

    Vejražka, Jiří; Vobecká, Lucie; Tihon, Jaroslav

    2013-01-01

    Roč. 25, č. 6 (2013), 062102 ISSN 1070-6631 R&D Projects: GA ČR GAP101/11/0806 Grant - others:COST(XE) MP1106 Institutional support: RVO:67985858 Keywords : oscillating bubble or drop * linear oscillations * lagrange equation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.040, year: 2013

  7. The origin of star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  8. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  9. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  10. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    Science.gov (United States)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  11. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    International Nuclear Information System (INIS)

    Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R.

    2008-01-01

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence

  12. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Rajashekhar; Jayanti, Sreenivas [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Balakrishnan, A.R. [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: arbala@iitm.ac.in

    2008-01-15

    Heat transfer and other equipment mounted on off-shore platforms may be subjected to low frequency oscillations. The effect of these oscillations, typically in the frequency range of 0.1-1 Hz, on the flow rate and pressure drop in a vertical tube has been studied experimentally in the present work. A 1.75 m-long vertical tube of inner diameter 0.016 m was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical simulator capable of providing low frequency oscillations in the range of 8-30 cycles/min at an amplitude of 0.125 m. The effect of the oscillations on the flow rate and the pressure drop has been measured systematically in the Reynolds number range 500-6500. The induced flow rate fluctuations were found to be dependent on the Reynolds number with stronger fluctuations at lower Reynolds numbers. The effective friction factor, based on the mean pressure drop and the mean flow rate, was also found to be higher than expected. Correlations have been developed to quantify this Reynolds number dependence.

  13. Oscillations of oblate drop between heterogeneous plates under uniform electric field

    Science.gov (United States)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-01-01

    The forced oscillations of the incompressible fluid drop under the action of the uniform electric field are considered. In equilibrium, the drop has the form of a circular cylinder bounded axially by the parallel solid planes; the contact angle is right. An incompressible fluid of different density surrounds the drop. The external electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion, the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, whose frequency is proportional to twice the frequency of the electric field. The case of heterogeneous plates is investigated. We assume that the Hocking parameter depends on the polar angle in this case. The function describing the change in the coefficient of the interaction between the plate and the fluid (the contact line) is expanded in a series of the Laplace operator eigenfunctions.

  14. SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop

    Science.gov (United States)

    De Padova, Diana; Mossa, Michele; Sibilla, Stefano

    2018-02-01

    This paper shows the results of the smooth particle hydrodynamics (SPH) modelling of the hydraulic jump at an abrupt drop, where the transition from supercritical to subcritical flow is characterised by several flow patterns depending upon the inflow and tailwater conditions. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented either by an algebraic mixing-length model, or by a two-equation k- ɛ model. The numerical model is applied to analyse the occurrence of oscillatory flow conditions between two different jump types characterised by quasi-periodic oscillation, and the results are compared with experiments performed at the hydraulics laboratory of Bari Technical University. The purpose of this paper is to obtain a deeper understanding of the physical features of a flow which is in general difficult to be reproduced numerically, owing to its unstable character: in particular, vorticity and turbulent kinetic energy fields, velocity, water depth and pressure spectra downstream of the jump, and velocity and pressure cross-correlations can be computed and analysed.

  15. Shape Oscillations of an Oil Drop Rising in Water : Effect of Surface Contamination

    Czech Academy of Sciences Publication Activity Database

    Abi Chebel, N.; Vejražka, Jiří; Masbernat, O.; Risso, F.

    Roč. 702, JUL 10 ( 2012 ), s. 533-542 ISSN 0022-1120 R&D Projects: GA ČR GAP101/11/0806 Institutional support: RVO:67985858 Keywords : bubble dynamics * drops * drops and bubbles Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.183, year: 2012

  16. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  17. Non-linear Shape Oscillations of Rising Drops and Bubbles: Experiments and Simulations.

    Czech Academy of Sciences Publication Activity Database

    Lalanne, B.; Abi Chebel, N.; Vejražka, Jiří; Tanguy, S.; Masbernat, O.; Risso, F.

    2015-01-01

    Roč. 27, č. 12 (2015), s. 123305 ISSN 1070-6631. [Conference of European Colloid and Interface Society /27./. Sofia, 01.09.2013-06.09.2013] R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : shape oscillations * nonlinearitites * interface dynamics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.017, year: 2015

  18. The effect of spherical hub-nose position on pressure drop in an oscillating water column system for wave energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Ahmad, N.; Ghazilla, R.A.R.; Yap, H.J.; Ya, T.Y.T.; Passarella, R.; Hasanuddin, I.; Yunus, M. [Malaya Univ. (Malaysia). Centre for Product Design and Manufacturing; Sugiyono [Malaya Univ., (Malaysia). Centre for Product Design and Manufacturing; Gadjah Mada Univ. (Indonesia). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    The use of renewable energy sources as an alternative to conventional fuels was discussed with particular reference to ocean wave energy and its potential to contribute to the energy requirements of coastal nations. Ocean wave energy has been harnessed and converted into electricity using processes and technologies that are environmentally sound. The oscillating water column (OWC) system is considered to be among the most promising technology for harnessing wave energy. This paper presented the results of a study that investigated the pressure drop in an OWC system and the effect of spherical hub-nose position in an annular duct. Computational fluid dynamics (CFD) analysis was used under steady flow conditions for several hub-nose positions to determine the characteristic of pressure drop. The study showed that the hub-nose position influenced the pressure drop in the OWC system. The highest value of the pressure drop in this study occurred when the hub-nose was at the position of 0.0 m relative to the end of the converging cone. The pressure drop decreased when the hub-nose position moved away from the end of converging cone. The lowest value occurred at the position of -0.5 m. It was concluded that despite the numerically small change in pressure drop, this phenomenon should be considered in the design process of the OWC system because of the operational condition of the system at low-pressure pneumatic power. The pressure drop actually reduces the amount of energy that will be converted by the air turbine. 9 refs., 2 tabs., 6 figs.

  19. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  20. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  1. Drop trampoline

    Science.gov (United States)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  2. Dropped Ceiling

    OpenAIRE

    Tabet, Rayyane

    2012-01-01

    On December 2nd 1950 the first drop of Saudi oil arrived to Lebanon via the newly constructed Trans-Arabian Pipeline, the world's longest pipeline and the largest American private investment in a foreign land. The 30inch wide structure which spanned 1213 kilometers passing through Saudi Arabia, Jordan, and Syria to end in Lebanon had required 3 years of planning and surveying, 2 years of installation, the fabrication of 256,000 tons of steel tubes, the employment of 30,000 workers, the ratifi...

  3. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian; Namura, Kyoko; Duran Retamal, Jose Ramon; Ho, Chin-Hsiang; Minamitake, Haruhiko; Wei, Tzu-Chiao; Tsai, Dung-Sheng; Lin, Chun-Ho; Suzuki, Motofumi; He, Jr-Hau

    2015-01-01

    be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  4. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    Science.gov (United States)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  5. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  6. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  7. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  8. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  9. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  10. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  11. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  12. Shape oscillations of microparticles on an optical microscope stage.

    Science.gov (United States)

    Zhu, Z M; Apfel, R E

    1985-11-01

    A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.

  13. Axisymmetric Liquid Hanging Drops

    Science.gov (United States)

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  14. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  15. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  16. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  17. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  18. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  19. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  20. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  1. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  2. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  3. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  4. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  5. Two secondary drops

    Indian Academy of Sciences (India)

    Figure shows formation of two secondary drops of unequal size and their merger. The process is same as the earlier process until t= 0.039 Tc with necking occurring at two places, one at the bottom of the column and the other at the middle. The necking at the middle of the liquid column is due to Raleigh instability.

  6. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  7. Development of copper bromide laser master oscillator power ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at ... The spectral distribution of power at .... It is evident from the voltage waveforms that the breakdown voltage drops.

  8. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  9. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  10. Dropping out of school

    Directory of Open Access Journals (Sweden)

    M. Teneva

    2017-09-01

    Full Text Available The modern technological society needs educated people who, through their high professionalism, are called upon to create its progress. In this aspect, a serious problem stands out – the dropout from school of a large number of children, adolescents and young people. The object of the research is the premature interruption of training for a large number of Bulgarian students. The subject of the study is the causes that provoke the students’ dropping out of school. The aim is to differentiate the negative factors leading to dropping out of school, and to identify the motivating factors that encourage the individual to return to the educational environment. In order to realize the so set target, a specially designed test-questionnaire has been used. The survey was conducted among students attending evening courses who have left their education for various reasons and are currently back to the school institution. The contingent of the study includes 120 students from the evening schools. The results indicate that the reasons which prompted the students to leave school early differentiate into four groups: family, social, economic, educational, personal. The motivation to return to school has been dictated in the highest degree by the need for realization of the person on the labor market, followed by the possibility for full social functioning.

  11. Investigation of density-wave oscillation in parallel boiling channels under high pressure

    International Nuclear Information System (INIS)

    Ming Xiao; Xuejun Chen; Mingyuan Zhang

    1992-01-01

    This paper presents experimental results on density-wave instability in parallel boiling channels. Experiments have been done in a high pressure steam-water loop. Different types of two-phase flow instabilities have been observed, including density-wave oscillation, pressure-drop type oscillation, thermal oscillation and secondary density-wave oscillation. The secondary density-wave oscillation appears at very low exit steam quality (less than 0.1) and at the positive portion of Δ P-G curves with both channels' flow rate oscillating in phase. Density-wave oscillation can appear at pressure up to 192 bar and disappear over 207 bar. (6 figures) (Author)

  12. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  13. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  14. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  15. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  16. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  17. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  18. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  19. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  20. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  1. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  2. Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method

    NARCIS (Netherlands)

    Khalate, A.; Bombois, X.; Babuska, R.; Wijshoff, H.M.A.; Waarsing, R.

    2011-01-01

    The printing quality delivered by a drop-on-demand (DoD) inkjet printhead is limited due to the residual oscillations in the ink channel. The maximal jetting frequency of a DoD inkjet printhead can be increased by quickly damping the residual oscillations and by bringing in this way the ink channel

  3. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    Science.gov (United States)

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-11

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  4. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Directory of Open Access Journals (Sweden)

    Bongsob Song

    2014-01-01

    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  5. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  6. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  7. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  8. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  9. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  10. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition.

    Science.gov (United States)

    Rodrigues, José A; Rodrigues, Carlos M; Almeida, Paulo J; Valente, Inês M; Gonçalves, Luís M; Compton, Richard G; Barros, Aquiles A

    2011-09-09

    An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  12. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  13. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  14. An alternating voltage battery with two salt-water oscillators

    Science.gov (United States)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  15. Experimental validation of plugging during drop formation in a T-junction.

    Science.gov (United States)

    Abate, Adam R; Mary, Pascaline; van Steijn, Volkert; Weitz, David A

    2012-04-21

    At low capillary number, drop formation in a T-junction is dominated by interfacial effects: as the dispersed fluid flows into the drop maker nozzle, it blocks the path of the continuous fluid; this leads to a pressure rise in the continuous fluid that, in turn, squeezes on the dispersed fluid, inducing pinch-off of a drop. While the resulting drop volume predicted by this "squeezing" mechanism has been validated for a range of systems, as of yet, the pressure rise responsible for the actual pinch-off has not been observed experimentally. This is due to the challenge of measuring the pressures in a T-junction with the requisite speed, accuracy, and localization. Here, we present an empirical study of the pressures in a T-junction during drop formation. Using Laplace sensors, pressure probes we have developed, we confirm the central ideas of the squeezing mechanism; however, we also uncover other findings, including that the pressure of the dispersed fluid is not constant but rather oscillates in anti-phase with that of the continuous fluid. In addition, even at the highest capillary number for which monodisperse drops can be formed, pressure oscillations persist, indicating that drop formation in confined geometries does not transition to an entirely shear-driven mechanism, but to a mechanism combining squeezing and shearing.

  16. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  17. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  18. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  19. Optimization-based feedforward control for a drop-on-demand inkjet printer

    NARCIS (Netherlands)

    Khalate, A.; Bombois, X.; Babuska, R.; Wijshoff, H.M.A.; Waarsing, R.

    2010-01-01

    The printing quality delivered by a Drop-on-Demand (DoD) inkjet printhead is limited due to operational issues such as residual oscillations in the ink channel and the cross-talk between the ink channels. The maximal jetting frequency of a DoD inkjet printhead can be increased by quickly damping the

  20. Interfacial wave dynamics of a drop with an embedded bubble.

    Science.gov (United States)

    Bhattacharya, S

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  1. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  2. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  3. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  4. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  5. Translational velocity oscillations of piston generated vortex rings

    Science.gov (United States)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  6. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  7. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  8. From nuclei to liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Carjan, N. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires

    1995-12-31

    Collisions of symmetric mercury-drop pairs have been studied experimentally as a function of impact parameter, in a relative-velocity range going from a coalescence-dominated region to interactions yielding several residues. The experiments are compared with predictions of a dynamical model used in nuclear physics. The time evolution of the shapes is well reproduced by the simulation. (authors). 8 refs., 3 figs.

  9. The dynamics of Leidenfrost drops

    OpenAIRE

    van Limbeek, Michiel Antonius Jacobus

    2017-01-01

    Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent heat of evaporation. In the context of spray cooling, liquid drops are impacting a hot plate to ensure a rapid cooling. At some temperature however, no contact occurs between the liquid and the plate, and the heat transfer rate ...

  10. Device for making liquid drops

    International Nuclear Information System (INIS)

    Yamada, Masao; Fukuda, Fumito; Nishikawa, Masana; Ishii, Takeshi.

    1976-01-01

    Object: To provide a device for producing liquid drops in the form of liquefied gases indispensable to make deuterium and tritium ice pellets used as a fusion fuel in a tokamak type fusion reactor. Structure: First, pressure P 1 at the upper surface of liquefied gas in a container and outlet pressure P 2 of a nozzle disposed at the lower part of the container are adjusted into the state of P 1 >= P 2 , and it is preset so that even under such conditions, the liquefied gas from the nozzle is not naturally flown out. Next, a vibration plate disposed within the container is rapidly downwardly advanced toward the nozzle through a predetermined distance. As a result, pressure of the liquefied gas within a depression under the vibration plate rises instantaneously or in a pulse fashion to dissatisfy the aforesaid set condition whereby the liquefied gas may be flown out from the nozzle in the form of liquid drops. In accordance with the present device, it is possible to produce a suitable number of drops at a suitable point. (Yoshihara, H.)

  11. Modification of shape oscillations of an attached bubble by surfactants

    Directory of Open Access Journals (Sweden)

    Tihon J.

    2013-04-01

    Full Text Available Surface-active agents (surfactants, e.g. washing agents strongly modifies properties of gas-liquid interface. We have carried out extensive experiments, in which we study effect of surfactants on the shape oscillations of a bubble, which is attached at a tip of a capillary. In the experiments, shape oscillations of a bubble are invoked by a motion of a capillary, to which the bubble is injected. Decaying oscillations are recorded and their frequency and damping are evaluated. By changing the excitation frequency, three lowest oscillation modes are studied. Experiments were repeated in aqueous solution of several surfactants (terpineol, SDS, CTAB, Triton X-100, Triton X-45 at various concentrations. Generally, these features are observed: Initially a surfactant addition leads to an increase of the oscillation frequency (though surface tension is decreasing; this effect can be attributed to the increasing interfacial elasticity. The decay time of oscillation is strongly decreasing, as a consequence of energy dissipation linked with Marangoni stresses. At a certain critical concentration, frequency decreases abruptly and the decay time passes by a minimum. With further addition of surfactant, frequency decreases, and the decay time slightly lengthens. Above critical micelle concentration, all these parameters stabilize. Interestingly, the critical concentration, at which frequency drop occurs, depends on mode order. This clearly shows that the frequency drop and minimum decay time are not a consequence of some abrupt change of interfacial properties, but are a consequence of some phenomena, which still need to be explained.

  12. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  13. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    Science.gov (United States)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  14. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  15. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  17. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  18. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  19. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  20. Creation and perturbation of planar networks of chemical oscillators

    Science.gov (United States)

    Tompkins, Nathan; Cambria, Matthew Carl; Wang, Adam L.; Heymann, Michael; Fraden, Seth

    2015-01-01

    Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay. PMID:26117136

  1. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  2. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  3. 49 CFR 178.603 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... used for the hydrostatic pressure or stacking test. Exceptions for the number of steel and aluminum..., non-resilient, flat and horizontal surface. (e) Drop height. Drop heights, measured as the vertical... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  4. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  5. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  6. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  7. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  8. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  9. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  10. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  11. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  12. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Jose A.; Rodrigues, Carlos M.; Almeida, Paulo J.; Valente, Ines M.; Goncalves, Luis M. [Requimte - Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, no. 687, 4169-007 Porto (Portugal); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Barros, Aquiles A., E-mail: ajbarros@fc.up.pt [Requimte - Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, no. 687, 4169-007 Porto (Portugal)

    2011-09-09

    Highlights: {yields} At very cathodic accumulation potentials (overpotential deposition) the voltammetric signals of Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+} and Cu{sup 2+} increase. {yields} 5 to 10-fold signal increase is obtained. {yields} This effect is likely due to mercury drop oscillation at such cathodic potentials. {yields} This effect is also likely due to added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. - Abstract: An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.

  13. Who is dropping your course?

    Science.gov (United States)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  14. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  15. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  16. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  17. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  18. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  19. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  20. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  1. Sepsis from dropped clips at laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Hussain, Sarwat

    2001-01-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis

  2. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  3. Numerical study of drop spreading on a flat surface

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  4. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  6. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  7. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  8. Many Drops Make a Lake

    Directory of Open Access Journals (Sweden)

    Chaitanya S. Mudgal

    2014-03-01

    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  9. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  10. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  11. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  12. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  13. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  14. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  15. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  16. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  17. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  18. Contact angle of sessile drops in Lennard-Jones systems.

    Science.gov (United States)

    Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans

    2014-11-18

    Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  19. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  20. University Drop-Out: An Italian Experience

    Science.gov (United States)

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  1. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  2. Why Do Students Drop Advanced Mathematics?

    Science.gov (United States)

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  3. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  4. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  5. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  6. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  7. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...

  8. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  9. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  10. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  11. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  12. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  13. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  14. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    Science.gov (United States)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  15. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  16. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  17. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  18. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate

    Directory of Open Access Journals (Sweden)

    Xinxin Zhang

    2017-04-01

    Full Text Available An axial oscillation tool is proved to be effective in solving problems associated with high friction and torque in the sliding drilling of a complex well. The fluidic axial oscillation tool, based on an output-fed bistable fluidic oscillator, is a type of axial oscillation tool which has become increasingly popular in recent years. The aim of this paper is to analyze the dynamic flow behavior of a fluidic axial oscillation tool with the absence of a throttling plate in order to evaluate its overall performance. In particular, the differences between the original design with a throttling plate and the current default design are profoundly analyzed, and an improvement is expected to be recorded for the latter. A commercial computational fluid dynamics code, Fluent, was used to predict the pressure drop and oscillation frequency of a fluidic axial oscillation tool. The results of the numerical simulations agree well with corresponding experimental results. A sufficient pressure pulse amplitude with a low pressure drop is desired in this study. Therefore, a relative pulse amplitude of pressure drop and displacement are introduced in our study. A comparison analysis between the two designs with and without a throttling plate indicates that when the supply flow rate is relatively low or higher than a certain value, the fluidic axial oscillation tool with a throttling plate exhibits a better performance; otherwise, the fluidic axial oscillation tool without a throttling plate seems to be a preferred alternative. In most of the operating circumstances in terms of the supply flow rate and pressure drop, the fluidic axial oscillation tool performs better than the original design.

  19. Anharmonic oscillator and Bogoliubov transformation

    International Nuclear Information System (INIS)

    Pattnayak, G.C.; Torasia, S.; Rath, B.

    1990-01-01

    The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)

  20. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  1. Thyrotoxicosis Presenting as Unilateral Drop Foot.

    Science.gov (United States)

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.

  2. Preparation and characterisation of superheated drop detectors

    International Nuclear Information System (INIS)

    Krishnamoorthy, P.

    1989-01-01

    Basic mechanism of bubble nucleation in superheated drops with respect to minimum energy of radiation and temperature is discussed. Experimental details and techniques for the preparation of Superheated Drop Detectors (SDDs) is explained. For the sample preparation, homogeneous composition of polymer (Morarfloc) and glycerine was used as the host medium and three different refrigerants Mafron-21, Mafron-12 and Mafron-11/12 (50:50) were chosen as the sensitive liquids. A pressure reactor developed at Health and Safety Laboratory is used for dispersing the sensitive liquid drops in the homogeneous composition under pressure. Some of the imporatant detector characteristics were studied. (author). 26 refs., 9 figs., 1 tab

  3. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  4. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  5. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  6. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  7. Electron plasma oscillations in the Venus foreshock

    Science.gov (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  8. Electron plasma oscillations in the Venus foreshock

    International Nuclear Information System (INIS)

    Crawford, G.K.; Strangeway, R.J.; Russell, C.T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations

  9. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, Kohsei; Etoh, Takeharugoji

    2012-01-01

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  10. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-07-18

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  11. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  12. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  13. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  14. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  15. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  16. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  17. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  18. Density oscillations within hadrons

    International Nuclear Information System (INIS)

    Arnold, R.; Barshay, S.

    1976-01-01

    In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr

  19. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  1. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  2. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  3. Hanging drop crystal growth apparatus and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  4. Free drop impact analysis of shipping cask

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    The WHAMS-2D and WHAMS-3D codes were used to analyze the dynamic response of the RAS/TREAT shielded shipping cask subjected to transient leadings for the purpose of assessing potential damage to the various components that comprise the the cask. The paper describes how these codes can be used to provide and intermediate level of detail between full three-dimensional finite element calculations and hand calculations which are cost effective for design purposes. Three free drops were adressed: (1) a thirty foot axial drop on either end; (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the cask corner; and (3) a thirty foot side drop with simultaneous impact on the lifting trunnion and the bottom end. Results are presented for two models of the side and oblique angle drops; one model includes only the mass of the lapped sleeves of depleted uranium (DU) while the other includes the mass and stiffness of the DU. The results of the end drop analyses are given for models with and without imperfections in the cask. Comparison of the analysis to hand calculations and simplified analyses are given. (orig.)

  5. Drop Performance Test of CRDMs for JRTR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Chung, Jong-Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jung-Hyun [POSCO Plandtec Co. Ltd, Ulsan (Korea, Republic of); Lee, Kwan-Hee [RIST, Pohang (Korea, Republic of)

    2015-10-15

    The drop test results of CRDMs with AC-type electromagnet show that the initial delay times are not satisfied with the requirement, 0.15 seconds. After the replacement of the electromagnet from AC-type to DCtype, the drop times of CARs and accelerations due to the impact of moving parts are satisfied with all requirements. As a result, it is found that four CRDMs to be installed at site have a good drop performance, and meet all performance requirements. A control rod drive mechanism (CRDM) is a device to control the position of a control absorber rod (CAR) in the core by using a stepping motor which is commanded by the reactor regulating system (RRS) to control the reactivity during the normal operation of the reactor. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the performances such as the stepping, drop, endurance, vibration, seismic and structural integrity for active components. Especially, the CAR drop curves are important data for the safety analysis. This paper describes the test results to demonstrate the drop performances of a prototype and 4 CRDMs to be installed at site. The tests are carried out at a test rig simulating the actual reactor's conditions.

  6. The Drop Tower Bremen -Experiment Operation

    Science.gov (United States)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  7. The evaporation of the charged and uncharged water drops

    Indian Academy of Sciences (India)

    Drop evaporation; ventilation coefficient; evaporation-effect of electrical forces. ... to study the effect of ventilation on the rate of evaporation of the millimeter sized ... a ventilated drop to reach its equilibrium temperature increases with the drop ...

  8. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  9. Experimental study of drop breakup in a turbulent flow; Etude experimentale de la rupture de gouttes dans un ecoulement turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Galinat, S.

    2005-04-15

    This work presents the drop breakup phenomenon in a turbulent flow induced by a cross-section restriction in a pipe. A global analysis of single-drop breakup, in a finite volume downstream of the orifice, has allowed deriving statistical quantities such as the break-up probability and the daughter-drop distribution. These parameters are function of a global Weber number based on the maximal pressure drop through the orifice. At a local scale, the locations of breakup events are distributed heterogeneously and depend on the flow Reynolds number. The local hydrodynamic study in downstream of the orifice, which has been done by using Particle Image Velocimetry, reveals the specific breakup zones. Otherwise, this analysis has proved that the turbulence is the predominant external stress at the drop scale. The relation between drop deformation and the external stress along the trajectory has been simulated numerically by the response of a damped oscillator to the locally measured instantaneous turbulence forcing. The results of statistical analysis have allowed to introduce a breakup criterion, based on a unique deformation threshold value for all experiments. This multi-scale approach has been conducted to study drop breakup mechanisms in a concentrated dispersion. The breakup probability decrease with the increase of dispersed phase concentration, which influences the turbulent Weber number distribution in downstream of the orifice. (author)

  10. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  11. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  12. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  13. Quasioptical Josephson oscillator

    International Nuclear Information System (INIS)

    Wengler, M.J.; Pance, A.; Liu, B.

    1991-01-01

    This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer

  14. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  15. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  16. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  17. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  18. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  19. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  20. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  1. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  2. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  3. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  4. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  5. Neutrino oscillations. Theory and experiment

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)

  6. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  7. Chemotaxis and Actin Oscillations

    Science.gov (United States)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  8. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  9. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  10. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  11. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  12. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  13. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  14. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  15. Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate

    Directory of Open Access Journals (Sweden)

    Hyun Jun Jeong

    2012-01-01

    Full Text Available We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.

  16. RODDRP - A FORTRAN program for use in control rod calibration by the rod drop method

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1972-01-01

    The different methods to measure reactivity which are applicable to control rod calibration are discussed. They include: 1) the positive period method, 2) the rod drop method, 3) the source-jerk method, 4) the rod oscillation method, and 5) the pulsed neutron method. The instrument setup used at WSU for rod drop measurements is presented. To speed up the analysis of power fall-off trace, a FORTRAN IV program called RODDRP was written to simultaneously solve the in-hour equation and relative neutron flux. The procedure for calculating the worth of the rod that produced the power trace is given. The reactivity for each time relative flux point is obtained. Conclusions about the status of the equipment are made

  17. Reactor oscillator - I - III, Part I

    International Nuclear Information System (INIS)

    Lolic, B.

    1961-12-01

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction

  18. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating

  19. 49 CFR 178.965 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... Large Packaging design types and performed periodically as specified in § 178.955(e) of this subpart. (b... § 178.960(d). (d) Test method. (1) Samples of all Large Packaging design types must be dropped onto a... be restored to the upright position for observation. (2) Large Packaging design types with a capacity...

  20. Predicting Students Drop Out: A Case Study

    Science.gov (United States)

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  1. Modeling merging behavior at lane drops.

    Science.gov (United States)

    2015-02-01

    In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In : addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improvin...

  2. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  3. Predicting students drop out : a case study

    NARCIS (Netherlands)

    Dekker, G.W.; Pechenizkiy, M.; Vleeshouwers, J.M.; Barnes, T.; Desmarais, M.; Romero, C.; Ventura, S.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their

  4. Potential drop sensors for sodium loops

    International Nuclear Information System (INIS)

    Selvaraj, R.

    1978-11-01

    Potential drop sensors to detect the presence or the absence of sodium in pipe lines are described. These are very handy during loop charging and dumping operations. Their suitability to detect level surges and to monitor continuous level of liquid metals in certain applications is discussed. (author)

  5. The liquid drop nature of nucleoli.

    Science.gov (United States)

    Marko, John F

    2012-03-01

    Nucleoli are prominent subnuclear organelles, and are known to be hubs of ribosome synthesis. A recent study of Brangwynne et al. reports that the nucleoli of Xenopus oocytes display "liquid drop" behavior, suggesting that nucleolar structure may be driven by rather simple physical principles.

  6. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  7. The stability of cylindrical pendant drops

    CERN Document Server

    McCuan, John

    2018-01-01

    The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

  8. Scaling the drop size in coflow experiments

    International Nuclear Information System (INIS)

    Castro-Hernandez, E; Gordillo, J M; Gundabala, V; Fernandez-Nieves, A

    2009-01-01

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  9. Scaling the drop size in coflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: jgordill@us.es

    2009-07-15

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  10. Goose droppings as food for reindeer

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    Feeding conditions for Svalbard reindeer, Rangifer tarandus platyrhynchus, on Spitsbergen are generally poor, owing to low availability of forage. We report on coprophagy: the use of goose faeces as an alternative food source for reindeer. Fresh droppings from Barnacle Geese, Branta leucopsis,

  11. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.; Takehara, K.; Etoh, T.G.; Thoroddsen, Sigurdur T

    2013-01-01

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et

  12. Damping of Coherent oscillations

    CERN Document Server

    Vos, L

    1996-01-01

    Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.

  13. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  14. Photospheric oscillations. Pt. 1

    International Nuclear Information System (INIS)

    Fossat, E.; Ricort, G.

    1975-01-01

    Intensity fluctuations in the wings of the Fraunhofer line Na D 1 5896 have been recorded for about two hundred hours at the focus of the Nice coude refractor, using a sodium optical resonance device. Because of the large beam aperture available, records have been made on circular apertures from 22'' up to 32' diameter (the whole sun). The principal results from the analysis of these date are: As shown by White and Cha, the five-minute oscillation has a gaussian random character with a mean lifetime of about 20 min. Its two-dimensional spatial power spectrum is roughly gaussian for every temporal frequency between 2 and 6 MHz. The width of this gaussian spectrum is near 5 x 10 -5 km -1 (i.e. π = 20,000 km). (orig./BJ) [de

  15. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  16. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  17. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  18. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  19. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  20. Augmenting cognition by neuronal oscillations

    NARCIS (Netherlands)

    Horschig, J.M.; Zumer, J.; Bahramisharif, A.

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both

  1. Annual Occurrence of Meteorite-Dropping Fireballs

    Science.gov (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  2. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  3. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  4. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  5. Fluid mechanics calculations in physics of droplets – IV: Head-on and off-center numerical collisions of unequal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2016-09-01

    Full Text Available In this study, the finite volume method is employed to simulate the coalescence collision between water drops immersed in a continuous phase (n-heptane. For that purpose, it is chosen a range of values for the velocity of collisions for the finite volume calculations may yield different possible outcomes of the collision process. It can be seen for head-on collisions that when the velocity of collision is 0.2 m/s and 3.5 m/s, the little drop induces the formation of a hole in the bigger drop, until the surface tension forces to restore the circular form of the resulting drop. For a velocity of collision of 16.0 m/s, the little drop deforms the bigger one, and the system is converted into a thin ligament with the evolution of the dynamics. In this case, a little mass of n-heptane is trapped between the two drops, but at the end of the dynamics it drains to the continuous phase. For off-center collisions, two different values for the velocity of collisions were chosen, and the drops exhibit a lot of waves on the droplets’ surface. The streamlines are calculated for the process of coalescence of drops. These streamlines allow the understanding of the dynamics of the droplets immersed on the n-heptane phase. The effect of the interfacial tension it is showed due to the oscillations that the droplet exhibits. When the coalescence has begun, the streamlines form circular patterns at the zone of contact between the drops which explain the increment of the thickness of the bridge structure of the fluid between the two drops. At the end of the dynamics, when the velocity is of 0.2 m/s, the bigger drop reaches a circular form approximately, but when the velocity is of 3.5 m/s the drop reaches an elongated form.

  6. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  7. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  8. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  9. How drops start sliding over solid surfaces

    Science.gov (United States)

    Gao, Nan; Geyer, Florian; Pilat, Dominik W.; Wooh, Sanghyuk; Vollmer, Doris; Butt, Hans-Jürgen; Berger, Rüdiger

    2018-02-01

    It has been known for more than 200 years that the maximum static friction force between two solid surfaces is usually greater than the kinetic friction force--the force that is required to maintain the relative motion of the surfaces once the static force has been overcome. But the forces that impede the lateral motion of a drop of liquid on a solid surface are not as well characterized, and there is a lack of understanding about liquid-solid friction in general. Here, we report that the lateral adhesion force between a liquid drop and a solid can also be divided into a static and a kinetic regime. This striking analogy with solid-solid friction is a generic phenomenon that holds for liquids of different polarities and surface tensions on smooth, rough and structured surfaces.

  10. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  11. Coupling slots without shunt impedance drop

    International Nuclear Information System (INIS)

    Balleyguier, P.

    1996-01-01

    It is well known that coupling slots between adjacent cells in a π-mode structure reduce shunt impedance per unit length with respect to single cell cavities. To design optimized coupling slots, one has to answer the following question: for a given coupling factor, what shape, dimension, position and number of slots lead to the lowest shunt impedance drop? A numerical study using the 3D code MAFIA has been carried out. The aim was to design the 352 MHz cavities for the high intensity proton accelerator of the TRISPAL project. The result is an unexpected set of four 'petal' slots. Such slots should lead to a quasi-negligible drop in shunt impedance: about -1% on average, for particle velocity from 0.4 c to 0.8 c. (author)

  12. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  13. Hospital executive compensation act dropped from ballot

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-08-01

    Full Text Available The Hospital Executive Compensation Act did not qualify for the November 8, 2016 ballot in Arizona as a state statute (1. The Service Employees International Union (SEIU dropped the initiative just before arguments were to begin in a lawsuit that challenged the legality of signature gatherers who failed to register with the state. The measure would have limited total pay for executives, administrators and managers of healthcare facilities and entities to the annual salary of the President of the United States. A similar measure in California was also dropped by the SEIU in 2014. Supporters of the proposal said it would decrease escalating healthcare costs. Opponents of the measure, including the Arizona Chamber of Commerce who filed the suit challenging the proposition, alleged that it would lead to poorer healthcare. However, a survey conducted by the Southwest Journal of Pulmonary and Critical Care showed that most supported the measure and felt that it would not lead to poorer healthcare (2.

  14. Semisupervised Community Detection by Voltage Drops

    Directory of Open Access Journals (Sweden)

    Min Ji

    2016-01-01

    Full Text Available Many applications show that semisupervised community detection is one of the important topics and has attracted considerable attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is accomplished by using voltage drops. The complexity of the proposal is OV+E for the sparse network with V vertices and E edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community. The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible. Furthermore, this algorithm is easily applied to graph-based machine learning methods.

  15. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  16. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  17. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  18. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  19. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  20. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  1. Sporadic frame dropping impact on quality perception

    Science.gov (United States)

    Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine

    2004-06-01

    Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.

  2. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  3. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  4. Eye-Drops for Activation of DREADDs

    Directory of Open Access Journals (Sweden)

    William T. Keenan

    2017-11-01

    Full Text Available Designer Receptors Exclusively Activated by Designer Drugs (DREADDs are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO. Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.

  5. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  6. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  7. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  8. Principal oscillation patterns

    International Nuclear Information System (INIS)

    Storch, H. von; Buerger, G.; Storch, J.S. von

    1993-01-01

    The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)

  9. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  10. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  11. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  12. Thermoelastic Loss in Microscale Oscillators

    National Research Council Canada - National Science Library

    Houston, B. H; Photiadis, D. M; Marcus, M. H; Bucaro, J. A; Liu, Xiao; Vignola, J. F

    2001-01-01

    ...) and nanoelectromechanical (NEMS) oscillators. The theory defines a flexural modal participation factor, the fraction of potential energy stored in flexure, and approximates the internal friction by assuming the energy loss to occur solely via...

  13. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  14. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  15. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    OpenAIRE

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower contro...

  16. Effect of zero-point oscillations of nuclear surface on observable properties of nuclei

    International Nuclear Information System (INIS)

    Masterov, V.S.; Rabotnov, N.S.

    1982-01-01

    Possible effect of zero-point oscillations of nuclear surface on such observable nucleus characteristics as the mass of ground state, edge diffusion and height of fission barrier is considered. Within the framework of a drop model the calculation of binding energy per nucleon for even-even nuclei with a mass number 8 <= A <= 60 depending on A is given. It is shown that consideration of even quadrupole and octupole oscillations results in marked effects which are necessary to consider when comparing results of model calculations with experiment

  17. Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations

    International Nuclear Information System (INIS)

    Lahey, R.T. Jr.; Yadigaroglu, G.

    1974-01-01

    The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)

  18. Macroscopic description of normal quadrupole oscillations and shape of rotating nuclei (spheroids)

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Mikhailov, I.N.; Vaishvila, Z.

    1981-01-01

    The ''distorted-Fermi-surface'' model is generalized to study the rotating nuclei. The mathematical problems of the model are solved with the help of the tensor virial method by Chandrasekhar-Lebovitz. The parameters of a form and characteristic frequencies of the quadrupole oscillations are calculated as a function of angular velocity Ω for the rotating nuclei. The energy of Giant Quadrupole Resonance is in agreement with experiment for Ω=0. There are two low-lying modes of oscillations in the model. The critical angular momenta are calculated. The comparison with the liquid drop model is done [ru

  19. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  20. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  1. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  2. Some comparison of two fractional oscillators

    International Nuclear Information System (INIS)

    Kang Yonggang; Zhang Xiu'e

    2010-01-01

    The other form of fractional oscillator equation comparing to the widely discussed one is ushered in. The properties of vibration of two fractional oscillators are discussed under the influence of different initial conditions. The interpretation of the characteristics of the fractional oscillators using different method is illustrated. Based on two fractional oscillator equations, two linked bodies and the continuous system are studied.

  3. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  4. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2009-01-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  5. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  6. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  7. Critical look at South Africa’s Green Drop Programme

    CSIR Research Space (South Africa)

    Ntombela, Cebile

    2016-10-01

    Full Text Available (WSAs) in the controversial wastewater services sector. In particular, we focus on DWS’s incentive-based mechanism, the National Green Drop Certification Programme (Green Drop Programme), and evaluate the achievements and challenges associated with its...

  8. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  9. The jet mass distribution after Soft Drop

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN, Sezione di Genova (Italy); Schunk, Lais [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681, Gif-Sur-Yvette (France)

    2018-02-15

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects. (orig.)

  10. Drop Calibration of Accelerometers for Shock Measurement

    Science.gov (United States)

    2011-08-01

    important that the screen is clear, the records displayed are crisp and values are easily read. The current DSO, used within the Division, in the...Capacitor ≤ ± 0.01% ξc Tolerance of capacitor Drop Mass Reading ≤ ± 0.083 %  dm 0.1g over 120g (typically) Reference Mass Reading ≤ ± 0.1 % rm...Therefore m has uncertainty components due to rm ,  dm and ξrme. The random component is  222 dmrmm  (6.8) and once again  dsodc

  11. Drops on hydrophobic surfaces & vibrated fluid surfaces

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein

    in the literature. Furthermore, we quantify the energy associated with center of mass translation and internal fluid motion. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used...... numerically, and the results are compared to experiments. We provide, again, the most detailed regime diagram of the possible orbits depending on the forcing and the rotation rate of the fluid bath. We highlight each class of orbit, and analyze in depth the wobbling state, precessing orbits, wobble...

  12. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  13. Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.

  14. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project

  15. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop...

  16. Drop test of reinforced concrete slab onto storage cask

    International Nuclear Information System (INIS)

    Kato, Y.; Hattori, S.; Ito, C.; Sirai, K.; Ozaki, S.; Kato, O.

    1993-01-01

    In this research, drop tests onto full-scale casks considering the specifications of a falling object (weight, construction, drop height, etc.) demonstrate and evaluate the integrity of casks in case a heavy object drops into the storage facilities. (J.P.N.)

  17. Model of an Evaporating Drop Experiment

    Science.gov (United States)

    Rodriguez, Nicolas

    2017-11-01

    A computational model of an experimental procedure to measure vapor distributions surrounding sessile drops is developed to evaluate the uncertainty in the experimental results. Methanol, which is expected to have predominantly diffusive vapor transport, is chosen as a validation test for our model. The experimental process first uses a Fourier transform infrared spectrometer to measure the absorbance along lines passing through the vapor cloud. Since the measurement contains some errors, our model allows adding random noises to the computational integrated absorbance to mimic this. Then the resulting data are interpolated before passing through a computed tomography routine to generate the vapor distribution. Next, the gradients of the vapor distribution are computed along a given control volume surrounding the drop so that the diffusive flux can be evaluated as the net rate of diffusion out of the control volume. Our model of methanol evaporation shows that the accumulated errors of the whole experimental procedure affect the diffusive fluxes at different control volumes and are sensitive to how the noisy data of integrated absorbance are interpolated. This indicates the importance of investigating a variety of data fitting methods to choose which is best to present the data. Trinity University Mach Fellowship.

  18. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  19. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  20. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  1. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  2. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  3. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  4. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  5. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  6. Nonstationary oscillations in gyrotrons revisited

    International Nuclear Information System (INIS)

    Dumbrajs, O.; Kalis, H.

    2015-01-01

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper

  7. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  8. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  9. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  10. Oscillating liquid flow ICF Reactor

    International Nuclear Information System (INIS)

    Petzoldt, R.W.

    1990-01-01

    Oscillating liquid flow in a falling molten salt inertial confinement fusion reactor is predicted to rapidly clear driver beam paths of residual liquid droplets. Oscillating flow will also provide adequate neutron and x-ray protection for the reactor structure with a short (2-m) fall distance permitting an 8 Hz repetition rate. A reactor chamber configuration is presented with specific features to clear the entire heavy-ion beam path of splashed molten salt. The structural components, including the structure between beam ports, are shielded. 3 refs., 12 figs

  11. Neutrino oscillation measurements with reactors

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, R.D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-11-01

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided important information on the neutrino masses and the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  12. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  13. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  14. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  15. Bubble and Drop Nonlinear Dynamics experiment

    Science.gov (United States)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  16. Load drop evaluation for TWRS FSAR

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoisting and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.

  17. Drop Impact on a Solid Surface

    KAUST Repository

    Josserand, C.

    2015-09-22

    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  18. Drop Impact on to Moving Liquid Pools

    Science.gov (United States)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  19. Effect of Bilineaster Drop on Neonatal Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Zahra Ameli

    2017-01-01

    Full Text Available Background: Hyperbilirubinemia is considered one of the most prevalent problems in newborns. Phototherapy, exchange transfusion, and herbal medicine are common therapeutic approaches for preventing any neurologic damage in infants with neonatal jaundice. However, herbal medicine is less commonly used. Aim: This study aimed to investigate the effect of bilineaster drop on neonatal hyperbilirubinemia. Method: This study was a randomized clinical trial conducted on 98 term neonates (aged 2-14 days with neonatal jaundice admitted to Ghaem Hospital of Mashhad, Iran, during 2015. These newborns were randomly assigned into intervention (phototherapy and bilineaster drop and control (only phototherapy groups. Total and direct serum bilirubin levels were measured at the time of admission and then 12, 24, 36, and 48 h after treatment. Data were analyzed using independent t-test and repeated measures ANOVA through Stata software (Version 12. Results: The mean ages of the newborns at the time of admission were 6.2 ±2.5 and 6.04 ±2.4 days in the intervention and control groups, respectively. The intervention group showed higher reduction in mean duration of hospital stay, readmission rate, and bilirubin levels 12 and 24 h after the intervention, compared to the control group (P>0.001. However, the two groups demonstrated no statistically significant difference 36 h and 48 h after the intervention (P=0.06, P=0.22, respectively. Repeated measures ANOVA indicated that the intervention had no significant effect on the reduction trend of bilirubin levels (P=0.10 [total], P=0.06 [indirect] in both groups. Nonetheless, bilirubin levels significantly diminished in both groups over time (P

  20. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  1. Evidence from the Seychelles of Last Interglacial Sea Level Oscillations

    Science.gov (United States)

    Vyverberg, K.; Dutton, A.; Dechnik, B.; Webster, J.; Zwartz, D.

    2014-12-01

    Several studies indicate that sea level oscillated during Marine Isotope Stage (MIS) 5e, but the details of these scenarios, including the number of sea level oscillations, are still debated. We lack a detailed understanding of the sensitivity of the large polar ice sheets to changes in temperature that could result in eustatic sea level oscillations. Because the Seychelles are located far from the margins of the Last Glacial Maximum northern hemisphere ice sheets, they have not been subjected to glacial isostatic adjustment, and have been tectonically stable since the Last Interglacial period; therefore, they provide a robust record of eustatic sea level during MIS 5e. All of the outcrops we examined contain unconformities and/or sharp transitions between facies, though the nature of these boundaries varies between sites. In some outcrops we observed a hardground comprising fine-grained, mollusc-rich sediment layer between distinct generations of in situ coralgal framework. In one outcrop, this succession was observed twice, where two generations of reef growth were each capped by a strongly indurated fine-grained, mollusc-rich sediment layer. At the site with the greatest vertical extent of outcrop, there is a marked difference in the taxonomic composition of the coral community above and below an unconformable surface, but the indurated fine-grained, sediment layer observed elsewhere was absent. Most of the other outcrops we studied contained a common succession of facies from in situ reef units overlain by cemented coral rubble. In two dated outcrops, the age of corals above and below the rubble layer are the same age. The hardgrounds and rubble layers may represent ephemeral exposure of the reef units during two drops in sea level. The inference of multiple meter-scale oscillations during the MIS 5e highstand indicates a more dynamic cryosphere than the present interglacial, although the climatic threshold for more volatile polar ice sheets is not yet clear.

  2. Calculation of xenon-oscillations in the HPLWR

    International Nuclear Information System (INIS)

    Reiss, T.; Feher, S.; Czifrus, Sz.

    2009-01-01

    The European version of the Supercritical Water Cooled Reactor (SCWR) is being developed under the name High Performance Light Water Reactor (HPLWR). In the most recent design, a three-pass core is foreseen with a heat-up of the coolant (supercritical pressure water) from 280degC to 500degC. Due to the operating pressure of 25 MPa, there is no phase change in the core but the density drop of the coolant can be as high as one order of magnitude. This results in a system which is sensitive to local temperature, power and density oscillations. This attribute is enhanced by the pseudocritical transformation of supercritical pressure water. Due to the relatively large dimensions of the core, xenon-oscillations are probable. The characteristic time of this process is several hours, thus a coupled quasi-stationary neutronics-thermohydraulics (CQNT) code completed with the xenon poisoning differential equations (XPDE) can predict the extent of xenon-oscillations. A program system is being developed at the Budapest University of Technology which is capable to perform full core CQNT calculations including the XPDE. The program system is designed to calculate one-pass (which was the first core proposal for HPLWRs, today called PWR-SC) and three-pass cores. The CQNT code is made up of an MCNP part (neutronics part) and of a thermohydraulics part developed at our Institute. Since full core MCNP calculations are very time consuming, upon symmetry considerations only one eighth of the core is modelled. On the other hand, this approach of modelling momentarily limits the phenomena which can be studied to axial oscillations. (author)

  3. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  4. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  5. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  6. Harmonic oscillator in Snyder space

    Indian Academy of Sciences (India)

    The harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. An effective cut-off to high frequencies is found. The quantum version is developed and an equivalent usual ...

  7. Compressible flow in fluidic oscillators

    Science.gov (United States)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  8. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  9. The relativistic harmonic oscillator reconsidered

    International Nuclear Information System (INIS)

    Hofsaess, T.

    1978-01-01

    The bound states of scalar quarks interacting through a scalar harmonic oscillator are investigated. In the presence of this interaction the dressed quark propagator differs substantially from the free one. This leads to a Bethe Salpeter equation which does not allow for any stable bound states of positive mass. (orig.) [de

  10. Inverse problem of solar oscillations

    International Nuclear Information System (INIS)

    Sekii, T.; Shibahashi, H.

    1987-01-01

    The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun

  11. Sum rules for neutrino oscillations

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.

    1981-01-01

    Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru

  12. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.

  13. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  14. Matter effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Dass, G.V.

    1989-01-01

    After a review of the relevant aspects of neutrino oscillations for propagation in vacuum and in material media, this paper discuss the Mikheyev-Smirnov-Wolfenstein mechanism and its application to a solution of the solar neutrino puzzle. The elementary level of the talk is suitable to people not working in neutrino physics

  15. Mesino oscillation in MFV SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Csaki, Csaba; Grossman, Yuval; Heidenreich, Ben [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)

    2013-04-15

    R-parity violating supersymmetry in a Minimal Flavor Violation paradigm can produce same-sign dilepton signals via direct sbottom-LSP pair production. Such signals arise when the sbottom hadronizes and the resulting mesino oscillates into an antimesino. The first bounds on the sbottom mass are placed in this scenario using current LHC results. (orig.)

  16. Chimera States in Neural Oscillators

    Science.gov (United States)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  17. The millennium water vapour drop in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    S. Brinkop

    2016-07-01

    Full Text Available This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop" and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM EMAC (ECHAM/MESSy Atmospheric Chemistry Model. The model simulations differ with respect to the prescribed sea surface temperatures (SSTs and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer–Dobson circulation (BDC. We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST changes due to a coincidence with a preceding strong El Niño–Southern Oscillation event (1997/1998 followed by a strong La Niña event (1999/2000 and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO in 2000. Correct (observed SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics

  18. Generalized oscillator systems and their parabosonic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, A J [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics

    1994-12-31

    The Fock space description of various bosonic oscillator systems are carried out. All descriptions are based on a single creation - annihilation pair. Special attention is paid to the q-deformed Calogero-Vasiliev oscillator. 23 refs.

  19. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  20. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  1. DROpS: an object of learning in computer simulation of discrete events

    Directory of Open Access Journals (Sweden)

    Hugo Alves Silva Ribeiro

    2015-09-01

    Full Text Available This work presents the “Realistic Dynamics Of Simulated Operations” (DROpS, the name given to the dynamics using the “dropper” device as an object of teaching and learning. The objective is to present alternatives for professors teaching content related to simulation of discrete events to graduate students in production engineering. The aim is to enable students to develop skills related to data collection, modeling, statistical analysis, and interpretation of results. This dynamic has been developed and applied to the students by placing them in a situation analogous to a real industry, where various concepts related to computer simulation were discussed, allowing the students to put these concepts into practice in an interactive manner, thus facilitating learning

  2. Drop Test Results of CRDM under Seismic Loads

    International Nuclear Information System (INIS)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung

    2016-01-01

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively

  3. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  5. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  6. Experimental Setup For Study of Drop Deformation In Air Flow

    Directory of Open Access Journals (Sweden)

    Basalaev Sergey

    2017-01-01

    Full Text Available Experimental study for study of deformation of drops in air flow is considered. Experimental setup includes a module for obtaining the drops, an air flow system and measuring system. Module for formation of drops is in the form of vertically arranged dropper with capillary with the possibility of formation of fixed drops. Air flow supply system comprises an air pump coupled conduit through a regulating valve with a cylindrical pipe, installed coaxially with dropper. The measuring system includes the video camera located with possibility of visualization of drop and the Pitot gage for measurement of flow rate of air located in the output section of branch pipe. This experimental setup allows to provide reliable and informative results of the investigation of deformation of drops in the air flow.

  7. Levitation of a drop over a film flow

    Science.gov (United States)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  8. A study of fungi on droppings of certain birds

    Directory of Open Access Journals (Sweden)

    C. S. Singh

    2014-08-01

    Full Text Available Droppings of fowl, owl, parrot, pigeon and sparrow were asepticaly collected in sterilized bottles from different places at Gorakhpur, 54 fungi were isolated. The number of fungi was more in the pigeon showing considerable decrease in the fowl and the sparrow. In the parrot and the owl, however. the fungi were egual in number. The number of Phycomycetes was almost the same on droppings of all birds, from parrot only one species could be isolated. A larger number of Ascomyteces was recorded from fowl, less from pigeon and owl and the least (two each on sparrow and parrot droppings. The Basidiomycetes, represented by two species only, were recorded on owl and pigeon droppings. Pigeon droppings yielded the largest number of Deuteromycetes. They were egual in numbers on owl and parrot while on fowl and sparrow their number was comparatively less. Mycelia sterilia, though poor in their numbers, were recorded on all the bird droppings excepting owl.

  9. Two particle states, lepton mixing and oscillations

    CERN Document Server

    Kachelriess, M; Schönert, S

    2000-01-01

    Discussions of lepton mixing and oscillations consider generally only flavor oscillations of neutrinos and neglect the accompanying charged leptons. In cases of experimental interest like pion or nuclear beta decay an oscillation pattern is expected indeed only for neutrinos if only one of the two produced particles is observed. We argue that flavor oscillations of neutrinos without detecting the accompanying lepton is a peculiarity of the two-particle states $|l\

  10. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  11. Pile oscillator ROB-1, cooperation NPY

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Obradovic, D; Kocic, A; Velickovic, LJ; Jovanovic, S [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1965-11-15

    The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)

  12. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  13. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....

  14. Pile oscillator ROB-1, cooperation NPY

    International Nuclear Information System (INIS)

    Petrovic, M.; Markovic, V.; Obradovic, D.; Kocic, A.; Velickovic, LJ.; Jovanovic, S.

    1965-11-01

    The present paper explains the purpose of the work on reactor kinetics and separately deals with the region for which the ROB-1 reactor oscillator is constructed. The theoretical part concerns the basic principles on which the oscillator operates. the paper also discusses the details of the oscillator, the procedure for preparation and measurement, and analyzes the source of errors. In addition several examples of the use of oscillator are given. (author)

  15. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  16. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  17. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  18. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  19. Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields

    OpenAIRE

    Hipp, Susanne

    2015-01-01

    This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...

  20. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  1. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    Science.gov (United States)

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2014-11-01

    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  2. Analysis of DCI cask drop test onto reinforced concrete pad

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Hattori, S.; Shirai, K.; Misumi, M.; Ozaki, S.

    1993-01-01

    In a cask-storage facility, a cask may be subjected to an impact load as a result of a free drop onto the floor because of cask mishandling. We performed drop tests of casks onto a reinforced concrete (RC) slab representing the floor of a facility as well as simulation analysis [Kato et al]. This paper describes the details of the FEM analysis and calculated results and compares them with the drop test results. (J.P.N.)

  3. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  4. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  5. Neutrino oscillations: present status and outlook

    International Nuclear Information System (INIS)

    Schwetz, T.

    2005-01-01

    In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)

  6. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  7. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  8. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  9. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  10. The dynamics of liquid drops and their interaction with solids of varying wettabilities

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    Microdrop impact and spreading phenomena are explored as an interface formation process using a recently developed computational framework. The accuracy of the results obtained from this framework for the simulation of high deformation free-surface flows is confirmed by a comparison with previous numerical studies for the large amplitude oscillations of free liquid drops. Our code\\'s ability to produce high resolution benchmark calculations for dynamic wetting flows is then demonstrated by simulating microdrop impact and spreading on surfaces of greatly differing wettability. The simulations allow one to see features of the process which go beyond the resolution available to experimental analysis. Strong interfacial effects which are observed at the microfluidic scale are then harnessed by designing surfaces of varying wettability that allow new methods of flow control to be developed. © 2012 American Institute of Physics.

  11. Pressure-drop and density-wave instability thresholds in boiling channels

    International Nuclear Information System (INIS)

    Gurgenci, H.; Yildirim, T.; Kakac, S.; Veziroglu, T.N.

    1987-01-01

    In this study, a criterion for linearized stability with respect to both the pressure-drop and the density-wave oscillations is developed for a single-channel upflow boiling system operating between constant pressures with upstream compressibility introduced through a surge tank. Two different two-phase flow models, namely a constant-property homogeneous flow model a variable-property drift-flux model, have been employed. The conservation equations for both models and the equations of surge tank dynamics are first linearized for small perturbation and the stability of the resulting set of equations for each model are examined by use of Nyquist plots. As a measure of the relative instability of the system, the amounts of the inlet throttling necessary to stabilize the system at particular operating points have been calculated. The results are compared with experimental findings. Comparisons show that the drift-flux formulation offers a simple and reliable way of determining the instability thresholds

  12. [Stability of physical state on compound hawthorn dropping pills].

    Science.gov (United States)

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  13. Theory of magnetostriction of electron-hole drops in Ge

    International Nuclear Information System (INIS)

    Markiewicz, R.S.

    1978-01-01

    A large mass of electron-hole liquid (γ drop) formed in a strain-induced potential well in Ge is known to distort its shape significantly in a magnetic field B > or approx. = 1 kG. It is shown in this paper that the shape change can be understood in detail as due to a ''recombination current'' of electron-hole pairs needed to replace those pairs which recombine in the drop volume. The Lorentz force deflects this current and produces a macroscopic dipole current loop inside the drop. The drop then changes shape to minimize its total energy, including magnetic, strain, and surface energies. While the drop usually flattens along the field direction, both para- and diamagnetic effects (elongated drops) are found to be possible, depending on excitation conditions, in accord with experiment. Similar effects are predicted to occur in small drops in unstrained Ge. This paper presents a magnetohydrodynamic theory of the magnetostriction which takes into account density variations which occur in the strain well and in high magnetic fields. A simpler theory is given for the special case in which the drop may be considered incompressible (small drops and moderate fields). Effects of carrier mass anisotropy and fluid viscosity are taken into consideration

  14. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  15. Allelic drop-out probabilities estimated by logistic regression

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....

  16. Motion of a drop driven by substrate vibrations

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2009-01-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.

  17. Career drop outs of young elite athletes

    Directory of Open Access Journals (Sweden)

    Petra Fišer

    2007-12-01

    Full Text Available The main problem of the study was to examine the characteristics of sports career drop outs of young elite sportswomen and their adaptation to the post-sport life. The sample included 20 ex-young elite sportswomen, who had brought their successful sport careers to an end before the age of 19. We used a modified interview about sports career termination (Cecić Erpič, 1998 for the investigation of the characteristics of their sports careers. To examine the caracteristics of sport careers we used frequency analysis and cluster analysis. The results showed that the participants mostly stated more than one reason for the termination of their career. The most common reasons for career termination were: lack of motivation, bad relations with trainers or co-competitors and dedication to school or education. After the end of a sports career most of the young sportswomen stayed actively in touch with sport, either as trainers, judges, or they remained engaged in sports for recreation.

  18. The viruses of wild pigeon droppings.

    Directory of Open Access Journals (Sweden)

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  19. GENDER, DEBT, AND DROPPING OUT OF COLLEGE.

    Science.gov (United States)

    Dwyer, Rachel E; Hodson, Randy; McLoud, Laura

    2013-02-01

    For many young Americans, access to credit has become critical to completing a college education and embarking on a successful career path. Young people increasingly face the trade-off of taking on debt to complete college or foregoing college and taking their chances in the labor market without a college degree. These trade-offs are gendered by differences in college preparation and support and by the different labor market opportunities women and men face that affect the value of a college degree and future difficulties they may face in repaying college debt. We examine these new realities by studying gender differences in the role of debt in the pivotal event of graduating from college using the 1997 cohort of the national longitudinal Survey of youth. In this article, we find that women and men both experience slowing and even diminishing probabilities of graduating when carrying high levels of debt, but that men drop out at lower levels of debt than do women. We conclude by theorizing that high levels of debt are one of the mechanisms that sort women and men into different positions in the social stratification system.

  20. That's one small drop for Mankind...

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In August, the members of an ISOLDE project called LOI88 successfully employed a new technique to study the interaction of metal ions in a liquid. It’s the first time that specific ions have been studied in a liquid medium - a technical achievement that opens promising doors for biochemistry.   In the heart of the LOI88 experiment: this is the point where the metal ions (from the left) enter the drop.  “More than half of the proteins in the human body contain metal ions such as magnesium, zinc and copper,” explains Monika Stachura, a biophysicist at the University of Copenhagen and the LOI88 project leader. “We know that these elements are crucial to a protein’s structure and function but their behaviour and interactions are not known in detail.” Detecting these ions directly in  a body-like environment is problematic as their closed atomic shells make them invisible to most spectroscopic techniques. However, using ...

  1. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  2. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  4. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  5. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  6. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  7. Oscillators that sync and swarm.

    Science.gov (United States)

    O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H

    2017-11-15

    Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

  8. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  9. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  10. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  11. Coding of Information in Limit Cycle Oscillators

    Science.gov (United States)

    Schleimer, Jan-Hendrik; Stemmler, Martin

    2009-12-01

    Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator’s phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.

  12. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  13. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  14. Low-frequency oscillations in Hall thrusters

    International Nuclear Information System (INIS)

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  15. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.; Omran, Hesham; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  16. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  17. Multipartite entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2009-01-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  18. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  19. Invariants of collective neutrino oscillations

    International Nuclear Information System (INIS)

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka; Yoshida, Takashi

    2011-01-01

    We consider the flavor evolution of a dense neutrino gas by taking into account both vacuum oscillations and self-interactions of neutrinos. We examine the system from a many-body perspective as well as from the point of view of an effective one-body description formulated in terms of the neutrino polarization vectors. We show that, in the single angle approximation, both the many-body picture and the effective one-particle picture possess several constants of motion. We write down these constants of motion explicitly in terms of the neutrino isospin operators for the many-body case and in terms of the polarization vectors for the effective one-body case. The existence of these constants of motion is a direct consequence of the fact that the collective neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians. This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian describing superconductivity. We point out the similarity between the collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian. The constants of motion manifest the exact solvability of the system. Borrowing the well established techniques of calculating the exact BCS spectrum, we present exact eigenstates and eigenvalues of both the many-body and the effective one-particle Hamiltonians describing the collective neutrino oscillations. For the effective one-body case, we show that spectral splits of neutrinos can be understood in terms of the adiabatic evolution of some quasiparticle degrees of freedom from a high-density region where they coincide with flavor eigenstates to the vacuum where they coincide with mass eigenstates. We write down the most general consistency equations which should be satisfied by the effective one-body eigenstates and show that they reduce to the spectral split consistency equations for the appropriate initial conditions.

  20. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  1. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  2. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  3. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  4. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  5. Superconducting low-noise oscillator

    International Nuclear Information System (INIS)

    Riebman, L.

    1992-01-01

    This patent describes a cryogenic oscillator having low phase noise and low noise. It comprises resonant circuit means formed of superconducting material for generating a signal at a desired frequency; linear amplifier means electrically connected to the resonant circuit means at first and second locations thereon; limiter means electrically connected to the resonant circuit means at a third location thereon; and buffer amplifier means for applying the signal generated by the resonant circuit means to a load and electrically connected to the resonant circuit means at a fourth location thereon. This patent also describes a method of minimizing phase noise and 1/f noise in an oscillator circuit of the type having a resonant circuit driving a load and at least a linear amplifier connected to the resonant circuit defining a closed loop having a loop gain greater than unity, and having a limiter for stabilizing the oscillator. It comprises connecting between the resonant circuit and the load a buffer amplifier and connecting the linear amplifier and the buffer amplifier to the resonant circuit

  6. Boltzmann map for quantum oscillators

    International Nuclear Information System (INIS)

    Streater, R.F.

    1987-01-01

    The authors define a map tau on the space of quasifree states of the CCR or CAR of more than one harmonic oscillator which increases entropy except at fixed points of tau. The map tau is the composition of a double stochastic map T*, and the quasifree reduction Q. Under mixing conditions on T, iterates of tau take any initial state to the Gibbs states, provided that the oscillator frequencies are mutually rational. They give an example of a system with three degrees of freedom with energies omega 1 , omega 2 , and omega 3 mutually irrational, but obeying a relation n 1 omega 1 + n 2 omega 2 = n 3 omega 3 , n/sub i/epsilon Z. The iterated Boltzmann map converges from an initial state rho to independent Gibbs states of the three oscillators at betas (inverse temperatures) β 1 , β 2 , β 3 obeying the equation n 1 omega 1 β 1 + n 2 omega 3 β 1 number. The equilibrium state can be rewritten as a grand canonical state. They show that for two, three, or four fermions we can get the usual rate equations as a special case

  7. Neutrino Oscillations:. a Phenomenological Approach

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  8. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  9. Total sleep time severely drops during adolescence.

    Directory of Open Access Journals (Sweden)

    Damien Leger

    Full Text Available UNLABELLED: Restricted sleep duration among young adults and adolescents has been shown to increase the risk of morbidities such as obesity, diabetes or accidents. However there are few epidemiological studies on normal total sleep time (TST in representative groups of teen-agers which allow to get normative data. PURPOSE: To explore perceived total sleep time on schooldays (TSTS and non schooldays (TSTN and the prevalence of sleep initiating insomnia among a nationally representative sample of teenagers. METHODS: Data from 9,251 children aged 11 to 15 years-old, 50.7% of which were boys, as part of the cross-national study 2011 HBSC were analyzed. Self-completion questionnaires were administered in classrooms. An estimate of TSTS and TSTN (week-ends and vacations was calculated based on specifically designed sleep habits report. Sleep deprivation was estimated by a TSTN - TSTS difference >2 hours. Sleep initiating nsomnia was assessed according to International classification of sleep disorders (ICSD 2. Children who reported sleeping 7 hours or less per night were considered as short sleepers. RESULTS: A serious drop of TST was observed between 11 yo and 15 yo, both during the schooldays (9 hours 26 minutes vs. 7 h 55 min.; p<0.001 and at a lesser extent during week-ends (10 h 17 min. vs. 9 h 44 min.; p<0.001. Sleep deprivation concerned 16.0% of chidren aged of 11 yo vs. 40.5% of those of 15 yo (p<0.001. Too short sleep was reported by 2.6% of the 11 yo vs. 24.6% of the 15 yo (p<0.001. CONCLUSION: Despite the obvious need for sleep in adolescence, TST drastically decreases with age among children from 11 to 15 yo which creates significant sleep debt increasing with age.

  10. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  11. Nonlocal synchronization in nearest neighbour coupled oscillators

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.

    2002-02-01

    We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)

  12. Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources

    International Nuclear Information System (INIS)

    Mena, Olga; Mocioiu, Irina; Razzaque, Soebur

    2007-01-01

    High-energy neutrinos are expected to be produced in a variety of astrophysical sources as well as in optically thick hidden sources. We explore the matter-induced oscillation effects on emitted neutrino fluxes of three different flavors from the latter class. We use the ratio of electron and tau induced showers to muon tracks, in upcoming neutrino telescopes, as the principal observable in our analysis. This ratio depends on the neutrino energy, density profile of the sources, and on the oscillation parameters. The largely unknown flux normalization drops out of our calculation and only affects the statistics. For the current knowledge of the oscillation parameters we find that the matter-induced effects are non-negligible and the enhancement of the ratio from its vacuum value takes place in an energy range where the neutrino telescopes are the most sensitive. Quantifying the effect would be useful to learn about the astrophysics of the sources as well as the oscillation parameters. If the neutrino telescopes mostly detect diffuse neutrinos without identifying their sources, then any deviation of the measured flux ratios from the vacuum expectation values would be most naturally explained by a large population of hidden sources for which matter-induced neutrino oscillation effects are important

  13. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    Science.gov (United States)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  14. Evaluation of Sodium Sulphacetamide drops in the Treatment of ...

    African Journals Online (AJOL)

    Sodium sulphacetamide eye drops had been used successfully in the past in the treatment of ophthalmia neonatorium (ON) but its use has decreased remarkably in recent time. The efficacy of 10 percent sodium sulphacetamide eye drops in the treatment of ON was prospectively evaluated in 68 neonates seen in our ...

  15. Summary of Skoda JS rod drop measurements analysis

    International Nuclear Information System (INIS)

    Svarny, J.; Krysl, V.

    1999-01-01

    A summary is presented of the Skoda JS rod drop reactivity measurements analysis provided during last two years based on control rod worth measurements by the outer ion chambers. Standard analysis based on comparisons of dynamics macrocode MOBY-DICK-SK and experimental data is extended to the 8-th group delayed neutron structure and new features of rod drop process are investigated. (author)

  16. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  17. Why Did They Not Drop Out? Narratives from Resilient Students

    Science.gov (United States)

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide

    2009-01-01

    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  18. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  19. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  20. From nuclear reactions to liquid-drop collisions

    International Nuclear Information System (INIS)

    Menchaca R, A.; Huidobro, F.; Martinez D, A.; Michaelian, K.; Perez, A.; Rodriguez, V.; Carjan, N.

    1997-01-01

    A review of the experimental and theoretical situation in coalescence and fragmentation studies of binary liquid-drop collisions is given, putting in perspective our own contributions, which include experiments with mercury and oil drops and the application of a nuclear reaction model, specifically modified by us for the macroscopic case. (Author)

  1. Student Drop-Out from German Higher Education Institutions

    Science.gov (United States)

    Heublein, Ulrich

    2014-01-01

    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  2. Fundamentals and applications of fast micro-drop impact

    NARCIS (Netherlands)

    Visser, C.W.

    2014-01-01

    3D-printing, biofabrication, diesel engines, and spray cleaning all depend on controlled drop impact. However, surprisingly, these drops have received scarce attention so far. This is mainly due to their small size and high impact velocity, which makes visualizing the impact a challenge. This thesis

  3. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Generic versus brand-name North American topical glaucoma drops.

    Science.gov (United States)

    Mammo, Zaid N; Flanagan, John G; James, David F; Trope, Graham E

    2012-02-01

    To determine whether brand-name glaucoma drops differ from generic equivalents in bottle design, viscosity, surface tension, and volume in North America. Experimental study. We studied 5 bottles each of 11 kinds of glaucoma drops. Density-based calculations of drop volume were assessed using 0.1 mg analytic balance. Viscosity was measured using rotational rheometery. Bottle tip diameter was measured using 0.05 mm Vernier calipers. Surface tension was measured using a Fisher Scientific (Ottawa, ON) tensiometer. For the American brand-name Timoptic XE, the average drop volume was 38 ± 3.1 μL versus 24 ± 1.5 μL of Timolol GFS (p brand-name Timoptic XE, the average drop volume was 42 ± 4.0 μL versus 25 ± 2 μL of timolol maleate EX (p brand-name Timoptic drop volume was 28 ± 1.4 μL versus 35 ± 1.9 μL Apo-Timop (p brand-name Timoptic delivered significantly smaller drop volumes than generic Apo-Timop. Careful consideration should be given to drop viscosity and bottle design when generic ophthalmic products are evaluated for interchangeability and market entry. Copyright © 2012 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  5. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  6. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  7. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1987-01-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests confirmed the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. This report presents the data generated and the results obtained from a series of four drop tests that included two drops with the test assembly in the vertical position and two drops with the assembly in the horizontal position

  8. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  9. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.

    Science.gov (United States)

    Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi

    2014-11-21

    We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.

  10. Nonlinear Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor Based on the Minimum Weights of RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper is concerned with the problem of the nonlinear dynamic surface control (DSC of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results.

  11. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  12. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  13. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  14. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  15. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  16. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  17. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  18. Measurement of an Evaporating Drop on a Reflective Substrate

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  19. Inverse Leidenfrost effect: self-propelling drops on a bath

    Science.gov (United States)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team

    2017-11-01

    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  20. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  1. Application of Proteomics to the Study of Pollination Drops

    Directory of Open Access Journals (Sweden)

    Natalie Prior

    2013-04-01

    Full Text Available Premise of the study: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. Methods: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar, Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper, Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir, Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. Results: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. Discussion: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

  2. Modeling of Coupled Chaotic Oscillators

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1999-01-01

    Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society

  3. Magnus approximation in neutrino oscillations

    International Nuclear Information System (INIS)

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  4. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  5. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-01-01

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  6. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  7. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  8. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  9. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  10. Lepton asymmetry and neutrino oscillations interplay

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg [Bulgarian Academy of Sciences, Institute of Astronomy and NAO (Bulgaria)

    2013-03-15

    We discuss the interplay between lepton asymmetry L and {nu} oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant {nu} oscillations in the early Universe is numerically analyzed. L cosmological effects through {nu} oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with {nu}{sub e}{r_reversible}{nu}{sub s} oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile {nu} mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global {nu} data.

  11. An analysis of pipe degradation shape using potential drop method

    International Nuclear Information System (INIS)

    Jegal, S.; Lee, S. H.

    1999-01-01

    The Potential Drop (PD) method, one of NDE (Non-Destructive Evaluation) method is used to analyze the thickness distribution of pipes degraded by FAC (Flow Accelerated Corrosion). A DCPD (Direct Current Potential Drop) system which can measure PD for direct current was made, and the specimens with line defects and cylinder type defects have been used for experiments to prove the theory of Potential Drop method and to find out the effects of each factors. The experiment to find out defect distributions has been performed and it is found that PD method can analyze almost correct position of defects

  12. Ready-made allogeneic ABO-specific serum eye drops

    DEFF Research Database (Denmark)

    Harritshøj, Lene Holm; Nielsen, Connie; Ullum, Henrik

    2014-01-01

    serum treatment. CONCLUSION: Ready-made ABO-identical allogeneic serum eye drops were straightforwardly produced, quality-assured and registered as a safe standard blood product for the treatment of certain cases of severe dry eye disease. Therapeutic efficacy was comparable to previous reports......PURPOSE: To overcome problems and delays of the preparation of autologous serum eye drops, a production line of ABO-specific allogeneic serum eye drops from male blood donors was set up in a blood bank. Feasibility, clinical routine, safety and efficacy were evaluated in a cohort of patients...

  13. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  14. Analysis of an Electrostatic MEMS Squeeze-film Drop Ejector

    Directory of Open Access Journals (Sweden)

    Edward P. Furlani

    2009-10-01

    Full Text Available We present an analysis of an electrostatic drop-on-demand MEMS fluid ejector. The ejector consists of a microfluidic chamber with a piston that is suspended a few microns beneath a nozzle plate. A drop is ejected when a voltage is applied between the orifice plate and the piston. This produces an electrostatic force that moves the piston towards the nozzle. The moving piston generates a squeeze-film pressure distribution that causes drop ejection. We discuss the operating physics of the ejector and present a lumped-element model for predicting its performance. We calibrate the model using coupled structural-fluidic CFD analysis.

  15. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  16. A Survey on Forced Oscillations in Power System

    OpenAIRE

    Ghorbaniparvar, Mohammadreza

    2016-01-01

    Oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations caught many attentions. Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system ...

  17. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  18. Chimera States in Mechanical Oscillator Networks

    OpenAIRE

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine; Hallatschek, Oskar

    2013-01-01

    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature uses to orchestrate essential processes of life, such as the beating of the heart. Although it was long thought that synchrony and disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years have revealed the intriguing possibility of “chimera states,” in which the symmetry of the oscillator population is broken into...

  19. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  20. Recent Progress in Silicon Mems Oscillators

    Science.gov (United States)

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  1. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  2. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  3. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  4. Energy measurements from betatron oscillations

    International Nuclear Information System (INIS)

    Himel, T.; Thompson, K.

    1989-03-01

    In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig

  5. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  6. Stochastic Kuramoto oscillators with discrete phase states.

    Science.gov (United States)

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  7. Optimal parameters uncoupling vibration modes of oscillators

    Science.gov (United States)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  8. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  9. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  10. Theory of a quantum anharmonic oscillator

    International Nuclear Information System (INIS)

    Carusotto, S.

    1988-01-01

    The time evolution of a quantum single-quartic anharmonic oscillator is considered. The study is carried on in operational form by use of the raising and lowering operators of the oscillator. The equation of motion is solved by application of a new integration method based on iteration techniques, and the rigorous solutions that describe the time development of the displacement and momentum operators of the oscillator are obtained. These operators are presented as a Laplace transform and a subsequent inverse Laplace transform of suitable functionals. Finally, the results are employed to describe the time evolution of a quasiclassical anharmonic oscillator

  11. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  12. Oscillations of Difference Equations with Several Oscillating Coefficients

    Directory of Open Access Journals (Sweden)

    L. Berezansky

    2014-01-01

    Full Text Available We study the oscillatory behavior of the solutions of the difference equation Δx(n+∑i=1mpi(nx(τi(n=0,n∈N0[∇xn-∑i=1mpinxσin=0, n∈N] where (pi(n, 1≤i≤m are real sequences with oscillating terms, τi(n[σi(n], 1≤i≤m are general retarded (advanced arguments, and Δ[∇] denotes the forward (backward difference operator Δx(n=x(n+1-x(n[∇x(n=x(n-x(n-1]. Examples illustrating the results are also given.

  13. Liquid drops attract or repel by the inverted Cheerios effect.

    Science.gov (United States)

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  14. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  15. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  16. Modeling merging behavior at lane drops : [tech transfer summary].

    Science.gov (United States)

    2015-02-01

    A better understanding of the merging behavior of drivers will lead : to the development of better lane-drop traffic-control plans and : strategies, which will provide better guidance to drivers for safer : merging.

  17. Determination of the viscosity by spherical drop using nuclear tecniques

    International Nuclear Information System (INIS)

    Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.

    1983-01-01

    The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt

  18. Drop performance test and evaluation for HANARO shutoff units

    International Nuclear Information System (INIS)

    Jung, Y. H.; Cho, Y. K.; Lee, J. H.; Choi, Y. S.; Woo, J. S.

    2004-01-01

    The function of the shutoff units of the HANARO is to rapidly insert the shutoff rod into the reactor core for safe shutdown of reactor. This paper describes drop performance test and evaluation for a shutoff unit for the technical verification of lifetime extension and localization of the HANARO shutoff units. We have performed preliminary drop performance tests for a shutoff unit at 1/2-core test loop and analyzed through the comparison with the test results performed during design verification test and the results of the periodic performance test in HANARO. It shows that the results of the local fabrication, installation and alignment for the shutoff unit meet the basic performance requirements, Furthermore, the performance evaluation method of the periodic drop test of the HANARO shutoff units is a conservative method comparing with the real drop time

  19. The effect of dropping impact on bruising pomegranate fruit

    Directory of Open Access Journals (Sweden)

    M Mohammad Shafie

    2016-04-01

    Full Text Available Introduction: The pomegranate journey from orchard to supermarket is very complex and pomegranates are subjected to the variety of static and dynamic loads that could result in this damage and bruise occurring. Bruise area and bruise volume are the most important parameters to evaluate fruit damage occurred in harvest and postharvest stages. The bruising is defined as damage to fruit flesh usually with no abrasion of the peel. The two different types of dynamic loading which can physically cause fruit bruising are impact and vibration. The impact and vibration loadings may occur during picking or sorting as the pomegranates are dropped into storage bins and during transportation. The focus of this work was on the impact loading as this appeared to be the most prevalent. In view of the limitations of conventional testing methods (ASTM D3332 Standard Test Methods for Mechanical Shock Fragility of Products, the method and procedure for determining dropping bruise boundary of fruit were also established by adapting free-fall dropping tests. Materials and Methods: After the ‘Malas-e-Saveh’ pomegranates had been selected, they were numbered, and the weight and dimension of each sample were measured and recorded. Firmness in cheek region of each fruit was also measured. Fruit firmness was determined by measuring the maximum force during perforating the sample to a depth of 10 mm at a velocity of 100 mm min-1 with an 8 mm diameter cylindrical penetrometer mounted onto a STM-5 Universal Testing Machine (SANTAM, Design CO. LTD., England. Free-fall dropping tests with a series of drop heights (6, 7, 10, 15, 30 and 60 cm were conducted on fresh ‘Malas-e-Saveh’ pomegranates. Three samples were used for each dropping height, and each sample was subjected to impact on two different positions. Before the test was started, it was necessary to control the sample's drop position. The cheek of sample was placed on the fruit holder. An aluminum plate mounted

  20. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  1. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  2. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  3. Dropped fuel damage prediction techniques and the DROPFU code

    International Nuclear Information System (INIS)

    Mottershead, K.J.; Beardsmore, D.W.; Money, G.

    1995-01-01

    During refuelling, and fuel handling, at UK Advanced Gas Cooled Reactor (AGR) stations it is recognised that the accidental dropping of fuel is a possibility. This can result in dropping individual fuel elements, a complete fuel stringer, or a whole assembly. The techniques for assessing potential damage have been developed over a number of years. This paper describes how damage prediction techniques have subsequently evolved to meet changing needs. These have been due to later fuel designs and the need to consider drops in facilities outside the reactor. The paper begins by briefly describing AGR fuel and possible dropped fuel scenarios. This is followed by a brief summary of the damage mechanisms and the assessment procedure as it was first developed. The paper then describes the additional test work carried out, followed by the detailed numerical modelling. Finally, the paper describes the extensions to the practical assessment methods. (author)

  4. Bird nesting and droppings control on highway structures.

    Science.gov (United States)

    2010-10-01

    This report provides a comprehensive literature survey of permanent and temporary deterrents to nesting and roosting, a : discussion of risks to human health and safety from exposure to bird nests and droppings and recommended protective measures, : ...

  5. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  6. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.; Li, E. Q.; Thoroddsen, Sigurdur T

    2009-01-01

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  7. Rotavirus and the Vaccine (Drops) to Prevent It

    Science.gov (United States)

    ... Resources Maternal Immunization Resources Related Links Vaccines & Immunizations Rotavirus and the Vaccine (Drops) to Prevent It Language: ... the vaccine. Why should my child get the rotavirus vaccine? The rotavirus vaccine: Protects your child from ...

  8. 24 hydrocarbon degradation in poultry droppings and cassava peels

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels ... shift in the composition of bacterial community to ..... Oil and Gas Journal. pp. ... Prentice-Hall of India Private Ltd.

  9. Drop-out rate and drop-out reasons among promising Norwegian track and field athletes: a 25 year study

    OpenAIRE

    Enoksen, Eystein

    2011-01-01

    © Eystein Enoksen, 2011 The aim of the present study was to identify the total drop-out rate and drop-out reasons for a group of promising track and field athletes. 202 males and 98 females, aged 16 ±2 years, took part in this study. Questionnaires were administrated in 1975, 1983, and 1989. In-depth interviews were conducted in 1989 and in 2000. A chi-square test was administrated to test the difference between males and females dropping out and to test the most significant reasons influe...

  10. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a

  11. Analysis of the rod drop accident for Angra-1

    International Nuclear Information System (INIS)

    Veloso, M.A.; Atayde, P.A.

    1989-01-01

    The aim of this work is to present a rod drop accident analysis for the third cycle of the Angra-1 nuclear power plant operating in the automatic control mode. In this analysis all possible configurations for dropped rods caused by a single failure in the controller circuits have been considered. The dropped rod worths, power distributions and excore detector tilts were determined by using the Siemens/KWU neutronic code system, in particular the MEDIUM2, PINPOW and DETILT codes. The transient behaviour of the plant during the rod drop event was simulated with the SACI2/MOD0 code, developed at CDTN. Determinations related to the DNBR design limit were conducted by utilizing the CDTN PANTERA-1P subchannel code. The transient analysis indicated that for dropped rod worths greater than about 425 pcm reactor trip from negative neutron flux rate will take place independently of core conditions. In the range from 0 to 425 pcm large power overshoots may occur as a consequence of the automatic control system action. The magnitude of the maximum power peaking during the event increases with the dropped rod worth, as far as the control bank is able to compensate the initial reactivity decrease. Thermal-hydraulic evaluations carried out with the PANTERA-1P code show that for all the relevant dropped rod worths the minimum DNBR will remain above a limit value of 1.365. Even if this conservative limit is met, the calculated nuclear power peaking factors, F N AH , will be at least 6% higher than the allowable F N AH -values. Therefore, the DNBR design margin will be preserved at the event of rod drop. (author)

  12. Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....

  13. Air-drop blood supply in the French Army.

    Science.gov (United States)

    Javaudin, Olivier; Baillon, A; Varin, N; Martinaud, C; Pouget, T; Civadier, C; Clavier, B; Sailliol, A

    2018-02-12

    Haemorrhagic shock remains the leading cause of preventable death in overseas and austere settings. Transfusion of blood components is critical in the management of this kind of injury. For French naval and ground military units, this supply often takes too long considering the short shelf-life of red blood cell concentrates (RBCs) and the limited duration of transport in cooling containers (five to six days). Air-drop supply could be an alternative to overcome these difficulties on the condition that air-drop does not cause damage to blood units. After a period of study and technical development of packaging, four air-drops at medium and high altitudes were performed with an aircraft of the French Air Force. After this, one air-drop was carried out at medium altitude with 10 RBCs and 10 French lyophilised plasma (FLYP). A second air-drop was performed with a soldier carrying one FLYP unit at 12 000 feet. For these air-drops real blood products were used, and quality control testing and temperature monitoring were performed. The temperatures inside the containers were within the normal ranges. Visual inspection indicated that transfusion packaging and dumped products did not undergo deterioration. The quality control data on RBCs and FLYP, including haemostasis, suggested no difference before and after air-drop. The operational implementation of the air-drop of blood products seems to be one of the solutions for the supply of blood products in military austere settings or far forward on battlefield, allowing safe and early transfusion. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    OpenAIRE

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of lo...

  15. Active structuring of colloidal armour on liquid drops

    OpenAIRE

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  16. Nectar and pollination drops: how different are they?

    Science.gov (United States)

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  17. Circuit oscillations in odor perception and memory.

    Science.gov (United States)

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  18. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  19. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1986-09-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  20. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.