WorldWideScience

Sample records for surface-based anatomical models

  1. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Honegger, Katharina; Zefferer, Marcel; Neufeld, Esra; Oberle, Michael; Szczerba, Dominik; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Kainz, Wolfgang; Guag, Joshua W [US Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 (United States); Hahn, Eckhart G; Rascher, Wolfgang; Janka, Rolf; Bautz, Werner [Universitaetsklinikum Erlangen, Friedrich-Alexander Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Chen, Ji; Shen, Jianxiang [Department of Electrical and Computer Engineering, The University of Houston, Houston, TX 77204 (United States); Kiefer, Berthold; Schmitt, Peter; Hollenbach, Hans-Peter [Siemens Healthcare, MR-Application Development, 91052 Erlangen (Germany); Kam, Anthony [Department of Imaging, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224 (United States)], E-mail: christ@itis.ethz.ch

    2010-01-21

    The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community. (note)

  2. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations

    International Nuclear Information System (INIS)

    Christ, Andreas; Honegger, Katharina; Zefferer, Marcel; Neufeld, Esra; Oberle, Michael; Szczerba, Dominik; Kuster, Niels; Kainz, Wolfgang; Guag, Joshua W; Hahn, Eckhart G; Rascher, Wolfgang; Janka, Rolf; Bautz, Werner; Chen, Ji; Shen, Jianxiang; Kiefer, Berthold; Schmitt, Peter; Hollenbach, Hans-Peter; Kam, Anthony

    2010-01-01

    The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community. (note)

  3. NOTE: The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations

    Science.gov (United States)

    Christ, Andreas; Kainz, Wolfgang; Hahn, Eckhart G.; Honegger, Katharina; Zefferer, Marcel; Neufeld, Esra; Rascher, Wolfgang; Janka, Rolf; Bautz, Werner; Chen, Ji; Kiefer, Berthold; Schmitt, Peter; Hollenbach, Hans-Peter; Shen, Jianxiang; Oberle, Michael; Szczerba, Dominik; Kam, Anthony; Guag, Joshua W.; Kuster, Niels

    2010-01-01

    The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community.

  4. Reference Man anatomical model

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  5. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  6. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality.

    Science.gov (United States)

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio; Passamonti, Luca

    2017-04-01

    The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project.Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal-temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal-parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. © The Author (2017). Published by Oxford University Press.

  7. Anatomical modeling of the bronchial tree

    Science.gov (United States)

    Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian

    2010-02-01

    The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.

  8. Parametric Anatomical Modeling: A method for modeling the anatomical layout of neurons and their projections

    Directory of Open Access Journals (Sweden)

    Martin ePyka

    2014-09-01

    Full Text Available Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM, to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: i the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, ii the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort.

  9. Parametric Anatomical Modeling: a method for modeling the anatomical layout of neurons and their projections.

    Science.gov (United States)

    Pyka, Martin; Klatt, Sebastian; Cheng, Sen

    2014-01-01

    Computational models of neural networks can be based on a variety of different parameters. These parameters include, for example, the 3d shape of neuron layers, the neurons' spatial projection patterns, spiking dynamics and neurotransmitter systems. While many well-developed approaches are available to model, for example, the spiking dynamics, there is a lack of approaches for modeling the anatomical layout of neurons and their projections. We present a new method, called Parametric Anatomical Modeling (PAM), to fill this gap. PAM can be used to derive network connectivities and conduction delays from anatomical data, such as the position and shape of the neuronal layers and the dendritic and axonal projection patterns. Within the PAM framework, several mapping techniques between layers can account for a large variety of connection properties between pre- and post-synaptic neuron layers. PAM is implemented as a Python tool and integrated in the 3d modeling software Blender. We demonstrate on a 3d model of the hippocampal formation how PAM can help reveal complex properties of the synaptic connectivity and conduction delays, properties that might be relevant to uncover the function of the hippocampus. Based on these analyses, two experimentally testable predictions arose: (i) the number of neurons and the spread of connections is heterogeneously distributed across the main anatomical axes, (ii) the distribution of connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and CA3-CA3. Models created by PAM can also serve as an educational tool to visualize the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible, parameter space renders PAM suitable to analyse allometric and evolutionary factors in networks and to model the complexity of real networks with comparatively little effort.

  10. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  11. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    Science.gov (United States)

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models.

  12. A Response Surface-Based Cost Model for Wind Farm Design

    International Nuclear Information System (INIS)

    Zhang Jie; Chowdhury, Souma; Messac, Achille; Castillo, Luciano

    2012-01-01

    A Response Surface-Based Wind Farm Cost (RS-WFC) model is developed for the engineering planning of wind farms. The RS-WFC model is developed using Extended Radial Basis Functions (E-RBF) for onshore wind farms in the U.S. This model is then used to explore the influences of different design and economic parameters, including number of turbines, rotor diameter and labor cost, on the cost of a wind farm. The RS-WFC model is composed of three components that estimate the effects of engineering and economic factors on (i) the installation cost, (ii) the annual Operation and Maintenance (O and M) cost, and (iii) the total annual cost of a wind farm. The accuracy of the cost model is favorably established through comparison with pertinent commercial data. The final RS-WFC model provided interesting insights into cost variation with respect to critical engineering and economic parameters. In addition, a newly developed analytical wind farm engineering model is used to determine the power generated by the farm, and the subsequent Cost of Energy (COE). This COE is optimized for a unidirectional uniform “incoming wind speed” scenario using Particle Swarm Optimization (PSO). We found that the COE could be appreciably minimized through layout optimization, thereby yielding significant cost savings. - Highlights: ► We present a Response Surface-Based Wind Farm Cost (RS-WFC) model for wind farm design. ► The model could estimate installation cost, Operation and Maintenance cost, and total annual cost of a wind farm. ► The Cost of Energy is optimized using Particle Swarm Optimization. ► Layout optimization could yield significant cost savings.

  13. From medical imaging data to 3D printed anatomical models.

    Science.gov (United States)

    Bücking, Thore M; Hill, Emma R; Robertson, James L; Maneas, Efthymios; Plumb, Andrew A; Nikitichev, Daniil I

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  14. Surface-based geometric modelling using teaching trees for advanced robots

    International Nuclear Information System (INIS)

    Nakamura, Akira; Ogasawara, Tsukasa; Tsukune, Hideo; Oshima, Masaki

    2000-01-01

    Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)

  15. Anatomical models for space radiation applications: an overview.

    Science.gov (United States)

    Atwell, W

    1994-10-01

    Extremely detailed computerized anatomical male (CAM) and female (CAF) models that have been developed for use in space radiation analyses are discussed and reviewed. Recognizing that the level of detail may currently be inadequate for certain radiological applications, one of the purposes of this paper is to elicit specific model improvements or requirements from the scientific user-community. Methods and rationale are presented which describe the approach used in the Space Shuttle program to extrapolate dosimetry measurements (skin doses) to realistic astronaut body organ doses. Several mission scenarios are presented which demonstrate the utility of the anatomical models for obtaining specific body organ exposure estimates and can be used for establishing cancer morbidity and mortality risk assessments. These exposure estimates are based on the trapped Van Allen belt and galactic cosmic radiation environment models and data from the major historical solar particle events.

  16. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  17. 3D reconstruction of carotid atherosclerotic plaque: comparison between spatial compound ultrasound models and anatomical models

    DEFF Research Database (Denmark)

    Lind, Bo L.; Fagertun, Jens; Wilhjelm, Jens E.

    2007-01-01

    compound ultrasound (US) and subsequently sliced and photographed to produce a 3D anatomical data set. Outlines in the ultrasound data were found by means of active contours and combined into 10 3D ultrasound models. The plaque regions of the anatomical photographs were outlined manually and then combined...... into 10 3D anatomical models. The volumes of the anatomical models correlated with the volume found by a water displacement method (r = 0.95), except for an offset. The models were compared in three ways. Visual inspection showed quite good agreement between the models. The volumes of the ultrasound...

  18. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  19. From medical imaging data to 3D printed anatomical models.

    Directory of Open Access Journals (Sweden)

    Thore M Bücking

    Full Text Available Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  20. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  1. A propositional representation model of anatomical and functional brain data.

    Science.gov (United States)

    Maturana, Pablo; Batrancourt, Bénédicte

    2011-01-01

    Networks can represent a large number of systems. Recent advances in the domain of networks have been transferred to the field of neuroscience. For example, the graph model has been used in neuroscience research as a methodological tool to examine brain networks organization, topology and complex dynamics, as well as a framework to test the structure-function hypothesis using neuroimaging data. In the current work we propose a graph-theoretical framework to represent anatomical, functional and neuropsychological assessment instruments information. On the one hand, interrelationships between anatomic elements constitute an anatomical graph. On the other hand, a functional graph contains several cognitive functions and their more elementary cognitive processes. Finally, the neuropsychological assessment instruments graph includes several neuropsychological tests and scales linked with their different sub-tests and variables. The two last graphs are connected by relations of type "explore" linking a particular instrument with the cognitive function it explores. We applied this framework to a sample of patients with focal brain damage. Each patient was related to: (i) the cerebral entities injured (assessed with structural neuroimaging data) and (ii) the neusopsychological assessment tests carried out (weight by performance). Our model offers a suitable platform to visualize patients' relevant information, facilitating the representation, standardization and sharing of clinical data. At the same time, the integration of a large number of patients in this framework will make possible to explore relations between anatomy (injured entities) and function (performance in different tests assessing different cognitive functions) and the use of neurocomputational tools for graph analysis may help diagnostic and contribute to the comprehension of neural bases of cognitive functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Statistical, Morphometric, Anatomical Shape Model (Atlas) of Calcaneus

    Science.gov (United States)

    Melinska, Aleksandra U.; Romaszkiewicz, Patryk; Wagel, Justyna; Sasiadek, Marek; Iskander, D. Robert

    2015-01-01

    The aim was to develop a morphometric and anatomically accurate atlas (statistical shape model) of calcaneus. The model is based on 18 left foot and 18 right foot computed tomography studies of 28 male individuals aged from 17 to 62 years, with no known foot pathology. A procedure for automatic atlas included extraction and identification of common features, averaging feature position, obtaining mean geometry, mathematical shape description and variability analysis. Expert manual assistance was included for the model to fulfil the accuracy sought by medical professionals. The proposed for the first time statistical shape model of the calcaneus could be of value in many orthopaedic applications including providing support in diagnosing pathological lesions, pre-operative planning, classification and treatment of calcaneus fractures as well as for the development of future implant procedures. PMID:26270812

  3. Anatomical model for dissection in corpses of the palate vascularization

    Directory of Open Access Journals (Sweden)

    Pinheiro Neto, Carlos Diógenes

    2010-03-01

    Full Text Available Introduction: The main artery that supplies the mucoperiosteum of the hard palate is the greater palatine artery. The knowledge detailed of the vascular anatomy of the palate and, in special, of the region of the greater palatine foramen is important for prevention of lesions vascular during procedures in this region. Among these procedures, it included the making of shreds for correction of failures in the hard palate, soft palate and cranial base. Objective: To develop an anatomical model that can illustrate the endoscopic anatomy of the greater palatine foramen and analyze the technical of injection intra vascular of colored silicone is sufficient for fill the lower arterial branches than irrigate the hard palate. Method: The form of study was experimental through the endoscopic dissection of 10 greater palatine arteries in five heads of corpses prepared with injection intra vascular of colored silicone. Results: Of the total of 10 arteries dissected, 8 properly were colored by the technique of injection employed. What corresponds to an efficacy of 80%. Conclusion: The anatomical model showed to be a feasible approach for the endoscopic study of the greater palatine foramen, being the injection of efficient silicone in the terminals vessels coloring in 80% of the cases.

  4. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures.

    Science.gov (United States)

    Rettmann, Maryam E; Holmes, David R; Kwartowitz, David M; Gunawan, Mia; Johnson, Susan B; Camp, Jon J; Cameron, Bruce M; Dalegrave, Charles; Kolasa, Mark W; Packer, Douglas L; Robb, Richard A

    2014-02-01

    In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration

  5. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  6. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible

  7. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  8. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 2. Model evaluation

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    The objective of the present paper was to evaluate a dynamic mechanistic model for growing and fattening pigs presented in a companion paper. The model predicted the rate of protein and fat deposition (chemical composition), rate of tissue deposition (anatomical composition) and performance of pigs

  9. Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography.

    Directory of Open Access Journals (Sweden)

    Matti Stenroos

    Full Text Available MEG/EEG source imaging is usually done using a three-shell (3-S or a simpler head model. Such models omit cerebrospinal fluid (CSF that strongly affects the volume currents. We present a four-compartment (4-C boundary-element (BEM model that incorporates the CSF and is computationally efficient and straightforward to build using freely available software. We propose a way for compensating the omission of CSF by decreasing the skull conductivity of the 3-S model, and study the robustness of the 4-C and 3-S models to errors in skull conductivity. We generated dense boundary meshes using MRI datasets and automated SimNIBS pipeline. Then, we built a dense 4-C reference model using Galerkin BEM, and 4-C and 3-S test models using coarser meshes and both Galerkin and collocation BEMs. We compared field topographies of cortical sources, applying various skull conductivities and fitting conductivities that minimized the relative error in 4-C and 3-S models. When the CSF was left out from the EEG model, our compensated, unbiased approach improved the accuracy of the 3-S model considerably compared to the conventional approach, where CSF is neglected without any compensation (mean relative error 40%. The error due to the omission of CSF was of the same order in MEG and compensated EEG. EEG has, however, large overall error due to uncertain skull conductivity. Our results show that a realistic 4-C MEG/EEG model can be implemented using standard tools and basic BEM, without excessive workload or computational burden. If the CSF is omitted, compensated skull conductivity should be used in EEG.

  10. [3D modeling of the female pelvis by Computer-Assisted Anatomical Dissection: Applications and perspectives].

    Science.gov (United States)

    Balaya, V; Uhl, J-F; Lanore, A; Salachas, C; Samoyeau, T; Ngo, C; Bensaid, C; Cornou, C; Rossi, L; Douard, R; Bats, A-S; Lecuru, F; Delmas, V

    2016-05-01

    To achieve a 3D vectorial model of a female pelvis by Computer-Assisted Anatomical Dissection and to assess educationnal and surgical applications. From the database of "visible female" of Visible Human Project(®) (VHP) of the "national library of medicine" NLM (United States), we used 739 transverse anatomical slices of 0.33mm thickness going from L4 to the trochanters. The manual segmentation of each anatomical structures was done with Winsurf(®) software version 4.3. Each anatomical element was built as a separate vectorial object. The whole colored-rendered vectorial model with realistic textures was exported in 3Dpdf format to allow a real time interactive manipulation with Acrobat(®) pro version 11 software. Each element can be handled separately at any transparency, which allows an anatomical learning by systems: skeleton, pelvic organs, urogenital system, arterial and venous vascularization. This 3D anatomical model can be used as data bank to teach of the fundamental anatomy. This 3D vectorial model, realistic and interactive constitutes an efficient educational tool for the teaching of the anatomy of the pelvis. 3D printing of the pelvis is possible with the new printers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Using 3D Modeling Techniques to Enhance Teaching of Difficult Anatomical Concepts.

    Science.gov (United States)

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-04-01

    Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on three-dimensional (3D) reconstructions from actual patient data. A total of 196 models of anatomical structures from 16 anonymized computed tomography datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen, and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomical variation among patients. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. [Establishment of A Clinical Prediction Model of Prolonged Air Leak 
after Anatomic Lung Resection].

    Science.gov (United States)

    Wu, Xianning; Xu, Shibin; Ke, Li; Fan, Jun; Wang, Jun; Xie, Mingran; Jiang, Xianliang; Xu, Meiqing

    2017-12-20

    Prolonged air leak (PAL) after anatomic lung resection is a common and challenging complication in thoracic surgery. No available clinical prediction model of PAL has been established in China. The aim of this study was to construct a model to identify patients at increased risk of PAL by using preoperative factors exclusively. We retrospectively reviewed clinical data and PAL occurrence of patients after anatomic lung resection, in department of thoracic surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, from January 2016 to October 2016. 359 patients were in group A, clinical data including age, body mass index (BMI), gender, smoking history, surgical methods, pulmonary function index, pleural adhesion, pathologic diagnosis, side and site of resected lung were analyzed. By using univariate and multivariate analysis, we found the independent predictors of PAL after anatomic lung resection and subsequently established a clinical prediction model. Then, another 112 patients (group B), who underwent anatomic lung resection in different time by different team, were chosen to verify the accuracy of the prediction model. Receiver-operating characteristic (ROC) curve was constructed using the prediction model. Multivariate Logistic regression analysis was used to identify six clinical characteristics [BMI, gender, smoking history, forced expiratory volume in one second to forced vital capacity ratio (FEV1%), pleural adhesion, site of resection] as independent predictors of PAL after anatomic lung resection. The area under the ROC curve for our model was 0.886 (95%CI: 0.835-0.937). The best predictive P value was 0.299 with sensitivity of 78.5% and specificity of 93.2%. Our prediction model could accurately identify occurrence risk of PAL in patients after anatomic lung resection, which might allow for more effective use of intraoperative prophylactic strategies.
.

  13. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    Science.gov (United States)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  14. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  15. 3D active workspace of human hand anatomical model

    Directory of Open Access Journals (Sweden)

    Ungureanu Loredana

    2007-05-01

    Full Text Available Abstract Background If the model of the human hand is created with accuracy by respecting the type of motion provided by each articulation and the dimensions of articulated bones, it can function as the real organ providing the same motions. Unfortunately, the human hand is hard to model due to its kinematical chains submitted to motion constraints. On the other hand, if an application does not impose a fine manipulation it is not necessary to create a model as complex as the human hand is. But always the hand model has to perform a certain space of motions in imposed workspace architecture no matter what the practical application does. Methods Based on Denavit-Hartenberg convention, we conceived the kinematical model of the human hand, having in mind the structure and the behavior of the natural model. We obtained the kinematical equations describing the motion of every fingertip with respect to the general coordinate system, placed on the wrist. For every joint variable, a range of motion was established. Dividing these joint variables to an appropriate number of intervals and connecting them, the complex surface bordering the active hand model workspace was obtained. Results Using MATLAB 7.0, the complex surface described by fingertips, when hand articulations are all simultaneously moving, was obtained. It can be seen that any point on surface has its own coordinates smaller than the maximum length of the middle finger in static position. Therefore, a sphere having the centre in the origin of the general coordinate system and the radius which equals this length covers the represented complex surface. Conclusion We propose a human hand model that represents a new solution compared to the existing ones. This model is capable to make special movements like power grip and dexterous manipulations. During them, the fingertips do not exceed the active workspace encapsulated by determined surfaces. The proposed kinematical model can help to choose

  16. Chinese adult anatomical models and the application in evaluation of RF exposures

    Science.gov (United States)

    Wu, Tongning; Tan, Liwen; Shao, Qing; Zhang, Chen; Zhao, Chen; Li, Ying; Conil, Emmanuelle; Hadjem, Abdelhamid; Wiart, Joe; Lu, Bingsong; Xiao, Li; Wang, Nan; Xie, Yi; Zhang, Shaoxiang

    2011-04-01

    This paper presents the work of constructing Chinese adult anatomical models and their application in evaluation of radio frequency (RF) electromagnetic field exposures. The original dataset was obtained from photos of the sliced frozen cadavers from the Chinese Visible Human Project. Details of preparing the cadaver for slicing procedures which may influence the anatomical structures are discussed. Segmentation and reconstruction were performed mainly manually by experienced anatomists. The reconstructed models represent the average Chinese in their twenties and thirties. The finest resolution for the models is 1 × 1 × 1 mm3 with 90 identified tissues/organs for the female and 87 identified tissues/organs for the male. Tiny anatomical structures such as blood vessels with diameters of 1 mm, various glands and nerves were identified. Whole-body-averaged specific absorption rate (WBSAR) from 20 MHz to 5.8 GHz was calculated with the finite-difference time-domain method for different RF exposure configurations. The WBSAR results are consistent with those from other available models. Finally, some details about the anatomical models are discussed.

  17. Sparse Decomposition and Modeling of Anatomical Shape Variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    Recent advances in statistics have spawned powerful methods for regression and data decomposition that promote sparsity, a property that facilitates interpretation of the results. Sparse models use a small subset of the available variables and may perform as well or better than their full counter...

  18. Sparse decomposition and modeling of anatomical shape variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    Recent advances in statistics have spawned powerful methods for regression and data decomposition that promote sparsity, a property that facilitates interpretation of the results. Sparse models use a small subset of the available variables and may perform as well or better than their full counter...

  19. Development of an interactive anatomical three-dimensional eye model.

    Science.gov (United States)

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.

  20. lessons from Auzoux's and von Hagens's anatomical models

    Indian Academy of Sciences (India)

    2009-12-09

    Dec 9, 2009 ... A variety of materials, such as wax, wood, papier-mâché, or glass, have long been used to construct animal and plant models. In the case of the human body, the most innovative, yet controversial, method of preservation has been plastination, invented by the German physician Gunther von Hagens, ...

  1. Anatomical parameters for musculoskeletal modeling of the hand and wrist

    NARCIS (Netherlands)

    Mirakhorlo, M. (Mojtaba); Visser, Judith M A; Goislard de Monsabert, B. A A X; van der Helm, F.C.T.; Maas, H.; Veeger, H. E J

    2016-01-01

    A musculoskeletal model of the hand and wrist can provide valuable biomechanical and neurophysiological insights, relevant for clinicians and ergonomists. Currently, no consistent data-set exists comprising the full anatomy of these upper extremity parts. The aim of this study was to collect a

  2. The anterior cerebral artery: II. A computer model of its cortical branches estereotaxically obtained from anatomical specimens

    Directory of Open Access Journals (Sweden)

    Raul Marino Jr

    1979-12-01

    Full Text Available This article is a corrollary of a previously published anatomical study of the anterior cerebral artery. The authors propose a method to obtain a computer model of the anterior cerebral artery, based on a combined system of stereotaxic coordinates and a specially developed computer program. The graphic analysis, thus obtained, is projected on a model atlas brain and an ideal diagram of this anatomical structure is obtained. Forty anatomical specimens were used for this study.

  3. A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function

    Science.gov (United States)

    Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.; Blemker, Silvia S.

    2015-01-01

    Purpose: This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method: We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy…

  4. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model

    NARCIS (Netherlands)

    Vrancken, A.C.T.; Madej, W.; Hannink, G.; Verdonschot, Nicolaas Jacobus Joseph; van Tienen, T.G.; Buma, P.

    2015-01-01

    Purpose: Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU), total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on

  5. Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Science.gov (United States)

    O'Reilly, Michael K.; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P.; Feeney, Robin N. M.; Jones, James F. X.

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial…

  6. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    International Nuclear Information System (INIS)

    Whitaker, S.H.; Brown, A.; Davison, C.C.; Gascoyne, M.; Lodha, G.S.; Stevenson, D.R.; Thorne, G.A.; Tomsons, D.

    1994-05-01

    The objective of this report is to summarize AECL's strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB's R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL's investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL's Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL's strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL's R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs

  7. Anatomical database generation for radiation transport modeling from computed tomography (CT) scan data

    International Nuclear Information System (INIS)

    Margle, S.M.; Tinnel, E.P.; Till, L.E.; Eckerman, K.F.; Durfee, R.C.

    1989-01-01

    Geometric models of the anatomy are used routinely in calculations of the radiation dose in organs and tissues of the body. Development of such models has been hampered by lack of detailed anatomical information on children, and models themselves have been limited to quadratic conic sections. This summary reviews the development of an image processing workstation used to extract anatomical information from routine diagnostic CT procedure. A standard IBM PC/AT microcomputer has been augmented with an automatically loading 9-track magnetic tape drive, an 8-bit 1024 x 1024 pixel graphics adapter/monitor/film recording package, a mouse/trackball assembly, dual 20 MB removable cartridge media, a 72 MB disk drive, and a printer. Software utilized by the workstation includes a Geographic Information System (modified for manipulation of CT images), CAD software, imaging software, and various modules to ease data transfer among the software packages. 5 refs., 3 figs

  8. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures

    International Nuclear Information System (INIS)

    Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T

    2007-01-01

    This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement

  9. A Topographically and anatomically unified phantom model for organ dose determination in radiation hygiene

    International Nuclear Information System (INIS)

    Servomaa, A.; Rannikko, S.; Ermakov, I.; Masarskyi, L.; Saltukova, L.

    1989-08-01

    The effective dose equivalent is used as a risk-related factor for assessing radiation impact on patients. In order to assess the effective dose equivalent, data on organ doses in several organs are needed. For calculation of the collective effective dose equivalent, data on the sex and size distribution of the exposed population are also needed. A realistic phantom model based on the Alderson-Rando anatomical phantom has been developed for these purposes. The phantom model includes 22 organs and takes into account the deflections due to sex, height, weight and other anatomical features. Coordinates of the outer contours of inner organs are given in different slabs of the phantom. The images of cross sections of different slabs realistically depict the distribution of the organs in the phantom. Statistics about height and weight distribution as a function of the age of the Finnish population are also given. (orig.)

  10. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    Science.gov (United States)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  11. Anatomical Cystocele Recurrence: Development and Internal Validation of a Prediction Model.

    Science.gov (United States)

    Vergeldt, Tineke F M; van Kuijk, Sander M J; Notten, Kim J B; Kluivers, Kirsten B; Weemhoff, Mirjam

    2016-02-01

    To develop a prediction model that estimates the risk of anatomical cystocele recurrence after surgery. The databases of two multicenter prospective cohort studies were combined, and we performed a retrospective secondary analysis of these data. Women undergoing an anterior colporrhaphy without mesh materials and without previous pelvic organ prolapse (POP) surgery filled in a questionnaire, underwent translabial three-dimensional ultrasonography, and underwent staging of POP preoperatively and postoperatively. We developed a prediction model using multivariable logistic regression and internally validated it using standard bootstrapping techniques. The performance of the prediction model was assessed by computing indices of overall performance, discriminative ability, calibration, and its clinical utility by computing test characteristics. Of 287 included women, 149 (51.9%) had anatomical cystocele recurrence. Factors included in the prediction model were assisted delivery, preoperative cystocele stage, number of compartments involved, major levator ani muscle defects, and levator hiatal area during Valsalva. Potential predictors that were excluded after backward elimination because of high P values were age, body mass index, number of vaginal deliveries, and family history of POP. The shrinkage factor resulting from the bootstrap procedure was 0.91. After correction for optimism, Nagelkerke's R and the Brier score were 0.15 and 0.22, respectively. This indicates satisfactory model fit. The area under the receiver operating characteristic curve of the prediction model was 71.6% (95% confidence interval 65.7-77.5). After correction for optimism, the area under the receiver operating characteristic curve was 69.7%. This prediction model, including history of assisted delivery, preoperative stage, number of compartments, levator defects, and levator hiatus, estimates the risk of anatomical cystocele recurrence.

  12. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education.

    Science.gov (United States)

    Torres, K; Staśkiewicz, G; Śnieżyński, M; Drop, A; Maciejewski, R

    2011-02-01

    Rapid prototyping has become an innovative method of fast and cost-effective production of three-dimensional models for manufacturing. Wide access to advanced medical imaging methods allows application of this technique for medical training purposes. This paper presents the feasibility of rapid prototyping technologies: stereolithography, selective laser sintering, fused deposition modelling, and three-dimensional printing for medical education. Rapid prototyping techniques are a promising method for improvement of anatomical education in medical students but also a valuable source of training tools for medical specialists.

  13. SU-C-BRF-03: PCA Modeling of Anatomical Changes During Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Chetvertkov, M; Kim, J; Siddiqui, F; Kumarasiri, A; Chetty, I; Gordon, J

    2014-01-01

    Purpose: To develop principal component analysis (PCA) models from daily cone beam CTs (CBCTs) of head and neck (H and N) patients that could be used prospectively in adaptive radiation therapy (ART). Methods: : For 7 H and N patients, Pinnacle Treatment Planning System (Philips Healthcare) was used to retrospectively deformably register daily CBCTs to the planning CT. The number N of CBCTs per treatment course ranged from 14 to 22. For each patient a PCA model was built from the deformation vector fields (DVFs), after first subtracting the mean DVF, producing N eigen-DVFs (EDVFs). It was hypothesized that EDVFs with large eigenvalues represent the major anatomical deformations during the course of treatment, and that it is feasible to relate each EDVF to a clinically meaningful systematic or random change in anatomy, such as weight loss, neck flexion, etc. Results: DVFs contained on the order of 3×87×87×58=1.3 million scalar values (3 times the number of voxels in the registered volume). The top 3 eigenvalues accounted for ∼90% of variance. Anatomical changes corresponding to an EDVF were evaluated by generating a synthetic DVF, and applying that DVF to the CT to produce a synthetic CBCT. For all patients, the EDVF for the largest eigenvalue was interpreted to model weight loss. The EDVF for other eigenvalues appeared to represented quasi-random fraction-to-fraction changes. Conclusion: The leading EDVFs from single-patient PCA models have tentatively been identified with weight loss changes during treatment. Other EDVFs are tentatively identified as quasi-random inter-fraction changes. Clean separation of systematic and random components may require further work. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant anatomical changes, such as weight loss, early in treatment, triggering replanning where beneficial

  14. The use of anatomical models for learning anesthesia techniques in oral surgery

    Directory of Open Access Journals (Sweden)

    JVS Canellas

    2013-01-01

    Full Text Available Aim: The objective of this work is to present a new collaborative method for teaching administration of anesthetic block in dentistry, with three-dimensional anatomical models used to improve learning and thereby increase safety, reduce anxiety, and improve the performance of students during the administration of anesthesia in the patients. Materials and Methods: Three-dimensional (3D models of skulls were made that reproduced all innervations of the V th cranial nerve (trigeminal nerve, as well as some blood vessels, glands, and muscles of mastication. For teaching the local anesthetic techniques we prepared pictures and videos of the administration of anesthesia in the models , which were presented to 130 students in two universities in Brazil. With the help of the models the students could follow the path of the nerves to be anesthetized and identify the anatomical points of reference for the correct positioning of the needle in the tissues. After the presentation the students answered a questionnaire aiming to assess the effect of the 3D models on learning. Results: Eighty-eight percent of students rated the material as excellent, 12% as good, 0% as regular, and 0% as bad (unnecessary materials. After the presentation, 70% of the students felt confident about being able to achieve the nerve block in patients. Conclusion: When exposed to an appropriate method, students recognized the importance of knowledge of anatomy for learning local anesthetic techniques. This method improved the quality of education and increased patient safety during the first injection.

  15. Canine intrahepatic vasculature: is a functional anatomic model relevant to the dog?

    Science.gov (United States)

    Hall, Jon L; Mannion, Paddy; Ladlow, Jane F

    2015-01-01

    To clarify canine intrahepatic portal and hepatic venous system anatomy using corrosion casting and advanced imaging and to devise a novel functional anatomic model of the canine liver to investigate whether this could help guide the planning and surgical procedure of partial hepatic lobectomy and interventional radiological procedures. Prospective experimental study. Adult Greyhound cadavers (n = 8). Portal and hepatic vein corrosion casts of healthy livers were assessed using computed tomography (CT). The hepatic lobes have a consistent hilar hepatic and portal vein supply with some variation in the number of intrahepatic branches. For all specimens, 3 surgically resectable areas were identified in the left lateral lobe and 2 surgically resectable areas were identified in the right medial lobe as defined by a functional anatomic model. CT of detailed acrylic casts allowed complex intrahepatic vascular relationships to be investigated and compared with previous studies. Improving understanding of the intrahepatic vascular supply facilitates interpretation of advanced images in clinical patients, the planning and performance of surgical procedures, and may facilitate interventional vascular procedures, such as intravenous embolization of portosystemic shunts. Functional division of the canine liver similar to human models is possible. The left lateral and right medial lobes can be consistently divided into surgically resectable functional areas and partial lobectomies can be performed following a functional model; further study in clinically affected animals would be required to investigate the relevance of this functional model in the dog. © Copyright 2014 by The American College of Veterinary Surgeons.

  16. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound.

    Science.gov (United States)

    Xi, Jinxiang; Si, Xiuhua; Kim, JongWon; Su, Guoguang; Dong, Haibo

    2014-07-01

    The objective of this study was to systematically assess the effects of pharyngeal anatomical details on breathing resistance and acoustic characteristics by means of computational modeling. A physiologically realistic nose-throat airway was reconstructed from medical images. Individual airway anatomy such as the uvula, pharynx, and larynx was then isolated for examination by gradually simplifying this image-based model geometry. Large eddy simulations with the FW-H acoustics model were used to simulate airflows and acoustic sound generation with constant flow inhalations in rigid-walled airway geometries. Results showed that pharyngeal anatomical details exerted a significant impact on breathing resistance and energy distribution of acoustic sound. The uvula constriction induced considerably increased levels of pressure drop and acoustic power in the pharynx, which could start and worsen snoring symptoms. Each source anatomy was observed to generate a unique spectrum with signature peak frequencies and energy distribution. Moreover, severe pharyngeal airway narrowing led to an upward shift of sound energy in the high-frequency range. Results indicated that computational aeroacoustic modeling appeared to be a practical tool to study breathing-related disorders. Specifically, high-frequency acoustic signals might disclose additional clues to the mechanism of apneic snoring and should be included in future acoustic studies.

  17. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    Science.gov (United States)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  18. Evaluation of lesion detection capabilities of anatomically based MAP image reconstruction methods using the computer observer model

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya; Kudo, Hiroyuki

    2010-01-01

    This study was conducted to evaluate the lesion detection capabilities of anatomically based maximum a posteriori (MAP) image reconstruction methods in emission computed tomography using the computer observer model. In lesion detection tasks, conventional anatomically based MAP reconstruction methods cannot preserve lesions not present in the anatomical image with high contrast and at the same time suppress noise in the background regions. We previously proposed a new anatomically based MAP reconstruction method called the SOS-MAP method, which is based on the spots-on-smooth image model in which the image is modeled by the sum of the smooth background image and the sparse spot image, and showed that the SOS-MAP method can overcome the above-mentioned drawback of conventional anatomically based MAP methods. However, the lesion detection capabilities of the SOS-MAP method remained to be clarified. In the present study, the computer observer model was used to evaluate the lesion detection capabilities of the SOS-MAP method, and it was found that the SOS-MAP method is superior to conventional anatomically based MAP methods for the detection of lesions. (author)

  19. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

    Science.gov (United States)

    O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. © 2015 American Association of Anatomists.

  20. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  1. Off-the-job training for VATS employing anatomically correct lung models.

    Science.gov (United States)

    Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori

    2012-02-01

    We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.

  2. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    International Nuclear Information System (INIS)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels

    2009-01-01

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  3. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zuerich (Switzerland)], E-mail: kuehn@itis.ethz.ch

    2009-02-21

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  4. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  5. A multilevel framework to reconstruct anatomical 3D models of the hepatic vasculature in rat livers.

    Science.gov (United States)

    Peeters, Geert; Debbaut, Charlotte; Laleman, Wim; Monbaliu, Diethard; Vander Elst, Ingrid; Detrez, Jan R; Vandecasteele, Tim; De Schryver, Thomas; Van Hoorebeke, Luc; Favere, Kasper; Verbeke, Jonas; Segers, Patrick; Cornillie, Pieter; De Vos, Winnok H

    2017-03-01

    The intricate (micro)vascular architecture of the liver has not yet been fully unravelled. Although current models are often idealized simplifications of the complex anatomical reality, correct morphological information is instrumental for scientific and clinical purposes. Previously, both vascular corrosion casting (VCC) and immunohistochemistry (IHC) have been separately used to study the hepatic vasculature. Nevertheless, these techniques still face a number of challenges such as dual casting in VCC and limited imaging depths for IHC. We have optimized both techniques and combined their complementary strengths to develop a framework for multilevel reconstruction of the hepatic circulation in the rat. The VCC and micro-CT scanning protocol was improved by enabling dual casting, optimizing the contrast agent concentration, and adjusting the viscosity of the resin (PU4ii). IHC was improved with an optimized clearing technique (CUBIC) that extended the imaging depth for confocal microscopy more than five-fold. Using in-house developed software (DeLiver), the vascular network - in both VCC and IHC datasets - was automatically segmented and/or morphologically analysed. Our methodological framework allows 3D reconstruction and quantification of the hepatic circulation, ranging from the major blood vessels down to the intertwined and interconnected sinusoids. We believe that the presented framework will have value beyond studies of the liver, and will facilitate a better understanding of various parenchymal organs in general, in physiological and pathological circumstances. © 2016 Anatomical Society.

  6. [ESTABLISHMENT OF A NEW RADIUS DEFECT MODEL BASED ON ULNA ANATOMICAL MEASUREMENT IN RABBITS].

    Science.gov (United States)

    Liu, Hanjiang; Guo, Ying; Mei, Wei

    2016-02-01

    To introduce a new bone defect model based on the anatomical measurement of radius and ulna in rabbits for offering a standard model for further tissue engineering research. Fifteen healthy 4-month-old New Zealand rabbits were selected for anatomic measurement and radiological measurement of the radius and ulna. Another 30 healthy 4-month-old New Zealand rabbits were randomly divided into groups A, B, and C (n=10). The radius bone defect was created bilaterally in 3 groups. In group A, the periosteum and interosseous membranes were fully removed with jig-saw by approach between extensor carpi radialis muscle and musculus extensor digitorum. The periosteum and interosseous membranes were fully removed in group B, and only periosteum was removed in group C with electric-saw by approach between extensor carpi radialis muscle and flexor digitorum profundus based on anatomical analysis results of ulnar and radial measurement. The gross observation, X-ray, micro-CT three-dimensional reconstruction, bone mineral density (BMD), and bone mineral content (BMC) were observed and recorded at immediate and 15 weeks after operation. HE staining and Masson staining were performed to observe bone formation in the defect areas. Blood vessel injury (1 rabbit), tendon injury (2 rabbits), postoperative hematoma (1 rabbit), and infection (1 rabbit) occurred in group A, postoperative infection (1 rabbit) in group C, and no postoperative complications in group B; the complication rate of group A (50%) was significantly higher than that of groups B (0%) and C (10%) (P0.05). HE staining and Masson staining results showed bone formation in group A, with structure disturbance and sclerosis. New bone formed in groups B and C, cartilage cells were observed in the center of bone cells. The radius bone defect model established by approach between extensor carpi radialis muscle and flexor digitorum profundus is an ideal model because of better exposures, less intra-operative blood loss, less

  7. A 3D-printed functioning anatomical human middle ear model.

    Science.gov (United States)

    Kuru, Ismail; Maier, Hannes; Müller, Mathias; Lenarz, Thomas; Lueth, Tim C

    2016-10-01

    The middle ear is a sophisticated and complex structure with a variety of functions, yet a delicate organ prone to injuries due to various reasons. Both, understanding and reconstructing its functions has always been an important topic for researchers from medical and technical background. Currently, human temporal bones are generally used as model for tests, experiments and validation of the numerical results. However, fresh human preparations are not always easily accessible and their mechanical properties vary with time and between individuals. Therefore we have built an anatomically based and functional middle ear model to serve as a reproducible test environment. Our middle ear model was manufactured with the aid of 3D-printing technology. We have segmented the essential functional elements from micro computed tomography data (μCT) of a single temporal bone. The ossicles were 3D-printed by selective laser melting (SLM) and the soft tissues were casted with silicone rubber into 3D-printed molds. The ear canal, the tympanic cavity and the inner ear were artificially designed, but their design ensured the anatomically correct position of the tympanic membrane, ossicular ligaments and the oval window. For the determination of their auditory properties we have conducted two kinds of tests: measurement of the stapes footplate response to sound and tympanometry of the model. Our experiments regarding the sound transmission showed that the model has a similar behavior to a human middle ear. The transfer function has a resonance frequency at around 1 kHz, the stapes' response is almost constant for frequencies below the resonance and a roll-off is observed above the resonance. The tympanometry results show that the compliance of the middle ear model is similar to the compliance of a healthy human middle ear. We also present that we were able to manipulate the transmission behavior, so that healthy or pathological scenarios can be created. For this purpose we have

  8. Evaluation of an autoclave resistant anatomic nose model for the testing of nasal swabs.

    Science.gov (United States)

    Bartolitius, Lennart; Frickmann, Hagen; Warnke, Philipp; Ottl, Peter; Podbielski, Andreas

    2014-09-01

    A nose model that allows for the comparison of different modes of sample acquisition as well as of nasal swab systems concerning their suitability to detect defined quantities of intranasal microorganisms, and further for training procedures of medical staff, was evaluated. Based on an imprint of a human nose, a model made of a silicone elastomer was formed. Autoclave stability was assessed. Using an inoculation suspension containing Staphylococcus aureus and Staphylococcus epidermidis, the model was compared with standardized glass plate inoculations. Effects of inoculation time, mode of sampling, and sample storage time were assessed. The model was stable to 20 autoclaving cycles. There were no differences regarding the optimum coverage from the nose and from glass plates. Optimum sampling time was 1 h after inoculation. Storage time after sampling was of minor relevance for the recovery. Rotating the swab around its own axis while circling the nasal cavity resulted in best sampling results. The suitability of the assessed nose model for the comparison of sampling strategies and systems was confirmed. Without disadvantages in comparison with sampling from standardized glass plates, the model allows for the assessment of a correct sampling technique due to its anatomically correct shape.

  9. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method.

    Directory of Open Access Journals (Sweden)

    Stuart Humphries

    2007-08-01

    Full Text Available Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.

  10. Integration of anatomical and external response mappings explains crossing effects in tactile localization: A probabilistic modeling approach.

    Science.gov (United States)

    Badde, Stephanie; Heed, Tobias; Röder, Brigitte

    2016-04-01

    To act upon a tactile stimulus its original skin-based, anatomical spatial code has to be transformed into an external, posture-dependent reference frame, a process known as tactile remapping. When the limbs are crossed, anatomical and external location codes are in conflict, leading to a decline in tactile localization accuracy. It is unknown whether this impairment originates from the integration of the resulting external localization response with the original, anatomical one or from a failure of tactile remapping in crossed postures. We fitted probabilistic models based on these diverging accounts to the data from three tactile localization experiments. Hand crossing disturbed tactile left-right location choices in all experiments. Furthermore, the size of these crossing effects was modulated by stimulus configuration and task instructions. The best model accounted for these results by integration of the external response mapping with the original, anatomical one, while applying identical integration weights for uncrossed and crossed postures. Thus, the model explained the data without assuming failures of remapping. Moreover, performance differences across tasks were accounted for by non-individual parameter adjustments, indicating that individual participants' task adaptation results from one common functional mechanism. These results suggest that remapping is an automatic and accurate process, and that the observed localization impairments in touch result from a cognitively controlled integration process that combines anatomically and externally coded responses.

  11. The Sophia Anatomical Infant Nose-Throat (Saint) model: a valuable tool to study aerosol deposition in infants

    NARCIS (Netherlands)

    Janssens, H. M.; de Jongste, J. C.; Fokkens, W. J.; Robben, S. G.; Wouters, K.; Tiddens, H. A.

    2001-01-01

    Relatively little is known about the variables that influence lung deposition of inhaled aerosols in children. A model of the upper airways of an infant could be a useful tool to study these variables in vitro. The objective of this study was to construct an anatomically correct model of the upper

  12. Explorable Three-Dimensional Digital Model of the Female Pelvis, Pelvic Contents, and Perineum for Anatomical Education

    Science.gov (United States)

    Sergovich, Aimee; Johnson, Marjorie; Wilson, Timothy D.

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using…

  13. Embedding Anatomical or Functional Knowledge in Whole-Brain Multiple Kernel Learning Models.

    Science.gov (United States)

    Schrouff, Jessica; Monteiro, J M; Portugal, L; Rosa, M J; Phillips, C; Mourão-Miranda, J

    2018-01-01

    Pattern recognition models have been increasingly applied to neuroimaging data over the last two decades. These applications have ranged from cognitive neuroscience to clinical problems. A common limitation of these approaches is that they do not incorporate previous knowledge about the brain structure and function into the models. Previous knowledge can be embedded into pattern recognition models by imposing a grouping structure based on anatomically or functionally defined brain regions. In this work, we present a novel approach that uses group sparsity to model the whole brain multivariate pattern as a combination of regional patterns. More specifically, we use a sparse version of Multiple Kernel Learning (MKL) to simultaneously learn the contribution of each brain region, previously defined by an atlas, to the decision function. Our application of MKL provides two beneficial features: (1) it can lead to improved overall generalisation performance when the grouping structure imposed by the atlas is consistent with the data; (2) it can identify a subset of relevant brain regions for the predictive model. In order to investigate the effect of the grouping in the proposed MKL approach we compared the results of three different atlases using three different datasets. The method has been implemented in the new version of the open-source Pattern Recognition for Neuroimaging Toolbox (PRoNTo).

  14. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    Science.gov (United States)

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  15. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    Directory of Open Access Journals (Sweden)

    Jennifer J. Coppola

    2018-01-01

    Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  16. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig.

    Science.gov (United States)

    Lossi, Laura; D'Angelo, Livia; De Girolamo, Paolo; Merighi, Adalberto

    2016-03-01

    The anatomical features distinctive to each of the very large array of species used in today's biomedical research must be born in mind when considering the correct choice of animal model(s), particularly when translational research is concerned. In this paper we take into consideration and discuss the most important anatomical and histological features of the commonest species of laboratory rodents (rat, mouse, guinea pig, hamster, and gerbil), rabbit, and pig related to their importance for applied research. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model.

    Directory of Open Access Journals (Sweden)

    A C T Vrancken

    Full Text Available Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU, total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.

  18. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-02-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education.

    Science.gov (United States)

    Smith, Claire F; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm

    2018-01-01

    Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced. A four-stage mixed-methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post-test to assess change in learner knowledge following 3D-printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D-printed models in small-group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D-image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D-printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D-printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection-based teaching. Anat Sci Educ 11: 44-53. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  20. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models.

    Science.gov (United States)

    Anderson, Jeff R; Thompson, Walker L; Alkattan, Abdulaziz K; Diaz, Orlando; Klucznik, Richard; Zhang, Yi J; Britz, Gavin W; Grossman, Robert G; Karmonik, Christof

    2016-05-01

    To develop and validate a method for creating realistic, patient specific replicas of cerebral aneurysms by means of fused deposition modeling. The luminal boundaries of 10 cerebral aneurysms, together with adjacent proximal and distal sections of the parent artery, were segmented based on DSA images, and corresponding virtual three-dimensional (3D) surface reconstructions were created. From these, polylactic acid and MakerBot Flexible Filament replicas of each aneurysm were created by means of fused deposition modeling. The accuracy of the replicas was assessed by quantifying statistical significance in the variations of their inner dimensions relative to 3D DSA images. Feasibility for using these replicas as flow phantoms in combination with phase contrast MRI was demonstrated. 3D printed aneurysm models were created for all 10 subjects. Good agreement was seen between the models and the source anatomy. Aneurysm diameter measurements of the printed models and source images correlated well (r=0.999; pmodels, respectively. 3D printed models could be imaged with flow via MRI. The 3D printed aneurysm models presented were accurate and were able to be produced inhouse. These models can be used for previously cited applications, but their anatomical accuracy also enables their use as MRI flow phantoms for comparison with ongoing studies of computational fluid dynamics. Proof of principle imaging experiments confirm MRI flow phantom utility. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. An Anatomically Constrained Model for Path Integration in the Bee Brain.

    Science.gov (United States)

    Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley

    2017-10-23

    Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    Science.gov (United States)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into

  3. Dual-extrusion 3D printing of anatomical models for education.

    Science.gov (United States)

    Smith, Michelle L; Jones, James F X

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex 3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm 3 ) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex 3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi-layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65-72. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  4. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  5. Model observer design for multi-signal detection in the presence of anatomical noise

    Science.gov (United States)

    Wen, Gezheng; Markey, Mia K.; Park, Subok

    2017-02-01

    As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Model observers are typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g. multifocal multicentric (MFMC) breast cancer), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g. digital breast tomosynthesis may be more effective for diagnosis of MFMC than mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model observer to detect multiple signals in an image dataset. A novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. The PLS channels are adaptive to the characteristics of signals and the background, and they capture the interactions among signal locations. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our results show that: (1) the model observer can achieve high performance with a reasonably small number of channels; (2) the model observer with PLS channels outperforms that with benchmark modified Laguerre-Gauss channels, especially when realistic signal shapes and complex background statistics are involved; (3) the tasks of clinical interest, and other constraints such as sample size would alter the optimal design of the model observer.

  6. A topo-graph model for indistinct target boundary definition from anatomical images.

    Science.gov (United States)

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. An anatomic risk model to screen post endovascular aneurysm repair patients for aneurysm sac enlargement.

    Science.gov (United States)

    Png, Chien Yi M; Tadros, Rami O; Beckerman, William E; Han, Daniel K; Tardiff, Melissa L; Torres, Marielle R; Marin, Michael L; Faries, Peter L

    2017-09-01

    Follow-up computed tomography angiography (CTA) scans add considerable postimplantation costs to endovascular aneurysm repairs (EVARs) of abdominal aortic aneurysms (AAAs). By building a risk model, we hope to identify patients at low risk for aneurysm sac enlargement to minimize unnecessary CTAs. 895 consecutive patients who underwent EVAR for AAA were reviewed, of which 556 met inclusion criteria. A Probit model was created for aneurysm sac enlargement, with preoperative aneurysm morphology, patient demographics, and operative details as variables. Our final model included 287 patients and had a sensitivity of 100%, a specificity of 68.9%, and an accuracy of 70.4%. Ninety-nine (35%) of patients were assigned to the high-risk group, whereas 188 (65%) of patients were assigned to the low-risk group. Notably, regarding anatomic variables, our model reported that age, pulmonary comorbidities, aortic neck diameter, iliac artery length, and aneurysms were independent predictors of post-EVAR sac enlargement. With the exception of age, all statistically significant variables were qualitatively supported by prior literature. With regards to secondary outcomes, the high-risk group had significantly higher proportions of AAA-related deaths (5.1% versus 1.1%, P = 0.037) and Type 1 endoleaks (9.1% versus 3.2%, P = 0.033). Our model is a decent predictor of patients at low risk for post AAA EVAR aneurysm sac enlargement and associated complications. With additional validation and refinement, it could be applied to practices to cut down on the overall need for postimplantation CTA. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.

    Science.gov (United States)

    Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros

    2013-09-01

    The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.

  9. Intraosseous rotation of the scaphoid: assessment by using a 3D CT model - an anatomic study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidle, Gernot; Gabl, Markus [Medical University Innsbruck, Department of Trauma Surgery, Innsbruck (Austria); Rieger, Michael [Regional Hospital Hall, Department of Radiology, Hall in Tirol (Austria); Klauser, Andrea Sabine; Thauerer, Michael [Medical University Innsbruck, Department of Radiology, Innsbruck (Austria); Hoermann, Romed [Medical University Innsbruck, Department of Anatomy, Histology and Embryology-Division of Clinical and Functional Anatomy, Innsbruck (Austria)

    2014-06-15

    The purpose of this study was to assess intraosseous rotation as the third dimension of scaphoid anatomy on a 3D CT model using common volume rendering software to impact anatomical reconstruction of scaphoid fractures. CT images of 13 cadaver wrist pairs were acquired. Reference axes for the alignment of distal and proximal scaphoid poles were defined three-dimensionally. Two methods for rotation measurement - the reference axis method (RAM) and the scapho-trapezio-trapezoidal joint method (STTM) - were developed and compared by three independent observers. Rotation measured by the RAM averaged 66.9 ± 7 for the right and 67.2 ± 5.8 for the left wrists. Using the STTM there was a mean rotation of 68.6 ± 6.6 for the right and 68.6 ± 6.8 for the left wrists. The overall results showed a significant variability of the measured values between different specimens (P < 0.05). There was no significant difference between left and right wrists of the same specimen, neither for the RAM (P = 0.268) nor for the STTM (P = 0.774). Repeatability coefficients between the observers were low, indicating good repeatability. The presented methods are practical tools to quantify intraosseous rotation between distal and proximal scaphoid poles using common volume rendering software. For clinical application the opposite side provides the best reference values to assess malrotation in scaphoid fracture cases. (orig.)

  10. Development of a rabbit's urethral sphincter deficiency animal model for anatomical-functional evaluation

    Directory of Open Access Journals (Sweden)

    M. Skaff

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the study was to develop a new durable animal model (using rabbits for anatomical-functional evaluation of urethral sphincter deficiency. MATERIALS AND METHODS: A total of 40 New Zealand male rabbits, weighting 2.500 kg to 3.100 kg, were evaluated to develop an incontinent animal model. Thirty-two animals underwent urethrolysis and 8 animals received sham operation. Before and at 2, 4, 8 and 12 weeks after urethrolysis or sham operation, it was performed cystometry and leak point pressure (LPP evaluation with different bladder distension volumes (10, 20, 30 mL. In each time point, 10 animals (8 from the study group and 2 from the sham group were sacrificed to harvest the bladder and urethra. The samples were evaluated by H&E and Masson's Trichrome to determine urethral morphology and collagen/smooth muscle density. RESULTS: Twelve weeks after urethrolysis, it was observed a significant decrease in LPP regardless the bladder volume (from 33.7 ± 6.6 to 12.8 ± 2.2 cmH2O. The histological analysis evidenced a decrease of 22% in smooth muscle density with a proportional increase in the collagen, vessels and elastin density (p < 0.01. CONCLUSIONS: Transabdominal urethrolysis develops urethral sphincter insufficiency in rabbits, with significant decrease in LPP associated with decrease of smooth muscle fibers and increase of collagen density. This animal model can be used to test autologous cell therapy for stress urinary incontinence treatment.

  11. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    Science.gov (United States)

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. The evolution of anatomical illustration and wax modelling in Italy from the 16th to early 19th centuries

    Science.gov (United States)

    Riva, Alessandro; Conti, Gabriele; Solinas, Paola; Loy, Francesco

    2010-01-01

    Although the contribution to anatomical illustration by Vesalius and his followers has received much attention, less credit has been given to Veslingius and particularly Fabricius. By 1600, Fabricius had amassed more than 300 paintings that together made the Tabulae Pictae, a great atlas of anatomy that was highly admired by his contemporaries. Many of his new observations were incorporated into subsequent books, including those by Casserius, Spighelius, Harvey and Veslingius. Also of importance were the Tabulae by Eustachius (1552), which, although only published in 1714, greatly influenced anatomical wax modelling. In 1742, Pope Benedict XIV established a Museum of Anatomy in Bologna, entrusting to Ercole Lelli the creation of several anatomical preparations in wax. Felice Fontana realised that the production of a large number of models by the casting method would make cadaveric specimens superfluous for anatomical teaching and in 1771 he asked the Grand Duke to fund a wax-modelling workshop in Florence as part of the Natural History Museum, later known as La Specola. Fontana engaged Giuseppe Ferrini as his first modeller and then the 19-year-old Clemente Susini who, by his death in 1814, had superintended the production of, or personally made, more than 2000 models. In 1780, the Austrian Emperor Joseph II visited La Specola and ordered a great number of models for his Josephinum museum; these were made by Fontana with the help of Clemente Susini and supervised by the anatomist Paolo Mascagni. It is, however, in Cagliari that some of Susini’s greatest waxes are to be found. These were made when he was free of Fontana’s influence and were based on dissections made by Francesco Antonio Boi (University of Cagliari). Their distinctive anatomical features include the emphasis given to nerves and the absence of lymphatics in the brain, a mistake made on earlier waxes. The refined technical perfection of the anatomical details demonstrates the closeness of the

  13. Building generic anatomical models using virtual model cutting and iterative registration.

    Science.gov (United States)

    Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W

    2010-02-08

    Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java

  14. Building generic anatomical models using virtual model cutting and iterative registration

    Directory of Open Access Journals (Sweden)

    Hallgrímsson Benedikt

    2010-02-01

    Full Text Available Abstract Background Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure based on medical image stacks (a stack is an ordered collection of 2D images. We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. Methods The method of creating generic 3D models consists of the following processing steps: (i scanning subjects to obtain image stacks; (ii creating individual 3D models from the stacks; (iii interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv creating image stacks that contain only the information pertaining to the sub-models; (v iteratively registering the corresponding new 2D image stacks; (vi averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. Results After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Conclusions Our method is very flexible and easy to use such that anyone can use image stacks to create models and

  15. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models.

    Science.gov (United States)

    Wörz, Stefan; Rohr, Karl

    2006-02-01

    We introduce a new approach for the localization of 3D anatomical point landmarks. This approach is based on 3D parametric intensity models which are directly fitted to 3D images. To efficiently model tip-like, saddle-like, and sphere-like anatomical structures we introduce analytic intensity models based on the Gaussian error function in conjunction with 3D rigid transformations as well as deformations. To select a suitable size of the region-of-interest (ROI) where model fitting is performed, we also propose a new scheme for automatic selection of an optimal 3D ROI size based on the dominant gradient direction. In addition, to achieve a higher level of automation we present an algorithm for automatic initialization of the model parameters. Our approach has been successfully applied to accurately localize anatomical landmarks in 3D synthetic data as well as 3D MR and 3D CT image data. We have also compared the experimental results with the results of a previously proposed 3D differential approach. It turns out that the new approach significantly improves the localization accuracy.

  16. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom.

    Science.gov (United States)

    Lesperance, Marielle; Inglis-Whalen, M; Thomson, R M

    2014-02-01

    To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with(125)I, (103)Pd, or (131)Cs seeds, and to investigate doses to ocular structures. An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20-30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%-10% and 13%-14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%-17% and 29%-34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model

  17. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  18. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  19. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    Science.gov (United States)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  20. AnatomicalTerms.info: heading for an online solution to the anatomical synonym problem hurdles in data-reuse from the Terminologia Anatomica and the foundational model of anatomy and potentials for future development.

    Science.gov (United States)

    Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C

    2011-10-01

    The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.

  1. Anatomical risk models for paravalvular leak and landing zone complications for balloon-expandable transcatheter aortic valve replacement.

    Science.gov (United States)

    Condado, Jose F; Corrigan, Frank E; Lerakis, Stamatios; Parastatidis, Ioannis; Stillman, Arthur E; Binongo, Jose N; Stewart, James; Mavromatis, Kreton; Devireddy, Chandan; Leshnower, Bradley; Guyton, Robert; Forcillo, Jessica; Patel, Ateet; Thourani, Vinod H; Block, Peter C; Babaliaros, Vasilis

    2017-10-01

    Though several anatomical characteristics have been reported separately as risk factors for paravalvular leak (PVL) and landing zone (LZ) complications after transcatheter aortic valve replacement (TAVR), multivariate risk models are needed. Patients that underwent balloon-expandable TAVR with multidetector cardiac computed tomography (MDCT) sizing were studied. MDCT images were analyzed and the association between anatomical factors and ≥mild PVL, ≥moderate PVL, and LZ complications (annular rupture, requirement of new permanent pacemaker, and coronary obstruction) was determined, and subsequently competing predictive models were developed and validated. A total of 316 consecutive TAVR patients were included. Median age was 82.0 years (74.0-87.0) and STS score was 8.3% (5.4-10.9). Factors associated with ≥mild PVL included TAVR with Sapien/Sapien XT vs. Sapien 3 (OR = 2.50, 95% CI = 1.24-5.07), LVOT nontubularity (OR = 1.02, 95% CI = 1.01-1.04), LZ calcification (OR = 1.01, 95% CI = 1.00-1.01), and low cover index (OR = 0.94, 95% CI = 0.91-0.96). Factors associated with LZ complications included LZ calcification (OR = 1.01, 95% CI 1.00-1.01), leaflet asymmetry (OR = 1.01, 95% CI 1.01-1.02), and cover index (OR = 1.09, 95% CI 1.03-1.14). Predictive models for ≥mild PVL (AUC = 0.71, 95% CI = 0.66-0.77), ≥moderate PVL (AUC = 0.75, 95% CI = 0.65-0.84), and LZ complications (AUC = 0.77, 95% CI = 0.67-0.87) were created using procedural details and anatomical data from the MDCT. Clinical variables were not included as they were poorly correlated with the occurrence of PVL and LZ complications. For each outcome, the area under the curve (AUC) of the multivariate model was superior to the model consisting only of individual factors. A model using procedural/anatomical characteristics derived from MDCT predicts ≥mild PVL, ≥moderate PVL, and LZ complications post-TAVR. Incorporation of

  2. Analysis of the three-dimensional anatomical variance of the distal radius using 3D shape models.

    Science.gov (United States)

    Baumbach, Sebastian F; Binder, Jakob; Synek, Alexander; Mück, Fabian G; Chevalier, Yan; Euler, Ekkehard; Langs, Georg; Fischer, Lukas

    2017-03-09

    Various medical fields rely on detailed anatomical knowledge of the distal radius. Current studies are limited to two-dimensional analysis and biased by varying measurement locations. The aims were to 1) generate 3D shape models of the distal radius and investigate variations in the 3D shape, 2) generate and assess morphometrics in standardized cut planes, and 3) test the model's classification accuracy. The local radiographic database was screened for CT-scans of intact radii. 1) The data sets were segmented and 3D surface models generated. Statistical 3D shape models were computed (overall, gender and side separate) and the 3D shape variation assessed by evaluating the number of modes. 2) Anatomical landmarks were assigned and used to define three standardized cross-sectional cut planes perpendicular to the main axis. Cut planes were generated for the mean shape models and each individual radius. For each cut plane, the following morphometric parameters were calculated and compared: maximum width and depth, perimeter and area. 3) The overall shape model was utilized to evaluate the predictive value (leave one out cross validation) for gender and side identification within the study population. Eighty-six radii (45 left, 44% female, 40 ± 18 years) were included. 1) Overall, side and gender specific statistical 3D models were successfully generated. The first mode explained 37% of the overall variance. Left radii had a higher shape variance (number of modes: 20 female / 23 male) compared to right radii (number of modes: 6 female / 6 male). 2) Standardized cut planes could be defined using anatomical landmarks. All morphometric parameters decreased from distal to proximal. Male radii were larger than female radii with no significant side difference. 3) The overall shape model had a combined median classification probability for side and gender of 80%. Statistical 3D shape models of the distal radius can be generated using clinical CT-data sets. These models

  3. Computed tomography of the vesicular glands: anatomical animal model (Oryctolagus cuniculus)

    International Nuclear Information System (INIS)

    Dimitrov, R.; Stamatova-Yovcheva, K.; Hamza, S.; Toneva, Y.

    2014-01-01

    Spiral CT is a non-invasive imaging method of choice for animal anatomical studies. The aim of the study was to establish the imaging anatomical features of the vesicular glands in the rabbit. Eight sexually mature healthy clinically male New Zealand rabbits of 18 months of age with body weight from 2.8 kg to 3.2 kg were used. The animals were anesthetized. As contrast medium Opti-ray350 was administrated. The computed tomography scan was complied with certain bone and soft tissue markers. For this purpose, a whole body multi-slice spiral computed tomography scanner was used. The both soft tissue glands were heterogeneous and relatively hyperdense structures, and defined in detail from the adjacent soft tissues. The urinary bladder neck was ventrally to the glands. Both vesicular glands were better differentiated each other when the rabbit is examined in abdominal recumbence. In dorsal recumbence the shape of the transversal image of the glandular finding was oval. In abdominal recumbence both the left and right soft tissue vesicular gland were defined. Transversal anatomical computed tomographic investigation of the rabbit vesicular gland is a detailed and definitive method, to study the normal morphology of these glands. Key words: Vesicular Gland. Helical Computed Tomography. Anatomy. Rabbit

  4. Building 3D anatomical model of coiling of the internal carotid artery derived from CT angiographic data.

    Science.gov (United States)

    Govsa, Figen; Yagdi, Tahir; Ozer, Mehmet Asim; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-02-01

    The purpose of this study is to recreate live patient arterial anomalies using new recent application of three-dimensional (3D) printed anatomical models. Another purpose of building such models is to evaluate the effectiveness of angiographic data. With the help of the DICOM files from computed tomographic angiography (CT-A), we were able to build a printed model of variant course of the internal carotid artery (ICA). Images of coiling of the ICA taken by CT-A, were then converted into 3D images using Google SketchUp free software, and the images were saved in stereolithography format. Imaging helped us conduct the examination in details with reference to geometrical features of ICA, degree of curve, its extension, location and presence of loop. Challenging vascular anatomy was exposed with models of adverse curve of carotid anatomy, including highly angulated necks, conical necks, short necks, tortuous carotid arteries, and narrowed carotid lumens. It assisted us to comprehend spatial anatomy configuration of life-like models. 3D model can be very effective in cases when anatomical difficulties are detected through the CT-A, and therefore, a tactile approach is demanded preoperatively. 3D life-like models serve as an essential office-based tool in vascular surgery as they assist surgeons in preoperative planning, develop intraoperative guidance, teach both the patients and the surgical trainees, and simulate to show patient-specific procedures in medical field.

  5. Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education.

    Science.gov (United States)

    Sergovich, Aimée; Johnson, Marjorie; Wilson, Timothy D

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using cryosection images obtained from the Visible Human Project, in conjunction with a general-purpose three-dimensional segmentation and surface-rendering program. Anatomical areas of interest were identified and labeled on consecutive images. Each 2D slice was reassembled, forming a three-dimensional model. The model includes the pelvic girdle, organs of the pelvic cavity, surrounding musculature, the perineum, neurovascular structures, and the peritoneum. Each structure can be controlled separately (e.g. added, subtracted, made transparent) to reveal organization and/or relationships between structures. The model can be manipulated and/or projected stereoscopically to visualize structures and relationships from different angles with excellent spatial perception. Because of its ease of use and versatility, we expect this model may provide a powerful teaching tool for learning in the classroom or in the laboratory. (c) 2010 American Association of Anatomists.

  6. Finite element model validation of bridge based on structural health monitoring—Part I: Response surface-based finite element model updating

    Directory of Open Access Journals (Sweden)

    Zhouhong Zong

    2015-08-01

    Full Text Available In the engineering practice, merging statistical analysis into structural evaluation and assessment is a tendency in the future. As a combination of mathematical and statistical techniques, response surface (RS methodology has been successfully applied to design optimization, response prediction and model validation. With the aid of RS methodology, these two serial papers present a finite element (FE model updating and validation method for bridge structures based on structural health monitoring. The key issues to implement such a model updating are discussed in this paper, such as design of experiment, parameter screening, construction of high-order polynomial response surface model, optimization methods and precision inspection of RS model. The proposed procedure is illustrated by a prestressed concrete continuous rigid-frame bridge monitored under operational conditions. The results from the updated FE model have been compared with those obtained from online health monitoring system. The real application to a full-size bridge has demonstrated that the FE model updating process is efficient and convenient. The updated FE model can relatively reflect the actual condition of Xiabaishi Bridge in the design space of parameters and can be further applied to FE model validation and damage identification.

  7. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    Science.gov (United States)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  8. Getting Lost Behavior in Patients with Mild Alzheimer’s Disease: A Cognitive and Anatomical Model

    Directory of Open Access Journals (Sweden)

    Chathuri Yatawara

    2017-11-01

    Full Text Available BackgroundGetting lost behavior (GLB in the elderly is believed to involve poor top-down modulation of visuospatial processing, by impaired executive functions. However, since healthy elderly and elderly with Alzheimer’s disease (AD experience a different pattern of cognitive decline, it remains unclear whether this hypothesis can explain GLB in dementia.ObjectiveWe sought to identify whether poor executive functions and working memory modulate the relationship between visuospatial processing and prevalence of GLB in healthy elderly and patients with AD. Complementary to this, we explored whether brain regions critical for executive functions modulate the relationship between GLB and brain regions critical for visuospatial processing.MethodNinety-two participants with mild AD and 46 healthy age-matched controls underwent neuropsychological assessment and a structural MRI. GLB was assessed using a semistructured clinical interview. Path analysis was used to explore interactions between visuospatial deficits, executive dysfunction/working memory, and prevalence of GLB, in AD and controls independently.ResultsFor both healthy controls and patients with mild AD, visuospatial processing deficits were associated with GLB only in the presence of poor working memory. Anatomically, GLB was associated with medial temporal atrophy in patients with mild AD, which was not strengthened by low frontal gray matter (GM volume as predicted. Instead, medial temporal atrophy was more strongly related to GLB in patients with high frontal GM volumes. For controls, GLB was not associated with occipital, parietal, medial temporal, or frontal GM volume.ConclusionCognitively, a top-down modulation deficit may drive GLB in both healthy elderly and patients with mild AD. This modulation effect may be localized in the medial temporal lobe for patients with mild AD. Thus, anatomical substrates of GLB in mild AD may not follow the typical top-down modulation mechanisms

  9. Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko.

    Science.gov (United States)

    Köppl, C; Authier, S

    1995-01-01

    The basilar papilla of the Tokay gecko was studied with standard light- and scanning electron microscopy methods. Several parameters thought to be of particular importance for the mechanical response properties of the system were quantitatively measured, separately for the three different hair-cell areas that are typical for this lizard family. In the basal third, papillar structure was very uniform. The apical two-thirds are subdivided into two hair-cell areas running parallel to each other along the papilla and covered by very different types of tectorial material. Both of those areas showed prominent gradients in hair-cell bundle morphology, i.e., in the height of the stereovillar bundles and the number of stereovilli per bundle, as well as in hair cell density and the size of their respective tectorial covering. Based on the direction of the observed anatomical gradients, a 'reverse' tonotopic organization is suggested, with the highest frequencies represented at the apical end.

  10. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    Science.gov (United States)

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  11. Predictive models of long-term anatomic outcome in age-related macular degeneration treated with as-needed Ranibizumab.

    Science.gov (United States)

    Gonzalez-Buendia, Lucia; Delgado-Tirado, Santiago; Sanabria, M Rosa; Fernandez, Itziar; Coco, Rosa M

    2017-08-18

    To analyze predictors and develop predictive models of anatomic outcome in neovascular age-related macular degeneration (AMD) treated with as-needed ranibizumab after 4 years of follow-up. A multicenter consecutive case series non-interventional study was performed. Clinical, funduscopic and OCT characteristics of 194 treatment-naïve patients with AMD treated with as-needed ranibizumab for at least 2 years and up to 4 years were analyzed at baseline, 3 months and each year until the end of the follow-up. Baseline demographic and angiographic characteristics were also evaluated. R Statistical Software was used for statistical analysis. Main outcome measure was final anatomic status. Factors associated with less probability of preserved macula were diagnosis in 2009, older age, worse vision, presence of atrophy/fibrosis, pigment epithelium detachment, and geographic atrophy/fibrotic scar/neovascular AMD in the fellow eye. Factors associated with higher probability of GA were presence of atrophy and greater number of injections, whereas male sex, worse vision, lesser change in central macular thickness and presence of fibrosis were associated with less probability of GA as final macular status. Predictive model of preserved macula vs. GA/fibrotic scar showed sensibility of 77.78% and specificity of 69.09%. Predictive model of GA vs. fibrotic scar showed sensibility of 68.89% and specificity of 72.22%. We identified predictors of final macular status, and developed two predictive models. Predictive models that we propose are based on easily harvested variables, and, if validated, could be a useful tool for individual patient management and clinical research studies.

  12. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education.

    Science.gov (United States)

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  13. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    Science.gov (United States)

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-06-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.

  14. Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Christ, Andreas; Kellom, Tocher; Seidman, Seth; Nikoloski, Neviana; Beard, Brian; Kuster, Niels

    2005-01-01

    This paper presents new definitions for obtaining reproducible results in numerical phone dosimetry. Numerous numerical dosimetric studies have been published about the exposure of mobile phone users which concluded with conflicting results. However, many of these studies lack reproducibility due to shortcomings in the description of the phone positioning. The new approach was tested by two groups applying two different numerical program packages to compare the specific anthropomorphic mannequin (SAM) to 14 anatomically correct head models. A novel definition for the positioning of mobile phones next to anatomically correct head models is given along with other essential parameters to be reported. The definition is solely based on anatomical characteristics of the head. A simple up-to-date phone model was used to determine the peak spatial specific absorption rate (SAR) of mobile phones in SAM and in the anatomically correct head models. The results were validated by measurements. The study clearly shows that SAM gives a conservative estimate of the exposure in anatomically correct head models for head only tissue. Depending on frequency, phone position and head size the numerically calculated 10 g averaged SAR in the pinna can be up to 2.1 times greater than the peak spatial SAR in SAM. Measurements in small structures, such as the pinna, will significantly increase the uncertainty; therefore SAM was designed for SAR assessment in the head only. Whether SAM will provide a conservative value for the pinna depends on the pinna SAR limit of the safety standard considered

  15. 3D Model Analysis of Ankle Flexion on Anatomic Reduction of a Syndesmotic Injury.

    Science.gov (United States)

    Schon, Jason M; Mikula, Jacob D; Backus, Jonathon D; Venderley, Melanie B; Dornan, Grant J; LaPrade, Robert F; Clanton, Thomas O

    2017-04-01

    The effect of ankle positioning during suture-button fixation for syndesmosis repair on range of motion (ROM) and anatomic reduction has yet to be investigated. The purpose of this cadaveric study was to compare the effects of 3 different ankle positions during suture-button repair on volumetric reduction of the syndesmosis, fibular displacement, and ROM of the ankle using 3-dimensional computed tomography (CT) analysis. The null hypothesis was that ankle position during fixation would not affect syndesmotic volume restoration, fibular displacement, or ROM. Twelve matched pair (n = 24) human cadaveric specimens were used for this study. Prior to syndesmotic sectioning, ROM assessment and CT scans were performed. Following sectioning of the syndesmosis, specimens were repaired in plantarflexion, dorsiflexion, or neutral, and simulated postrepair ROM evaluations and CT scans were repeated. Least squares mean differences between repair groups and the preinjury state were compared by analysis of variance and Tukey's method. There were no significant differences between repair groups for volumetric reduction ( P = .917), fibular displacement (anterior-posterior, P = .805; medial-lateral, P = .949), or dorsiflexion capacity ( P = .249). Among all specimens, compared with the preinjury state, there was a significant mean ± SD volume reduction of 337 ± 400 mm 3 and medial displacement of 1.9 ± 1.5 mm. This study failed to reject the null hypothesis and demonstrated that ankle flexion at the time of syndesmotic fixation with a suture-button construct had no significant in vitro effect on volume changes, fibular displacement, or dorsiflexion capacity. However, in comparison to the preinjured state, suture-button repair resulted in significant overcompression with respect to syndesmosis volume and medial displacement of the fibula. Ankle position at the time of syndesmotic fixation did not affect overall ankle ROM when using a suture-button construct; however

  16. Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma.

    Science.gov (United States)

    Jaumard, Nicolas V; Leung, Jennifer; Gokhale, Akhilesh J; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2015-10-15

    Basic science study measuring anatomical features of the cervical and lumbar spine in rat with normalized comparison with the human. The goal of this study is to comprehensively compare the rat and human cervical and lumbar spines to investigate whether the rat is an appropriate model for spine biomechanics investigations. Animal models have been used for a long time to investigate the effects of trauma, degenerative changes, and mechanical loading on the structure and function of the spine. Comparative studies have reported some mechanical properties and/or anatomical dimensions of the spine to be similar between various species. However, those studies are largely limited to the lumbar spine, and a comprehensive comparison of the rat and human spines is lacking. Spines were harvested from male Holtzman rats (n = 5) and were scanned using micro- computed tomography and digitally rendered in 3 dimensions to quantify the spinal bony anatomy, including the lateral width and anteroposterior depth of the vertebra, vertebral body, and spinal canal, as well as the vertebral body and intervertebral disc heights. Normalized measurements of the vertebra, vertebral body, and spinal canal of the rat were computed and compared with corresponding measurements from the literature for the human in the cervical and lumbar spinal regions. The vertebral dimensions of the rat spine vary more between spinal levels than in humans. Rat vertebrae are more slender than human vertebrae, but the width-to-depth axial aspect ratios are very similar in both species in both the cervical and lumbar regions, especially for the spinal canal. The similar spinal morphology in the axial plane between rats and humans supports using the rat spine as an appropriate surrogate for modeling axial and shear loading of the human spine.

  17. Physical and anatomical data, and part of physiological and metabolic data for normal Japanese with special reference to establishing Reference Asian Man model for the anatomical characteristics

    International Nuclear Information System (INIS)

    Tanaka, G.; Kawamura, H.

    1998-01-01

    Studies on the physical, anatomical, and partial metabolic as well as physiological characteristics on Reference Japanese Man were undertaken to establish reference values for use in internal dose assessment and to assign annual limits on intakes of radionuclides for Japanese workers and members of the general public. Secular trends in, and/or probable influences of nutritional conditions on the organ mass were examined by comparing the present results with the other normal Japanese data. The average height of male and female adults (20-50 y) were 168 and 155 cm, respectively. The body weights for males and females, 20-50 y, were - 64 and 52 kg. The data on the weight and size of twelve organs in normal males and eleven in normal females were obtained from autopsy, 12 to 24 h after sudden death. The per caput intake of foodstuffs and principal nutrients were taken from the annual report of the National nutrition Survey for households in the urban and rural areas in all districts of Japan. Determination of elemental intake was made by collecting, one full day of meals for adult males from 31 prefectures in practically all districts of Japan. Pulmonary function parameters studied include total lung capacity, vital capacity, minute volume and 8 h working volume at various levels of exertion - resting, light and heavy activity. The subjects were healthy, normal Japanese males and females. Water balance data were obtained for 9 males and 6 females in Tokyo, under conditions of controlled energy and salt intake. The lengths of the study period were 6 and 10 days, respectively. Daily intakes of energy and salt were determined for the male student athletes for whom an indoor physical training was assigned. (author)

  18. Evaluation by Medical Students of the Educational Value of Multi-Material and Multi-Colored Three-Dimensional Printed Models of the Upper Limb for Anatomical Education

    Science.gov (United States)

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…

  19. Anatomical Knowledge Gain through a Clay-Modeling Exercise Compared to Live and Video Observations

    Science.gov (United States)

    Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; Bergman, Esther M.; Donders, Rogier A. R. T.; Vorstenbosch, Marc A. T. M.

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments,…

  20. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    Science.gov (United States)

    Rafael Arévalo; Benjamin W. van Ee; Ricarda Riina; Paul E. Berry; Alex C. Wiedenhoeft

    2017-01-01

    Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context...

  1. Data-driven sampling method for building 3D anatomical models from serial histology

    Science.gov (United States)

    Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott

    2017-03-01

    In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.

  2. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  3. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    Science.gov (United States)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels

    2014-09-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  4. Continuous modelling study of numerical volumes - Applications to the visualization of anatomical structures

    International Nuclear Information System (INIS)

    Goret, C.

    1990-12-01

    Several technics of imaging (IRM, image scanners, tomoscintigraphy, echography) give numerical informations presented by means of a stack of parallel cross-sectional images. Since many years, 3-D mathematical tools have been developed and allow the 3 D images synthesis of surfaces. In first part, we give the technics of numerical volume exploitation and their medical applications to diagnosis and therapy. The second part is about a continuous modelling of the volume with a tensor product of cubic splines. We study the characteristics of this representation and its clinical validation. Finally, we treat of the problem of surface visualization of objects contained in the volume. The results show the interest of this model and allow to propose specifications for 3-D workstation realization [fr

  5. Experimental investigation of the flow field past a bileaflet mechanical heart valve in pulsatile flow within an anatomical aorta model

    Science.gov (United States)

    Brown, Laura; Tavoularis, Stavros

    2011-11-01

    A bileaflet mechanical heart valve (BMHV) has been mounted at the inlet of an anatomical model of the human aorta, and placed within a mock circulation loop that simulates physiological flow conditions. The working fluid matches the refractive index of silicone, from which the aorta model and other parts of the test section are made, and the viscosity of blood. Flow characteristics past the BMHV are measured using stereoscopic and planar particle image velocimetry and laser Doppler velocimetry. In contrast to previous experiments, in which heart valves have been tested in simplified aortic geometries, this arrangement permits the study of the dependence of flow past the valve upon recirculation in the sinuses of Valsalva, the flow rate through the coronary arteries, and the aorta curvature. The effect of valve orientation will also be investigated with the objective to determine a hemodynamically optimal configuration with potential benefits to implantation procedures. The measured viscous shear stress distribution will be analyzed towards predicting the initiation of thrombosis in patients and identifying regions of stagnation, which could facilitate thrombus attachment.

  6. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  7. Cranial pole nephrectomy in the pig model: anatomic analysis of arterial injuries in tridimensional endocasts.

    Science.gov (United States)

    Pereira-Sampaio, Marco A; Henry, Robert W; Favorito, Luciano A; Sampaio, Francisco J B

    2012-06-01

    To assess the intrarenal arteries injuries after cranial pole nephrectomy in a pig model to compare these findings with those in humans. Polyester resin was injected through the ureter and the renal artery to make three-dimensional casts of 61 pig kidneys. The cranial pole of the kidneys was sectioned at four different sites before the solidification of the resin, and the casts were examined for arterial damage. Section performed through the hilus (15 kidneys): The cranial division of the renal artery was sectioned in two (13.33%) cases, the ventral branch of the cranial division of the renal artery was sectioned in 13 (86.7%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 11 (73.34%) cases. Section at 0.5 cm cranial to the hilus (16 kidneys): The cranial division of the renal artery was sectioned in 1 (6.25%) case, the ventral branch of the cranial division of the renal artery was sectioned in 14 (87.5%) cases, and the dorsal branch of the cranial division of the renal artery was sectioned in 13 (81.25%) cases. Section at 1.0 cm cranial to the hilus (15 kidneys): The ventral branch of the cranial division of the renal artery was sectioned in five (33.33%) cases, and the dorsal branch of the cranial division of the renal artery was injured in five (33.33%) cases. Section at 1.5 cm cranial to the hilus (15 kidneys): No lesions were found in the main arteries, only in the interlobular branches. As previously demonstrated in humans, sections at 1.0 cm or more cranially to the hilus in pigs also showed a significant decrease in damage to the major intrarenal arteries. Therefore, as regards arterial damage, the pig kidney is a useful model for partial nephrectomy in the cranial (upper) pole.

  8. Hidden symmetry in asymmetric morphology: significance of Hjortsjo's anatomical model in liver surgery.

    Science.gov (United States)

    Shindoh, Junichi; Satou, Shoichi; Aoki, Taku; Beck, Yoshifumi; Hasegawa, Kiyoshi; Sugawara, Yasuhiko; Kokudo, Norihiro

    2012-01-01

    Several studies have recently reappraised the liver classification proposed by Hjortsjo in the 1940's and reported it as a surgically relevant theory. However, its clinical relevance and significance in liver surgery have not yet been well documented. Three-dimensional (3D) simulations of the livers of 100 healthy donors for living donor liver transplantation were reviewed. The adequacy of Hjortsjo's model was evaluated using 3D simulations and its clinical relevance was demonstrated in donor surgery. Both portal and hepatic venous branches exhibited symmetrical configuration on either side of the Rex-Cantlie line on the 3D images. In terms of the symmetry, the right paramedian sector seemed to be subdivided into two longitudinal parts, namely the "ventral" and "dorsal" parts. Volume analysis revealed that these longitudinal parts occupied relatively large areas of the liver (the ventral part, 15.7% and the dorsal part, 20.9% of the whole livers, respectively). Postoperative CT imaging confirmed marked congestion and/or impaired regeneration of these areas due to deprivation of the middle or right hepatic veins. Considering the symmetry of intrahepatic vascular distributions and clinical relevance, Hjortsjo's classification offers important viewpoint for surgeons to handle the liver based on both the portal and venous distributions.

  9. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    Science.gov (United States)

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    Science.gov (United States)

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  11. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    Science.gov (United States)

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is

  12. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise

    Science.gov (United States)

    Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok

    2018-02-01

    Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.

  13. Slice-based supine-to-standing posture deformation for chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: Simulation

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)

  14. Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model.

    Science.gov (United States)

    Nicholson, Daren T; Chalk, Colin; Funnell, W Robert J; Daniel, Sam J

    2006-11-01

    The use of computer-generated 3-dimensional (3-D) anatomical models to teach anatomy has proliferated. However, there is little evidence that these models are educationally effective. The purpose of this study was to test the educational effectiveness of a computer-generated 3-D model of the middle and inner ear. We reconstructed a fully interactive model of the middle and inner ear from a magnetic resonance imaging scan of a human cadaver ear. To test the model's educational usefulness, we conducted a randomised controlled study in which 28 medical students completed a Web-based tutorial on ear anatomy that included the interactive model, while a control group of 29 students took the tutorial without exposure to the model. At the end of the tutorials, both groups were asked a series of 15 quiz questions to evaluate their knowledge of 3-D relationships within the ear. The intervention group's mean score on the quiz was 83%, while that of the control group was 65%. This difference in means was highly significant (P < 0.001). Our findings stand in contrast to the handful of previous randomised controlled trials that evaluated the effects of computer-generated 3-D anatomical models on learning. The equivocal and negative results of these previous studies may be due to the limitations of these studies (such as small sample size) as well as the limitations of the models that were studied (such as a lack of full interactivity). Given our positive results, we believe that further research is warranted concerning the educational effectiveness of computer-generated anatomical models.

  15. A unified deformable (UD) segment model for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait.

    Science.gov (United States)

    Takahashi, Kota Z; Kepple, Thomas M; Stanhope, Steven J

    2012-10-11

    Anatomically-relevant (AR) biomechanical models are traditionally used to quantify joint powers and segmental energies of lower extremity structures during gait. While AR models contain a series of rigid body segments linked together via mechanical joints, prosthetic below-knee structures are often deformable objects without a definable ankle joint. Consequently, the application of AR models for the study of prosthetic limbs has been problematic. The purpose of this study was to develop and validate a unified deformable (UD) segment model for quantifying the total power of below-knee structures. Estimates of total below-knee power derived via the UD segment model were compared to those derived via an AR model during stance in gait of eleven healthy subjects. The UD segment model achieved similar results to the AR model. Differences in peak power, total positive work, and total negative work were 1.91±0.31%, 3.97±0.49%, and 1.39±0.33%, relative to the AR model estimates. The main advantage of the UD segment model is that it does not require the definition of an ankle joint or foot structures. Therefore, this technique may be valuable for facilitating direct comparisons between anatomical and disparate prosthetic below-knee structures in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  17. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets.

    Science.gov (United States)

    Sass, Lucas R; Khani, Mohammadreza; Natividad, Gabryel Connely; Tubbs, R Shane; Baledent, Olivier; Martin, Bryn A

    2017-12-19

    The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm 3 . Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm 3 . Surface area of these features was 318.52, 112.2 and 232.1 cm 2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons

  18. Effect of Anatomical Modeling on Space Radiation Dose Estimates: A Comparison of Doses for NASA Phantoms and 5th, 50th, and 95th Percentile UF Hybrid Phantoms

    Science.gov (United States)

    Bahadori, A.; VanBaalen, M.; Shavers, M.; Semones, E.; Dodge, C.; Bolch, W.

    2010-01-01

    The estimate of absorbed dose to individual organs of a space crewmember is affected by the geometry of the anatomical model of the astronaut used in the radiation transport calculation. For astronaut dosimetry, NASA currently uses the computerized anatomical male (CAM) and computerized anatomical female (CAF) stylized phantoms to represent astronauts in its operational radiation dose analyses. These phantoms are available in one size and in two body positions. In contrast, the UF Hybrid Adult Male and Female (UFHADM and UFHADF) phantoms have organ shapes based on actual CT data. The surfaces of these phantoms are defined by non-uniform rational B-spline surfaces, and are thus flexible in terms of body morphometry and extremity positioning. In this study, UFHADM and UFHADF are scaled to dimensions corresponding to 5th, 50th, and 95th percentile (PCTL) male and female astronauts. A ray-tracing program is written in Visual Basic 2008, which is then used to create areal density maps for dose points corresponding to various organs within the phantoms. The areal density maps, along with appropriate space radiation spectra, are input into the NASA program couplet HZETRN/BRYNTRN, and organ doses are calculated. The areal density maps selected tissues and organs of the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared. In addition, the organ doses for the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared to organ doses for CAM and CAF.

  19. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head

    Science.gov (United States)

    Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2018-01-01

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260

  20. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-01-01

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A 3 )], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR 192 Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192 Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A 3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  1. Skin temperature during cutaneous wound healing in an equine model of cutaneous fibroproliferative disorder: kinetics and anatomic-site differences.

    Science.gov (United States)

    Celeste, Christophe J; Deschesne, Karine; Riley, Christopher B; Theoret, Christine L

    2013-02-01

    To map skin temperature kinetics, and by extension skin blood flow throughout normal or abnormal repair of full-thickness cutaneous wounds created on the horse body and limb, using infrared thermography. Experimental. Standardbreds (n = 6), aged 3-4 years. Three cutaneous wounds were created on the dorsolateral surface of each metacarpus and on the lateral thoracic wall. Thoracic skin wounds and those on 1 randomly chosen forelimb healed by second intention without a bandage, whereas contralateral limb wounds were bandaged to induce formation of exuberant granulation tissue (EGT). Thermal data were collected from all planned wound sites before the surgical procedure (baseline), and at 24, 48, 96 hours, 1, 2, and 4 weeks after wounding. Data were analyzed using repeated measures ANOVA and a priori contrasts submitted to Bonferroni sequential correction. Level of significance was P temperature (CWT) increased temporally from preoperative period to week 1 postwounding, independently of anatomic location (P < .0001). CWT of limb wounds was significantly less than that of body wounds throughout healing (P < .01). CWT of limb wounds managed with bandages and developing EGT was significantly less than that of unbandaged limb wounds, which did not develop EGT (P ≤ .01). CWT varied with anatomic location and throughout healing. CWT of wounds developing EGT was significantly less than that of wounds without EGT. © Copyright 2012 by The American College of Veterinary Surgeons.

  2. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.

    Science.gov (United States)

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon Hock

    2015-11-25

    The aim of this study is to provide better insights into the cerebral perfusion patterns and collateral mechanism of the circle of Willis (CoW) under anatomical and pathological variations. In the current study, a patient-specific three-dimensional computational model of the CoW was reconstructed based on the computed tomography (CT) images. The Carreau model was applied to simulate the non-Newtonian property of blood. Flow distributions in five common anatomical variations coexisting with different degrees of stenosis in the right internal carotid artery (RICA) were investigated to obtain detailed flow information. With the development of stenosis in unilateral internal carotid artery (ICA), the cerebral blood supply decreased when the degree of stenosis increased. The blood supply of the ipsilateral middle cerebral artery (MCA) was most affected by the stenosis of ICA. The anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) functioned as the important collateral circulation channels when unilateral stenosis occurred. The blood flow of the anterior circulation and the total cerebral blood flow (CBF) reached to the minimum in the configuration of the contralateral proximal anterior cerebral artery (A1) absence coexisting with unilateral ICA stenosis. Communicating arteries provided important collateral channels in the complete CoW when stenosis in unilateral ICA occurred. The cross-flow in the ACoA is a sensitive indicator of the morphological change of the ICA. The collateral function of the PCoA on the affected side will not be fully activated until a severe stenosis occurred in unilateral ICA. The absence of unilateral A1 coexisting with the stenosis in the contralateral ICA could be the most dangerous configuration in terms of the total cerebral blood supply. The findings of this study would enhance the understanding of the collateral mechanism of the CoW under different anatomical variations.

  3. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    Science.gov (United States)

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  4. Slice-based supine to standing postured deformation for chinese anatomical models and the dosimetric results by wide band frequency electromagnetic field exposure: Morphing

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Digital human models are frequently obtained from supine-postured medical images or cadaver slices, but many applications require standing models. This paper presents the work of reconstructing standing Chinese adult anatomical models from supine postured slices. Apart from the previous studies, the deformation works on 2-D segmented slices. The surface profile of the standing posture is adjusted by population measurement data. A non-uniform texture amplification approach is applied on the 2-D slices to recover the skin contour and to redistribute the internal tissues. Internal organ shift due to postures is taken into account. The feet are modified by matrix rotation. Then, the supine and standing models are utilised for the evaluation of electromagnetic field exposure over wide band frequency and different incident directions. . (authors)

  5. The anatomical foundations of acquired reading disorders: a neuropsychological verification of the dual-route model of reading.

    Science.gov (United States)

    Ripamonti, E; Aggujaro, S; Molteni, F; Zonca, G; Frustaci, M; Luzzatti, C

    2014-07-01

    In this study we investigated the neural correlates of acquired reading disorders through an anatomo-correlative procedure of the lesions of 59 focal brain damaged patients suffering from acquired surface, phonological, deep, undifferentiated dyslexia and pure alexia. Two reading tasks, one of words and nonwords and one of words with unpredictable stress position, were used for this study. We found that surface dyslexia was predominantly associated with left temporal lesions, while in phonological dyslexia the lesions overlapped in the left insula and the left inferior frontal gyrus (pars opercularis) and that pure alexia was associated with lesions in the left fusiform gyrus. A number of areas and white matter tracts, which seemed to involve processing along both the lexical and the sublexical routes, were identified for undifferentiated dyslexia. Two cases of deep dyslexia with relatively dissimilar anatomical correlates were studied, one compatible with Coltheart's right-hemisphere hypothesis (1980) whereas the other could be interpreted in the context of Morton and Patterson's (1980), multiply-damaged left-hemisphere hypothesis. In brief, the results of this study are only partially consistent with the current state of the art, and propose new and stimulating challenges; indeed, based on these results we suggest that different types of acquired dyslexia may ensue after different cortical damage, but white matter disconnection may play a crucial role in some cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Automated landmark identification for human cortical surface-based registration.

    Science.gov (United States)

    Anticevic, Alan; Repovs, Grega; Dierker, Donna L; Harwell, John W; Coalson, Timothy S; Barch, Deanna M; Van Essen, David C

    2012-02-01

    Volume-based registration (VBR) is the predominant method used in human neuroimaging to compensate for individual variability. However, surface-based registration (SBR) techniques have an inherent advantage over VBR because they respect the topology of the convoluted cortical sheet. There is evidence that existing SBR methods indeed confer a registration advantage over affine VBR. Landmark-SBR constrains registration using explicit landmarks to represent corresponding geographical locations on individual and atlas surfaces. The need for manual landmark identification has been an impediment to the widespread adoption of Landmark-SBR. To circumvent this obstacle, we have implemented and evaluated an automated landmark identification (ALI) algorithm for registration to the human PALS-B12 atlas. We compared ALI performance with that from two trained human raters and one expert anatomical rater (ENR). We employed both quantitative and qualitative quality assurance metrics, including a biologically meaningful analysis of hemispheric asymmetry. ALI performed well across all quality assurance tests, indicating that it yields robust and largely accurate results that require only modest manual correction (<10 min per subject). ALI largely circumvents human error and bias and enables high throughput analysis of large neuroimaging datasets for inter-subject registration to an atlas. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Correction of dental artifacts within the anatomical surface in PET/MRI using active shape models and k-nearest-neighbors

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune H.

    2014-01-01

    n combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Metal implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC. Several papers acknowledge the problem in PET attenuation correction when dental...... artifacts are ignored, but none of them attempts to solve the problem. We propose a clinically feasible correction method which combines Active Shape Models (ASM) and k- Nearest-Neighbors (kNN) into a simple approach which finds and corrects the dental artifacts within the surface boundaries of the patient...... vector, and fill the artifact voxels with a value representing soft tissue. We tested the method using fourteen patients without artifacts, and eighteen patients with dental artifacts of varying sizes within the anatomical surface of the head/neck region. Though the method wrongly filled a small volume...

  8. Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology

    International Nuclear Information System (INIS)

    Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.

    2016-01-01

    Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.

  9. Study on the Construction of a High-definition Whole-body Voxel Model based on Cadaver's Color Photographic Anatomical Slice Images and Monte Carlo Dose Calculations

    International Nuclear Information System (INIS)

    Choi, Sang Hyoun

    2007-08-01

    Ajou University School of Medicine made the serially sectioned anatomical images from the Visible Korean Human (VKH) Project in Korea. The VKH images, which are the high-resolution color photographic images, show the organs and tissues in the human body very clearly at 0.2 mm intervals. In this study, we constructed a high-quality voxel model (VKH-Man) with a total of 30 organs and tissues by manual and automatic segmentation method using the serially sectioned anatomical image data from the Visible Korean Human (VKH) project in Korea. The height and weight of VKH-Man voxel model is 164 cm and 57.6 kg, respectively, and the voxel resolution is 1.875 x 1.875 x 2 mm 3 . However, this voxel phantom can be used to calculate the organ and tissue doses of only one person. Therefore, in this study, we adjusted the voxel phantom to the 'Reference Korean' data to construct the voxel phantom that represents the radiation workers in Korea. The height and weight of the voxel model (HDRK-Man) that is finally developed are 171 cm and 68 kg, respectively, and the voxel resolution is 1.981 x 1.981 x 2.0854 mm 3 . VKH-Man and HDRK-Man voxel model were implemented in a Monte Carlo particle transport simulation code for calculation of the organ and tissue doses in various irradiation geometries. The calculated values were compared with each other to see the effect of the adjustment and also compared with other computational models (KTMAN-2, ICRP-74 and VIP-Man). According to the results, the adjustment of the voxel model was found hardly affect the dose calculations and most of the organ and tissue equivalent doses showed some differences among the models. These results shows that the difference in figure, and organ topology affects the organ doses more than the organ size. The calculated values of the effective dose from VKH-Man and HDRK-Man according to the ICRP-60 and upcoming ICRP recommendation were compared. For the other radiation geometries (AP, LLAT, RLAT) except for PA

  10. Anatomical terminology in Ophthalmology

    OpenAIRE

    Abib, Fernando César; Oréfice, Fernando

    2005-01-01

    O objetivo deste artigo é informar à classe oftalmológica a existência da edição em língua portuguesa da Terminologia Anatômica Internacional, editada pela Federation Committee on Anatomical Terminology (FCAT). No Brasil a Terminologia Anatômica Internacional é traduzida pela Comissão de Terminologia Anatômica (CTA) da Sociedade Brasileira de Anatomia (SBA).The purpose of this article is inform ophthalmologists of the International Anatomical Terminology in the Portuguese language edited by t...

  11. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    Science.gov (United States)

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P <.01). Furthermore, 3 of the 4 components of the nephrometry score (radius, nearness to collecting system, and location) showed significant improvement (P <.001) using the models. There was also more consistent agreement among trainees when using the 3D models compared with CT scans to assess the nephrometry score (intraclass correlation coefficient, 0.28 for CT scan vs 0.72 for 3D models). Qualitative evaluation with questionnaires filled out by the trainees further confirmed that the 3D models improved their ability to understand and conceptualize the renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  12. Anatomic and histological study of the rabbit mandible as an experimental model for wound healing and surgical therapies.

    Science.gov (United States)

    Campillo, V-E; Langonnet, S; Pierrefeu, A; Chaux-Bodard, A-G

    2014-10-01

    The rabbit is one of the most widely used models for studying bone remodeling or dental implant osseointegration but very few data are available about the rabbit's mandible. The aim of this work was to describe the anatomy of the rabbit mandible and to estimate the available bone volume for experimental studies. First, with a dissection, the morphology of the mandible was described and the mental foramen, the position of the main salivary glands and muscular insertions were located. Then, by X-ray imaging, the position of the inferior alveolar canal, the dental root courses and volume and bone density were described. Finally, with frontal sections of the mandible body, the rabbit's dental and alveolar bone histological structure were assessed. Thus, the relevance of the rabbit mandible as an experimental model for wound healing or surgical therapies was discussed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Anatomical relationship between the collecting system and the intrarenal arteries in the rabbit: contribution for an experimental model.

    Science.gov (United States)

    Shalgum, A; Marques-Sampaio, B P S; Dafalla, A; Pereira-Sampaio, M A

    2012-04-01

    Intrarenal anatomy was studied in detail to evaluate how useful rabbits could be as a urologic model. Only one renal artery was observed, which was divided into dorsal and ventral branches in all cases. Three segmental arteries (cranial, mesorenal and caudal) was the most frequent branching pattern found in both the dorsal and ventral division. There was an important artery related to the ureteropelvic junction in both dorsal and ventral surfaces in all specimens. The cranial pole was supplied by both dorsal and ventral divisions of the renal artery in 23 of 41 casts (56%). Although the cranial pole of the rabbit kidney could be useful as a model because of the resemblances with human kidney, the different relationship between the intrarenal arteries and the kidney collecting system in other regions of the kidney must be taken into consideration by the urologists, when using rabbit kidney in urological research. © 2011 Blackwell Verlag GmbH.

  14. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    Science.gov (United States)

    2017-02-01

    primary blast wave loading on the eye. Watson et al.16 evaluated primary blast wave insult through a combined experimental-computational approach...analysis model of orbital biomechanics. Vision Res. 2006;46(11):1724–1731. 16. Watson R, Gray W, Sponsel WE, Lund BJ, Glickman RD, Groth SL, Reilly MA...ISRN Ophthalmology; 2011. Article ID No.: 146813. doi:10.5402/2011/146813. 39. Roberts KF, Artes PH, OLeary N, Reis AS, Sharpe GP, Hutchison DM

  15. Development of a rate model to investigate contributions of anatomic and physiologic determinants of in vivo skin permeation

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, N.M.

    1991-01-01

    The skin is a heterogeneous, bi-directional impediment to chemical flux, in which the stratum corneum is a major, though not the sole, rate-limiting barrier layer to permeation. Systemic toxicity following dermal exposure to environmental chemicals and use of skin as a portal for systemic administration of drugs have led to extensive investigations of the inward flux of xenobiotics applied to the outer surface of skin. Those investigations mainly utilized in vitro experimental systems that were limited by the absence of normal physiologic functions. The objective of the present research was to investigate an in vivo skin permeation model system that was sensitive to perturbations of skin capillary physiology and stratum corneum. A [open quotes]fuzzy[close quotes] rat model system was devised that employed outward cutaneous migration of a systemically administered permeation probe, isoflurane. Specially devised, transdermal vapor collection devices were used to capture the outward flux of isoflurane through the skin. Isoflurane flux measurements, coupled with blood isoflurane concentrations, were used to calculate cutaneous permeability coefficients (K[sub p]) of isolflurane, as an index of permeation, under various conditions of normal or perturbed cutaneous physiologic states. Physiologic perturbations were performed to test the sensitivity of the model system to detect effects of minoxidil-mediated vasodilation, phenylephrine-mediated vasoconstriction, and leukotriene D[sub 4]-mediated increased capillary permeability on the outward flux of isoflurane. Tape stripping and topical ether-ethanol application produced either physical removal or chemical disruption of the stratum corneum, respectively. Minoxidil, leukotriene D[sub 4], tape stripping of stratum corneum, and topical ether-ethanol experiments produced statistically significant increases (52 to 193%) in the K[sub p's], while phenylephrine had no significant effect on isoflurane permeation.

  16. Early fetal anatomical sonography.

    LENUS (Irish Health Repository)

    Donnelly, Jennifer C

    2012-10-01

    Over the past decade, prenatal screening and diagnosis has moved from the second into the first trimester, with aneuploidy screening becoming both feasible and effective. With vast improvements in ultrasound technology, sonologists can now image the fetus in greater detail at all gestational ages. In the hands of experienced sonographers, anatomic surveys between 11 and 14 weeks can be carried out with good visualisation rates of many structures. It is important to be familiar with the normal development of the embryo and fetus, and to be aware of the major anatomical landmarks whose absence or presence may be deemed normal or abnormal depending on the gestational age. Some structural abnormalities will nearly always be detected, some will never be and some are potentially detectable depending on a number of factors.

  17. An Efficient Algorithm for EM Scattering from Anatomically Realistic Human Head Model Using Parallel CG-FFT Method

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2014-01-01

    Full Text Available An efficient algorithm is proposed to analyze the electromagnetic scattering problem from a high resolution head model with pixel data format. The algorithm is based on parallel technique and the conjugate gradient (CG method combined with the fast Fourier transform (FFT. Using the parallel CG-FFT method, the proposed algorithm is very efficient and can solve very electrically large-scale problems which cannot be solved using the conventional CG-FFT method in a personal computer. The accuracy of the proposed algorithm is verified by comparing numerical results with analytical Mie-series solutions for dielectric spheres. Numerical experiments have demonstrated that the proposed method has good performance on parallel efficiency.

  18. Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models.

    Science.gov (United States)

    Parazzini, Marta; Fiocchi, Serena; Chiaramello, Emma; Roth, Yiftach; Zangen, Abraham; Ravazzani, Paolo

    2017-05-01

    Literature studies showed the ability to treat neuropsychiatric disorders using H1 coil, developed for the deep Transcranial Magnetic Stimulation (dTMS). Despite the positive results of the clinical studies, the electric field (E) distributions inside the brain induced by this coil when it is positioned on the scalp according to the clinical studies themselves are not yet precisely estimated. This study aims to characterize the E distributions due to the H1 coil in the brain of two realistic human models by computational electromagnetic techniques and to compare them with the ones due to the figure-of-8 coil, traditionally used in TMS and positioned as such to simulate the clinical experiments. Despite inter-individual differences, our results show that the dorsolateral prefrontal cortex is the region preferentially stimulated by both H1 and figure-of-8 coil when they are placed in the position on the scalp according to the clinical studies, with a more broad and non-focal distribution in the case of H1 coil. Moreover, the H1 coil spreads more than the figure-of-8 coil both in the prefrontal cortex and medial prefrontal cortex and towards some deeper brain structures and it is characterized by a higher penetration depth in the frontal lobe. This work highlights the importance of the knowledge of the electric field distribution in the brain tissues to interpret the outcomes of the experimental studies and to optimize the treatments. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Scroll-wave dynamics in the presence of ionic and conduction inhomogeneities in an anatomically realistic mathematical model for the pig heart

    Science.gov (United States)

    Majumder, R.; Pandit, R.; Panfilov, A. V.

    2016-12-01

    Nonlinear waves of the reaction-diffusion (RD) type occur in many biophysical systems, including the heart, where they initiate cardiac contraction. Such waves can form vortices called scroll waves, which result in the onset of life-threatening cardiac arrhythmias. The dynamics of scroll waves is affected by the presence of inhomogeneities, which, in a very general way, can be of (i) ionic type; i.e., they affect the reaction part, or (ii) conduction type, i.e., they affect the diffusion part of an RD-equation. We demonstrate, for the first time, by using a state-of-the-art, anatomically realistic model of the pig heart, how differences in the geometrical and biophysical nature of such inhomogeneities can influence scroll-wave dynamics in different ways. Our study reveals that conduction-type inhomogeneities become increasingly important at small length scales, i.e., in the case of multiple, randomly distributed, obstacles in space at the cellular scale (0.2-0.4 mm). Such configurations can lead to scroll-wave break up. In contrast, ionic inhomogeneities affect scroll-wave dynamics significantly at large length scales, when these inhomogeneities are localized in space at the tissue level (5-10 mm). In such configurations, these inhomogeneities can attract scroll waves, by pinning them to the heterogeneity, or lead to scroll-wave breakup.

  20. Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling.

    Science.gov (United States)

    Struzyna, Laura A; Adewole, Dayo O; Gordián-Vélez, Wisberty J; Grovola, Michael R; Burrell, Justin C; Katiyar, Kritika S; Petrov, Dmitriy; Harris, James P; Cullen, D Kacy

    2017-05-31

    indicators suggest that micro-TENNs possess extensive synaptic distribution and intrinsic electrical activity. Consequently, micro-TENNs represent a promising strategy for targeted neurosurgical reconstruction of brain pathways and may also be applied as biofidelic models to study neurobiological phenomena in vitro.

  1. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  2. Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model

    Directory of Open Access Journals (Sweden)

    SeoJin Lee

    2017-01-01

    Full Text Available Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV. It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease.

  3. [BODIES ARTIFACTS AND ANATOMICAL MODELS].

    Science.gov (United States)

    Aruta, Alessandro

    2015-01-01

    Through three different museological approaches, diachronically arranged, the essay intends to introduce some pertinent questions related to the topic of the conference "Bodies and Anatomy: the corpses in the museums from Ruysch to Von Hagens. The first item analyzes a recent line of British museological studies, treating mainly medical British museums of the XVIII and XIX century, with intriguing developments arriving up to nowadays. A second point illustrates several aspects with regards to the donation and the arrangement of the morbid specimina Luigi Gedda collection, coming from the CSS Mendel of Rome to the Museum of Pathological Anatomy of Sapienza University of Rome. Finally, in a crossover between the previous points, it will be presented some recent studies regarding the employment of new communication technologies in the scientific and medical museology.

  4. Understanding anatomical terms.

    Science.gov (United States)

    Mehta, L A; Natrajan, M; Kothari, M L

    1996-01-01

    Words are our masters and words are our slaves, all depending on how we use them. The whole of medical science owes its origin to Greco-Roman culture and is replete with terms whose high sound is not necessarily accompanied by sound meaning. This is even more the case in the initial, pre-clinical years. Anatomical terminology seems bewildering to the initiate; and maybe that is a reason why love of anatomy as a subject does not always spill over through later years. Employing certain classifications of the origin of the anatomical terms, we have prepared an anthology that we hope will ease the student's task and also heighten the student's appreciation of the new terms. This centers on revealing the Kiplingian "how, why, when, where, what, and who" of a given term. This presentation should empower students to independently formulate a wide network of correlations once they understand a particular term. The article thus hopes to stimulate students' analytic and synthetic faculties as well. A small effort can reap large rewards in terms of enjoyment of the study of anatomy and the related subjects of histology, embryology, and genetics. It is helpful to teachers and students alike. This exercise in semantics and etymology does not demand of the student or his teacher any background in linguistics, grammar, Greek, Latin, Sanskrit, anatomy, or medicine.

  5. Local SAR enhancements in anatomically correct children and adult models as a function of position within 1.5 T MR body coil.

    Science.gov (United States)

    Murbach, Manuel; Cabot, Eugenia; Neufeld, Esra; Gosselin, Marie-Christine; Christ, Andreas; Pruessmann, Klaas P; Kuster, Niels

    2011-12-01

    Usage of magnetic resonance imaging (MRI) is continuously increasing due to its excellent soft-tissue contrast and improving diagnostic values. MRI also has the advantage that it operates without ionizing radiation. The main safety concerns are torque, acceleration by the static field, nerve stimulation by the gradient fields, and tissue heating by the radio-frequency (RF) fields. This paper investigates if children and fetuses are at higher risks than adults when the current RF regulations are applied. We analyzed and compared local absorption hotspots, i.e., the peak spatial specific absorption rate averaged over any 10 g (psSAR10g) for five adults, three children of ages 5, 11 and 14 years, and 1 pregnant female (36 weeks' gestation) in 10 different Z-positions (head to calves). In the First Level Operating Mode (4 W/kg whole-body averaged exposure), the psSAR10g values found for adults were as large as 60 W/kg in the trunk and 104 W/kg in the extremities. The corresponding values for children were 43 and 58 W/kg, respectively, and 14 W/kg for the unborn child. Modeling of worst case anatomical RF loops can substantially increase the psSAR10g values, i.e., by factor >2. The results suggest that local exposure for children and fetuses is smaller than for adults (15-75%), i.e., no special considerations for children and the unborn child are needed regarding psSAR10g due to RF. However, the local thermal load of the unborn may be significantly increased due to the high exposure average (up to 4 W/kg) of the non-perfused amniotic fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-01

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg-1 with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings were confirmed

  7. An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi

    2007-01-01

    The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz

  8. Detection of epileptogenic cortical malformations with surface-based MRI morphometry.

    Directory of Open Access Journals (Sweden)

    Thomas Thesen

    2011-02-01

    Full Text Available Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity with few false positives (96% specificity, successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from

  9. Detection of epileptogenic cortical malformations with surface-based MRI morphometry.

    Science.gov (United States)

    Thesen, Thomas; Quinn, Brian T; Carlson, Chad; Devinsky, Orrin; DuBois, Jonathan; McDonald, Carrie R; French, Jacqueline; Leventer, Richard; Felsovalyi, Olga; Wang, Xiuyuan; Halgren, Eric; Kuzniecky, Ruben

    2011-02-04

    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery.

  10. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  11. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  12. Anatomical adaptations of aquatic mammals.

    Science.gov (United States)

    Reidenberg, Joy S

    2007-06-01

    This special issue of the Anatomical Record explores many of the anatomical adaptations exhibited by aquatic mammals that enable life in the water. Anatomical observations on a range of fossil and living marine and freshwater mammals are presented, including sirenians (manatees and dugongs), cetaceans (both baleen whales and toothed whales, including dolphins and porpoises), pinnipeds (seals, sea lions, and walruses), the sea otter, and the pygmy hippopotamus. A range of anatomical systems are covered in this issue, including the external form (integument, tail shape), nervous system (eye, ear, brain), musculoskeletal systems (cranium, mandible, hyoid, vertebral column, flipper/forelimb), digestive tract (teeth/tusks/baleen, tongue, stomach), and respiratory tract (larynx). Emphasis is placed on exploring anatomical function in the context of aquatic life. The following topics are addressed: evolution, sound production, sound reception, feeding, locomotion, buoyancy control, thermoregulation, cognition, and behavior. A variety of approaches and techniques are used to examine and characterize these adaptations, ranging from dissection, to histology, to electron microscopy, to two-dimensional (2D) and 3D computerized tomography, to experimental field tests of function. The articles in this issue are a blend of literature review and new, hypothesis-driven anatomical research, which highlight the special nature of anatomical form and function in aquatic mammals that enables their exquisite adaptation for life in such a challenging environment. 2007 Wiley-Liss, Inc.

  13. Theoretical and Experimental Analysis of Adsorption in Surface-based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus

    The present Ph.D. dissertation concerns the application of surface plasmon resonance (SPR) spectroscopy, which is a surface-based biosensor technology, for studies of adsorption dynamics. The thesis contains both experimental and theoretical work. In the theoretical part we develop the theory...... for convection, diffusion, and adsorption in surface-based biosensors in general. In particular, we study the transport dynamics in a model geometry of a Biacore SPR sensor. An approximate quasi-steady theory, which has been widely adopted in the SPR literature to capture convective and diffusive mass transport...... is critical for reliable use of the quasi-steady theory. Our theoretical results provide users of surface-based biosensors with a tool of correcting experimentally obtained adsorption rate constants, based on the quasisteady theory. Finally, the consequence of adsorption on all surfaces present in the flow...

  14. On the new anatomical nomenclature.

    Science.gov (United States)

    Marecková, E; Simon, F; Cervený, L

    2001-05-01

    The present paper is concerned with the linguistic aspect of the new anatomical nomenclature (Terminologia Anatomica 1998). Orthographic, morphological, syntactic, lexical, and terminological comments are presented. In the authors' opinion, shortcomings might have been effectively avoided by cooperation with linguists.

  15. Anatomic Preformed Post: Case Report

    OpenAIRE

    Lamas Lara, César; Cirujano Dentista, Docente del Área de Operatoria Dental y Endodoncia de la Facultad de OdontoIogía de la UNMSM.; Alvarado Menacho, Sergio; Cirujano Dentista, Especialista en Rehabilitación Oral, Profesor Asociado del Área de Prótesis y Oclusión de la Facultad de Odontología de la UNMSM.; Pari Espinoza, Rosa; Alumna del 5to año de Odontología de la UNMSM.

    2014-01-01

    Nowadays, preformed posts are being used frequently, but they do not follow root canal anatomy. Obtaining a more anatomical form of the root canal and reducing the space of the cement, it would help to reduce the possibility of its eviction. This article details the process of making of an anatomical preformed post and the advantages that would represent its clinical use. En la actualidad los postes preformados se utilizan con mucha frecuencia, pero tienenla dificultad de no seguir la anat...

  16. Anatomical pathology is dead? Long live anatomical pathology.

    Science.gov (United States)

    Nicholls, John M; Francis, Glenn D

    2011-10-01

    The standard diagnostic instrument used for over 150 years by anatomical pathologists has been the optical microscope and glass slide. The advent of immunohistochemistry in the routine laboratory in the 1980s, followed by in situ hybridisation in the 1990s, has increased the armamentaria available to the diagnostic pathologist, and this technology has led to changed patient management in a limited number of neoplastic diseases. The first decade of the 21 century has seen an increasing number of publications using proteomic technologies that promise to change disease diagnosis and management, the traditional role of an anatomical pathologist. Despite the plethora of publications on proteomics and pathology, to date there are actually limited data where proteomic technologies do appear to be of greater diagnostic value than the standard histological slide. Though proteomic techniques will become more prevalent in the future, it will need the expertise of an anatomical pathologist to dissect out and validate this added information.

  17. In vivo posterior cruciate ligament elongation in running activity after anatomic and non-anatomic anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Tang, Jing; Thorhauer, Eric; Bowman, Karl; Fu, Freddie H; Tashman, Scott

    2017-04-01

    The goals of this study were to (1) investigate the in vivo elongation behaviour of the posterior cruciate ligament (PCL) during running in the uninjured knee and (2) evaluate changes in PCL elongation during running after anatomic or non-anatomic anterior cruciate ligament (ACL) reconstruction. Seventeen unilateral ACL-injured subjects were recruited after undergoing anatomic (n = 9) or non-anatomic (n = 8) ACL reconstruction. Bilateral high-resolution CT scans were obtained to produce 3D models. Anterolateral (AL) and posteromedial (PM) bundles insertion sites of the PCL were identified on the 3D CT scan reconstructions. Dynamic knee function was assessed during running using a dynamic stereo X-ray (DSX) system. The lengths of the AL and PM bundles were estimated from late swing through mid-stance. The contralateral knees served as normal controls. Control knees demonstrated a slight decrease in AL bundle and a significant decrease in PM bundle length following foot strike. Length and elongation patterns of the both bundles of the PCL in the anatomic ACL reconstruction group were similar to the controls. However, the change in dynamic PCL length was significantly greater in the non-anatomic group than in the anatomic reconstruction group after foot strike (p < 0.05). The AL bundle length decreased slightly, and the PM bundle length significantly decreased after foot strike during running in uninjured knees. Anatomic ACL reconstruction maintained normal PCL elongation patterns more effectively than non-anatomic ACL reconstruction during high-demand, functional loading. These results support the use of anatomic ACL reconstruction to achieve normal knee function in high-demand activities. Case-control study, Level III.

  18. ["Left hemicranium, the cranial nerves" by Tramond: An anatomical model in wax from the Delmas, Orfila and Rouvière's Museum in Paris: description and tri-dimensional photographic reconstruction (TDPR)].

    Science.gov (United States)

    Paravey, S; Le Floch-Prigent, P

    2011-06-01

    An anatomical model in wax made by Tramond (middle of the 19th century) represented the cranial nerves of a left hemicranium. The aim of the study was to verify its anatomical veracity, to realize a tri-dimensional visualization by computer, and finally to numerize and to diffuse it to the general public in the purpose of culture on the internet. The model belonged to the Delmas, Orfila and Rouvière Museum (Paris Descartes university). It represented the cranial nerves especially the facial and the trigeminal nerves and their branches. To perform the photographic rotation every 5° along 360°, we used a special device made of two identical superimposed marble disks linked by a ball bearing. A digital camera and the Quick Time Virtual Reality software were used. Seventy-two pictures were shot. This wax was realized with a great morphological accuracy from a true cranium as a support for the cranial nerves. The work of numerization and its free diffusion on the Internet permitted to deliver to everybody the images of this sample of the collection of the Orfila Museum, the pieces of which were evacuated on December 2009 after its closure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Insights into the Impact of CD8+ Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression.

    Science.gov (United States)

    Rife Magalis, Brittany; Nolan, David J; Autissier, Patrick; Burdo, Tricia H; Williams, Kenneth C; Salemi, Marco

    2017-12-01

    A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8 + lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8 + lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8 + cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8 + lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8 + lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8 + lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8 + lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation. IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1

  20. Surface-based GPR underestimates below-stump root biomass

    Science.gov (United States)

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  1. A surface-based analysis of language lateralization and cortical asymmetry.

    Science.gov (United States)

    Greve, Douglas N; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R; Fischl, Bruce; Brysbaert, Marc

    2013-09-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl's gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013-2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by differences

  2. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    Science.gov (United States)

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  3. Anatomical structure of Polystichum Roth ferns rachises

    Directory of Open Access Journals (Sweden)

    Oksana V. Tyshchenko

    2012-03-01

    Full Text Available The morpho-anatomical characteristics of rachis cross sections of five Polystichum species is presented. The main and auxiliary anatomical features which help to distinguish investigated species are revealed.

  4. Unification of Sinonasal Anatomical Terminology

    Directory of Open Access Journals (Sweden)

    Voegels, Richard Louis

    2015-07-01

    Full Text Available The advent of endoscopy and computed tomography at the beginning of the 1980s brought to rhinology a revival of anatomy and physiology study. In 1994, the International Conference of Sinus Disease was conceived because the official “Terminologia Anatomica”[1] had little information on the detailed sinonasal anatomy. In addition, there was a lack of uniformity of terminology and definitions. After 20 years, a new conference has been held. The need to use the same terminology led to the publication by the European Society of Rhinology of the “European Position Paper on the Anatomical Terminology of the Internal Nose and Paranasal Sinuses,” that can be accessed freely at www.rhinologyjournal.com. Professor Valerie Lund et al[2] wrote this document reviewing the anatomical terms, comparing to the “Terminology Anatomica” official order to define the structures without eponyms, while respecting the embryological development and especially universalizing and simplifying the terms. A must-read! The text's purpose lies beyond the review of anatomical terminology to universalize the language used to refer to structures of the nasal and paranasal cavities. Information about the anatomy, based on extensive review of the current literature, is arranged in just over 50 pages, which are direct and to the point. The publication may be pleasant reading for learners and teachers of rhinology. This text can be a starting point and enables searching the universal terminology used in Brazil, seeking to converge with this new European proposal for a nomenclature to help us communicate with our peers in Brazil and the rest of the world. The original text of the European Society of Rhinology provides English terms that avoided the use of Latin, and thus fall beyond several national personal translations. It would be admirable if we created our own cross-cultural adaptation of this new suggested anatomical terminology.

  5. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  6. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    Science.gov (United States)

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  7. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  8. Surface-based determination of the pelvic coordinate system

    Science.gov (United States)

    Fieten, Lorenz; Eschweiler, Jörg; Heger, Stefan; Kabir, Koroush; Gravius, Sascha; de la Fuente, Matías; Radermacher, Klaus

    2009-02-01

    In total hip replacement (THR) one technical factor influencing the risk of dislocation is cup orientation. Computer-assisted surgery systems allow for cup navigation in anatomy-based reference frames. The pelvic coordinate system most used for cup navigation in THR is based on the mid-sagittal plane (MSP) and the anterior pelvic plane (APP). From a geometrical point of view, the MSP can be considered as a mirror plane, whereas the APP can be considered as a tangent plane comprising the anterior superior iliac spines (ASIS) and the pubic tubercles. In most systems relying on the pelvic coordinate system, the most anterior points of the ASIS and the pubic tubercles are selected manually. As manual selection of landmark points is a tedious, time-consuming and error-prone task, a surface-based approach for combined MSP and APP computation is presented in this paper: Homologous points defining the MSP and the landmark points defining the APP are selected automatically from surface patches. It is investigated how MSP computation can benefit from APP computation and vice versa, and clinical perspectives of combined MSP and APP computation are discussed. Experimental results on computed tomography data show that the surface-based approach can improve accuracy.

  9. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  10. Preliminary study of automatic detection method for anatomical landmarks in body trunk CT images

    International Nuclear Information System (INIS)

    Nemoto, Mitsutaka; Nomura, Yukihiro; Masutani, Yoshitaka; Yoshikawa, Takeharu; Hayashi, Naoto; Yoshioka, Naoki; Ohtomo, Kuni; Hanaoka, Shouhei

    2010-01-01

    In the research field of medical image processing and analysis, it is important to develop medical image understanding methods which are robust for individual and case differences, since they often interfere with accurate medical image processing and analysis. Location of anatomical landmarks, which are localized regions with anatomical reference to the human body, allows for robust medical understanding since the relative position of anatomical landmarks is basically the same among cases. This is a preliminary study for detecting anatomical point landmarks by using a technique of local area model matching. The model for matching process, which is called appearance model, shows the spatial appearance of voxel values at the detection target landmark and its surrounding region, while the Principal Component Analysis (PCA) is used to train appearance models. In this study, we experimentally investigate the optimal appearance model for landmark detection and analyze detection accuracy of anatomical point landmarks. (author)

  11. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  12. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    OpenAIRE

    V. N. Bubenchikova; E. A. Nikitin

    2017-01-01

    The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical s...

  13. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels, E-mail: neufeld@itis.ethz.ch [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland)

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm{sup 3} of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  14. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body.

    Science.gov (United States)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm(3) of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  15. Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection

    Directory of Open Access Journals (Sweden)

    Barbara Tavano

    2017-03-01

    Full Text Available The human immunodeficiency virus (HIV accesses the central nervous system (CNS early during infection, leading to HIV-associated cognitive impairment and establishment of a viral reservoir. Here, we describe a dichotomy in inflammatory responses in different CNS regions in simian immunodeficiency virus (SIV-infected macaques, a model for HIV infection. We found increased expression of inflammatory genes and perivascular leukocyte infiltration in the midbrain of SIV-infected macaques. Conversely, the frontal lobe showed downregulation of inflammatory genes associated with interferon-γ and interleukin-6 pathways, and absence of perivascular cuffing. These immunologic alterations were not accompanied by differences in SIV transcriptional activity within the tissue. Altered expression of genes associated with neurotoxicity was observed in both midbrain and frontal lobe. The segregation of inflammatory responses to specific regions of the CNS may both account for HIV-associated neurological symptoms and constitute a critical hurdle for HIV eradication by shielding the CNS viral reservoir from antiviral immunity.

  16. MR urography: Anatomical and quantitative information on ...

    African Journals Online (AJOL)

    MR urography: Anatomical and quantitative information on congenital malformations in children. Maria Karaveli, Dimitrios Katsanidis, Ioannis Kalaitzoglou, Afroditi Haritanti, Anastasios Sioundas, Athanasios Dimitriadis, Kyriakos Psarrakos ...

  17. Anatomical and Gene Expression Changes in the Retinal Pigmented Epithelium Atrophy 1 (rpea1) Mouse: A Potential Model of Serous Retinal Detachment

    Science.gov (United States)

    Luna, Gabriel; Lewis, Geoffrey P.; Linberg, Kenneth A.; Chang, Bo; Hu, Quiri; Munson, Peter J.; Maminishkis, Arvydas; Miller, Sheldon S.; Fisher, Steven K.

    2016-01-01

    Purpose The purpose of this study was to examine the rpea1 mouse whose retina spontaneously detaches from the underlying RPE as a potential model for studying the cellular effects of serous retinal detachment (SRD). Methods Optical coherence tomography (OCT) was performed immediately prior to euthanasia; retinal tissue was subsequently prepared for Western blotting, microarray analysis, immunocytochemistry, and light and electron microscopy (LM, EM). Results By postnatal day (P) 30, OCT, LM, and EM revealed the presence of small shallow detachments that increased in number and size over time. By P60 in regions of detachment, there was a dramatic loss of PNA binding around cones in the interphotoreceptor matrix and a concomitant increase in labeling of the outer nuclear layer and rod synaptic terminals. Retinal pigment epithelium wholemounts revealed a patchy loss in immunolabeling for both ezrin and aquaporin 1. Anti-ezrin labeling was lost from small regions of the RPE apical surface underlying detachments at P30. Labeling for tight-junction proteins provided a regular array of profiles outlining the periphery of RPE cells in wild-type tissue, however, this pattern was disrupted in the mutant as early as P30. Microarray analysis revealed a broad range of changes in genes involved in metabolism, signaling, cell polarity, and tight-junction organization. Conclusions These data indicate changes in this mutant mouse that may provide clues to the underlying mechanisms of SRD in humans. Importantly, these changes include the production of multiple spontaneous detachments without the presence of a retinal tear or significant degeneration of outer segments, changes in the expression of proteins involved in adhesion and fluid transport, and a disrupted organization of RPE tight junctions that may contribute to the formation of focal detachments. PMID:27603725

  18. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts

    Energy Technology Data Exchange (ETDEWEB)

    Bahadori, Amir A; Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Van Baalen, Mary; Semones, Edward J [NASA Johnson Space Center, Houston, TX 77058 (United States); Shavers, Mark R [Wyle Integrated Science and Engineering, Houston, TX 77058 (United States); Dodge, Charles, E-mail: wbolch@ufl.edu [University of Houston-Downtown, Houston, TX 77002 (United States)

    2011-03-21

    The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.

  19. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts

    Science.gov (United States)

    Bahadori, Amir A.; Van Baalen, Mary; Shavers, Mark R.; Dodge, Charles; Semones, Edward J.; Bolch, Wesley E.

    2011-03-01

    The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.

  20. Fusing Simultaneous EEG and fMRI Using Functional and Anatomical Information

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Winkler, Irene; Hansen, Lars Kai

    2015-01-01

    SPoC), to not only use functional but also anatomical information. The goal is to extract correlated source components from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Anatomical information enters our proposed extension to mSPoC via the forward model, which relates the activity...

  1. Small reactor power systems for manned planetary surface bases

    Science.gov (United States)

    Bloomfield, Harvey S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  2. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    In this study, anatomical and palynological features of the roots, stems, petiole and leaves of Salvia willeana (Holmboe) Hedge and Salvia veneris Hedge, Salvia species endemic to Cyprus, were investigated. In the anatomical characteristics of stem structures, it was found that the chlorenchyma composed of 6 or 7 rows of ...

  3. Morphological and anatomical response of Acacia ehrenbergiana ...

    African Journals Online (AJOL)

    ajl user 3

    2012-02-20

    Feb 20, 2012 ... The response of Acacia ehrenbergiana Hayne and Acacia tortilis (Forssk) Haynes subspp. raddiana seedlings to 100, 50 and 25% field capacity (FC) watering regimes was studied to determine their morphological and anatomical behaviour. Both species responded morphologically as well as anatomically ...

  4. A VRML-based anatomical visualization tool for medical education.

    Science.gov (United States)

    Warrick, P A; Funnell, W R

    1998-06-01

    The advent of the Virtual Reality Modeling Language (VRML) as a portable file format for describing three-dimensional (3-D) scenes has enabled researchers, educators, and students to share anatomical models on the World Wide Web (WWW). The implication for medical teaching is that students can interactively examine anatomical structures and their 3-D spatial relationships by using current personal computer (PC) technology. This paper describes the creation of 3-D anatomical models that are accessible on the WWW, using high-resolution middle-ear data as an example. The 3-D models are created by interactive segmentation of the source images (histological and MRI sections) and 3-D surface reconstruction. The resulting models are translated into VRML format. Section images can be superimposed on the model, allowing students to view a section in its 3-D context. To enhance the viewing of these scenes, a VRML browser was modified to support transparent rendering of surfaces. Finally, a WWW interface was designed to allow users to choose the model structures, section images, and associated viewing parameters to build their own 3-D scenes.

  5. A Liquid-Surface-Based Three-Axis Inclination Sensor for Measurement of Stage Tilt Motions.

    Science.gov (United States)

    Shimizu, Yuki; Kataoka, Satoshi; Ishikawa, Tatsuya; Chen, Yuan-Liu; Chen, Xiuguo; Matsukuma, Hiraku; Gao, Wei

    2018-01-30

    In this paper a new concept of a liquid-surface-based three-axis inclination sensor for evaluation of angular error motion of a precision linear slide, which is often used in the field of precision engineering such as ultra-precision machine tools, coordinate measuring machines (CMMs) and so on, is proposed. In the liquid-surface-based three-axis inclination sensor, a reference float mounting a line scale grating having periodic line grating structures is made to float over a liquid surface, while its three-axis angular motion is measured by using an optical sensor head based on the three-axis laser autocollimation capable of measuring three-axis angular motion of the scale grating. As the first step of research, in this paper, theoretical analysis on the angular motion of the reference float about each axis has been carried out based on simplified kinematic models to evaluate the possibility of realizing the proposed concept of a three-axis inclination sensor. In addition, based on the theoretical analyses results, a prototype three-axis inclination sensor has been designed and developed. Through some basic experiments with the prototype, the possibility of simultaneous three-axis inclination measurement by the proposed concept has been verified.

  6. Current status of the surface-based investigations in the MIU project

    International Nuclear Information System (INIS)

    Nakano, Katushi; Osawa, Hideaki

    2001-01-01

    Tono Geoscience Center (TGC) has been conducting a wide range of geoscientific research in order to build a firm scientific and technological basis for the research and development of geological disposal. One of the major components of the ongoing geoscientific research program is the Mizunami Underground Research Laboratory (MIU) project in the Tono region, central Japan. The R and D work of the MIU project has the following main goals: Develop comprehensive investigation techniques for the geological environment. Develop a range of engineering techniques for deep underground application. A wide range of geoscientific research and development activities of the MIU project is planned in three phases a 20 years period; Phase one: surface-based investigation. Phase two: construction. Phase three: operations. The MIU site has been investigated by geological, hydrogeological, hydrochemical and rock mechanical surveys on the surface. Based on this information, modeling and simulation works have been conducted in the different investigation stages. Technological knowledge and experience have been accumulated, which allow application of the methodologies and techniques to characterize the deep geological environment in crystalline rock. This report presents the results of the investigations from fiscal 1996 to 1999 in phase one. (author)

  7. Study on geological environment in the Tono area. An approach to surface-based investigation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  8. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, G; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Pelletier, C; Jung, J [East Carolina University Greenville, NC (United States)

    2016-06-15

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dose to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This

  9. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  11. Designing learning spaces for interprofessional education in the anatomical sciences.

    Science.gov (United States)

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  12. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    Science.gov (United States)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  13. Employing anatomical knowledge in vertebral column labeling

    Science.gov (United States)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  14. Surface-Based Body Shape Index and Its Relationship with All-Cause Mortality.

    Directory of Open Access Journals (Sweden)

    Syed Ashiqur Rahman

    Full Text Available Obesity is a global public health challenge. In the US, for instance, obesity prevalence remains high at more than one-third of the adult population, while over two-thirds are obese or overweight. Obesity is associated with various health problems, such as diabetes, cardiovascular diseases (CVDs, depression, some forms of cancer, sleep apnea, osteoarthritis, among others. The body mass index (BMI is one of the best known measures of obesity. The BMI, however, has serious limitations, for instance, its inability to capture the distribution of lean mass and adipose tissue, which is a better predictor of diabetes and CVDs, and its curved ("U-shaped" relationship with mortality hazard. Other anthropometric measures and their relation to obesity have been studied, each with its advantages and limitations. In this work, we introduce a new anthropometric measure (called Surface-based Body Shape Index, SBSI that accounts for both body shape and body size, and evaluate its performance as a predictor of all-cause mortality.We analyzed data on 11,808 subjects (ages 18-85, from the National Health and Human Nutrition Examination Survey (NHANES 1999-2004, with 8-year mortality follow up. Based on the analysis, we introduce a new body shape index constructed from four important anthropometric determinants of body shape and body size: body surface area (BSA, vertical trunk circumference (VTC, height (H and waist circumference (WC. The surface-based body shape index (SBSI is defined as follows: SBSI = ((H(7/4(WC(5/6/(BSA VTC (1 SBSI has negative correlation with BMI and weight respectively, no correlation with WC, and shows a generally linear relationship with age. Results on mortality hazard prediction using both the Cox proportionality model, and Kaplan-Meier curves each show that SBSI outperforms currently popular body shape indices (e.g., BMI, WC, waist-to-height ratio (WHtR, waist-to-hip ratio (WHR, A Body Shape Index (ABSI in predicting all

  15. Anatomical correlates of cognitive functions in early Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Roberta Biundo

    Full Text Available Cognitive deficits may occur early in Parkinson's disease (PD but the extent of cortical involvement associated with cognitive dysfunction needs additional investigations. The aim of our study is to identify the anatomical pattern of cortical thickness alterations in patients with early stage PD and its relationship with cognitive disability.We recruited 29 PD patients and 21 healthy controls. All PD patients performed an extensive neuropsychological examination and 14 were diagnosed with mild cognitive impairment (PD-MCI. Surface-based cortical thickness analysis was applied to investigate the topographical distribution of cortical and subcortical alterations in early PD compared with controls and to assess the relationship between cognition and regional cortical changes in PD-MCI.Overall PD patients showed focal cortical (occipital-parietal areas, orbito-frontal and olfactory areas and subcortical thinning when compared with controls. PD-MCI showed a wide spectrum of cognitive deficits and related significant regional thickening in the right parietal-frontal as well as in the left temporal-occipital areas.Our results confirm the presence of changes in grey matter thickness at relatively early PD stage and support previous studies showing thinning and atrophy in the neocortex and subcortical regions. Relative cortical thickening in PD-MCI may instead express compensatory neuroplasticity. Brain reserve mechanisms might first modulate cognitive decline during the initial stages of PD.

  16. [For an interdisciplinary museology. The particular case of anatomical waxes].

    Science.gov (United States)

    Pirson, Chloé

    2009-01-01

    Nowadays, the anatomical models in three dimensions are often showed in Museums devoted to the History of Medicine. Due to their historical importance and the major role they played as scientific education tool, they are essentials to understand the heritage of the anatomical knowledge. Historically, within all materials used to cast the body, wax has been the most frequently used, so that the ceroplastical collection has become a part of the medical education before leading to a general public pedagogy. This paper has a double purpose. In one hand, it aims to survey the formal evolution and the uses of this production, from his creation on, in the other, to study this cultural heritage within the museology issue.

  17. Formation of Reflecting Surfaces Based on Spline Methods

    Science.gov (United States)

    Zamyatin, A. V.; Zamyatina, E. A.

    2017-11-01

    The article deals with problem of reflecting barriers surfaces generation by spline methods. The cases of reflection when a geometric model is applied are considered. The surfaces of reflecting barriers are formed in such a way that they contain given points and the rays reflected at these points and hit at the defined points of specified surface. The reflecting barrier surface is formed by cubic splines. It enables a comparatively simple implementation of proposed algorithms in the form of software applications. The algorithms developed in the article can be applied in architecture and construction design for reflecting surface generation in optics and acoustics providing the geometrical model of reflex processes is used correctly.

  18. Determining customer satisfaction in anatomic pathology.

    Science.gov (United States)

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  19. Anatomic breast coordinate system for mammogram analysis

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, S.; Karssemeijer, N.

    2011-01-01

    inside the breast. Most of the risk assessment and CAD modules use a breast region in a image centered Cartesian x,y coordinate system. Nevertheless, anatomical structure follows curve-linear trajectories. We examined an anatomical breast coordinate system that preserves the anatomical correspondence...... between the mammograms and allows extracting not only the aligned position but also the orientation aligned with the anatomy of the breast tissue structure. Materials and Methods The coordinate system used the nipple location as the point A and the border of the pectoral muscle as a line BC. The skin air...... interface was identified as a curve passing through A and intersecting the pectoral muscle line. The nipple was defined as the origin of the coordinate system. A family of second order curves were defined through the nipple and intersecting the pectoral line (AD). Every pixel location in mammogram...

  20. Anatomic Eponyms in Neuroradiology: Head and Neck.

    Science.gov (United States)

    Bunch, Paul M

    2016-10-01

    In medicine, an eponym is a word-typically referring to an anatomic structure, disease, or syndrome-that is derived from a person's name. Medical eponyms are ubiquitous and numerous. They are also at times controversial. Eponyms reflect medicine's rich and colorful history and can be useful for concisely conveying complex concepts. Familiarity with eponyms facilitates correct usage and accurate communication. In this article, 22 eponyms used to describe anatomic structures of the head and neck are discussed. For each structure, the author first provides a biographical account of the individual for whom the structure is named. An anatomic description and brief discussion of the structure's clinical relevance follow. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Lacrimal Gland Pathologies from an Anatomical Perspective

    Directory of Open Access Journals (Sweden)

    Mahmut Sinan Abit

    2015-06-01

    Full Text Available Most of the patients in our daily practice have one or more ocular surface disorders including conjucntivitis, keratitis, dry eye disease, meibomian gland dysfunction, contact lens related symptoms, refractive errors,computer vision syndrome. Lacrimal gland has an important role in all above mentioned pathologies due to its major secretory product. An anatomical and physiological knowledge about lacrimal gland is a must in understanding basic and common ophthalmological cases. İn this paper it is aimed to explain the lacrimal gland diseases from an anatomical perspective.

  2. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  3. The brain atlas concordance problem: quantitative comparison of anatomical parcellations.

    Directory of Open Access Journals (Sweden)

    Jason W Bohland

    2009-09-01

    Full Text Available Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used. Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing results that were based on these different anatomical models, particularly when coordinate-based data are not available. The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical parcellations and nomenclatures

  4. Augmented reality for anatomical education.

    Science.gov (United States)

    Thomas, Rhys Gethin; John, Nigel William; Delieu, John Michael

    2010-03-01

    The use of Virtual Environments has been widely reported as a method of teaching anatomy. Generally such environments only convey the shape of the anatomy to the student. We present the Bangor Augmented Reality Education Tool for Anatomy (BARETA), a system that combines Augmented Reality (AR) technology with models produced using Rapid Prototyping (RP) technology, to provide the student with stimulation for touch as well as sight. The principal aims of this work were to provide an interface more intuitive than a mouse and keyboard, and to evaluate such a system as a viable supplement to traditional cadaver based education.

  5. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  6. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... investigated in this study and the findings obtained were compared with other studies conducted on Salvia genus. Metcalfe and Chalk (1950) found the data on the anatomical characteristics of S. species. These researchers revealed that the species belonging to Labiatae family usually have rectangle or ...

  7. Descriptions of anatomical differences between skulls and ...

    African Journals Online (AJOL)

    The external anatomical differences between the skulls and mandibles of 10 mountain zebras Equus zebra and 10 plains zebras E. burchelli of both sexes were studied. The nomenclature used conforms to Nomina Anatomica Veterinaria (1983). Eleven structural differences are described for the first time and illustrated, viz., ...

  8. HPV Vaccine Effective at Multiple Anatomic Sites

    Science.gov (United States)

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  9. Report of a rare anatomic variant

    DEFF Research Database (Denmark)

    De Brucker, Y; Ilsen, B; Muylaert, C

    2015-01-01

    We report the CT findings in a case of partial anomalous pulmonary venous return (PAPVR) from the left upper lobe in an adult. PAPVR is an anatomic variant in which one to three pulmonary veins drain into the right atrium or its tributaries, rather than into the left atrium. This results in a lef...

  10. Morphological and anatomical response of Acacia ehrenbergiana ...

    African Journals Online (AJOL)

    Both species responded morphologically as well as anatomically to water stress. Water stress caused significant (P=0.05) decrease in relative water content, leaf number and area and leaf water potential, chlorophyll content, and stem height and diameter. Seedlings of both species responded to water stress by the ...

  11. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  12. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  13. Influences on anatomical knowledge: The complete arguments

    NARCIS (Netherlands)

    Bergman, E.M.; Verheijen, I.W.; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der; Bruin, A.B. De

    2014-01-01

    Eight factors are claimed to have a negative influence on anatomical knowledge of medical students: (1) teaching by nonmedically qualified teachers, (2) the absence of a core anatomy curriculum, (3) decreased use of dissection as a teaching tool, (4) lack of teaching anatomy in context, (5)

  14. Anatomical entity mention recognition at literature scale.

    Science.gov (United States)

    Pyysalo, Sampo; Ananiadou, Sophia

    2014-03-15

    Anatomical entities ranging from subcellular structures to organ systems are central to biomedical science, and mentions of these entities are essential to understanding the scientific literature. Despite extensive efforts to automatically analyze various aspects of biomedical text, there have been only few studies focusing on anatomical entities, and no dedicated methods for learning to automatically recognize anatomical entity mentions in free-form text have been introduced. We present AnatomyTagger, a machine learning-based system for anatomical entity mention recognition. The system incorporates a broad array of approaches proposed to benefit tagging, including the use of Unified Medical Language System (UMLS)- and Open Biomedical Ontologies (OBO)-based lexical resources, word representations induced from unlabeled text, statistical truecasing and non-local features. We train and evaluate the system on a newly introduced corpus that substantially extends on previously available resources, and apply the resulting tagger to automatically annotate the entire open access scientific domain literature. The resulting analyses have been applied to extend services provided by the Europe PubMed Central literature database. All tools and resources introduced in this work are available from http://nactem.ac.uk/anatomytagger. sophia.ananiadou@manchester.ac.uk Supplementary data are available at Bioinformatics online.

  15. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation ...

  16. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  17. Investigation of KDP crystal surface based on an improved bidimensional empirical mode decomposition method

    Science.gov (United States)

    Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi

    2018-03-01

    This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.

  18. Historical evolution of anatomical terminology from ancient to modern.

    Science.gov (United States)

    Sakai, Tatsuo

    2007-06-01

    The historical development of anatomical terminology from the ancient to the modern can be divided into five stages. The initial stage is represented by the oldest extant anatomical treatises by Galen of Pergamon in the Roman Empire. The anatomical descriptions by Galen utilized only a limited number of anatomical terms, which were essentially colloquial words in the Greek of this period. In the second stage, Vesalius in the early 16th century described the anatomical structures in his Fabrica with the help of detailed magnificent illustrations. He coined substantially no anatomical terms, but devised a system that distinguished anatomical structures with ordinal numbers. The third stage of development in the late 16th century was marked by innovation of a large number of specific anatomical terms especially for the muscles, vessels and nerves. The main figures at this stage were Sylvius in Paris and Bauhin in Basel. In the fourth stage between Bauhin and the international anatomical terminology, many anatomical textbooks were written mainly in Latin in the 17th century, and in modern languages in the 18th and 19th centuries. Anatomical terms for the same structure were differently expressed by different authors. The last stage began at the end of the 19th century, when the first international anatomical terminology in Latin was published as Nomina anatomica. The anatomical terminology was revised repeatedly until the current Terminologia anatomica both in Latin and English.

  19. Oriental eyelids. Anatomic difference and surgical consideration.

    Science.gov (United States)

    Liu, D; Hsu, W M

    1986-01-01

    Fashions change with time and beauty standards differ in different cultures. In recent years, there has been an increase in the number of immigrants to the United States from the Orient. The creation of an upper eyelid crease has been for the past several decades the most popular cosmetic procedure in many Asian countries. In order to perform this procedure to the satisfaction of an Oriental patient, the surgeon must know what the patient perceives as beautiful and the anatomic differences between the Oriental and the Occidental eyelids. In this paper with data collected from over 3,600 patients, we are presenting important statistics that enables the surgeon to understand better the Oriental mind and facilitate communications. The anatomic difference in the upper eyelid is also discussed.

  20. Accessory mental foramen: a rare anatomical finding

    Science.gov (United States)

    Thakur, Gagan; Thomas, Shaji; Thayil, Sumeeth Cyriac; Nair, Preeti P

    2011-01-01

    Accessory mental foramen (AMF) is a rare anatomical variation with a prevalence ranging from 1.4 to 10%. Even so, in order to avoid neurovascular complications, particular attention should be paid to the possible occurrence of one or more AMF during surgical procedures involving the mandible. Careful surgical dissection should be performed in the region so that the presence of AMF can be detected and the occurrence of a neurosensory disturbance or haemorrhage can be avoided. Although this anatomical variation is rare, it should be kept in mind that an AMF may exist. Trigeminal neuralgia was diagnosed. On the basis of diagnostic test results, peripheral neurectomy of mental nerve was planned. Failure to do neurectomy of mental nerve branch in the reported case, coming out from AMF, would have resulted in recurrence of pain and eventually failure of the procedure. PMID:22707601

  1. Depressive Symptoms, Anatomical Region, and Clinical Outcomes for Patients Seeking Outpatient Physical Therapy for Musculoskeletal Pain

    Science.gov (United States)

    Coronado, Rogelio A.; Beneciuk, Jason M.; Valencia, Carolina; Werneke, Mark W.; Hart, Dennis L.

    2011-01-01

    Background Clinical guidelines advocate the routine identification of depressive symptoms for patients with pain in the lumbar or cervical spine, but not for other anatomical regions. Objective The purpose of this study was to investigate the prevalence and impact of depressive symptoms for patients with musculoskeletal pain across different anatomical regions. Design This was a prospective, associational study. Methods Demographic, clinical, depressive symptom (Symptom Checklist 90–Revised), and outcome data were collected by self-report from a convenience sample of 8,304 patients. Frequency of severe depressive symptoms was assessed by chi-square analysis for demographic and clinical variables. An analysis of variance examined the influence of depressive symptoms and anatomical region on intake pain intensity and functional status. Separate hierarchical multiple regression models by anatomical region examined the influence of depressive symptoms on clinical outcomes. Results Prevalence of severe depression was higher in women, in industrial and pain clinics, and in patients who reported chronic pain or prior surgery. Lower prevalence rates were found in patients older than 65 years and those who had upper- or lower-extremity pain. Depressive symptoms had a moderate to large effect on pain ratings (Cohen d=0.55–0.87) and a small to large effect on functional status (Cohen d=0.28–0.95). In multivariate analysis, depressive symptoms contributed additional variance to pain intensity and functional status for all anatomical locations, except for discharge values for the cervical region. Conclusions Rates of depressive symptoms varied slightly based on anatomical region of musculoskeletal pain. Depressive symptoms had a consistent detrimental influence on outcomes, except on discharge scores for the cervical anatomical region. Expanding screening recommendations for depressive symptoms to include more anatomical regions may be indicated in physical therapy

  2. Hamstring tendons insertion - an anatomical study

    OpenAIRE

    Cristiano Antonio Grassi; Vagner Messias Fruheling; Joao Caetano Abdo; Marcio Fernando Aparecido de Moura; Mario Namba; Joao Luiz Vieira da Silva; Luiz Antonio Munhoz da Cunha; Ana Paula Gebert de Oliveira Franco; Isabel Ziesemer Costa; Edmar Stieven Filho

    2013-01-01

    OBJECTIVE: To study the anatomy of the hamstring tendons insertion and anatomical rela-tionships. METHODS: Ten cadaver knees with medial and anterior intact structures were selected. The dissection was performed from anteromedial access to exposure of the insertion of the flexor tendons (FT), tibial plateau (TP) and tibial tuberosity (TT). A needle of 40 × 12 and a caliper were used to measure the distance of the tibial plateau of the knee flexor tendons insertion at 15 mm from the ...

  3. Anatomically corrected transposition of great vessels

    International Nuclear Information System (INIS)

    Ivanitskij, A.V.; Sarkisova, T.N.

    1989-01-01

    The paper is concerned with the description of rare congenital heart disease: anatomically corrected malposition of major vessels in a 9-mos 24 day old girl. The diagnosis of this disease was shown on the results of angiocardiography, concomitant congenital heart diseases were descibed. This abnormality is characterized by common atrioventricular and ventriculovascular joints and inversion position of the major vessels, it is always attended by congenital heart diseases. Surgical intervention is aimed at the elimination of concomitant heart dieseases

  4. Anatomical variations of the circle of Willis and cerebrovascular accidents in transitional Albania

    Directory of Open Access Journals (Sweden)

    Edlira Harizi (Shemsi

    2015-12-01

    Full Text Available Aim: The purpose of this study was twofold: i in a case-control design, to determine the relationship between anatomical variations of the circle of Willis and cerebrovascular accidents; ii to assess the association between anatomical variations of the circle of Willis and aneurisms among patients with subarachnoid hemorrhage. Methods: A case-control study was conducted in Albania in 2013-2014, including 100 patients with subarachnoid hemorrhage and 100 controls (individuals without cerebrovascular accidents. Patients with subarachnoid hemorrhage underwent a CT angiography procedure, whereas individuals in the control group underwent a magnetic resonance angiography procedure. Binary logistic regression was used to assess the association between cerebrovascular accidents and the anatomical variations of the circle of Willis. Conversely, Fisher’s exact test was used to compare the prevalence of aneurisms between subarachnoid hemorrhage patients with and without anatomical variations of the circle of Willis. Results: Among patients, there were 22 (22% cases with anatomical variations of the circle of Willis compared with 10 (10% individuals in the control group (P=0.033. There was no evidence of a statistically significant difference in the types of the anatomical variations of the circle of Willis between patients and controls (P=0.402. In age- and-sex adjusted logistic regression models, there was evidence of a significant positive association between cerebrovascular accidents and the anatomical variations of the circle of Willis (OR=1.87, 95%CI=1.03-4.68, P=0.048. Within the patients’ group, of the 52 cases with aneurisms, there were 22 (42.3% individuals with anatomical variations of the circle of Willis compared with no individuals with anatomical variations among the 48 patients without aneurisms (P<0.001. Conclusion: This study provides useful evidence on the association between anatomical variations of the circle of Willis and

  5. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  6. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    Directory of Open Access Journals (Sweden)

    Eraldo Paulesu

    2017-05-01

    Full Text Available Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971, a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain

  7. The 4D hyperspherical diffusion wavelet: A new method for the detection of localized anatomical variation.

    Science.gov (United States)

    Hosseinbor, Ameer Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K; Chung, Moo K

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the first-ever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM.

  8. Computerized tomography-based anatomic description of the porcine liver.

    Science.gov (United States)

    Bekheit, Mohamed; Bucur, Petru O; Wartenberg, Mylene; Vibert, Eric

    2017-04-01

    The knowledge of the anatomic features is imperative for successful modeling of the different surgical situations. This study aims to describe the anatomic features of the porcine using computerized tomography (CT) scan. Thirty large, white, female pigs were included in this study. The CT image acquisition was performed in four-phase contrast study. Subsequently, analysis of the images was performed using syngo.via software (Siemens) to subtract mainly the hepatic artery and its branches. Analysis of the portal and hepatic veins division pattern was performed using the Myrian XP-Liver 1.14.1 software (Intrasense). The mean total liver volume was 915 ± 159 mL. The largest sector in the liver was the right medial one representing around 28 ± 5.7% of the total liver volume. Next in order is the right lateral sector constituting around 24 ± 5%. Its volume is very close to the volume of the left medial sector, which represents around 22 ± 4.7% of the total liver volume. The caudate lobe represents around 8 ± 2% of the total liver volume.The portal vein did not show distinct right and left divisions rather than consecutive branches that come off the main trunk. The hepatic artery frequently trifurcates into left trunk that gives off the right gastric artery and the artery to the left lateral sector, the middle hepatic artery that supplies both the right and the left medial sectors and the right hepatic artery trunk that divides to give anterior branch to the right lateral lobe, branch to the right medial lobe, and at least a branch to the caudate lobe. Frequently, there is a posterior branch that crosses behind the portal vein to the right lateral lobe. The suprahepatic veins join the inferior vena cava in three distinct openings. There are communications between the suprahepatic veins that drain the adjacent sectors. The vein from the right lateral and the right medial sectors drains into a common trunk. The vein from the left lateral and from the left

  9. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  10. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    Science.gov (United States)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  11. Chronic ankle instability: Arthroscopic anatomical repair.

    Science.gov (United States)

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. [Anatomical studying of the tear trough area].

    Science.gov (United States)

    Yang, Ningze; Qiu, Wei; Wang, Zhijun; Su, Xiaowei; Jia, Huafeng; Shi, Heng

    2014-01-01

    To explore the mechanism of the aging deformity of tear trough through the anatomic study of the tear trough region. 13 adult cadaveric heads (26 sides), including 9 male heads (18 sides) and 4 female heads (8 sides), aged 22-78 years old, were used. Anatomic study was performed around the orbital, especially tear trough region, with microsurgery instrument under microscope( x 10 times). The lower orbicularis retaining ligament was dissected and exposed. The anatomic location was recorded and photographed. (1) The anatomic layers of the tear trough region contains skin, subcutaneous tissue, orbicularis oculi muscle, periosteal membrane. There is no subcutaneous fat above the tear trough, while it exists below the tear trough, called malar fat pad. (2) There is a natural boundary between the septal and the orbital portions of the orbicularis oculi muscle of lower eyelid at surface of the orbital bone. The natural boundary, projected on the body surface corresponds to tear trough. The width of boundary is (2.06 +/- 0.15) mm on the vertical line through inner canthus and (3.25 +/- 0.12) mm on the vertical line through the lateral margin of the ala. The septal portion and the orbital portion of the orbicularis oculi muscle began to merge in (16.56 +/- 0.51) mm to inner canthus. (3) There is ligament attachment in the medial, upper and lower orbital and no ligament attachment in the lateral orbital. Orbicularis retaining ligament of lower eyelid is divided into two layers. (4) The medial of the upper layer of the orbicularis retaining ligament in lower eyelid originates from orbital margin and from preorbital walls laterally in (16.10 +/- 0.43) mm to the medial of lateral orbital margin, through orbicularis oculi muscle and ends at the skin. The lower layer of the orbicularis retaining ligament of lower eyelid originates from preorbital walls through orbicularis oculi muscle and its superficial fat, then ends at the skin. The length of tear trough is (16.56 +/- 0.51) mm

  13. Fast correspondences search in anatomical trees

    Science.gov (United States)

    dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena

    2010-03-01

    Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.

  14. Sleep Disturbance and Anatomic Shoulder Arthroplasty.

    Science.gov (United States)

    Morris, Brent J; Sciascia, Aaron D; Jacobs, Cale A; Edwards, T Bradley

    2017-05-01

    Sleep disturbance is commonly encountered in patients with glenohumeral joint arthritis and can be a factor that drives patients to consider surgery. The prevalence of sleep disturbance before or after anatomic total shoulder arthroplasty has not been reported. The authors identified 232 eligible patients in a prospective shoulder arthroplasty registry following total shoulder arthroplasty for primary glenohumeral joint arthritis with 2- to 5-year follow-up. Sleep disturbance secondary to the affected shoulder was characterized preoperatively and postoperatively as no sleep disturbance, frequent sleep disturbance, or nightly sleep disturbance. A total of 211 patients (91%) reported sleep disturbance prior to surgery. Patients with nightly sleep disturbance had significantly worse (Psleep disturbance, with 186 patients (80%) reporting no sleep disturbance (Psleep disturbance group had significantly greater patient-reported outcome scores and range of motion following surgery compared with the other sleep disturbance groups for nearly all outcome measures (P≤.01). Patients have significant improvements in sleep after anatomic shoulder arthroplasty. There was a high prevalence of sleep disturbance preoperatively (211 patients, 91%) compared with postoperatively (46 patients, 20%). [Orthopedics. 2017; 40(3):e450-e454.]. Copyright 2017, SLACK Incorporated.

  15. Anatomical and roentgenographic features of atlantooccipital instability.

    Science.gov (United States)

    Harris, M B; Duval, M J; Davis, J A; Bernini, P M

    1993-02-01

    An anatomical study using six fresh, human cadaveric cervical spine specimens was performed. After the dissection of all soft tissue, flexion-extension radiographs were obtained to verify initial stability. A sagittal plane bone cut was then made, centered on the odontoid and sparing the alar ligaments, the tectorial membrane, and the atlantooccipital (AO) ligaments. Repeat flexion-extension radiographs and photographs were taken to document maintenance of stability of these hemisections. The occipital-atlantoaxial ligaments were then individually and sequentially incised, maintaining all other structures each time. After the sectioning of each ligament, flexion-extension radiographs and photographs were obtained to identify subsequent motion patterns. Both gross anatomical and roentgenographic examinations demonstrated the important stabilizing role of the tectorial membrane in flexion. Additionally, contact between the posterior arch of C1 and the occiput limited hyperextension as a secondary restraint once the tectorial membrane was sectioned. Furthermore, the AO ligaments proved to play an insignificant role in the preservation of AO stability through a flexion-extension arc of motion. Under normal circumstances, the AO articulation is not excessively stressed. However, acute AO injury, as well as the insidious failure of these ligaments, has been documented in several cases involving various pathologies. This study demonstrates a mechanism of instability and highlights the essential role of the tectorial membrane in maintaining upper cervical spine stability.

  16. Passive vs. active virtual reality learning: the effects on short- and long-term memory of anatomical structures.

    Science.gov (United States)

    Phelps, Andrew; Fritchle, Alicia; Hoffman, Helene

    2004-01-01

    This pilot study compares the differences in learning outcomes when students are presented with either an active (student-centered) or passive (teacher-centered) virtual reality-based anatomy lesson. The "active" lesson used UCSD's Anatomic VisualizeR and enabled students to interact with 3D models and control presentation of learning materials. The "passive" lesson used a digital recording of an anatomical expert's tour of the same VR lesson played back as a QuickTime movie. Subsequent examination of the recall and retention of the studied anatomic objects were comparable in both groups. Issues underlying these results are discussed.

  17. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.

    Science.gov (United States)

    Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus

    2018-01-05

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.

  18. Anatomical study of middle cluneal nerve entrapment

    Directory of Open Access Journals (Sweden)

    Konno T

    2017-06-01

    Full Text Available Tomoyuki Konno,1 Yoichi Aota,2 Tomoyuki Saito,1 Ning Qu,3 Shogo Hayashi,3 Shinichi Kawata,3 Masahiro Itoh3 1Department of Orthopaedic Surgery, Yokohama City University, 2Department of Spine and Spinal Cord, Yokohama Brain and Spine Center, Yokohama City, 3Department of Anatomy, Tokyo Medical University, Tokyo, Japan Object: Entrapment of the middle cluneal nerve (MCN under the long posterior sacroiliac ligament (LPSL is a possible, and underdiagnosed, cause of low-back and/or leg symptoms. To date, detailed anatomical studies of MCN entrapment are few. The purpose of this study was to ascertain, using cadavers, the relationship between the MCN and LPSL and to investigate MCN entrapment. Methods: A total of 30 hemipelves from 20 cadaveric donors (15 female, 5 male designated for education or research, were studied by gross anatomical dissection. The age range of the donors at death was 71–101 years with a mean of 88 years. Branches of the MCN were identified under or over the gluteus maximus fascia caudal to the posterior superior iliac spine (PSIS and traced laterally as far as their finest ramification. Special attention was paid to the relationship between the MCN and LPSL. The distance from the branch of the MCN to the PSIS and to the midline and the diameter of the MCN were measured. Results: A total of 64 MCN branches were identified in the 30 hemipelves. Of 64 branches, 10 (16% penetrated the LPSL. The average cephalocaudal distance from the PSIS to where the MCN penetrated the LPSL was 28.5±11.2 mm (9.1–53.7 mm. The distance from the midline was 36.0±6.4 mm (23.5–45.2 mm. The diameter of the MCN branch traversing the LPSL averaged 1.6±0.5 mm (0.5–3.1 mm. Four of the 10 branches penetrating the LPSL had obvious constriction under the ligament. Conclusion: This is the first anatomical study illustrating MCN entrapment. It is likely that MCN entrapment is not a rare clinical entity. Keywords: middle cluneal nerve, sacroiliac joint

  19. Mistakes in the usage of anatomical terminology in clinical practice.

    Science.gov (United States)

    Kachlik, David; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir; Baca, Vaclav

    2009-06-01

    Anatomical terminology serves as a basic communication tool in all the medical fields. Therefore Latin anatomical nomenclature has been repetitively issued and revised from 1895 (Basiliensia Nomina Anatomica) until 1998, when the last version was approved and published as the Terminologia Anatomica (International Anatomical Terminology) by the Federative Committee on Anatomical Terminology. A brief history of the terminology and nomenclature development is mentioned, along with the concept and contributions of the Terminologia Anatomica including the employed abbreviations. Examples of obsolete anatomical terms and their current synonyms are listed. Clinicians entered the process of the nomenclature revision and this aspect is demonstrated with several examples of terms used in clinical fields only, some already incorporated in the Terminologia Anatomica and a few obsolete terms still alive in non-theoretical communication. Frequent mistakes in grammar and orthography are stated as well. Authors of the article strongly recommend the use of the recent revision of the Latin anatomical nomenclature both in theoretical and clinical medicine.

  20. Contribution to the anatomical nomenclature concerning lower limb anatomy.

    Science.gov (United States)

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2017-09-18

    The aim of this article is to extend and revise the sections of Terminologia Anatomica (TA) dealing with the lower limb structures and to justify the use of newly proposed anatomical terms in clinical medicine, education, and research. Anatomical terms were gathered during our educational experience from anatomical textbooks and journals and compared with the four previous editions of the official Latin anatomical nomenclature. The authors summarise 270 terms with their definitions and explanations for both constant and variable morphological structures (bones, joints, muscles, vessels, nerves and superficial structures) of the hip, thigh, knee, leg, ankle, and foot completed with several grammatical remarks and some general anatomical terms. The proposed terms should be discussed in wider anatomical community and potentially added to next edition of the TA.

  1. Insufficient lumbopelvic stability: a clinical, anatomical and biomechanics approach to low back pain

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Vleeming, A; Stoeckart, R.; Snijders, C.; Mens, Jan M A

    1998-01-01

    A clinical, anatomical and biomechanical model is introduced based on the concept that under postural load specific ligament and muscle forces are necessary to intrinsically stabilize the pelvis. Since load transfer from spine to pelvis passes through the sacroiliac (SI) joints, effective

  2. Effectiveness of Plastinated Anatomical Specimens Depicting Common Sports Injuries to Enhance Musculoskeletal Injury Evaluation Education

    Science.gov (United States)

    Tamura, Kaori; Stickley, Christopher D.; Labrash, Steven J.; Lozanoff, Scott

    2014-01-01

    Context: Plastination techniques have emerged as effective methods for preserving human tissue and enabling human specimens to be utilized in a fashion similar to anatomical models with much greater accuracy. Opportunities to observe and experience human specimens in classroom settings should be beneficial to undergraduate and graduate students in…

  3. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Demet Pepele

    2014-01-01

    Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...

  4. Internuclear ophthalmoplegia: MR imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Savino, P.J.

    1986-01-01

    Internuclear ophthalmoplegia is a gaze disorder characterized by impaired adduction of the side of a lesion in the medial longitudinal fasciculus (MLF) with dissociated nystagmus of the abducting eye. Eleven patients with internuclear ophthalmoplegia (nine with multiple sclerosis, two with infarction) were examined with spin-echo MR imaging performed at 1.5 T. Nine of the 11 patients also underwent CT. MR imaging was highly sensitive (10 of 11 cases) and CT was of no value (0 of 9 cases) in detecting clinically suspected MLF lesions. These lesions must be distinguished from ''pseudo-MLF hyperintensity,'' which appears as a thin, strictly midline, linear hyperintensity just interior to the fourth ventricle and aqueduct in healthy subjects. True MLF lesions are nodular, more prominent, and slightly off the midline, corresponding to the paramedian anatomic site of the MLF

  5. Anatomic Twist to a Straightforward Ablation

    Directory of Open Access Journals (Sweden)

    Mandeep Singh Randhawa, MD

    2013-03-01

    Full Text Available Atrioventricular (AV junction ablation for treatment of refractory atrial fibrillation is a well defined, standardized procedure and the simplest of commonly performed radiofrequency ablations in the field of cardiac electrophysiology. We report successful AV junction ablation using an inferior approach in a case of inferior vena cava interruption. Inability during the procedure to initially pass the ablation catheter into the right ventricle, combined with low amplitude electrograms, led to suspicion of an anatomic abnormality. This was determined to be a heterotaxy syndrome with inferior vena cava interruption and azygos continuation, draining in turn into the superior vena cava. Advancing Schwartz right 0 (SRO sheath through the venous abnormality into the right atrium allowed adequate catheter stability to successfully induce complete AV block with radiofrequency energy.

  6. [Antique anatomical collections for contemporary museums].

    Science.gov (United States)

    Nesi, Gabriella; Santi, Raffaella

    2013-01-01

    Anatomy and Pathology Museum collections display a great biological value and offer unique samples for research purposes. Pathological specimens may be investigated by means of modern radiological and molecular biology techniques in order to provide the etiological background of disease, with relevance to present-day knowledge. Meanwhile, historical resources provide epidemiologic data regarding the socio-economic conditions of the resident populations, the more frequently encountered illnesses and dietary habits. These multidisciplinary approaches lead to more accurate diagnoses also allowing new strategies in cataloguing and musealization of anatomical specimens. Further, once these data are gathered, they may constitute the basis of riedited Museum catalogues feasible to be digitalized and displayed via the Web.

  7. Body symmetry and asymmetry in early Greek anatomical reasoning.

    Science.gov (United States)

    Crivellato, Enrico; Ribatti, Domenico

    2008-05-01

    This historical note focuses on some of the earliest reports of human anatomy found in Greek medical literature. These passages testify the initial steps taken by Greek scientists in building a theoretical model of the human body. In these excerpts, one finds erroneous anatomical descriptions, which shed light on the epistemological approach used by these intellectual pioneers. Because of the lack of systematic dissection, it appears that early Greek anatomists developed a somewhat stylized idea of the human body that used a certain degree of symmetry. Overcoming the concept of a strict left-right bilateral parallelism in human body architecture was a challenging intellectual task that required prolonged observation of dissected corpses. (c) 2008 Wiley-Liss, Inc.

  8. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    DEFF Research Database (Denmark)

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M

    2014-01-01

    estimates. Volume-based smoothing resulted in large bias and intersubject variance because it smears signal across tissue types. In some cases, PVC with volume smoothing paradoxically caused the estimated BPND to be less than when no PVC was used at all. When applied in the absence of PVC, cortical surface...

  9. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    Science.gov (United States)

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A high-flow nasal cannula system with relatively low flow effectively washes out CO2 from the anatomical dead space in a sophisticated respiratory model made by a 3D printer.

    Science.gov (United States)

    Onodera, Yu; Akimoto, Ryo; Suzuki, Hiroto; Okada, Masayuki; Nakane, Masaki; Kawamae, Kaneyuki

    2018-03-15

    Although clinical studies of the high-flow nasal cannula (HFNC) and its effect on positive end-expiratory pressure (PEEP) have been done, the washout effect has not been well evaluated. Therefore, we made an experimental respiratory model to evaluate the respiratory physiological effect of HFNC. An airway model was made by a 3D printer using the craniocervical 3D-CT data of a healthy 32-year-old male. CO 2 was infused into four respiratory lung models (normal-lung, open- and closed-mouth models; restrictive- and obstructive-lung, open-mouth models) to maintain the partial pressure of end-tidal CO 2 (P ET CO 2 ) at 40 mmHg. HFNC flow was changed from 10 to 60 L/min. Capnograms were recorded at the upper pharynx, oral cavity, subglottic, and inlet sites of each lung model. With the normal-lung, open-mouth model, 10 L/min of HFNC flow decreased the subglottic P ET CO 2 to 30 mmHg. Increasing the HFNC flow did not further decrease the subglottic P ET CO 2 . With the normal-lung, closed-mouth model, HFNC flow of 40 L/min was required to decrease the P ET CO 2 at all sites. Subglottic P ET CO 2 reached 30 mmHg with an HFNC flow of 60 L/min. In the obstructive-lung, open-mouth model, P ET CO 2 at all sites had the same trend as in the normal-lung, open-mouth model. In the restrictive-lung, open-mouth model, 20 L/min of HFNC flow decreased the subglottic P ET CO 2 to 25 mmHg, and it did not decrease further. As HFNC flow was increased, PEEP up to 7 cmH 2 O was gradually generated in the open-mouth models and up to 17 cmH 2 O in the normal-lung, closed-mouth model. The washout effect of the HFNC was effective with relatively low flow in the open-mouth models. The closed-mouth model needed more flow to generate a washout effect. Therefore, HFNC flow should be considered based on the need for the washout effect or PEEP.

  11. A method to visualize 3-dimensional anatomic changes in the cervix during pregnancy: a preliminary observational study.

    Science.gov (United States)

    Lang, Christopher T; Iams, Jay D; Tangchitnob, Edward; Socrate, Simona; House, Michael

    2010-02-01

    The purpose of this study was to develop a method to visualize 3-dimensional (3D) anatomic changes in the cervix and lower uterine segment during the antepartum period. An observational study of patients with both uncomplicated and complicated pregnancies was performed. To visualize 3D anatomic changes, solid models were constructed from 3D sonographic data. Model construction followed a 3-step protocol. First, 3D transvaginal sonographic data of the cervix and lower uterine segment were obtained. Second, sonographic data were exported to a medical image-processing program, which was used to align 3D sonographic data obtained from a single patient at different time points. Last, sonographic data were used to guide construction of solid models using mechanical design software. Anatomic changes were visualized by comparing solid models constructed from sonographic data obtained at different time points. From 16 patients who consented, 5 patients were selected for this study. Two to 4 models were derived from each of the 5 patients at 15 to 38 weeks' gestation. To show anatomic changes in the cervix and lower uterine segment, solid models from different time points in the same patient were superimposed. A total of 16 solid models were constructed. In addition, 3D changes associated with second-trimester cervical failure and successful therapeutic cerclage were shown. A method to visualize 3D cervical changes is presented, revealing complex anatomic changes in the lower uterine segment, cervical stroma, and cervical mucosa as pregnancy progresses.

  12. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  13. [Historical development of modern anatomical education in Japan].

    Science.gov (United States)

    Sakai, Tatsuo

    2008-12-01

    The medical schools in the beginning of Meiji era were diverse both in the founders and in the way of education, frequently employing foreign teachers of various nationalities. In 1871, German teachers were appointed to organized medical education at the medical school of the university of Tokyo. The anatomical education in the school was conducted by German teachers, i.e. Miller (1871-1873), Dönitz (1873-1877), Gierke (1877-1880) and Disse (1880-1885), followed by Koganei who returned from the study in Germany. In 1882 (Meiji 15th), the general rule for medical school was enforced so that the medical schools were practically obliged to employ numbers of graduates of the university of Tokyo. In 1887 (Meiji 20th), the educational system was reformed so that many of the medical schools were closed, and the medical schools were integrated into one university, five national senior high schools and three prefectural ones in addition to four private ones. After that most of anatomical teachers were either graduates of the university of Tokyo or those who studied in the anatomical department of the university. Before 1877 (Meiji 10th), the anatomical books were mainly translated from English books, and foreign teachers of various nationality were employed in many medical schools in Japan. After 1877 (Meiji 10th), the anatomical books based on the lectures by German teachers at the university of Tokyo were published. The anatomical books after 1887 (Meiji 20th) were written based on German books, and the German anatomical terms were utilized. After 1905 (Meiji 38th), the original Japanese anatomical books appeared, employing international anatomical terms. At the first meeting of Japanese Association of Anatomists in 1893 (Meiji 26th), the Japanese anatomical teachers met together and most of them were graduates of the university of Tokyo or fellows of its anatomical department.

  14. Recent advances in standards for collaborative Digital Anatomic Pathology

    Science.gov (United States)

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  15. The anatomical diaspora: evidence of early American anatomical traditions in North Dakota.

    Science.gov (United States)

    Stubblefield, Phoebe R

    2011-09-01

    The current focus in forensic anthropology on increasing scientific certainty in ancestry determination reinforces the need to examine the ancestry of skeletal remains used for osteology instruction. Human skeletal remains were discovered on the University of North Dakota campus in 2007. After recovery, the osteological examination resulted in a profile for a 33- to 46-year-old woman of African descent with stature ranging from 56.3 to 61.0 in. The pattern of postmortem damage indicated that the remains had been prepared for use as an anatomical teaching specimen. Review of the American history of anatomical teaching revealed a preference for Black subjects, which apparently extended to states like North Dakota despite extremely low resident populations of people of African descent. This study emphasizes the need to examine the ancestry of older teaching specimens that lack provenience, rather than assuming they are derived from typical (i.e., Indian) sources of anatomical material. © 2011 American Academy of Forensic Sciences.

  16. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  17. Anatomical and functional assemblies of brain BOLD oscillations

    Science.gov (United States)

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  18. Anatomical features of renal artery in a black Kenyan population ...

    African Journals Online (AJOL)

    Knowledge of anatomical features of the renal artery is important in prediction, management and control of atherosclerotic renal artery stenosis. These features show population variations but data from black African populations are scarce. The aim of this study was therefore to describe the anatomical features of the renal ...

  19. A theoretical ovary position in link with the global anatomical ...

    African Journals Online (AJOL)

    Generally the position of different organs is determined by simple description following the anatomical elements surrounded them and such description could be developed and applied in surgical anatomy. Here, I present for the first time a theoretical three-dimensional ovary position in link with the global anatomical ...

  20. Role of anatomic variations of paranasal sinuses on the prevalence ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to determine the frequency of anatomic variations of the paranasal sinuses and their roles in the development of sinusitis. Materials and Methods: Computed tomography of paranasal sinuses of 350 patients was assessed in terms of anatomic variations and inflammatory sinus pathology.

  1. Evaluation of anatomical and physical properties of Khaya nthotheca

    African Journals Online (AJOL)

    The anatomical and physical properties of Khaya anthotheca (Welw.) C. DC wood from the transition forest of middle altitude (zone 1) and the humid dense forest of low altitude (zone 2) in the East of the Democratic Republic of Congo were evaluated to ascertain the effect of growth area on the anatomical and physical ...

  2. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the anatomical structure of the trunk wood and the roots of A. nitida and R. racemosa, two mangrove trees from Gabon. The anatomical differences between the trunks and the roots were used to understand their bio-remediating differences through heavy metals. It was found that the ...

  3. Anatomic anterior cruciate ligament reconstruction: reducing anterior tibial subluxation

    NARCIS (Netherlands)

    Muller, Bart; Duerr, Eric R. H.; van Dijk, C. Niek; Fu, Freddie H.

    2016-01-01

    To measure and compare the amount of anterior tibial subluxation (ATS) after anatomic ACL reconstruction for both acute and chronic ACL-deficient patients. Fifty-two patients were clinically and radiographically evaluated after primary, unilateral, anatomic ACL reconstruction. Post-operative true

  4. Role of Anatomic Variations of Paranasal Sinuses on the ...

    African Journals Online (AJOL)

    2017-05-09

    May 9, 2017 ... pathology. The coexistence of anatomic variations with sinusitis was statistically investigated.Results: At least one anatomical variation of paranasal sinuses was detected in 325 patients ... area, hardly evaluated regions of sinonasal pathologies ..... formation. Optic nerve and extraorbital muscle damage.

  5. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu [Case Western Reserve University, Cleveland, Ohio 44106 (United States); Bloch, B. Nicolas; Jaffe, Carl C. [Boston University School of Medicine, Boston, Massachusetts 02118 (United States); Genega, Elizabeth M. [Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215 (United States); Lenkinski, Robert E.; Rofsky, Neil M. [UT Southwestern Medical Center, Dallas, Texas 75235 (United States); Feleppa, Ernest [Riverside Research Institute, New York, New York 10038 (United States)

    2014-07-15

    yielded a central gland Dice similarity coefficient (DSC) of 90%, and prostate DSC of 88%, while the misalignment of the urethra and verumontanum was found to be 3.45 mm, and 4.73 mm, respectively, which were measured to be significantly smaller compared to the alternative strategies. As might have been anticipated from our limited cohort of biopsy confirmed cancers, the disease atlas showed that most of the tumor extent was limited to the peripheral zone. Moreover, central gland tumors were typically larger in size, possibly because they are only discernible at a much later stage. Conclusions: The authors presented the AnCoR framework to explicitly model anatomic constraints for the construction of a fused anatomic imaging-disease atlas. The framework was applied to constructing a preliminary version of an anatomic-disease atlas of the prostate, the prostatome. The prostatome could facilitate the quantitative characterization of gland morphology and imaging features of prostate cancer. These techniques, may be applied on a large sample size data set to create a fully developed prostatome that could serve as a spatial prior for targeted biopsies by urologists. Additionally, the AnCoR framework could allow for incorporation of complementary imaging and molecular data, thereby enabling their careful correlation for population based radio-omics studies.

  6. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Madabhushi, Anant; Bloch, B. Nicolas; Jaffe, Carl C.; Genega, Elizabeth M.; Lenkinski, Robert E.; Rofsky, Neil M.; Feleppa, Ernest

    2014-01-01

    yielded a central gland Dice similarity coefficient (DSC) of 90%, and prostate DSC of 88%, while the misalignment of the urethra and verumontanum was found to be 3.45 mm, and 4.73 mm, respectively, which were measured to be significantly smaller compared to the alternative strategies. As might have been anticipated from our limited cohort of biopsy confirmed cancers, the disease atlas showed that most of the tumor extent was limited to the peripheral zone. Moreover, central gland tumors were typically larger in size, possibly because they are only discernible at a much later stage. Conclusions: The authors presented the AnCoR framework to explicitly model anatomic constraints for the construction of a fused anatomic imaging-disease atlas. The framework was applied to constructing a preliminary version of an anatomic-disease atlas of the prostate, the prostatome. The prostatome could facilitate the quantitative characterization of gland morphology and imaging features of prostate cancer. These techniques, may be applied on a large sample size data set to create a fully developed prostatome that could serve as a spatial prior for targeted biopsies by urologists. Additionally, the AnCoR framework could allow for incorporation of complementary imaging and molecular data, thereby enabling their careful correlation for population based radio-omics studies

  7. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  8. Automated anatomical description of pleural thickening towards improvement of its computer-assisted diagnosis

    Science.gov (United States)

    Chaisaowong, Kraisorn; Jiang, Mingze; Faltin, Peter; Merhof, Dorit; Eisenhawer, Christian; Gube, Monika; Kraus, Thomas

    2016-03-01

    Pleural thickenings are caused by asbestos exposure and may evolve into malignant pleural mesothelioma. An early diagnosis plays a key role towards an early treatment and an increased survival rate. Today, pleural thickenings are detected by visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. A computer-assisted diagnosis system to automatically assess pleural thickenings has been developed, which includes not only a quantitative assessment with respect to size and location, but also enhances this information with an anatomical description, i.e. lung side (left, right), part of pleura (pars costalis, mediastinalis, diaphragmatica, spinalis), as well as vertical (upper, middle, lower) and horizontal (ventral, dorsal) position. For this purpose, a 3D anatomical model of the lung surface has been manually constructed as a 3D atlas. Three registration sub-steps including rigid, affine, and nonrigid registration align the input patient lung to the 3D anatomical atlas model of the lung surface. Finally, each detected pleural thickening is assigned a set of labels describing its anatomical properties. Through this added information, an enhancement to the existing computer-assisted diagnosis system is presented in order to assure a higher precision and reproducible assessment of pleural thickenings, aiming at the diagnosis of the pleural mesothelioma in its early stage.

  9. Sexual Dimorphism of the Human Tibia through Time: Insights into Shape Variation Using a Surface-Based Approach.

    Directory of Open Access Journals (Sweden)

    Hana Brzobohatá

    Full Text Available In this paper we present a three-dimensional (3D morphometrical assessment of human tibia sexual dimorphism based on whole bone digital representation. To detect shape-size and shape differences between sexes, we used geometric morphometric tools and colour-coded surface deviation maps. The surface-based methodology enabled analysis of sexually dimorphic features throughout the shaft and articular ends of the tibia. The overall study dataset consisted of 183 3D models of adult tibiae from three Czech population subsets, dating to the early medieval (9-10th century (N = 65, early 20th century (N = 61 and 21st-century (N = 57. The time gap between the chronologically most distant and contemporary datasets was more than 1200 years. The results showed that, in all three datasets, sexual dimorphism was pronounced. There were some sex-dimorphic characteristics common to all three samples, such as tuberosity protrusion, anteriorly bowed shaft and relatively larger articular ends in males. Diachronic comparisons also revealed substantial shape variation related to the most dimorphic area. Male/female distinctions showed a consistent temporal trend regarding the location of dimorphic areas (shifting distally with time, while the maximal deviation between male and female digitized surfaces fluctuated and reached the lowest level in the 21st-century sample. Sex determination on a whole-surface basis yielded the lowest return of correct sex assignment in the 20th-century group, which represented the lowest socioeconomic status. The temporal variation could be attributed to changes in living conditions, the decreasing lower limb loading/labour division in the last 12 centuries having the greatest effect. Overall, the results showed that a surface-based approach is successful for analysing complex long bone geometry.

  10. Is the cervical fascia an anatomical proteus?

    Science.gov (United States)

    Natale, Gianfranco; Condino, Sara; Stecco, Antonio; Soldani, Paola; Belmonte, Monica Mattioli; Gesi, Marco

    2015-11-01

    The cervical fasciae have always represented a matter of debate. Indeed, in the literature, it is quite impossible to find two authors reporting the same description of the neck fascia. In the present review, a historical background was outlined, confirming that the Malgaigne's definition of the cervical fascia as an anatomical Proteus is widely justified. In an attempt to provide an essential and a more comprehensive classification, a fixed pattern of description of cervical fasciae is proposed. Based on the morphogenetic criteria, two fascial groups have been recognized: (1) fasciae which derive from primitive fibro-muscular laminae (muscular fasciae or myofasciae); (2) fasciae which derive from connective thickening (visceral fasciae). Topographic and comparative approaches allowed to distinguish three different types of fasciae in the neck: the superficial, the deep and the visceral fasciae. The first is most connected to the skin, the second to the muscles and the third to the viscera. The muscular fascia could be further divided into three layers according to the relationship with the different muscles.

  11. Metacarpophalangeal portal safety. An anatomical study.

    Science.gov (United States)

    Limousin, B; Corella, F; Del Campo, B; Fernández, E; Corella, M Á; Ocampos, M; Vázquez, T; Larrainzar-Garijo, R

    2017-12-02

    To quantify the risk of dorsal innervation injury when performing direct metacarpophalangeal joint portals of the second to fifth fingers. An anatomical study of 11 upper limbs of fresh corpses was carried out. After placing them in a traction tower, the metacarpophalangeal portals were developed on both sides of the extensor tendon. The dorsal sensory branches were dissected and the distances between the portal and the nearest nerve were measured by a digital caliper. The portals of all the fingers were compared globally to assess the safest finger and two to two radial and ulnar portals were compared in each of the fingers to assess the safest portal within each finger. The overall comparison of all portals and fingers showed that the third finger is the safest in any of its portals, while the ulnar side of the second and radial of the fourth are the portals with the highest risk of nerve injury (P=8.96·10 -5 ). Comparing two to two of the radial and ulnar portals in each of the fingers showed that the ulnar portal is safer than the radial on the fourth finger (P=.042), while the radial is safer than the ulnar on the fifth finger (P=.003). The third finger was the safest to perform metacarpophalangeal portals, while the ulnar side of the second finger and radial side of the fourth had the highest risk of nerve injury. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Hamstring tendons insertion - an anatomical study

    Directory of Open Access Journals (Sweden)

    Cristiano Antonio Grassi

    2013-09-01

    Full Text Available OBJECTIVE: To study the anatomy of the hamstring tendons insertion and anatomical rela-tionships. METHODS: Ten cadaver knees with medial and anterior intact structures were selected. The dissection was performed from anteromedial access to exposure of the insertion of the flexor tendons (FT, tibial plateau (TP and tibial tuberosity (TT. A needle of 40 × 12 and a caliper were used to measure the distance of the tibial plateau of the knee flexor tendons insertion at 15 mm from the medial border of the patellar tendon and tibial tuberosity to the insertion of the flexor tendons of the knee. The angle between tibial plateau and the insertion of the flexor tendons of the knee (A-TP-FT was calculated using Image Pro Plus software. RESULTS: The mean distance TP-FT was 41 ± 4.6 mm. The distance between the TT-FT was 6.88 ± 1 mm. The (A-TP-FT was 20.3 ± 4.9°. CONCLUSION: In the anterior tibial flexor tendons are about 40 mm from the plateau with an average of 20°.

  13. Do retractile testes have anatomical anomalies?

    Directory of Open Access Journals (Sweden)

    Kleber M. Anderson

    Full Text Available ABSTRACT Objectives: To assess the incidence of anatomical anomalies in patients with retractile testis. Materials and Methods: We studied prospectively 20 patients (28 testes with truly retractile testis and compared them with 25 human fetuses (50 testes with testis in scrotal position. We analyzed the relations among the testis, epididymis and patency of the processus vaginalis (PV. To analyze the relations between the testis and epididymis, we used a previous classification according to epididymis attachment to the testis and the presence of epididymis atresia. To analyze the structure of the PV, we considered two situations: obliteration of the PV and patency of the PV. We used the Chi-square test for contingency analysis of the populations under study (p <0.05. Results: The fetuses ranged in age from 26 to 35 weeks post-conception (WPC and the 20 patients with retractile testis ranged in ages from 1 to 12 years (average of 5.8. Of the 50 fetal testes, we observed complete patency of the PV in 2 cases (4% and epididymal anomalies (EAs in 1 testis (2%. Of the 28 retractile testes, we observed patency of the PV in 6 cases (21.4% and EA in 4 (14.28%. When we compared the incidence of EAs and PV patency we observed a significantly higher prevalence of these anomalies in retractile testes (p=0.0116. Conclusions: Retractile testis is not a normal variant with a significant risk of patent processus vaginalis and epididymal anomalies.

  14. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  15. Radio-guided sentinel lymph node identification by lymphoscintigraphy fused with an anatomical vector profile: clinical applications.

    Science.gov (United States)

    Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G

    2013-12-01

    To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.

  16. Anatomical basis for the fastigial pressor response.

    Science.gov (United States)

    Giuditta, Marianna; Ruggiero, David A; Del Bo, Alberto

    2003-01-01

    Electrical stimulation of rostromedial portion of cerebellar fastigial nucleus elicits integrated cardiovascular effects, which are neurally and humorally mediated. In this study, we sought to demonstrate the anatomical substrates of the fastigial pressor response (FPR) in the rat. The response was electrophysiologically localized in anesthetized, paralyzed-ventilated rats. Anterograde transport techniques were used to study the efferent projections of the fastigial pressor area; the distribution of efferent projection cells were then mapped by injecting retrograde tracers into anterogradely labeled sites. Electrolytic lesions were then placed bilaterally in selected brainstem areas in the attempt to block the pressor response. Sites of cerebellar stimulation and of brainstem lesions were subsequently histologically identified. The following lesions abolished the FPR: in nine animals lesions involved portions of the nucleus gigantocellularis dorsalis (NGCd), paramedian reticular formation (PMN) and the nucleus tractus solitarii (NTS) (in two animals fairly selectively the caudal NTS); in two other animals lesions destroyed the rostral ventrolateral medulla (C1 area) and in one animal the area encompassing the dorsal convexity of the superior cerebellar peduncle bordering the locus coeruleus-lateral parabrachial complex; partially effective were unilateral lesions of NGCd and NTS (three), bilateral lesions confined to NGCd and PMN (two), to vestibular complex and uncinate fasciculus (UF) (three), to UF and locus coeruleus (three) and to nucleus reticularis ventralis (two). Ineffective lesions involved A1 area, the nucleus gigantocellularis ventralis (NGCv), the spinal trigeminal nucleus and nucleus reticularis parvocellularis, the A5 area of the ventrolateral pons, the central gray and lateral mesencephalic tegmentum. It seems therefore that the pressor response elicited by stimulation of the cerebellar fastigial nucleus utilizes central specific pathways, as

  17. Anatomic atlas for computed tomography in the mesaticephalic dog: head and neck

    International Nuclear Information System (INIS)

    George, T.F. II; Smallwood, J.E.

    1992-01-01

    The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. The head was scanned using high-resolution imaging with a slice thickness of 8 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm (head at 8-mm) intervals, with the cuts matched as closely as possible to the CT slices. The forzen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Intact, sagittally sectioned, and disarticulated dog skulls were used as reference models. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In this paper, the CT anatomy of the head and neck of the mesaticephalic dog is presented

  18. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  19. Cervical spine bone mineral density as a function of vertebral level and anatomic location.

    Science.gov (United States)

    Anderst, William J; Thorhauer, Eric D; Lee, Joon Y; Donaldson, William F; Kang, James D

    2011-07-01

    Bone mineral density (BMD) measurements acquired from quantitative computed tomography scans have been shown to correlate with bone mechanical properties such as strength, stiffness, and yield load. There are currently no reports of BMD as a function of anatomic location within each vertebra. The overall objective of this study was to characterize BMD in the cervical spine as a function of level and anatomic location. Cervical spine BMD was evaluated in vivo using a clinically relevant age group. Twenty-two subjects (13 women and 9 men) were included with an average age of 48 ± 7 years (range, 35-61 years). Ten subjects were recently diagnosed with cervical radiculopathy (age 49 ± 8 years; six women and four men; and two smokers and eight nonsmokers), and 12 subjects were asymptomatic controls (age 46 ± 6 years; seven women and five men; and three smokers, three quit smoking, and six nonsmokers). Physiologic measures included overall BMD for C3-C7, average BMD within 11 anatomically defined regions of interest for each vertebra, and density distribution (by volume) within each anatomic region and vertebral level. Subject-specific three-dimensional bone models were created from high-resolution computed tomography scans of the subaxial cervical spine (C3-C7). Custom software calculated the average BMD within 11 anatomically defined regions of interest for each three-dimensional bone model. Bone mineral density values for each voxel of bone tissue were binned into 50 mg/cc ranges to determine the density distribution by volume. Repeated-measures analysis of variance was used to test for differences within subjects by level (C3-C7) and anatomic location. The correlation between BMD in the central vertebral body and the pedicle and lateral mass regions was tested using Pearson correlation. Average BMDs by level were 476, 503, 507, 473, and 414 mg/cm(3) for C3-C7, respectively. C3 and C6 BMDs were significantly less than those of C4 and C5 (pvertebral body having

  20. Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    Science.gov (United States)

    Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg

    2013-12-01

    The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nomina anatomica. Anatomic terminology and the old French terminology.

    Science.gov (United States)

    Chiapas-Gasca, Karla; Passos, Luiz Fernando De Souza; Euzébio Ribeiro, Sandra Lúcia; Villaseñor-Ovies, Pablo

    A surprising finding in our seminars in Latin America and Spain was that approximately half of the participants continued to use the old French anatomical nomenclature. The substance of this paper is a table in which we compare the anatomical names for the items reviewed in our seminar, in a Spanish version of the old French nomenclature and in the Spanish, Portuguese, and English versions of the currently employed anatomical terms. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  2. Anatomical and biomechanical investigations of the iliotibial tract.

    Science.gov (United States)

    Birnbaum, K; Siebert, C H; Pandorf, T; Schopphoff, E; Prescher, A; Niethard, F U

    2004-12-01

    Divergent descriptions of the anatomic location and biomechanical function of the iliotibial tract (IT) can be found in the literature. This study attempted to obtain exact data regarding the anatomic course and material characteristics including the biomechanical properties of this structure. The following were its aims: (1) anatomical investigations of the IT; (2) mechanical properties of the IT; (3) femoral head centralizing force of the IT and subligamentous forces in the height of the greater trochanter in different joint positions by using a custom-made measuring prosthesis and a subligamentous positioned sensor; (4) construction of a finite element model of the proximal femur including the IT and measuring the femoral neck angle under variation. The hip joints and IT in a total of 18 unfixed corpses were evaluated. We studied the anatomic relationship to surrounding structures, as well as the material properties with the help of tensile strength testing utilizing an uniaxial apparatus. During the test, a load-displacement curve was registered, documenting the maximum load and deformation of the IT. To measure the subligamentous pressure at the height of the greater trochanter, a custom-made sensor with a power-recording instrument was constructed. Furthermore, an altered hip prosthesis with a pressure gauge at the height of the femoral neck was used to measure the forces which are directed at the acetabulum. The investigations were done in neutral-0 position and ab/adduction of the hip joint of the unfixed corpse. In addition, we varied the femoral neck angle between 115 degrees and 155 degrees in 5 degrees steps. To confirm the subligamentous forces, we did the same measurements intraoperatively at the height of the greater trochanter before and after hip joint replacement in 12 patients. We constructed a finite element model of the proximal femur and considering the IT. The acquisition of the data was done at physiological (128 degrees), varus (115 degrees

  3. The importance of surface-based cues for face discrimination in non-human primates.

    Science.gov (United States)

    Parr, Lisa A; Taubert, Jessica

    2011-07-07

    Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes.

  4. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.

    Science.gov (United States)

    Oktay, Ozan; Ferrante, Enzo; Kamnitsas, Konstantinos; Heinrich, Mattias; Bai, Wenjia; Caballero, Jose; Cook, Stuart A; de Marvao, Antonio; Dawes, Timothy; O'Regan, Declan P; Kainz, Bernhard; Glocker, Ben; Rueckert, Daniel

    2018-02-01

    Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning-based techniques. However, in most recent and promising techniques such as CNN-based segmentation it is not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this limitation, we propose a generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the underlying anatomy (e.g. shape, label structure) via learnt non-linear representations of the shape. We show that the proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-modal cardiac data sets and public benchmarks. In addition, we demonstrate how the learnt deep models of 3-D shapes can be interpreted and used as biomarkers for classification of cardiac pathologies.

  5. Anatomical influences on internally coupled ears in reptiles.

    Science.gov (United States)

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  6. Contribution to the anatomical nomenclature concerning upper limb anatomy.

    Science.gov (United States)

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2017-04-01

    The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).

  7. Anatomical terminology and nomenclature: past, present and highlights.

    Science.gov (United States)

    Kachlik, David; Baca, Vaclav; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir

    2008-08-01

    The anatomical terminology is a base for medical communication. It is elaborated into a nomenclature in Latin. Its history goes back to 1895, when the first Latin anatomical nomenclature was published as Basiliensia Nomina Anatomica. It was followed by seven revisions (Jenaiensia Nomina Anatomica 1935, Parisiensia Nomina Anatomica 1955, Nomina Anatomica 2nd to 6th edition 1960-1989). The last revision, Terminologia Anatomica, (TA) created by the Federative Committee on Anatomical Terminology and approved by the International Federation of Associations of Anatomists, was published in 1998. Apart from the official Latin anatomical terminology, it includes a list of recommended English equivalents. In this article, major changes and pitfalls of the nomenclature are discussed, as well as the clinical anatomy terms. The last revision (TA) is highly recommended to the attention of not only teachers, students and researchers, but also to clinicians, doctors, translators, editors and publishers to be followed in their activities.

  8. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  9. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  10. Anatomical characterization of central, apical and minimal corneal thickness

    Directory of Open Access Journals (Sweden)

    Federico Saenz-Frances

    2014-08-01

    Full Text Available AIM: To anatomically locate the points of minimum corneal thickness and central corneal thickness (pupil center in relation to the corneal apex.METHODS: Observational, cross-sectional study, 299 healthy volunteers. Thickness at the corneal apex (AT, minimum corneal thickness (MT and corneal thickness at the pupil center (PT were determined using the pentacam. Distances from the corneal apex to MT (MD and PT (PD were calculated and their quadrant position (taking the corneal apex as the reference determined:point of minimum thickness (MC and point of central thickness (PC depending on the quadrant position. Two multivariate linear regression models were constructed to examine the influence of age, gender, power of the flattest and steepest corneal axes, position of the flattest axis, corneal volume (determined using the Pentacam and PT on MD and PD. The effects of these variables on MC and PC were also determined in two multinomial regression models.RESULTS: MT was located at a mean distance of 0.909 mm from the apex (79.4% in the inferior-temporal quadrant. PT was located at a mean distance of 0.156 mm from the apex. The linear regression model for MD indicated it was significantly influenced by corneal volume (B=-0.024; 95%CI:-0.043 to -0.004. No significant relations were identified in the linear regression model for PD or the multinomial logistic regressions for MC and PC.CONCLUSION: MT was typically located at the inferior-temporal quadrant of the cornea and its distance to the corneal apex tended to decrease with the increment of corneal volume.

  11. Automatic anatomical segmentation of the liver by separation planes

    OpenAIRE

    Boltcheva , Dobrina; Passat , Nicolas; Agnus , Vincent; Jacob-Da Col , Marie-Andrée; Ronse , Christian; Soler , Luc

    2006-01-01

    International audience; Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud’s definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomic...

  12. Anatomic anterior cruciate ligament reconstruction using an individualized approach

    Directory of Open Access Journals (Sweden)

    Carola F. van Eck

    2014-01-01

    Full Text Available Anterior cruciate ligament (ACL reconstruction is one of the most commonly performed orthopaedic procedures. Recently, there has been a shift in interest towards reconstruction techniques that more closely restore the native anatomy of the ACL. This review paper discusses our approach to individualized anatomic ACL reconstruction, including the anatomy of the ACL, the physical exam, imaging modalities, the surgical technique for anatomic reconstruction including pre- and intraoperative considerations and our postoperative rehabilitation protocol.

  13. Corona mortis: an anatomical variation with clinical relevance. Case report.

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Rivera-Cardona

    2010-12-01

    Full Text Available The obturator artery is one of the parietal branches arising from the internal iliac artery, the anatomical variation from which this artery originates is called “The corona mortis”, generally from the external iliac artery or the inferior epigastric artery. This finding was observed bilaterally in a male cadaver during a pelvis dissection. Clinical consideration of the anatomical variation in the obturator artery, during surgical procedures, is of great importance due to the risk of pelvic hemorrhage.

  14. Ultrasound of the rotator cuff with MRI and anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, Matthieu J.C.M. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: M.Rutten@JBZ.nl; Maresch, Bas J. [Department of Radiology, Hospital Gelderse Vallei, Willy Brandtlaan 10, 6710 HN Ede (Netherlands)]. E-mail: MareschB@zgv.nl; Jager, Gerrit J. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: G.Jager@JBZ.nl; Blickman, Johan G. [Department of Radiology, University Medical Center Nijmegen, Geert Grooteplein Zuid 18, 6500 HB Nijmegen (Netherlands)]. E-mail: J.Blickman@rad.umcn.nl; Holsbeeck, Marnix T. van [Department of Radiology, Henry Ford Hospital, 2799 W Grand Boulevard, Detroit, MI 48202 (United States)]. E-mail: vanholsbeeck@comcast.net

    2007-06-15

    Magnetic resonance imaging and high-resolution ultrasound (US) are frequently used for the detection of rotator cuff tears. The diagnostic yield of US is influenced by several factors as technique, knowledge of the imaging characteristics of anatomic and pathologic findings and of pitfalls. The purpose of this article is to illustrates that the standardized high-resolution US examination of the shoulder covers the entire rotator cuff and correlates with MR imaging and anatomic sections.

  15. Anatomical knee postero-lateral corner reconstruction: The "Versailles" technique.

    Science.gov (United States)

    Murgier, J; Boisrenoult, P; Steltzlen, C; Beaufils, P; Pujol, N

    2017-11-01

    Postero-lateral knee instability raises surgical challenges. Of the many available reconstruction techniques, few ensure anatomical reconstruction of the postero-lateral corner (PLC). The "Versailles" technique ensures the anatomical reconstruction of the three main PLC stabilisers (lateral collateral ligament, popliteus tendon, and popliteo-fibular ligament) by using either a hamstring autograft or a tendon allograft. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. The linguistic roots of Modern English anatomical terminology.

    Science.gov (United States)

    Turmezei, Tom D

    2012-11-01

    Previous research focusing on Classical Latin and Greek roots has shown that understanding the etymology of English anatomical terms may be beneficial for students of human anatomy. However, not all anatomical terms are derived from Classical origins. This study aims to explore the linguistic roots of the Modern English terminology used in human gross anatomy. By reference to the Oxford English Dictionary, etymologies were determined for a lexicon of 798 Modern English gross anatomical terms from the 40(th) edition of Gray's Anatomy. Earliest traceable language of origin was determined for all 798 terms; language of acquisition was determined for 747 terms. Earliest traceable languages of origin were: Classical Latin (62%), Classical Greek (24%), Old English (7%), Post-Classical Latin (3%), and other (4%). Languages of acquisition were: Classical Latin (42%), Post-Classical Latin (29%), Old English (8%), Modern French (6%), Classical Greek (5%), Middle English (3%), and other (7%). While the roots of Modern English anatomical terminology mostly lie in Classical languages (accounting for the origin of 86% of terms), the anatomical lexicon of Modern English is actually much more diverse. Interesting and perhaps less familiar examples from these languages and the methods by which such terms have been created and absorbed are discussed. The author suggests that awareness of anatomical etymologies may enhance the enjoyment and understanding of human anatomy for students and teachers alike. Copyright © 2012 Wiley Periodicals, Inc.

  17. Reappraising the functional implications of the primate visual anatomical hierarchy.

    Science.gov (United States)

    Hegdé, Jay; Felleman, Daniel J

    2007-10-01

    The primate visual system has been shown to be organized into an anatomical hierarchy by the application of a few principled criteria. It has been widely assumed that cortical visual processing is also hierarchical, with the anatomical hierarchy providing a defined substrate for clear levels of hierarchical function. A large body of empirical evidence seemed to support this assumption, including the general observations that functional properties of visual neurons grow progressively more complex at progressively higher levels of the anatomical hierarchy. However, a growing body of evidence, including recent direct experimental comparisons of functional properties at two or more levels of the anatomical hierarchy, indicates that visual processing neither is hierarchical nor parallels the anatomical hierarchy. Recent results also indicate that some of the pathways of visual information flow are not hierarchical, so that the anatomical hierarchy cannot be taken as a strict flowchart of visual information either. Thus, while the sustaining strength of the notion of hierarchical processing may be that it is rather simple, its fatal flaw is that it is overly simplistic.

  18. Toledo School of Translators and their influence on anatomical terminology.

    Science.gov (United States)

    Arráez-Aybar, Luis-Alfonso; Bueno-López, José-L; Raio, Nicolas

    2015-03-01

    Translation facilitates transmission of knowledge between cultures. The fundamental transfer of anatomic terminology from the Ancient Greek and Islamic Golden Age cultures, to medieval Latin Christendom took place in the so-called Toledo School of Translators in the 12th-13th centuries. Translations made in Toledo circulated widely across Europe. They were the foundation of scientific thinking that was born in the boards of first universities. In Toledo, Gerard of Cremona translated Avicenna's Canon of Medicine, the key work of Islamic Golden Age of medicine. Albertus Magnus, Mondino de Luzzi and Guy de Chauliac, the leading authors of anatomical Latin words in the Middle Ages, founded their books on Gerard's translations. The anatomical terms of the Canon retain auctoritas up to the Renaissance. Thus, terms coined by Gerard such as diaphragm, orbit, pupil or sagittal remain relevant in the current official anatomical terminology. The aim of the present paper is to bring new attention to the highly significant influence that the Toledo School of Translators had in anatomical terminology. For this, we shall review here the onomastic origins of a number of anatomical terms (additamentum; coracoid process; coxal; false ribs; femur; panniculus; spondylus; squamous sutures; thorax; xiphoid process, etc.) which are still used today. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. [Ten years after the latest revision International Anatomical Terminology].

    Science.gov (United States)

    Kachlík, D; Bozdechová, I; Cech, P; Musil, V; Báca, V

    2008-01-01

    Ten years ago, the latest revision of the Latin anatomical nomenclature was approved and published as Terminologia Anatomica (International Anatomical Terminology), and is acknowledged by the organization uniting national anatomical societies--International Federation of Associations of Anatomists. The authors concentrate on new terms included in the nomenclature and on the linguistic changes of terminology. The most frequent errors done by medical specialists in the usage of the Latin anatomical terminology are emphasized and the situation of eponyms in contemporary anatomy is discussed in detail as well. The last version of the nomenclature makes its way very slowly in the professional community and it is necessary to refer to positive changes and advantages it has brought. The usage of this Latin anatomical nomenclature version is suggested by the International Federation to follow in theoretical and clinical fields of medicine. The authors of the article strongly recommend using the recent revision of the Latin anatomical nomenclature both in the oral and written forms, when educating and publishing.

  20. Standard Anatomic Terminologies: Comparison for Use in a Health Information Exchange–Based Prior Computed Tomography (CT) Alerting System

    Science.gov (United States)

    Lowry, Tina; Vreeman, Daniel J; Loo, George T; Delman, Bradley N; Thum, Frederick L; Slovis, Benjamin H; Shapiro, Jason S

    2017-01-01

    Background A health information exchange (HIE)–based prior computed tomography (CT) alerting system may reduce avoidable CT imaging by notifying ordering clinicians of prior relevant studies when a study is ordered. For maximal effectiveness, a system would alert not only for prior same CTs (exams mapped to the same code from an exam name terminology) but also for similar CTs (exams mapped to different exam name terminology codes but in the same anatomic region) and anatomically proximate CTs (exams in adjacent anatomic regions). Notification of previous same studies across an HIE requires mapping of local site CT codes to a standard terminology for exam names (such as Logical Observation Identifiers Names and Codes [LOINC]) to show that two studies with different local codes and descriptions are equivalent. Notifying of prior similar or proximate CTs requires an additional mapping of exam codes to anatomic regions, ideally coded by an anatomic terminology. Several anatomic terminologies exist, but no prior studies have evaluated how well they would support an alerting use case. Objective The aim of this study was to evaluate the fitness of five existing standard anatomic terminologies to support similar or proximate alerts of an HIE-based prior CT alerting system. Methods We compared five standard anatomic terminologies (Foundational Model of Anatomy, Systematized Nomenclature of Medicine Clinical Terms, RadLex, LOINC, and LOINC/Radiological Society of North America [RSNA] Radiology Playbook) to an anatomic framework created specifically for our use case (Simple ANatomic Ontology for Proximity or Similarity [SANOPS]), to determine whether the existing terminologies could support our use case without modification. On the basis of an assessment of optimal terminology features for our purpose, we developed an ordinal anatomic terminology utility classification. We mapped samples of 100 random and the 100 most frequent LOINC CT codes to anatomic regions in each

  1. Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging.

    Science.gov (United States)

    Kaden, Enrico; Knösche, Thomas R; Anwander, Alfred

    2007-08-15

    The human brain forms a complex neural network with a connectional architecture that is still far from being known in full detail, even at the macroscopic level. The advent of diffusion MR imaging has enabled the exploration of the structural properties of white matter in vivo. In this article we propose a new forward model that maps the microscopic geometry of nervous tissue onto the water diffusion process and further onto the measured MR signals. Our spherical deconvolution approach completely parameterizes the fiber orientation density by a finite mixture of Bingham distributions. In addition, we define the term anatomical connectivity, taking the underlying image modality into account. This neurophysiological metric may represent the proportion of the nerve fibers originating in the source area which intersect a given target region. The specified inverse problem is solved by Bayesian statistics. Posterior probability maps denote the probability that the connectivity value exceeds a chosen threshold, conditional upon the noisy observations. These maps allow us to draw inferences about the structural organization of the cerebral cortex. Moreover, we will demonstrate the proposed approach with diffusion-weighted data sets featuring high angular resolution.

  2. Anatomical Region-Specific In Vivo Wireless Communication Channel Characterization.

    Science.gov (United States)

    Demir, Ali Fatih; Abbasi, Qammer H; Ankarali, Z Esat; Alomainy, Akram; Qaraqe, Khalid; Serpedin, Erchin; Arslan, Huseyin

    2017-09-01

    In vivo wireless body area networks and their associated technologies are shaping the future of healthcare by providing continuous health monitoring and noninvasive surgical capabilities, in addition to remote diagnostic and treatment of diseases. To fully exploit the potential of such devices, it is necessary to characterize the communication channel, which will help to build reliable and high-performance communication systems. This paper presents an in vivo wireless communication channel characterization for male torso both numerically and experimentally (on a human cadaver) considering various organs at 915 MHz and 2.4 GHz. A statistical path loss (PL) model is introduced, and the anatomical region-specific parameters are provided. It is found that the mean PL in decibel scale exhibits a linear decaying characteristic rather than an exponential decaying profile inside the body, and the power decay rate is approximately twice at 2.4 GHz as compared to 915 MHz. Moreover, the variance of shadowing increases significantly as the in vivo antenna is placed deeper inside the body since the main scatterers are present in the vicinity of the antenna. Multipath propagation characteristics are also investigated to facilitate proper waveform designs in the future wireless healthcare systems, and a root-mean-square delay spread of 2.76 ns is observed at 5 cm depth. Results show that the in vivo channel exhibit different characteristics than the classical communication channels, and location dependence is very critical for accurate, reliable, and energy-efficient link budget calculations.

  3. Contribution to the anatomical nomenclature concerning general anatomy and anatomical variations.

    Science.gov (United States)

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2016-09-01

    Nomenclature of the general and variant anatomy belongs to the most neglected parts of the Latin anatomical nomenclature in Terminologia Anatomica. Although many important small structures are included in Terminologia Anatomica, when describing and teaching particular anatomy of any part of the human body, the general terms are necessary, such as planes, lines and flexion grooves. Moreover, Terminologia Anatomica contains only 149 terms of variant structures, enlisted in the parentheses to differentiate them from constant ones. They are only a rather representative selection and some more should be added, both from the educational and clinical point of view. The authors present some terms, completed with their definitions or explanations concerning the general and variant anatomy to evoke broader discussion on this topic which should issue in incorporation of proposed terms (or their equivalents) into the Terminologia Anatomica.

  4. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    Science.gov (United States)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  5. [The nerves of the face: anatomical sample in wax in the Delmas-Orfila-Rouvière Museum in Paris].

    Science.gov (United States)

    Drifi, F; Le Floch-Prigent, P

    2009-01-01

    The aim of the study was to check the anatomical veracity of the model of wax no. 262, from the Delmas, Orfila and Rouvière museums, 45, rue des Saints Pères, Paris 6th, made by Tramond M.D., entitled "nerves of the face". We successively took several numerical photographs with several view angles; anatomically described the nerves of the face as they were represented on this model; correlated the anatomical veracity of this representation with the classical, textbooks' data; approached the technical bases of fabrication; and collected successive photographs of the model every 5 degrees , all along 180 degrees , thus allowing an animated rotation on computer, using the QuickTime Virtual Reality program. The oversize of the model excluded a set on a real human skeleton. The building technique of the model was deduced from known data but could not be completely reported. The anatomical veracity of the sample was excellent. The difficulties of realization in wax of an oversized model of the nerves of the human face were solved in the late 19th century, in Paris by Tramond's factory. They remained unequalled.

  6. Vascular anatomical relationships of the retropubic space and the sacrospinous ligament, using three-dimensional imaging.

    Science.gov (United States)

    Dueñas-Garcia, Omar F; Kim, Youngwu; Leung, Katherine; Flynn, Michel K

    2017-08-01

    Pelvic anatomy is complex and intimate knowledge of variabilities in anatomical relationships is critical for surgeons to safely perform surgical procedures. Three-dimensional Imaging provides the opportunity to analyze undisturbed anatomical relationships. The authors hypothesized that three-dimensional models created from pelvic computed tomography angiograms could be used to obtain vascular anatomical measurements, and that the measurements obtained from three-dimensional models would be similar to those from cadaver studies. We included all pelvic computed tomography angiograms that were acquired in female patients older than 18 years at our institution within the previous 5 years. Three-dimensional models were created using the Invivo5 software based on the Digital Imaging and Communications in Medicine files. Structures of interest were virtually dissected and measured replicating previous cadaver studies. Statistical analysis of demographics and measurements was performed. The final analysis included 87 studies. The average age of the subjects was 66.9 years and their average BMI was 26.1 kg/m 2 . Of the 87 subjects, 12.6% had a history of hysterectomy, 2.3% a history of a continence procedure, and 1.1% a history of a prolapse procedure. The range of distance between the ischial spine and the pudendal artery was 3-17 mm. The closest vessels to the lower edge of the symphysis pubis were the obturator vessels. The aberrant corona mortis vessel was present in 27.9% of the subjects. Prior hysterectomy was associated with changes in the measurements of the obturator arteries with minimal changes in other measurements. Our results indicate that this technology provides similar measurements to those found in previous unembalmed cadaver studies. This technology offers a great opportunity to study anatomical relationships in a native undisturbed state.

  7. Development of an Interactive Anatomical Three-Dimensional Eye Model

    Science.gov (United States)

    Allen, Lauren K.; Bhattacharyya, Siddhartha; Wilson, Timothy D.

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a…

  8. Primary rhegmatogenous retinal detachment - surgical methods and anatomical outcome.

    Science.gov (United States)

    Haugstad, Marta; Moosmayer, Stefan; Bragadόttir, Ragnheiður

    2017-05-01

    The aim of the study was to evaluate the anatomical success of surgical management of primary rhegmatogenous retinal detachment (RRD) and to compare the anatomical outcomes from different surgical techniques. During 2012, 517 consecutive eyes (514 patients) were operated by 11 surgeons at the Department of Ophthalmology, Oslo University Hospital. Patient records were retrospectively analysed with no exclusions. Main outcome measures were primary and final anatomical success. Primary anatomical success was defined as retinal reattachment 6 months after primary surgery with reoperations excluded. Final anatomical success was defined as retinal reattachment 6 months after primary surgery with reoperations included. Incidence of RRD was 18.6 eyes per 100 000 person-years. The macula was detached in 50.5% of the eyes at baseline. Of 517 operated eyes, 317 (61.3%) underwent pars plana vitrectomy (PPV), 23 (4.5%) pars plana vitrectomy together with a scleral buckle (PPV-SB), 175 (33.9%) scleral buckle (SB) surgery and two (0.4%) pneumatic retinopexy (PR). Primary anatomical success was 89.0% in the PPV group, 87.0% in the PPV-SB group and 85.7% in the SB group. Final anatomical success was 98.1% in the PPV group, 100% in the PPV-SB group and 99.4% in the SB group. Factors which were correlated to the redetachment were detachment of more than 6 clock hours (p = 0.003) and visual acuity (VA) on Snellen chart retina were large detachment and low VA. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    Science.gov (United States)

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The characterization of breast anatomical metrics using dedicated breast CT

    Science.gov (United States)

    Huang, Shih-Ying; Boone, John M.; Yang, Kai; Packard, Nathan J.; McKenney, Sarah E.; Prionas, Nicolas D.; Lindfors, Karen K.; Yaffe, Martin J.

    2011-01-01

    Purpose: Accurate anatomical characterization of the breast is useful in breast phantom development and computer modeling of breast imaging technologies. Capitalizing on the three-dimensional capabilities of dedicated breast CT (bCT), a number of parameters which describe breast shape and fibroglandular distribution are defined. Methods: Among 219 bCT data sets, the effective diameter and length of the pendant breast as well as the breast volume were measured and characterized for each bra cup size. The volume glandular fraction (VGF) was determined as a function of patient age, BIRADS density, bra cup size, and breast diameter. The glandular fraction was examined in coronal and sagittal planes of the breast, and the radial distribution of breast glandular fraction within a coronal bCT image was examined for three breast regions. The areal glandular fraction (AGF) was estimated from two-dimensional projections of the breast (simulated by projecting bCT data sets) and was compared to the corresponding VGF. Results: The effective breast diameter and length increase with increasing bra cup size. The mean breast diameters (± standard error) of bra cup sizes A∕AA, B, C, and D∕DD were 11.1±0.5, 11.4±0.3, 13.0±0.2, and 13.7±0.2 cm, respectively. VGF was lower among older women and those with larger breast diameter and larger bra cup size. VGF increased as a function of the reported BIRADS density. AGF increased with VGF. Fibroglandular tissue was distributed primarily in the central portion of the breast. Conclusions: Breast metrics were examined and a number of parameters were defined which may be useful for breast modeling. The reported data may provide researchers with useful information for characterizing the breast for various imaging or dosimetry tasks. PMID:21626952

  11. [ANATOMICAL PREPARATIONS IN MUSEUMS A SPECIAL CATEGORY OF CULTURAL HERITAGE].

    Science.gov (United States)

    Monza, Francesca; Licata, Marta

    2015-01-01

    The international debate on the issue of human remains in museums and on the ethical issues related to their exhibition stimulates reflection on the Italian anatomical collections and on their preparations. A definition of human remains or of anatomical preparation does not exist in the Italian legislation. The anatomical specimens in museums are protected by the laws of Cultural Heritage as part of public collections, but their status is not well defined. By their nature of human material they would in fact be considered as a special category of Cultural Heritage. Because they are part of a cadaver they can be regarded as res nullius, but since treated with special techniques they could also change their meaning and being considered a species nova. Finally, it reflects on the possibility of creating a museum in Italy composed by new anatomical preparations. The article outline the contours of a museological issue that deserves to be investigated in order to better identify the anatomical preparations and their management in museums.

  12. CT following US for possible appendicitis: anatomic coverage

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Martin E. [University of Toronto, Princess Margaret Hospital, 3-920, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Alharbi, Fawaz [University of Toronto, Toronto General Hospital, NCSB 1C572, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Qassim University, Department of Medical Imaging, Buraydah, Qassim (Saudi Arabia); Chawla, Tanya P. [University of Toronto, Mount Sinai Hospital, Room 567, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Moshonov, Hadas [University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2016-02-15

    To determine superior-inferior anatomic borders for CT following inconclusive/nondiagnostic US for possible appendicitis. Ninety-nine patients with possible appendicitis and inconclusive/nondiagnostic US followed by CT were included in this retrospective study. Two radiologists reviewed CT images and determined superior-inferior anatomic borders required to diagnose or exclude appendicitis and diagnose alternative causes. This ''targeted'' coverage was used to estimate potential reduction in anatomic coverage compared to standard abdominal/pelvic CT. The study group included 83 women and 16 men; mean age 32 (median, 29; range 18-73) years. Final diagnoses were: nonspecific abdominal pain 50/99 (51 %), appendicitis 26/99 (26 %), gynaecological 12/99 (12 %), gastrointestinal 9/99 (10 %), and musculoskeletal 2/99 (2 %). Median dose-length product for standard CT was 890.0 (range, 306.3 - 2493.9) mGy.cm. To confidently diagnose/exclude appendicitis or identify alternative diagnoses, maximum superior-inferior anatomic CT coverage was the superior border of L2-superior border of pubic symphysis, for both reviewers. Targeted CT would reduce anatomic coverage by 30-55 % (mean 39 %, median 40 %) compared to standard CT. When CT is performed for appendicitis following inconclusive/nondiagnostic US, targeted CT from the superior border of L2-superior border of pubic symphysis can be used resulting in significant reduction in exposure to ionizing radiation compared to standard CT. (orig.)

  13. Anatomical success in patients after retinectomy for complex retinal detachment

    International Nuclear Information System (INIS)

    Mukhtar, A.; Ishaq, M.; Islam, Q.U.

    2015-01-01

    To evaluate the efficacy of primary and redo retinectomy in eyes with complex retinal detachment. Study Design: Quasi-experimental study. Place and Duration of Study: Armed Forces Institute of Ophthalmology Rawalpindi from Jan 2012 to June 2013. Patients and Methods: Fifty eight eyes (patients) underwent relaxing retinectomies for complex retinal detachment with proliferative vitreoretinopathy or intrinsic retinal shortening. Operative technique included pars plana vitrectomy, proliferative vitreoretinopathy management, use of intraoperative perfluorocarbon liquid, retinectomy, endolaser and intraocular temponade. The main outcome was anatomic success, defined as complete retinal reattachment at four months follow up. Eighteen eyes out of the same primary group underwent second retinectomy because of anatomical failure. Results: Mean age of study population was 53.78 ± 15.11 years, 56.9% of patients were male(s). Anatomic success rate after 1st retinectomy was achieved in 68.96% (40 eyes out of 58). In eighteen eyes that underwent 2nd retinectomy, anatomic success rate was 72.22% (13 eyes out of 18). Overall success rate was 91.3% (53 eyes out of 58) in our study. Conclusions: Relaxing retinectomies for retinal shortening can improve the anatomical success rate in patients with complex RD. (author)

  14. Benign anatomical mistakes: the correct anatomical term for the recurrent laryngeal nerve.

    Science.gov (United States)

    Mirilas, Petros; Skandalakis, John E

    2002-01-01

    The term recurrent laryngeal nerve has been adopted by Nomina Anatomica (1989) and Terminologia Anatomica (1998) to describe this vagus branch from its origin, its turn dorsally around the subclavian artery and the aortic arch, and its cranial pathway until it reaches its terminal organs in the neck. However, there is still much confusion, and either the terms inferior and recurrent laryngeal nerve are used interchangeably or inferior laryngeal nerve is considered the terminal branch of the recurrent laryngeal nerve. We hereby feel that it is necessary to reassess the term and we propose the term inferior laryngeal nerve for the entire nerve under consideration, from its origin from the vagus nerve to its destinations, including tracheal, esophageal, and pharyngeal branches. If the term superior laryngeal nerve is a given, standard and accepted term in the anatomical terminology, then logically the term inferior laryngeal nerve should also be accepted, as opposed to it. Of course the upward travel of the inferior laryngeal nerve is "recurrent". When nonrecurrence is encountered together with an arteria lusoria, a retroesophageal right subclavian artery or a right aortic arch, we consider that the term nonrecurrent inferior laryngeal nerve should be used to describe the deviation from the normal.

  15. Morpho-anatomical investigations on Momordica charantia L. (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    İlham Eröz Poyraz

    2016-05-01

    Full Text Available Momordica charantia L. (Cucurbitaceae used for some medicinal purposes like antidiabetic, anticancer, antiviral and treat to gastritis was investigated. Morphological studies were supported by morphometric measurements and drawings of male and female flowers, fruit and seeds of the species. In anatomical studies, cross sections of stem and leaf, upper and lower surface sections of leaves were evaluated. It was detected that the stem with typical anatomical properties of a climbing dicotyl plant. The leaves were amphistotamic and with lots of cyctoliths on the lower surface of leaves. Stomata are anomocytic and situated much more at the lower surface of leaves. Morpho-anatomical investigations on Momordica charantia L. (Cucurbitaceae*

  16. Lost and found anatomical terms: Crista choanalis vomeris.

    Science.gov (United States)

    Marusić, Ana; Vinter, Ivan; Krmpotić-Nemanić, Jelena

    2006-05-01

    Pars cuneiformis vomeris and Crista choanalis are morphological structures on the vomer listed in the current official anatomical nomenclature, Terminologia anatomica, but are either not mentioned or incorrectly described in different anatomical books. The term Crista choanalis vomeris was originally proposed by Drago Perović in 1958 to describe the vertical crest beginning at the angle of the alae vomeris, running downwards to the posterior free margin of the vomer. Perović also described the part of the vomer behind this crest was shaped as a cone, and termed it Pars cuneiformis vomeris. Because of their important contributions to the function of the respiratory pathway, Crista choanalis vomeris and Pars cuneiformis vomeris deserve proper definitions in the anatomical terminology.

  17. Orbitofrontal sulcal and gyrus pattern in human: an anatomical study

    Directory of Open Access Journals (Sweden)

    Thiago Pereira Rodrigues

    2015-05-01

    Full Text Available The anatomical characterization of the orbitofrontal cortex in human is limited in literature instead of many functional and clinical studies involving it. Objective Anatomically define the orbitofrontal region aiming to possible neurosurgical treatments and unify the scientific nomenclature as well. Method We analyze eighty four human hemispheres using a surgical microscope. Then we chose four hemispheres and dissect them according to Klinger’ technique. Results We found five main sulcus: olfatory sulcus, orbital medial sulcus, orbital lateral sulcus, orbital transverse sulcus and orbital intermediate sulcus. These sulcus, excluding the intermediate sulcus, delimit five gyrus: rectus gurys, orbital medial gyrus, orbital anterior gyrus, orbital lateral gyrus and orbital posterior gyrus. The main sulcal configuration can be divided on four more frequently patterns. Conclusion Orbitofrontal cortex is associated with many psychiatric disorders. Better anatomical and functional characterization of the orbitofrontal cortex and its connections will improve our knowledge about these diseases.

  18. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...... between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved...... by including anatomical features in the branch feature vectors. The proposed approach is applied to classify airway trees in computed tomography images of subjects with and without chronic obstructive pulmonary disease (COPD). Using the wall area percentage (WA%), a common measure of airway abnormality in COPD...

  19. Two anatomic resources of canine pelvic limb muscles based on CT and MRI.

    Science.gov (United States)

    Sunico, Sarena K; Hamel, Corentin; Styner, Martin; Robertson, Ian D; Kornegay, Joe N; Bettini, Chris; Parks, Jerry; Wilber, Kathy; Smallwood, J Edgar; Thrall, Donald E

    2012-01-01

    Advances in magnetic resonance (MR) imaging and three-dimensional (3D) modeling software provide the tools necessary to create sophisticated, interactive anatomic resources that can assist in the interpretation of MR images of extremities, and learning the structure and function of limb musculature. Modeling provides advantages over dissection or consultation of print atlases because of the associated speed, flexibility, 3D nature, and elimination of superimposed arrows and labels. Our goals were to create a diagnostic atlas of pelvic limb muscles that will facilitate interpretation of MR images of patients with muscle injury and to create a 3D model of the canine pelvic limb musculature to facilitate anatomic learning. To create these resources, we used structural segmentation of MR images, a process that groups image pixels into anatomically meaningful regions. The Diagnostic Atlas is an interactive, multiplanar, web-based MR atlas of the canine pelvic limb musculature that was created by manually segmenting clinically analogous MR sequences. Higher resolution volumetric MR and computed tomography (CT) data were segmented into separately labeled volumes of data and then transformed into a multilayered 3D computer model. The 3D Model serves as a resource for students of gross anatomy, encouraging integrative learning with its highly interactive and selective display capabilities. For clinicians, the 3D Model also serves to bridge the gap between topographic and tomographic anatomy, displaying both formats alongside, or even superimposed over each other. Both projects are hosted on an open-access website, http://3dvetanatomy.ncsu.edu/ © 2012 Veterinary Radiology & Ultrasound.

  20. The stylomastoid artery as an anatomical landmark to the facial nerve during parotid surgery: a clinico-anatomic study

    Directory of Open Access Journals (Sweden)

    Nouraei Seyed

    2009-09-01

    Full Text Available Abstract Background The identification of the facial nerve can be difficult in a bloody operative field or by an incision that limits exposure; hence anatomical landmarks and adequate operative exposure can aid such identification and preservation. In this clinico-anatomic study, we examined the stylomastoid artery (SMA and its relation to the facial nerve trunk; the origin of the artery was identified on cadavers and its nature was confirmed histologically. Methods The clinical component of the study included prospective reviewing of 100 consecutive routine parotidectomies; while, the anatomical component of the study involved dissecting 50 cadaveric hemifaces. Results We could consistently identify a supplying vessel, stylomastoid artery, which tends to vary less in position than the facial nerve. Following this vessel, a few millimetres inferiorly and medially, we have gone on to identify the facial nerve trunk, which it supplies, with relative ease. The origin of the stylomastoid artery, in our study, was either from the occipital artery or the posterior auricular artery. Conclusion This anatomical aid, the stylomastoid artery, when supplemented by the other more commonly known anatomical landmarks and intra-operative facial nerve monitoring further reduces the risk of iatrogenic facial nerve damage and operative time.

  1. Anatomic mapping of molecular subtypes in diffuse glioma.

    Science.gov (United States)

    Tang, Qisheng; Lian, Yuxi; Yu, Jinhua; Wang, Yuanyuan; Shi, Zhifeng; Chen, Liang

    2017-09-15

    Tumor location served as an important prognostic factor in glioma patients was considered to postulate molecular features according to cell origin theory. However, anatomic distribution of unique molecular subtypes was not widely investigated. The relationship between molecular phenotype and histological subgroup were also vague based on tumor location. Our group focuses on the study of glioma anatomic location of distinctive molecular subgroups and histology subtypes, and explores the possibility of their consistency based on clinical background. We retrospectively reviewed 143 cases with both molecular information (IDH1/TERT/1p19q) and MRI images diagnosed as cerebral diffuse gliomas. The anatomic distribution was analyzed between distinctive molecular subgroups and its relationship with histological subtypes. The influence of tumor location, molecular stratification and histology diagnosis on survival outcome was investigated as well. Anatomic locations of cerebral diffuse glioma indicate varied clinical outcome. Based on that, it can be stratified into five principal molecular subgroups according to IDH1/TERT/1p19q status. Triple-positive (IDH1 and TERT mutation with 1p19q codeletion) glioma tended to be oligodendroglioma present with much better clinical outcome compared to TERT mutation only group who is glioblastoma inclined (median overall survival 39 months VS 18 months). Five molecular subgroups were demonstrated with distinctive locational distribution. This kind of anatomic feature is consistent with its corresponding histological subtypes. Each molecular subgroup in glioma has unique anatomic location which indicates distinctive clinical outcome. Molecular diagnosis can be served as perfect complementary tool for the precise diagnosis. Integration of histomolecular diagnosis will be much more helpful in routine clinical practice in the future.

  2. Anatomizing Exotic Production of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Felix [Fermilab

    2014-07-10

    We discuss exotic production modes of the Higgs boson and how their phenomenology can be probed in current Higgs analyses. We highlight the importance of differential distributions in disentangling standard production mechanisms from exotic modes. We present two model benchmarks for exotic Higgs production arising from chargino-neutralino production and study their impact on the current Higgs dataset. As a corollary, we emphasize that current Higgs coupling fits do not fully explore the space of new physics deviations possible in Higgs data.

  3. Brain morphology in children with 47, XYY syndrome: a voxel- and surface-based morphometric study.

    Science.gov (United States)

    Lepage, J-F; Hong, D S; Raman, M; Marzelli, M; Roeltgen, D P; Lai, S; Ross, J; Reiss, A L

    2014-02-01

    The neurocognitive and behavioral profile of individuals with 47,XYY is increasingly documented; however, very little is known about the effect of a supernumerary Y-chromosome on brain development. Establishing the neural phenotype associated with 47,XYY may prove valuable in clarifying the role of Y-chromosome gene dosage effects, a potential factor in several neuropsychiatric disorders that show a prevalence bias toward males, including autism spectrum disorders. Here, we investigated brain structure in 10 young boys with 47,XYY and 10 age-matched healthy controls by combining voxel-based morphometry (VBM) and surface-based morphometry (SBM). The VBM results show the existence of altered gray matter volume (GMV) in the insular and parietal regions of 47,XYY relative to controls, changes that were paralleled by extensive modifications in white matter (WM) bilaterally in the frontal and superior parietal lobes. The SBM analyses corroborated these findings and revealed the presence of abnormal surface area and cortical thinning in regions with abnormal GMV and WMV. Overall, these preliminary results demonstrate a significant impact of a supernumerary Y-chromosome on brain development, provide a neural basis for the motor, speech and behavior regulation difficulties associated with 47,XYY and may relate to sexual dimorphism in these areas. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  5. Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.

    Science.gov (United States)

    Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît

    2011-01-01

    Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.

  6. [Strabismus determined by anatomical changes in the extrinsic ocular muscles].

    Science.gov (United States)

    Voinea, L; Samson, M; Glejaru, M; Popa, R

    1995-01-01

    The anatomical primitive strabismus is prenatal and its characteristic is the loose in the elasticity of the muscles of the surrounding tissues. The cause is the deficit of embryogenesis, originating in the first two months of pregnancy. They are presented the clinical cases of anatomical strabismus, investigated and treated in the Ophthalmological Clinic during 10 years, the surgical techniques used and the postoperative functional and obstetrical results the ocular disturbances are intense and the debut is early. The surgery involves both eyes and the results depend on the clinical form, the restant ocular motility and the degree of fibrosis of the affected muscle.

  7. Sonographic and Anatomic Description of the Subtalar Joint

    DEFF Research Database (Denmark)

    Mandl, Peter; Bong, David; Balint, Peter V

    2018-01-01

    Our study provides a detailed anatomic and sonographic description of the subtalar joint, a single joint that, anatomically, is divided into the anterior subtalar joint (ASTJ) and the posterior subtalar joint (PSTJ). Cadaver specimens of the ankle and foot were examined in detail by ultrasound (US......), and the subtalar joints of all the specimens were injected with colored latex of a contrasting color under US guidance. Compatible with other studies, examination of the sections revealed lack of communication between the ASTJ and the PSTJ and communication between the PSTJ and the posterior recess...

  8. Double auricles of the right atrium: a unique anatomic deformity

    Directory of Open Access Journals (Sweden)

    Lampoura Stefania S

    2011-04-01

    Full Text Available Abstract Background Anatomic deviations, especially those detected during the course of an operation, are medically intriguing, as they raise concerns about their clinical significance and putative complications. Case presentation We present, to our knowledge, for the first time a case of an anatomic deviation in the form of a second right atrial auricle in a 70 year-old, coronary bypass-operated male Caucasian patient of Greek origin. No complications were noted intra-or postoperatively. Conclusions A second right atrial auricle was found intraoperatively, without causing any clinical complications, or obstructing the normal course of a surgical procedure.

  9. Anatomic Eponyms in Neuroradiology: Brain, Cerebral Vasculature, and Calvarium.

    Science.gov (United States)

    Bunch, Paul M; Zamani, Amir A

    2016-06-01

    Medical eponyms are ubiquitous, numerous, and at times controversial. They are often useful for succinctly conveying complex concepts, and familiarity with eponyms is important for proper usage and appropriate communication. In this historical review, we identify 18 anatomic eponyms used to describe structures of the brain, cerebral vasculature, and calvarium. For each structure, we first offer a biographical sketch of the individual for whom the structure is named. This is followed by a description of the anatomic structure and a brief discussion of its clinical relevance. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Strategies for a Successful Anatomic Pathology Subspecialty Workgroup

    Directory of Open Access Journals (Sweden)

    2016-06-01

    Full Text Available From 1990 to present, 14 liver pathologists and 2 clinical hepatologists from 9 countries have met annually to hold thematic 2.5-day meetings centered on case-based discussion. The goal of these meetings has been to identify gaps in knowledge in our field and fuel scholarly effort to address these gaps. The founding principles were worldwide representation, good representation of women, compatibility of participants, commitment to stable membership and regular attendance, mutual education and friendship, and free exchange of ideas. A summary report of the 2.5-day meeting constituted an enduring document that captured the free flow of ideas discussed. These ideas were open to all participants for the pursuit of scholarship back at their home institutions. However, any idea borne out of an Elves meeting merits open invitation for other Elves to participate in, using established standards for meaningful coauthorship. Over 26 consecutive meetings (1990-2015, themes covered the breadth of liver pathology. With retirement of 2 individuals, resignation of 3, and death of 1, six new members were nominated and voted into membership. Over these same 26 years, active members published 2025 articles indexed in PubMEd Central under the topic “liver;” 3% of these articles represented collaborations between members. This international group represents a successful model in a subspecialty of anatomic pathology for open exchange of ideas, mutual education, and generation of topics worthy of scholarly investigation. We conclude that a self-selected group of subspecialty pathologists can meet successfully over 26 years, maintain a high state of engagement through each annual meeting, self-renew as a result of retirement or resignation, and provide a creative stimulus for highly productive academic careers.

  11. State regulation in the field of transplantation of organs and other anatomical materials: concept and nature

    Directory of Open Access Journals (Sweden)

    V. M. Shulga

    2017-06-01

    Full Text Available This article researches the concepts of «state regulation of the economics» and «state regulation of health care». It is defined the concept of «state regulation in the field of transplantation of organs and other anatomical materials». The components of its institutional and legal mechanisms (methods and tools are determined. It is proved that transplant coordination is the method of state regulation in the field of transplantation what includes a set of coordinated institutional actions of some subjects of state regulation and health care institutions regarding finding of donor, procurement, distribution and transplantation of organs and other anatomical materials. It is concluded that the analysis of the current transplant coordination in Ukraine gives grounds to assert the existence of essential imperfections. It is proposed the own model of transplant coordination, which should include three levels (national, regional, local. It is summarized that optimal state regulation in the field of transplantation of organs and other anatomical materials will be possible only through the collaboration of its legal and institutional mechanisms.

  12. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography.

    Science.gov (United States)

    Du, Dajiang; Asaoka, Teruo; Ushida, Takashi; Furukawa, Katsuko S

    2014-09-12

    Because patient bone defects are usually varied and complicated in geometry, it would be preferred to fabricate custom-made artificial bone grafts that are anatomically specific to individual patient defects. Using a rabbit femoral segment as a bone reconstruction model, we successfully produced customized ceramic scaffolds by stereolithography, which not only had an anatomically correct external shape according to computed tomography data but also contained an interconnecting internal network of channels designed for perfusion culture. Rabbit bone marrow stromal cells were isolated and cultured with these scaffolds using a novel oscillatory perfusion system that was stereolithographically fabricated to fit well to the unique scaffold shapes. After five days of three-dimensional culture with oscillatory perfusion, the cells attached and proliferated homogenously in the scaffolds. However, control cells inside the scaffolds cultured under static conditions were dead after prolonged in vitro culture. Cellular DNA content and alkaline phosphatase activities were significantly higher in the perfusion group versus the static group. Therefore, anatomically correct artificial bone can be successfully constructed using stereolithography and oscillatory culture technology, and could be useful for bone engraftment and defect repair.

  13. Critical anatomic region of nasopalatine canal based on tridimensional analysis: cone beam computed tomography.

    Science.gov (United States)

    Fernández-Alonso, Ana; Suárez-Quintanilla, Juan Antonio; Muinelo-Lorenzo, Juan; Varela-Mallou, Jesús; Smyth Chamosa, Ernesto; Suárez-Cunqueiro, María Mercedes

    2015-08-06

    The study aim of this was to define the critical anatomic region of the premaxilla by evaluating dimensions of nasopalatine canal, buccal bone plate (BBP) and palatal bone plate (PBP). 230 CBCTs were selected with both, one or no upper central incisors present (+/+, -/+, -/-) and periodontal condition was evaluated. T-student test, ANOVA, Pearson's correlation and a multivariant-linear regression model (MLRM) were used. Regarding gender, significant differences at level 1 (lower NC) were found for: buccal-palatal, transversal and sagittal NC diameters, and NC length (NCL). Regarding dental status, significant differences were found for: total BBP length (tBL) and PBP width (PW2) at level 2 (NCL midpoint). NCL was correlated with PW2, tBL, and PBP length at level 3 (foramina of Stenson level). An MLRM had a high prediction value for NCL (69.3%). Gender is related to NC dimensions. Dental status has an influence on BBP dimensions, but does not influence on NC and PBP. Periodontal condition should be evaluated for precise premaxillae analysis NC diameters at the three anatomical planes are related to each other, while NCL is related to BBP and PBP lengths. A third of premaxilla is taken up by NC, thus, establishing the critical anatomic region.

  14. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography

    International Nuclear Information System (INIS)

    Du, Dajiang; Asaoka, Teruo; Ushida, Takashi; Furukawa, Katsuko S

    2014-01-01

    Because patient bone defects are usually varied and complicated in geometry, it would be preferred to fabricate custom-made artificial bone grafts that are anatomically specific to individual patient defects. Using a rabbit femoral segment as a bone reconstruction model, we successfully produced customized ceramic scaffolds by stereolithography, which not only had an anatomically correct external shape according to computed tomography data but also contained an interconnecting internal network of channels designed for perfusion culture. Rabbit bone marrow stromal cells were isolated and cultured with these scaffolds using a novel oscillatory perfusion system that was stereolithographically fabricated to fit well to the unique scaffold shapes. After five days of three-dimensional culture with oscillatory perfusion, the cells attached and proliferated homogenously in the scaffolds. However, control cells inside the scaffolds cultured under static conditions were dead after prolonged in vitro culture. Cellular DNA content and alkaline phosphatase activities were significantly higher in the perfusion group versus the static group. Therefore, anatomically correct artificial bone can be successfully constructed using stereolithography and oscillatory culture technology, and could be useful for bone engraftment and defect repair. (paper)

  15. [Analysis and classification of Latin anatomical names of skeletal fossa in Terminologia Anatomica, and comparison with corresponding Japanese anatomical names].

    Science.gov (United States)

    Shikano, Shun-ichi; Abe, Tatsuhiko; Terashima, Tatsuo

    2011-10-01

    For a better understanding of the structures comprising the human body and in view of the possible need for future revision of anatomical nomenclature, Latin anatomical names of skeletal fossa in Terminologia Anatomica were analyzed and classified, and compared with the corresponding Japanese anatomical names. The words following Fossa indicated: 1) the form of the fossa, 2) the structure to which the fossa belongs, 3) the position of the fossa, 4) the structure that exists near the fossa, 5) the structure that the fossa contains, 6) the structure attached to the fossa, 7) the structure that transmits the fossa, or 8) the structure with which the fossa articulates. The analysis of Latin names and comparison with Japanese names clarified some characteristics of both names and revealed some problems in them.

  16. [Analysis and classification of Latin anatomical names of skeletal canals in Terminologia anatomica, and comparison with corresponding Japanese anatomical names].

    Science.gov (United States)

    Shikano, Shun-ichi; Abe, Tatsuhiko; Terashima, Tatsuo

    2010-10-01

    For a better understanding of the structures comprising the human body and in view of the possible need for future revision of anatomical nomenclature, Latin anatomical names of skeletal canals (including canaliculi) in Terminologia Anatomica were analyzed and classified, and compared with the corresponding Japanese anatomical names. The words following Canalis or Canales indicated: (1) the structure to which the canal belongs, (2) the structure to which the opening of the canal belongs, (3) the position of the canal, (4) the structure to which the canal leads, (5) the structure that exists near the opening of the canal, (6) the structure that transmits the canal, (7) the structure that is a component of the canal, or (8) the function of the canal. The analysis of Latin names and comparison with Japanese names clarified some characteristics of both names and revealed some problems in them.

  17. Continuous medial representation for anatomical structures.

    Science.gov (United States)

    Yushkevich, Paul A; Zhang, Hui; Gee, James C

    2006-12-01

    The m-rep approach pioneered by Pizer et al. (2003) is a powerful morphological tool that makes it possible to employ features derived from medial loci (skeletons) in shape analysis. This paper extends the medial representation paradigm into the continuous realm, modeling skeletons and boundaries of three-dimensional objects as continuous parametric manifolds, while also maintaining the proper geometric relationship between these manifolds. The parametric representation of the boundary-medial relationship makes it possible to fit shape-based coordinate systems to the interiors of objects, providing a framework for combined statistical analysis of shape and appearance. Our approach leverages the idea of inverse skeletonization, where the skeleton of an object is defined first and the object's boundary is derived analytically from the skeleton. This paper derives a set of sufficient conditions ensuring that inverse skeletonization is well-posed for single-manifold skeletons and formulates a partial differential equation whose solutions satisfy the sufficient conditions. An efficient variational algorithm for deformable template modeling using the continuous medial representation is described and used to fit a template to the hippocampus in 87 subjects from a schizophrenia study with sub-voxel accuracy and 95% mean overlap.

  18. A Surface-Based Spatial Registration Method Based on Sense Three-Dimensional Scanner.

    Science.gov (United States)

    Fan, Yifeng; Xu, Xiufang; Wang, Manning

    2017-01-01

    The purpose of this study was to investigate the feasibility of a surface-based registration method based on a low-cost, hand-held Sense three-dimensional (3D) scanner in image-guided neurosurgery system. The scanner was calibrated prior and fixed on a tripod before registration. During registration, a part of the head surface was scanned at first and the spatial position of the adapter was recorded. Then the scanner was taken off from the tripod and the entire head surface was scanned by moving the scanner around the patient's head. All the scan points were aligned to the recorded spatial position to form a unique point cloud of the head by the automatic mosaic function of the scanner. The coordinates of the scan points were transformed from the device space to the adapter space by a calibration matrix, and then to the patient space. A 2-step patient-to-image registration method was then performed to register the patient space to the image space. The experimental results showed that the mean target registration error of 15 targets on the surface of the phantom was 1.61±0.09 mm. In a clinical experiment, the mean target registration error of 7 targets on the patient's head surface was 2.50±0.31 mm, which was sufficient to meet clinical requirements. It is feasible to use the Sense 3D scanner for patient-to-image registration, and the low-cost Sense 3D scanner can take the place of the current used scanner in the image-guided neurosurgery system.

  19. Surface based cardiac and respiratory motion extraction for pulmonary structures from multi-phase CT

    Science.gov (United States)

    von Berg, Jens; Barschdorf, Hans; Blaffert, Thomas; Kabus, Sven; Lorenz, Cristian

    2007-03-01

    During medical imaging and therapeutic interventions, pulmonary structures are in general subject to cardiac and respiratory motion. This motion leads potentially to artefacts and blurring in the resulting image material and to uncertainties during interventions. This paper presents a new automatic approach for surface based motion tracking of pulmonary structures and reports on the results for cardiac and respiratory induced motion. The method applies an active shape approach to ad-hoc generated surface representations of the pulmonary structures for phase to phase surface tracking. Input of the method are multi-phase CT data, either cardiac or respiratory gated. The iso-surface representing the transition between air or lung parenchyma to soft tissue, is triangulated for a selected phase p 0. An active shape procedure is initialised in the image of phase p I using the generated surface in p 0. The used internal energy term penalizes shape deformation as compared to p 0. The process is iterated for all phases p i to p i+1 of the complete cycle. Since the mesh topology is the same for all phases, the vertices of the triangular mesh can be treated as pseudo-landmarks defining tissue trajectories. A dense motion field is interpolated. The motion field was especially designed to estimate the error margins for radiotherapy. In the case of respiratory motion extraction, a validation on ten biphasic thorax CT images (2.5mm slice distance) was performed with expert landmarks placed at vessel bifurcations. The mean error on landmark position was below 2.6mm. We further applied the method to ECG gated images and estimated the influence of the heart beat on lung tissue displacement.

  20. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  1. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  2. Wood anatomical and chemical properties related to the pulpability ...

    African Journals Online (AJOL)

    Eucalyptus globulus is one of the most important hardwood species used by the pulp and paper industry due to its high pulp yield, high wood density, excellent fibre quality and good handsheet properties. However, the wood is a highly variable and complex material that has different chemical, physical and anatomical ...

  3. The effects of selected anatomical characteristics on physical ...

    African Journals Online (AJOL)

    The effects of selected anatomical characteristics on physical properties of Ethiopian Highland Bamboo Arundinaria Alpina K. Schum. (Poaceae) ... In early maturing bamboo, fibers are relatively small in wall thickness. The results of statistical analyses revealed that bamboo portion has significant effects on all variables.

  4. Optimizing conditions for computer-assisted anatomical learning.

    NARCIS (Netherlands)

    Luursema, J.M.; Verwey, Willem B.; Kommers, Petrus A.M.; Geelkerken, Robert H.; Vos, Hendrik J.

    2006-01-01

    An experiment evaluated the impact of two typical features of virtual learning environments on anatomical learning for users of differing visuo-spatial ability. The two features studied are computer-implemented stereopsis (the spatial information that is based on differences in visual patterns

  5. Prevalence and anatomical pattern of the median artery among ...

    African Journals Online (AJOL)

    Knowledge of the anatomy of median arteries is important in the diagnosis and management of carpal tunnel and pronator teres syndromes, reconstructive surgery in the forearm, minimizing inadvertent vascular injury as well as in limiting operative complications due to unexpected bleeding. The anatomical pattern displays ...

  6. Anatomical Variation in the Wall Thickness of Wood Fibres of ...

    African Journals Online (AJOL)

    The wall thickness of wood fibres of rubber (Hevea brasiliensis) grown and tapped for latex in south eastern Nigeria were investigated to determine anatomical variation. The rubber trees which were overmature for tapping and keeping were sampled in hierarchical order of plantations, bud classes, trees, discs, cardinal ...

  7. Correlation of clinical data, anatomical site and disease stage in ...

    African Journals Online (AJOL)

    Objective: To evaluate the colorectal cancer clinical data with respect to the anatomical location and stage of disease. Design: Retrospective observational study. Setting: Kenyatta National Hospital (KNH), Nairobi, Kenya. Subjects: Two hundred and fifty three tumours were categorised as right colonic (RCC), left colonic ...

  8. A comparison of some anatomical characteristics of male and ...

    African Journals Online (AJOL)

    A comparison of some anatomical characteristics of male and female reproductive organs of the white Fulani and west African short horn cattle in Ghana: a ... be due to the confounding effects of the physiological state (follicular or luteal) of the ovaries depending on the oestrus cycle of the cow at the time measurements ...

  9. Anatomical studies of the gastrointestinal tract of the striped sand ...

    African Journals Online (AJOL)

    A study was carried out on the gross anatomical, morphometric features and histology of the gastrointestinal tract of the Striped Sand Snake (Psammophis sibilans). Ten snakes (five males and five females) were euthanized and dissected for the study. The gastrointestinal tract appeared as a straight tubular organ from oral ...

  10. A hierarchical scheme for geodesic anatomical labeling of airway trees

    DEFF Research Database (Denmark)

    Feragen, Aasa; Petersen, Jens; Owen, Megan

    2012-01-01

    . In tree-space, the airway tree topology and geometry change continuously, giving a natural way to automatically handle anatomical differences and noise. The algorithm is made efficient using a hierarchical approach, in which labels are assigned from the top down. We only use features of the airway...

  11. Agreement between anatomic and ultrasound measurements of femoral trochlear depth

    DEFF Research Database (Denmark)

    Miles, James Edward; Westrup, Ulrik; Eriksen, Thomas

    and ultrasonographic measurements of trochlear depth using the red fox hind limb as a canine surrogate, dividing the trochlea into five regions from the origin of the caudal cruciate ligament to the proximal aspect of the trochlea. We found reasonable agreement between anatomic and ultrasonographic measurements...

  12. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved...

  13. Anatomical practices of preserving, handling and management of ...

    African Journals Online (AJOL)

    The result of this review is that an act will be required to address the management of human remains as well the regulation of the anatomical practices of preserving, handling and management of human remains. Human remains as used in this context includes established lifeless or dead whole human body otherwise ...

  14. Anatomical approach for surgery of the male posterior urethra.

    Science.gov (United States)

    Dalpiaz, Orietta; Mitterberger, Michael; Kerschbaumer, Andrea; Pinggera, Germar M; Bartsch, Georg; Strasser, Hannes

    2008-11-01

    To investigate, in a morphological study, the anatomy of the male rhabdosphincter and the relation between the membranous urethra, the rhabdosphincter and the neurovascular bundles (NVBs) to provide the anatomical basis for surgical approach of the posterior urethra as successful outcomes in urethral reconstructive surgery still remain a challenging issue. In all, 11 complete pelves and four tissue blocks of prostate, rectum, membranous urethra and the rhabdosphincter were studied. Besides anatomical preparations, the posterior urethra and their relationship were studied by means of serial histological sections. In the histological cross-sections, the rhabdosphincter forms an omega-shaped loop around the anterior and lateral aspects of the membranous urethra. Ventrally and laterally, it is separated from the membranous urethra by a delicate sheath of connective tissue. Through a midline approach displacing the nerves and vessels laterally, injuries to the NVBs can be avoided. With meticulous dissection of the delicate ventral connective tissue sheath between the ventral wall of the membranous urethra and the rhabdosphincter, the two structures can be separated without damage to either of them. This anatomical approach can be used for dissection of the anterior urethral wall in urethral surgery. Based on precise anatomical knowledge, the ventral wall of the posterior urethra can be dissected and exposed without injuring the rhabdosphincter and the NVBs. This approach provides the basis for sparing of the rhabdosphincter and for successful outcomes in urethral surgery for the treatment of bulbo-membranous urethral strictures.

  15. Gross anatomical syringeal structures of goose (Anser anser domesticus

    Directory of Open Access Journals (Sweden)

    Reda Mohamed

    2017-12-01

    Conclusion: There were some similarities and some differences of the anatomical structures of the syrinx of goose and that of other bird species. No differences between male and female syrinx were observed. [J Adv Vet Anim Res 2017; 4(4.000: 343-347

  16. Anatomical variations of the brachial plexus terminal branches in ...

    African Journals Online (AJOL)

    Anatomical variations are clinically significant, but many are inadequately described or quantified. Variations in anatomy of the brachial plexus are important to surgeons and anesthesiologists performing surgical procedures in the neck, axilla and upper limb regions. It is also important for radiologists who interpret plain and ...

  17. Plastination technology for anatomical studies in Nigeria: Opinion of ...

    African Journals Online (AJOL)

    2013-04-09

    Apr 9, 2013 ... Plastination technology for anatomical studies in. Nigeria: Opinion of ... Today, modern techniques used to preserve the human body for didactic purposes are built on methods that began in ... of new techniques and computer science, alternative methods of teaching anatomy have come. Dr. Gunther von ...

  18. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    performed with an optic microscope “Motic. 2.0” to a magnification of forty x. The observation was facilitated by a Ken-A-Vision camera connected to a computer. The software. Vision 4 allowed to take pictures and to measure the constituent of the woody plan. The following anatomical characters were measured: the number ...

  19. More about...Anatomical Pathology | Eyal | Continuing Medical ...

    African Journals Online (AJOL)

    Continuing Medical Education. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 30, No 2 (2012) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. More about...Anatomical Pathology. P Eyal. Abstract.

  20. Variations in the Anatomical Structures of the Guyon Canal.

    Science.gov (United States)

    Fadel, Zahir T; Samargandi, Osama A; Tang, David T

    2017-05-01

    Compression neuropathy of the ulnar nerve at the Guyon canal is commonly seen by hand surgeons. Different anatomical variations of structures related to the Guyon canal have been reported in the literature. A thorough knowledge of the normal contents and possible variations is essential during surgery and exploration. To review the recognized anatomical variations within and around the Guyon canal. This study is a narrative review in which relevant papers, clinical studies, and anatomical studies were selected by searching electronic databases (PubMed and EMBASE). Extensive manual review of references of the included studies was performed. We also describe a case report of an aberrant muscle crossing the Guyon canal. This study identified several variations in the anatomical structures of the Guyon canal reported in the literature. Variations of the ulnar nerve involved its course, branching pattern, deep motor branch, superficial sensory branch, dorsal cutaneous branch, and the communication with the median nerve. Ulnar artery variations involved its course, branching pattern, the superficial ulnar artery, and the dorsal perforating artery. Aberrant muscles crossing the Guyon canal were found to originate from the antebrachial fascia, pisiform bone, flexor retinaculum, the tendon of palmaris longus, flexor carpi ulnaris, or flexor carpi radialis; these muscles usually fuse with the hypothenar group. The diverse variations of the contents of the Guyon canal were adequately described in the literature. Taking these variations into consideration is important in preventing clinical misinterpretation and avoiding potential surgical complications.

  1. Gross and morphometric anatomical changes of the thyroid gland in ...

    African Journals Online (AJOL)

    Gross and morphometric anatomical changes of the thyroid gland in the West African Dwarf Goat ( Capra hircus ) during the foetal and post-natal periods of development. ... The right lobe was more cranially located on the larynx and trachea than the left lobe in all age groups. Thyroid isthmus was absent in few foetal thyroid ...

  2. Assessment of Anatomical Knowledge and Core Trauma Competency Vascular Skills.

    Science.gov (United States)

    Granite, Guinevere; Pugh, Kristy; Chen, Hegang; Longinaker, Nyaradzo; Garofalo, Evan; Shackelford, Stacy; Shalin, Valerie; Puche, Adam; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin

    2018-03-01

    Surgical residents express confidence in performing specific vascular exposures before training, but such self-reported confidence did not correlate with co-located evaluator ratings. This study reports residents' self-confidence evaluated before and after Advanced Surgical Skills for Exposure in Trauma (ASSET) cadaver-based training, and 12-18 mo later. We hypothesize that residents will better judge their own skill after ASSET than before when compared with evaluator ratings. Forty PGY2-7 surgical residents performed four procedures: axillary artery (AA), brachial artery (BA), femoral artery exposure and control (FA), and lower extremity fasciotomy (FAS) at the three evaluations. Using 5-point Likert scales, surgeons self-assessed their confidence in anatomical understanding and procedure performance after each procedure and evaluators rated each surgeon accordingly. For all the three evaluations, residents consistently rated their anatomical understanding (p < 0.04) and surgical performance (p < 0.03) higher than evaluators for both FA and FAS. Residents rated their anatomical understanding and surgical performance higher (p < 0.005) than evaluators for BA after training and up to 18 mo later. Only for third AA evaluation were there no rating differences. Residents overrate their anatomical understanding and performance abilities for BA, FA, and FAS even after performing the procedures and being debriefed three times in 18 mo.

  3. Anatomical factors predicting lower calyceal stone clearance after ...

    African Journals Online (AJOL)

    M. Khan

    2016-02-17

    Feb 17, 2016 ... Curr Opin Urol 2008;18:214–9. [9] Lingeman JE, Siegal YI, Steele B, Nyhus AW, Woods JR. Manage- ment of lower pole nephrolithiasis: a critical analysis. J Urol 1994;151: 663–7. [10] Sampaio FJB, Aragao AHM. Limitations of extracorporeal shock wave lithotripsy for lower caliceal stone: anatomic insight.

  4. Ethmomaxillary sinus: a particular anatomic variation of the paranasal sinuses

    Energy Technology Data Exchange (ETDEWEB)

    Sirikci, Akif; Bayram, Metin [Department of Radiology, Faculty of Medicine, Gaziantep University, Kolejtepe, 27310, Gaziantep (Turkey); Bayazit, Y.A.; Kanlikama, Muzaffer [Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Gaziantep University, Kolejtepe, 27310, Gaziantep (Turkey)

    2004-02-01

    We assessed the morphological and radiological characteristics of ethmomaxillary sinus (EMS), which is an enlarged posterior ethmoidal air cell occupying the superior portion of the maxillary sinus while draining into superior meatus. This study is based on 1450 patients submitted to CT examination of the paranasal sinuses between 1998 and 2002. Sequential CT scans were obtained in the coronal plane in all the patients with 2.5- to 5-mm section thickness and were evaluated for EMS. The diagnosis of EMS was made when there was a posterior ethmoidal cell occupying the superior part of the maxillary sinus while draining to the superior meatus. When EMS was diagnosed, the morphology of the septum between the and maxillary sinus, and width of the superior meatus, were noted. The EMS was found in 10 of 1450 (0.7%) patients. The coexisting anatomic variations were concha bullosa (50%), upper concha pneumatization (20%), maxillary sinus hypoplasia (20%), uncinate bulla (10%), hypertrophied inferior concha (10%), paradoxic middle concha (10%), and septate maxillary sinus (10%). There was no relation between EMS and sinus disease. The EMS is a rare anatomic variation and does not appear to be associated with sinusitis. The EMS is not a well-studied anatomic variation, and the literature is lacking adequate information about this anatomic variation. This study performed in a large series of patients will possibly contribute to better understanding of this particular anomaly. (orig.)

  5. An Investigation of How Clinicians use Anatomical Knowledge in ...

    African Journals Online (AJOL)

    An Investigation of How Clinicians use Anatomical Knowledge in Diagnostic Reasoning: A Grounded Theory Study of Clinicians in Zambia. ... observations, self-administered questionnaires from 168 respondents (140 doctors and 28 medical students at UTH), and unstructured interviews with doctors working in hospitals.

  6. Anatomical site predilections of non-Hodgkin's lymphoma in Human ...

    African Journals Online (AJOL)

    Anatomical site predilections of non-Hodgkin's lymphoma in Human Immunodeficiency Virus infection: A report on 54 cases. OW Mwanda, C Whalen, CR Scot, M Lederman, J Orem, C Banura. Abstract. No Abstract Available East African Medical Journal August (Supplement) 2004: S90-S96.

  7. Motor perception and anatomical realism in Classical Greek art.

    Science.gov (United States)

    Skoyles, J R

    1998-07-01

    The rise of anatomical realism in sculpture with the Classical Greeks puzzles art historians. Recently, it has been discovered that the motor cortex perceives motor actions. I argue that Classical artists discovered a new aesthetic based on using art to stimulate not just, as previously, the visual cortex, but also the motor one.

  8. CAVEman: Standardized Anatomical Context for Biomedical Data Mapping

    Science.gov (United States)

    Turinsky, Andrei L.; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrimsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N.; Hill, Jonathan W.; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W.

    2008-01-01

    The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to…

  9. Anatomical features of the sternum in a Kenyan population | El ...

    African Journals Online (AJOL)

    Anatomical features of the sternum in a Kenyan population. ... Eighty one dry adult sterna were studied at the Department of Human Anatomy, University of Nairobi, Kenya. Sternal asymmetry was taken as displacement of the ... Further research is needed to correlate these findings. However, careful evaluation of chest ...

  10. Gross Anatomical Variations and Congenital Anomalies of Surgical ...

    African Journals Online (AJOL)

    Results: A wide range of Anatomical variations of surgical importance were noted among the Ugandan cadavers. In 5% of the cases, the common hepatic artery originated from the superior Mesenteric artery. The course of the cystic artery in 61.9% of the cases was anterior to the right hepatic duct, in 31% it passed anterior ...

  11. Adaptation of Museum Specimens for Use in Anatomical Teaching Aids

    Science.gov (United States)

    Harris, P. F.; And Others

    1977-01-01

    Color transparencies are prepared of a re-colored anatomical specimen after placing labels temporarily in position to indicate specific structures. The specimen is also radiographed to show skeletal and soft tissue structures. Cross-reference among the specimen, photographs, and radiographs is supplemented by examination and self-assessment…

  12. Beyond Anatomical Dolls: Professionals' Use of Other Play Therapy Techniques.

    Science.gov (United States)

    Kendall-Tackett, Kathleen A.

    1992-01-01

    Telephone interviews were conducted with 201 Boston-area professionals who work with child victims of sexual abuse. Questions concerned use of anatomical dolls and other techniques and behavioral indicators of sexual abuse. Results indicated that mental health professionals used significantly more techniques than did law enforcement professionals.…

  13. Anatomical and magnetic resonance imaging study of the medial ...

    African Journals Online (AJOL)

    Sally Mahmood Mohamed Hussin Omar

    2015-07-10

    Jul 10, 2015 ... Anatomical and magnetic resonance imaging study of the medial collateral ligament of the ankle joint. Sally Mahmood Mohamed Hussin Omar a. , Fardos Ahmed El-Kalaa a. ,. El Sebai Farag Ali b. , Ali Ali Abd El-Karim c. , Nancy Mohamed El Sekily d,. * a Department of Anatomy and Embryology, Faculty of ...

  14. ORIGINAL ARTICLE Uterine and tubal anatomical abnormalities in ...

    African Journals Online (AJOL)

    120 SA JOURNAL OF RADIOLOGY • December 2011. ORIGINAL ARTICLE. Uterine and tubal anatomical abnormalities in infertile women: diagnosis with routine hystero- salpingography prior to selective laparoscopy. M Heis, MD, FRCR, FFRRCSI, CST. Z Amarin, MD, FRCOG, FFPH. A Y Ibrahim, MD. N Obeidat, MD.

  15. Environmental impact on morphological and anatomical structure of ...

    African Journals Online (AJOL)

    Morphological and anatomical structure of Tansy (Tanacetum vulgare L.) from two specific locations in one town, depending on environmental conditions, were carried out: anthropogenic Ada Huja (polluted zone) and non anthropogenic Topcider park (unpolluted). Study included the diferences in the structure of leaves, ...

  16. The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction

    NARCIS (Netherlands)

    Hofbauer, M.; Muller, B. [=Bart; Murawski, C. D.; van Eck, C. F.; Fu, F. H.

    2014-01-01

    To describe the concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. The PubMed/Medline database was searched using keywords pertaining to ACL reconstruction. Relevant articles were reviewed in order to summarize important concepts of individualized surgery in ACL

  17. An anatomically oriented breast coordinate system for mammogram analysis

    DEFF Research Database (Denmark)

    Brandt, Sami; Karemore, Gopal; Karssemeijer, Nico

    2011-01-01

    the breast cancer became visible to a radiologist. The coordinate system provides both the relative position and orientation information on the breast region from which the features are derived. In addition, the coordinate system can be used in temporal studies to pin-point anatomically equivalent locations...

  18. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm

    2017-01-01

    This paper discusses methods for assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology...... to properly reveal the clinical value. The paper exemplifies the methodology using recent studies of Synthetic Aperture Sequential Beamforming tissue harmonic imaging....

  19. Comparison of ultrasound-guided versus anatomical landmark ...

    African Journals Online (AJOL)

    Background Femoral vein cannulation may be required during major surgery in infants and children and may prove to be life saving under certain conditions. This study compared ultrasound (US)-guided cannulation of the femoral vein in infants with the traditional anatomical landmark-guided technique. Methods Eighty ...

  20. Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates

    Directory of Open Access Journals (Sweden)

    Jonathan B. L. Bard

    2018-02-01

    Full Text Available Evolutionary change comes from natural and other forms of selection acting on existing anatomical and physiological variants. While much is known about selection, little is known about the details of how genetic mutation leads to the range of heritable anatomical variants that are present within any population. This paper takes a systems-based view to explore how genomic mutation in vertebrate genomes works its way upwards, though changes to proteins, protein networks, and cell phenotypes to produce variants in anatomical detail. The evidence used in this approach mainly derives from analysing anatomical change in adult vertebrates and the protein networks that drive tissue formation in embryos. The former indicate which processes drive variation—these are mainly patterning, timing, and growth—and the latter their molecular basis. The paper then examines the effects of mutation and genetic drift on these processes, the nature of the resulting heritable phenotypic variation within a population, and the experimental evidence on the speed with which new variants can appear under selection. The discussion considers whether this speed is adequate to explain the observed rate of evolutionary change or whether other non-canonical, adaptive mechanisms of heritable mutation are needed. The evidence to hand suggests that they are not, for vertebrate evolution at least.

  1. Morphology and anatomical structure of the larval salt gland of ...

    African Journals Online (AJOL)

    polymerase chain reaction (RT-PCR), was also determined. The morphology and anatomical structure of the salt gland varied according to the salinity degree. At low salinities, salt gland was small, thin and flat having many shallow canals, while ...

  2. 3 Variation in Leaf Anatomical Characters.cdr

    African Journals Online (AJOL)

    user

    Dry and wet season studies of the leaf anatomy of ten plant species in the family Euphorbiaceae from three sites with different pollution levels in Southwestern Nigeria were carried out. This is with a view to establish the response of plant anatomical structures to air pollution. The species investigated were Alchornea laxiflora.

  3. Conventional trans‑tibial versus anatomic medial portal technique ...

    African Journals Online (AJOL)

    In this study, we aimed to determine if there is any difference between the clinical outcomes of two most commonly used drilling techniques; which are conventional trans‑tibial (TT) drilling of femoral tunnel and anatomic preparation of femoral tunnel through medial portal (MP), in patients who underwent ACL reconstruction.

  4. Plastination technology for anatomical studies in Nigeria: Opinion of ...

    African Journals Online (AJOL)

    Dr. Gunther von Hagens developed plastination as a technique of tissue preservation in 1977. He used a delicate method of forced impregnation with curable polymers like silicone, epoxy or polyester resins for preservation of anatomical specimens. With plastination, every part of a biological tissue is treated, preserving it ...

  5. Effect of anatomical variability in brain on transcranial magnetic stimulation treatment

    Science.gov (United States)

    Syeda, F.; Magsood, H.; Lee, E. G.; El-Gendy, A. A.; Jiles, D. C.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.

  6. Anatomic anterior cruciate ligament reconstruction: reducing anterior tibial subluxation.

    Science.gov (United States)

    Muller, Bart; Duerr, Eric R H; van Dijk, C Niek; Fu, Freddie H

    2016-09-01

    To measure and compare the amount of anterior tibial subluxation (ATS) after anatomic ACL reconstruction for both acute and chronic ACL-deficient patients. Fifty-two patients were clinically and radiographically evaluated after primary, unilateral, anatomic ACL reconstruction. Post-operative true lateral radiographs were obtained of both knees with the patient in supine position and knees in full passive extension with heels on a standardized bolster. ATS was measured on the radiographs by two independent and blinded observers. ATS was calculated as the side-to-side difference in tibial position relative to the femur. An independent t test was used to compare ATS between those undergoing anatomic reconstruction for an acute versus chronic ACL injury. Chronic ACL deficiency was defined as more than 12 weeks from injury to surgery. Patients averaged 26.4 ± 11.5 years (mean ± SD) of age, 43.6 % were female, and 48.1 % suffered an injury of the left knee. There were 30 and 22 patients in the acute and chronic groups, respectively. The median duration from injury to reconstruction for the acute group was 5 versus 31 weeks for the chronic group. After anatomic ACL reconstruction, the mean ATS was 1.0 ± 2.1 mm. There was no statistical difference in ATS between the acute and chronic groups (1.2 ± 2.0 vs. 0.6 ± 2.3 mm, n.s.). Assessment of inter-tester reliability for radiographic evaluation of ATS revealed an excellent intraclass correlation coefficient of 0.894. Anatomic ACL reconstruction reduces ATS with a mean difference of 1.0 mm from the healthy contralateral limb. This study did not find a statistical difference in ATS between patients after anatomic ACL reconstruction in the acute or chronic phase. These observations suggest that anatomic ACL reconstruction, performed in either the acute or the chronic phase, approaches the normal AP relationship of the tibiofemoral joint. IV.

  7. ANATOMIC STUDIES ABOUT RABBIT SPERMATICS WAYS

    Directory of Open Access Journals (Sweden)

    CARMEN BERGHES

    2009-05-01

    Full Text Available The paper aims to bring some completions of male genital anatomy in rabbits, in particular related to vascularisatia it. Data from literature are brief and last time the species is used as a laboratory experimental model with application in human surgery. To study were used 10 animals that were purchased from the private sector. Prior to making dissection vascular formations were injected with a contrast material prepared in the laboratory of anatomy of the faculty. Dissection was performed using the magnifying glass stereomicroscopica and appropriate instrumentation surgery high fineness. Were achieved after pictures and pieces of dissection were performed schemes. Formation to describe the terminology used in NAV ed. 2002 After dissection found that epididyme is intimately attached to the edge epididymis testicularis, channel epididymis presents a many flecsuosis branch of different sizes, thickness of the channel increases from epididimar cones related to deferential channel, number eferente cones is variable (between 6 and 8 cones, and tail origin epidydimis and deferential channel is dressed in adipose tissue forming the body fat of testicularis. Testicular arteries originate from the abdominal aorta, right testicular artery, the right of the fifth lumbar vertebrae left testicular artery and the right of the sixth lumbar vertebra: epididimara artery skull emerges from the testicular artery and the caudal artery of the internal iliac .

  8. Final report on the surface-based investigation phase (phase 1) at the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Matsuoka, Toshiyuki

    2011-03-01

    The Mizunami Underground Research Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal

  9. Sexual dimorphism of the human tibia through time: insights into shape variation using a surface-based approach

    Czech Academy of Sciences Publication Activity Database

    Brzobohatá, Hana; Krajíček, V.; Horák, Z.; Velemínská, J.

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0166461. E-ISSN 1932-6203 Institutional support: RVO:67985912 Keywords : human tibia * geometric morphometrics * sexual dimorphism * surface-based analysis Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.806, year: 2016

  10. The application of special technologies in diagnostic anatomic pathology: is it consistent with the principles of evidence-based medicine?

    Science.gov (United States)

    Marchevsky, Alberto M

    2005-05-01

    Proponents of evidence-based medicine (EBM) have emphasized the need to consider the quality of different sources of medical information and have proposed various methods to integrate available "best evidence" into rules, guidelines and other diagnostic, therapeutic and prognostic models. The various factors that can affect the internal validity of studies in anatomic pathology, such as interobserver variability, use of retrospective rather than prospective data and others, are reviewed. The need for testing for the external validity of the results of anatomic pathology studies is introduced, using "test sets" of cases that have not been used to generate the classification or prognostic models. This methodology has been seldom used in anatomic pathology to validate the generalizability of various "entities," usefulness of diagnostic tests under different conditions and other information. Basic concepts of meta-analysis for research synthesis are introduced; these methods have been seldom used in anatomic pathology to integrate information from different studies using quantitative techniques rather than summary tables that merely list the results of various publications. The potential use of decision analysis and value of information analysis for the adoption of new tests is briefly discussed.

  11. Touching Anatomy. : On the Handling of Anatomical Preparations in the Anatomical Cabinets of Frederik Ruysch (1638-1731)

    NARCIS (Netherlands)

    Knoeff, Rina

    2015-01-01

    This paper argues that the anatomical Cabinets of Dutch anatomist Frederik Ruysch must be understood as an early modern workshop in which preparations were continuously handled. It is claimed that preparations actively appealed to anatomists and visitors to handle, re-dissect, touch, and even kiss

  12. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    Science.gov (United States)

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  13. Investigations of Anatomical Variations of the Thorax and Heart, and Anatomical Knowledge for First Year Medical Dental and Podiatry Students

    Science.gov (United States)

    Verenna, Anne-Marie

    2013-01-01

    The universal presence of anatomy in healthcare professions is undeniable. It is a cornerstone to each of the clinical and basic sciences. Therefore, further expansion of current anatomical knowledge and effective methods to teach anatomy is essential. In this work, the relationship of the dorsal scapular artery with the trunks of the brachial…

  14. Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability

    Science.gov (United States)

    Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.

    2016-01-01

    Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms

  15. Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.

    Science.gov (United States)

    Bergeles, Christos; Gosline, Andrew H; Vasilyev, Nikolay V; Codd, Patrick J; Del Nido, Pedro J; Dupont, Pierre E

    2015-02-03

    Concentric tube robots are catheter-sized continuum robots that are well suited for minimally invasive surgery inside confined body cavities. These robots are constructed from sets of pre-curved superelastic tubes and are capable of assuming complex 3D curves. The family of 3D curves that the robot can assume depends on the number, curvatures, lengths and stiffnesses of the tubes in its tube set. The robot design problem involves solving for a tube set that will produce the family of curves necessary to perform a surgical procedure. At a minimum, these curves must enable the robot to smoothly extend into the body and to manipulate tools over the desired surgical workspace while respecting anatomical constraints. This paper introduces an optimization framework that utilizes procedureor patient-specific image-based anatomical models along with surgical workspace requirements to generate robot tube set designs. The algorithm searches for designs that minimize robot length and curvature and for which all paths required for the procedure consist of stable robot configurations. Two mechanics-based kinematic models are used. Initial designs are sought using a model assuming torsional rigidity. These designs are then refined using a torsionally-compliant model. The approach is illustrated with clinically relevant examples from neurosurgery and intracardiac surgery.

  16. Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints

    Science.gov (United States)

    Bergeles, Christos; Gosline, Andrew H.; Vasilyev, Nikolay V.; Codd, Patrick J.; del Nido, Pedro J.; Dupont, Pierre E.

    2015-01-01

    Concentric tube robots are catheter-sized continuum robots that are well suited for minimally invasive surgery inside confined body cavities. These robots are constructed from sets of pre-curved superelastic tubes and are capable of assuming complex 3D curves. The family of 3D curves that the robot can assume depends on the number, curvatures, lengths and stiffnesses of the tubes in its tube set. The robot design problem involves solving for a tube set that will produce the family of curves necessary to perform a surgical procedure. At a minimum, these curves must enable the robot to smoothly extend into the body and to manipulate tools over the desired surgical workspace while respecting anatomical constraints. This paper introduces an optimization framework that utilizes procedureor patient-specific image-based anatomical models along with surgical workspace requirements to generate robot tube set designs. The algorithm searches for designs that minimize robot length and curvature and for which all paths required for the procedure consist of stable robot configurations. Two mechanics-based kinematic models are used. Initial designs are sought using a model assuming torsional rigidity. These designs are then refined using a torsionally-compliant model. The approach is illustrated with clinically relevant examples from neurosurgery and intracardiac surgery. PMID:26380575

  17. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    Science.gov (United States)

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  18. Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Patrizia eDall'Acqua

    2016-03-01

    Full Text Available Reduced integrity of white matter (WM pathways and subtle anomalies in gray matter (GM morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI. However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare.Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected

  19. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli.

    Science.gov (United States)

    Datta, Sukdeb; Chatterjee, Koel; Kline, Robert H; Wiley, Ronald G

    2010-01-27

    Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  20. MR-less surface-based amyloid assessment based on 11C PiB PET.

    Science.gov (United States)

    Zhou, Luping; Salvado, Olivier; Dore, Vincent; Bourgeat, Pierrick; Raniga, Parnesh; Macaulay, S Lance; Ames, David; Masters, Colin L; Ellis, Kathryn A; Villemagne, Victor L; Rowe, Christopher C; Fripp, Jurgen

    2014-01-01

    β-amyloid (Aβ) plaques in brain's grey matter (GM) are one of the pathological hallmarks of Alzheimer's disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with (11)C or (18)F radiotracers. Estimating Aβ burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less Aβ imaging quantification method that requires only PET images for reliable Aβ burden estimations. The proposed method has been developed using a multi-atlas based approach on (11)C-PiB scans from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was registered to the subject's PET image for PiB estimation within GM. The results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values. All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB- subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex. The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool for Aβ imaging scans when MRI images are unavailable.

  1. Thalamic pain: anatomical and physiological indices of prediction.

    Science.gov (United States)

    Vartiainen, Nuutti; Perchet, Caroline; Magnin, Michel; Creac'h, Christelle; Convers, Philippe; Nighoghossian, Norbert; Mauguière, François; Peyron, Roland; Garcia-Larrea, Luis

    2016-03-01

    Thalamic pain is a severe and treatment-resistant type of central pain that may develop after thalamic stroke. Lesions within the ventrocaudal regions of the thalamus carry the highest risk to develop pain, but its emergence in individual patients remains impossible to predict. Because damage to the spino-thalamo-cortical system is a crucial factor in the development of central pain, in this study we combined detailed anatomical atlas-based mapping of thalamic lesions and assessment of spinothalamic integrity using quantitative sensory analysis and laser-evoked potentials in 42 thalamic stroke patients, of whom 31 had developed thalamic pain. More than 97% of lesions involved an area between 2 and 7 mm above the anterior-posterior commissural plane. Although most thalamic lesions affected several nuclei, patients with central pain showed maximal lesion convergence on the anterior pulvinar nucleus (a major spinothalamic target) while the convergence area lay within the ventral posterior lateral nucleus in pain-free patients. Both involvement of the anterior pulvinar nucleus and spinothalamic dysfunction (nociceptive thresholds, laser-evoked potentials) were significantly associated with the development of thalamic pain, whereas involvement of ventral posterior lateral nucleus and lemniscal dysfunction (position sense, graphaesthesia, pallaesthesia, stereognosis, standard somatosensory potentials) were similarly distributed in patients with or without pain. A logistic regression model combining spinothalamic dysfunction and anterior pulvinar nucleus involvement as regressors had 93% sensitivity and 87% positive predictive value for thalamic pain. Lesion of spinothalamic afferents to the posterior thalamus appears therefore determinant to the development of central pain after thalamic stroke. Sorting out of patients at different risks of developing thalamic pain may be achievable at the individual level by combining lesion localization and functional investigation of

  2. Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer.

    Science.gov (United States)

    Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J

    2018-03-01

    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.

  3. Gastric Anatomic Type Is Associated with Obesity and Gender.

    Science.gov (United States)

    Wang, Yu Jen; Hung, Kun-Long; Yang, Jui-Neng; Wang, Tien-Cheng; Chin, Chih-Hui

    2016-01-01

    To enhance our understanding of the associations among gastric anatomy, obesity, and gender. 777 randomly selected participants received health checkups, including a series of radiographs of the upper gastrointestinal tract (UGI); the findings were linked with each corresponding subject's gender and BMI. We measured the length, angle, and different portions of the stomach with the subjects in the standing position using radiographs to classify all individuals into anatomic types 1 through 6 based on gastric morphology. The gastric morphology was identified based on the initial UGI examination: 166 follow-up UGI radiographs at 12 ± 1.5 months to evaluate whether the stability of gastric anatomy persisted over time. There was a significant difference in anatomic types between females and males (p obese (p obese (p obesity and gender. © 2016 The Author(s) Published by S. Karger GmbH, Freiburg.

  4. A hierarchical scheme for geodesic anatomical labeling of airway trees.

    Science.gov (United States)

    Feragen, Aasa; Petersen, Jens; Owen, Megan; Lo, Pechin; Thomsen, Laura H; Wille, Mathilde M W; Dirksen, Asger; de Bruijne, Marleen

    2012-01-01

    We present a fast and robust supervised algorithm for labeling anatomical airway trees, based on geodesic distances in a geometric tree-space. Possible branch label configurations for a given tree are evaluated based on distances to a training set of labeled trees. In tree-space, the tree topology and geometry change continuously, giving a natural way to automatically handle anatomical differences and noise. The algorithm is made efficient using a hierarchical approach, in which labels are assigned from the top down. We only use features of the airway centerline tree, which are relatively unaffected by pathology. A thorough leave-one-patient-out evaluation of the algorithm is made on 40 segmented airway trees from 20 subjects labeled by 2 medical experts. We evaluate accuracy, reproducibility and robustness in patients with chronic obstructive pulmonary disease (COPD). Performance is statistically similar to the inter- and intra-expert agreement, and we found no significant correlation between COPD stage and labeling accuracy.

  5. The current and ideal state of anatomic pathology patient safety.

    Science.gov (United States)

    Raab, Stephen Spencer

    2014-01-01

    An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.

  6. Elimination of the apposition in Latin anatomical terms.

    Science.gov (United States)

    Neumann, Paul E

    2017-03-01

    The anatomical nomenclature rules require that terms be as short and simple as possible. One common exception to that rule is Latin terms that contain two nouns in nominative case, for example, Musculus masseter and Os ischium. Although these may appear to speakers of other languages to be compound nouns, they are appositions, grammatical structures in which one noun renames, defines or describes the entity named by the other noun. More than 125 terms in Terminologia Anatomica can be simplified, without loss of clarity, by prohibiting use of more than one noun in nominative case in Latin anatomical terms (e.g., Masseter and Os ischii). Clin. Anat. 30:156-158, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Anatomical variations of paranasal sinuses: what to inform the otolaryngologist?

    International Nuclear Information System (INIS)

    Villela, Caroline Laurita Batista Couto; Gomes, Natalia Delage; Gaiotti, Juliana Oggioni; Costa, Ana Maria Doffemond; Ribeiro, Marcelo Almeida; Motta, Emilia Guerra Pinto Coelho; Moreira, Wanderval; Ramos, Laura Filgueiras Mourao; Diniz, Renata Lopes Furletti Caldeira

    2012-01-01

    Anatomic variations of paranasal sinuses are common findings in daily practice. For a radiologist, to know these variations is necessary because of the pathological conditions related to them, and also because they are import for planning a functional endoscopic endonasal surgery, the procedure of choice for diagnosis, biopsy and treatment of various sinonasal diseases. To assure that this surgery is done safely, preventing iatrogenic injuries, it is essential that the surgeon has the mapping of these structures. Thus, a CT is indispensable for preoperative evaluation of paranasal sinuses. Since a general radiologist is expected to know these changes and their relationship to pathological conditions, a literature review and a iconographic essay were conducted with the aim of discussing the importance of major anatomic variations of paranasal sinuses. (author)

  8. Analysis of anatomical and micromorphological characteristics of Iva xanthifolia nutt.

    Directory of Open Access Journals (Sweden)

    Krstić Lana N.

    2007-01-01

    Full Text Available Iva xanthifolia is a North American weed species, which was introduced and naturalized in Europe. Anatomical and micromorphological characteristics of this species were investigated, in order to get better knowledge of its biology, which could help in development of strategies for prevention of its spreading. Detailed descriptions of lamina, petiole, stem and inflorescence axis anatomical structures were given, together with micromorphological characteristics of epidermis and indumentum of lamina, petiole, stem, inflorescence axis, involucre and fruit. All vegetative organs had mesomorphic structure, with some xeromorphic adaptations. Mechanical tissue was well developed, which gave those plants additional strength and resistance. Trichomes were the most numerous on lamina and in the region of inflorescence, while rare on petiole and stem epidermis and their distribution varied according to plant organ.

  9. The anatomic approach to primary, revision and augmentation anterior cruciate ligament reconstruction

    NARCIS (Netherlands)

    van Eck, Carola F.; Schreiber, Verena M.; Liu, T. Thomas; Fu, Freddie H.

    2010-01-01

    The anatomic approach is gaining popularity in anterior cruciate ligament (ACL) reconstruction. It is predominantly applied during primary ACL reconstruction. However, following the same principles as during primary surgery, the anatomic approach can also be applied during revision and augmentation

  10. Anatomic Aspects of Formation and Growth of the Cape Gooseberry Fruit Physalis peruviana (Solanaceae

    Directory of Open Access Journals (Sweden)

    Manuel Fernando Mazorra

    2006-01-01

    confirmed that anatomically the Cape gooseberry fruits, ecotipo Colombia, and ruderal type are similar, which demonstrates the absence of appreciable anatomical changes that explain the greater size of the fruits of ecotipo Colombia.

  11. The role of Long-Range Connectivity for the Characterization of the Functional-Anatomical Organization of the Cortex

    Directory of Open Access Journals (Sweden)

    Thomas R Knösche

    2011-07-01

    Full Text Available This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high-degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation.Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed.We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  12. Using Computers for Assessment of Facial Features and Recognition of Anatomical Variants that Result in Unfavorable Rhinoplasty Outcomes

    Directory of Open Access Journals (Sweden)

    Tarik Ozkul

    2008-04-01

    Full Text Available Rhinoplasty and facial plastic surgery are among the most frequently performed surgical procedures in the world. Although the underlying anatomical features of nose and face are very well known, performing a successful facial surgery requires not only surgical skills but also aesthetical talent from surgeon. Sculpting facial features surgically in correct proportions to end up with an aesthetically pleasing result is highly difficult. To further complicate the matter, some patients may have some anatomical features which affect rhinoplasty operation outcome negatively. If goes undetected, these anatomical variants jeopardize the surgery causing unexpected rhinoplasty outcomes. In this study, a model is developed with the aid of artificial intelligence tools, which analyses facial features of the patient from photograph, and generates an index of "appropriateness" of the facial features and an index of existence of anatomical variants that effect rhinoplasty negatively. The software tool developed is intended to detect the variants and warn the surgeon before the surgery. Another purpose of the tool is to generate an objective score to assess the outcome of the surgery.

  13. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  14. Gastric Anatomic Type Is Associated with Obesity and Gender

    OpenAIRE

    Wang, Yu Jen; Hung, Kun-Long; Yang, Jui-Neng; Wang, Tien-Cheng; Chin, Chih-Hui

    2016-01-01

    Objective To enhance our understanding of the associations among gastric anatomy, obesity, and gender. Methods 777 randomly selected participants received health checkups, including a series of radiographs of the upper gastrointestinal tract (UGI); the findings were linked with each corresponding subject's gender and BMI. We measured the length, angle, and different portions of the stomach with the subjects in the standing position using radiographs to classify all individuals into anatomic t...

  15. Anatomical description of the sinus in the alpaca (Vicugna pacos)

    OpenAIRE

    Zárate L., Rosse; Laboratorio de Anatomía Animal y Fauna Silvestre, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Navarrete Z., Miluska; Laboratorio de Anatomía Animal y Fauna Silvestre, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Sato S., Alberto; Laboratorio de Anatomía Animal y Fauna Silvestre, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Díaz C., Diego; Laboratorio de Farmacología y Toxicología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Huanca L., Wilfredo; Laboratorio de Reproducción Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima

    2015-01-01

    The objective of the present study was to describe the macroscopic anatomy of the sinus in the alpaca. Ten skulls of adult alpacas were prepared by the maceration technique, and the description through longitudinal cuts was done using terminology recommended by the Nomina Anatomica Veterinaria. In addition, X-rays with contrast medium were taken to four adult alpacas to determine the relationships of sinus with other anatomical structures. Results showed that the frontal and maxillary sinus w...

  16. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    Directory of Open Access Journals (Sweden)

    Demet Pepele

    2014-03-01

    Full Text Available Aim: The goal in anterior cruciate ligament reconstruction (ACLR is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our clinic between June 2009 and March 2010, performed the anatomic double bundle ACLR with autogenous hamstring grafts 20 patients were evaluated prospectively with Cincinnati, IKDC and Lysholm scores and in clinically for muscle strength and with Cybex II dynamometer. Results: The mean follow-up is 17.8 months (13-21 months. Patients%u2019 scores of Cincinnati, IKDC and Lysholm were respectively, preoperative 18.1, 39.3 and 39.8, while the post-op increased to 27.2, 76.3 and 86.3. In their last check, 17 percent of the patients according to IKDC scores (85% A (excellent and B (good group and 3 patients took place as C (adequate group. The power measurements of quadriceps and hamstring muscle groups of patients who underwent surgery showed no significant difference compared with the intact knees. Discussion: Double-bundle ACL reconstruction is a satisfactory method. There is a need comparative, long-term studies in large numbers in order to determine improving clinical outcome, preventing degeneration and restoring the knee biomechanics better.

  17. Anatomía genital en los Tenebrionidae (Coleoptera)

    OpenAIRE

    Cartagena, M. Carmen; Viñolas Saborit, Amador

    2001-01-01

    Con el presente trabajo se inicia el estudio de la anatomía genital, tanto masculina como femenina, de los Tenebrionidae. Se explica la metodología de extracción y preparación microscópica, así como los resultados obtenidos hasta el momento en los géneros estudiados, todos ellos presentes en la Península Ibérica.

  18. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  19. Age prediction on the basis of brain anatomical measures.

    Science.gov (United States)

    Valizadeh, S A; Hänggi, J; Mérillat, S; Jäncke, L

    2017-02-01

    In this study, we examined whether age can be predicted on the basis of different anatomical features obtained from a large sample of healthy subjects (n = 3,144). From this sample we obtained different anatomical feature sets: (1) 11 larger brain regions (including cortical volume, thickness, area, subcortical volume, cerebellar volume, etc.), (2) 148 cortical compartmental thickness measures, (3) 148 cortical compartmental area measures, (4) 148 cortical compartmental volume measures, and (5) a combination of the above-mentioned measures. With these anatomical feature sets, we predicted age using 6 statistical techniques (multiple linear regression, ridge regression, neural network, k-nearest neighbourhood, support vector machine, and random forest). We obtained very good age prediction accuracies, with the highest accuracy being R 2  = 0.84 (prediction on the basis of a neural network and support vector machine approaches for the entire data set) and the lowest being R 2  = 0.40 (prediction on the basis of a k-nearest neighborhood for cortical surface measures). Interestingly, the easy-to-calculate multiple linear regression approach with the 11 large brain compartments resulted in a very good prediction accuracy (R 2  = 0.73), whereas the application of the neural network approach for this data set revealed very good age prediction accuracy (R 2  = 0.83). Taken together, these results demonstrate that age can be predicted well on the basis of anatomical measures. The neural network approach turned out to be the approach with the best results. In addition, it was evident that good prediction accuracies can be achieved using a small but nevertheless age-representative dataset of brain features. Hum Brain Mapp 38:997-1008, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Systematic significance of anatomical characterization in some euphorbiaceous species

    International Nuclear Information System (INIS)

    Zahra, N.B.; Shinwari, Z.K.

    2014-01-01

    The study was aimed to explore the systematic potential of anatomical characters for identification and delimitation among Euphorbia species. Eight species of leafy spurges of genus Euphorbia L. (Euphorbiaceae) were evaluated for variations in micro morphological characters of foliar epidermal anatomy. While anatomical observations are of importance in the assessments and appraisals, use of these characters as an effective tool in interpreting phyletic evaluations and systematic delineations has its limitations too. The epidermal cell wall in majority of species was wavy to undulate on both adaxial and abaxial surfaces. The observations made in this study indicate that there is not a single type of stomata which appears as characteristic of the genus Euphorbia. Also their distribution whether epistomatic or hypostomatic is not a genus-characteristic. The trichomes found were simple, unicellular or multicellular, uniseriate. Present investigation revealed the utility of both qualitative and quantitative characters in systematic studies; also the potential influence in the delimitation of species cannot be ignored. Our results show that the micro-morphology of anatomical characters play an important role in definition of taxa at species and sectional levels. (author)

  1. Anatomic measures of upper airway structures in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Jose E. Barrera

    2017-06-01

    Full Text Available Objective: Determine if anatomic dimensions of airway structures are associated with airway obstruction in obstructive sleep apnea (OSA patients. Methods: Twenty-eight subjects with (n = 14 and without (n = 14 OSA as determined by clinical symptoms and sleep studies; volunteer sample. Skeletal and soft tissue dimensions were measured from radiocephalometry and magnetic resonance imaging. The soft palate thickness, mandibular plane-hyoid (MP-H distance, posterior airway space (PAS diameters and area, and tongue volume were calculated. Results: Compared to controls, the OSA group demonstrated a significantly longer MP-H distance (P = 0.009 and shorter nasal PAS diameter (P = 0.02. The PAS area was smaller (P = 0.002 and tongue volume larger in the OSA group (P = 0.004. The MP-H distance, PAS measurements, and tongue volume are of clinical relevance in OSA patients. Conclusions: A long MP-H distance, and small PAS diameters and area are significant anatomic measures in OSA; however the most substantial parameter found was a large tongue volume. Keywords: Obstructive sleep apnea, Anatomy, Anatomic measurement, Posterior airway space, Tongue volume, Hyoid position

  2. An anatomically realistic temperature phantom for radiofrequency heating measurements

    Science.gov (United States)

    Graedel, Nadine N.; Polimeni, Jonathan R.; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L.

    2014-01-01

    Purpose An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the un-perfused case. We describe an anatomically realistic human head phantom that allows rapid 3D temperature mapping at 7 T. Methods The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature sensitive contrast agent (TmDOTMA−) validated by direct fiber optic temperature measurements. Results Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2–4 minutes. Conclusion Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. PMID:24549755

  3. Consensus guidelines for the uniform reporting of study ethics in anatomical research within the framework of the anatomical quality assurance (AQUA) checklist.

    Science.gov (United States)

    Henry, Brandon Michael; Vikse, Jens; Pekala, Przemyslaw; Loukas, Marios; Tubbs, R Shane; Walocha, Jerzy A; Jones, D Gareth; Tomaszewski, Krzysztof A

    2018-05-01

    Unambiguous reporting of a study's compliance with ethical guidelines in anatomical research is imperative. As such, clear, universal, and uniform reporting guidelines for study ethics are essential. In 2016, the International Evidence-Based Anatomy Working group in collaboration with international partners established reporting guidelines for anatomical studies, the Anatomical Quality Assurance (AQUA) Checklist. In this elaboration of the AQUA Checklist, consensus guidelines for reporting study ethics in anatomical studies are provided with in the framework of the AQUA Checklist. The new guidelines are aimed to be applicable to research across the spectrum of the anatomical sciences, including studies on both living and deceased donors. The authors hope the established guidelines will improve ethical compliance and reporting in anatomical research. Clin. Anat. 31:521-524, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. The Intermingled History of Occupational Therapy and Anatomical Education: A Retrospective Exploration

    Science.gov (United States)

    Carroll, Melissa A.; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational…

  5. Frequency in Usage of FCAT-Approved Anatomical Terms by North American Anatomists

    Science.gov (United States)

    Martin, Bradford D.; Thorpe, Donna; Barnes, Richard; DeLeon, Michael; Hill, Douglas

    2009-01-01

    It has been 10 years since the Federative Committee on Anatomical Terminology (FCAT) published Terminologia Anatomica (TA), the current authority on anatomical nomenclature. There exists a perceived lack of unity among anatomists to adopt many FCAT recommended anatomical terms in TA. An e-mail survey was sent to members of the American Association…

  6. Midline fascial plication under continuous digital transrectal control: which factors determine anatomic outcome?

    NARCIS (Netherlands)

    Milani, A.L.; Withagen, M.I.J.; Schweitzer, K.J.; Janszen, E.W.; Vierhout, M.E.

    2010-01-01

    INTRODUCTION AND HYPOTHESIS: The aim of the study was to report anatomic and functional outcome of midline fascial plication under continuous digital transrectal control and to identify predictors of anatomic failure. METHODS: Prospective observational cohort. Anatomic success defined as POP-Q stage

  7. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  8. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction...

  9. [Analysis and classification of Latin anatomical names of skeletal foramina in Terminologia Anatomica, and comparison with corresponding Japanese anatomical names].

    Science.gov (United States)

    Shikano, Shun-ichi; Abe, Tatsuhiko; Terashima, Tatsuo; Yamashita, Yasuo

    2009-10-01

    For better understanding of the structures comprising the human body and in view of the possible need for future revision, Latin anatomical names of skeletal foramina in Terminologia Anatomica were analyzed and classified, and compared with the corresponding Japanese anatomical names. The words following Foramen or Foramina indicated:1) the form of the foramen, 2) the state of the foramen, 3) the absolute size of the foramen, 4) the structure to which the foramen belongs, 5) the position of the foramen in the skeletal system, 6) the part of the human body in which the foramen exists, 7) the structure that transmits the foramen, or 8) the function of the foramen. Analysis of Latin names and comparison with Japanese names clarified some characteristics of both names and revealed some problems in them.

  10. Anatomical Knee Variants in Discoid Lateral Meniscal Tears.

    Science.gov (United States)

    Chen, Xu-Xu; Li, Jian; Wang, Tao; Zhao, Yang; Kang, Hui

    2017-03-05

    Discoid lateral meniscus was a common meniscal dysplasia and was predisposed to tear. There were some anatomical knee variants in patients with discoid lateral meniscus. The aim of this study was to analyze the relationship between anatomical knee variants and discoid lateral meniscal tears. There were totally 125 cases of discoid lateral meniscus enrolled in this study from February 2008 to December 2013. Eighty-seven patients who underwent arthroscopic surgery for right torn discoid lateral meniscus were enrolled in the torn group. An additional 38 patients who were incidentally identified as having intact discoid lateral menisci on magnetic resonance imaging (MRI) findings were included in the control group. All patients were evaluated for anatomical knee variants on plain radiographs, including lateral joint space distance, height of the lateral tibial spine, height of the fibular head, obliquity of the lateral tibial plateau, squaring of the lateral femoral condyle, cupping of the lateral tibial plateau, lateral femoral condylar notch, and condylar cutoff sign. The relationship between anatomical variants and meniscal tear was evaluated. These anatomical variants in cases with complete discoid meniscus were also compared with those in cases with incomplete discoid meniscus. There were no significant differences between the two groups in lateral joint space distance (P = 0.528), height of the lateral tibial spine (P = 0.927), height of the fibular head (P = 0.684), obliquity of the lateral tibial plateau (P = 0.672), and the positive rates of squaring of the lateral femoral condyle (P = 0.665), cupping of the lateral tibial plateau (P = 0.239), and lateral femoral condylar notch (P = 0.624). The condylar cutoff sign was significantly different between the two groups, with the prominence ratio in the torn group being smaller than that in the control group (0.74 ± 0.11 vs. 0.81 ± 0.04, P = 0.049). With the decision value of the prominence ratio (0.78) in

  11. Optimal mechanical design of anatomical post-systems for endodontic restoration.

    Science.gov (United States)

    Maceri, Franco; Martignoni, Marco; Vairo, Giuseppe

    2009-02-01

    This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcements. Numerical simulations based on 3D linearly elastic finite element models under parafunctional loads were performed in order to investigate the influence of the stiffness of the CRM and of the number of PCPs. Periodontal ligament effects were taken into account using a discretised anisotropic nonlinearly elastic spring system, and the full discrete model was validated by comparing the resulting stress fields with those obtained with conventional restorations (cast gold-alloy post, homogeneous anatomical post and cemented single PCP) and with the natural tooth. Analysis of the results shows that stresses at the cervical/middle region decrease as CRM stiffness increases and, for large and irregular root cavities that apical stress peaks disappear when multiple PCPs are used. Accordingly, from a mechanical point of view, an optimal RAPS will use multiple PCPs when CRM stiffness is equal to or at most twice that of the dentin. This restorative solution minimises stress differences with respect to the natural tooth, mechanical inhomogeneities, stress concentrations on healthy tissues, volumes subject to shrinkage phenomena, fatigue effects and risks of both root fracture and adhesive/cohesive interfacial failure.

  12. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex

    Science.gov (United States)

    Ray, Rebecca; Zald, David H.

    2011-01-01

    Ray, R. and D. Zald. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. NEUROSCI BIOBEHAV REV 36(X) XXX-XXX, 2011. -Psychological research increasingly indicates that emotional processes interact with other aspects of cognition. Studies have demonstrated both the ability of emotional stimuli to influence a broad range of cognitive operations, and the ability of humans to use top-down cognitive control mechanisms to regulate emotional responses. Portions of the prefrontal cortex appear to play a significant role in these interactions. However, the manner in which these interactions are implemented remains only partially elucidated. In the present review we describe the anatomical connections between ventral and dorsal prefrontal areas as well as their connections with limbic regions. Only a subset of prefrontal areas are likely to directly influence amygdalar processing, and as such models of prefrontal control of emotions and models of emotional regulation should be constrained to plausible pathways of influence. We also focus on how the specific pattern of feedforward and feedback connections between these regions may dictate the nature of information flow between ventral and dorsal prefrontal areas and the amygdala. These patterns of connections are inconsistent with several commonly expressed assumptions about the nature of communications between emotion and cognition. PMID:21889953

  13. Comparative analysis of the stress distribution in five anatomical types of maxillary central incisor.

    Science.gov (United States)

    Sun, Lei; Wu, Xifeng; Li, Yang; Lin, Zhenyan; Xu, Duoling; Lin, Xuan; Gao, Yongbo

    2017-07-20

    The maxillary central incisor is one of the most important anatomical indicators in esthetics, and stress distribution may vary among its five anatomical views (labial, palatal, mesial, distal, and incisal). To compare stress distribution among the five anatomical views of the maxillary central incisor under loading force at five angles and to observe and analyze the stress distribution in the dentin and periodontal ligament. We established three-dimensional finite element models of the five different views, which simulated the bite force with a static load force at 0∘, 30∘, 45∘, 60∘, and 90∘. The stress and displacement values for the cementoenamel junction (CEJ)-apical labial, palatal, mesial, and distal and the equivalent stress values on the periodontal ligament of the maxillary central incisor were calculated. As the angle increased, the equivalent stress on the periodontal ligament, overall tooth displacement, equivalent stress, and displacement over the four views increased. The peaks of equivalent stress over the four views appeared within 0.8-17 mm below the CEJ, although all equivalent stress values decreased while approaching the peak. Within 1-19 mm below the CEJ, the equivalent stress over the M1 and P1 views of the maxillary central incisor decreased substantially. The peaks of the equivalent stress over the M1 and P1 views of the maxillary central incisor and their stress distribution were lower than those of the other three types. Our findings provided theoretical data on the biomechanics of this esthetically important tooth, which may be useful during implantation of missing maxillary central incisors.

  14. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement.

    Science.gov (United States)

    Lynch, Jonathan P; Chimungu, Joseph G; Brown, Kathleen M

    2014-11-01

    Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Morphological and anatomical characteristics of Scots pine needles under industrial pollution impact of Krasnoyarsk city

    Directory of Open Access Journals (Sweden)

    L. N. Skripal’shchikova

    2016-06-01

    Full Text Available The changes of morphological and anatomical characteristics of Scots pine needles as well as their fluctuating asymmetry (FA were studied in pine stands under the influence of industrial emissions of Krasnoyarsk. Observations were made in forest-steppe zone on windward pine forest edges in the conditions of long-term anthropogenic effect. Background site was pine stand 100 km from the city outside the direction of wind pollution. The investigations were carried out in 2013–2014 in pure pine stands of grass type, V–VI class of age. For every model tree the needle lengths in pairs were measured, as well as the cross section area of needle, area of central cylinder and conducting bindles areas and the number of resin canals. Indices of fluctuating asymmetry were calculated by method of Palmer and Strobeck (1986. The content of copper, nickel, zinc, cobalt, aluminum, cadmium, lead, fluorine and sulfur were analyzed in needle samples in parallel. The dimensions of needles and its internal structure elements showed the tendency to decrease under the influence of urban industrial emissions in comparison with background sites. On the other hand, there were adaptations of morphological and anatomical parameters of physiologically active needles to the changing environment through a compensatory mechanism. Fluctuating asymmetry indices of needles parameters were found to vary both in technogenic conditions and background ones. The variations were caused by abiotic factors of habitats and levels of technogenic loadings in these stands. Correlation analysis revealed relations between concentrations of heavy metals, aluminum and fluorine and morphological and anatomical characteristics of needles and FA indices. The most unfavorable effects were produced by high concentrations of lead and fluorine.

  16. Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites.

    Science.gov (United States)

    Gauthier, Rémy; Follet, Hélène; Langer, Max; Meille, Sylvain; Chevalier, Jérôme; Rongiéras, Frédéric; Peyrin, Françoise; Mitton, David

    2017-07-01

    Bone fracture is a major health issue worldwide and consequently there have been extensive investigations into the fracture behavior of human cortical bone. However, the fracture properties of human cortical bone under fall-like loading conditions remains poorly documented. Further, most published research has been performed on femoral diaphyseal bone, whereas it is known that the femoral neck and the radius are the most vulnerable sites to fracture. Hence, the aim of this study is to provide information on human cortical bone fracture behavior by comparing different anatomical sites including the radius and the femoral neck acquired from 32 elderly subjects (50 - 98 y.o.). In order to investigate the intrinsic fracture behavior of human cortical bone, toughness experiments were performed at two different strain rates: standard quasi-static conditions, and a higher strain rate representative of a fall from a standing position. The tests were performed on paired femoral neck, femoral, tibial and radius diaphyseal samples. Linear elastic fracture toughness and the non-linear J-integral method were used to take into account both the elastic and non-elastic behavior of cortical bone. Under quasi-static conditions, the radius presents a significantly higher toughness than the other sites. At the higher strain rate, all sites showed a significantly lower toughness. Also, at the high strain rate, there is no significant difference in fracture properties between the four anatomical sites. These results suggest that regardless of the anatomical site (femur, femoral neck, tibia and radius), the bone has the same fracture properties under fall loading conditions. This should be considered in biomechanical models under fall-like loading conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    International Nuclear Information System (INIS)

    Müller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Günter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-01-01

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  18. Anatomical Studies on Several Species of Heliotropium L. in Iran

    Directory of Open Access Journals (Sweden)

    Maryam ABBASI

    2011-11-01

    Full Text Available Heliotropium spp. is distributed worldwide mainly in tropical and subtropical regions, with dry and warm temperate to semi-arid regions so that Southwest and center of Asia have considered as the main centre of origin and diversity of Heliotropium genus. Iran, with 32 species and 14 (sub endemic species, has the highest diversity in the world followed by Pakistan and Turkey with 15 species and only one endemic species and the Arabian Peninsula with 15 species and three endemic species are in the next ranks. In order to anatomical studies on Heliotropium, twelve species of this genus were selected from different regions of Iran. The selected species included: H. bacciferum Forssk., H. ramossisimum BGE., H. brevilimb Boiss., H. transoxanum BGE., H. dasycarpum Ledeb, H. dyginum Forssk., H. aucheri Dc., H. carmanicum BGE. As perennial group and H. ellipticum Ledeb., H. lasiocarpum Fisch., H. suaveolens M.B. as annual group. In order to add more data to leaf anatomy characters, evaluating of systematic relevance and/or adaptive value of the morphological and anatomical diversity we have studied 24 anatomical characters in theses 12 species. For example shape and vascular bundles of main midrib, type of parenchyma cells located under lower epidermis of midrib, distance between vascular bundles and lower or upper epidermis, angle of between two parts of blade, number of cellular layers in lower or upper mesophylla, length of upper and lower mesophylla, type of cell wall in lower and upper mesophylla and thickness of lamina were investigated in this study. In order to this present obtained H. aucheri can be separated from H. carmanicum in H. aucheri subsp. carmanicum. It can be conclude that two species H. aucheri and H. carmanicum are independent species and can accept H. transoxanum as a sub group of H. dasycarpum.

  19. Unilateral Duplication Of Parotid Duct. A Rare Anatomical Variation

    Directory of Open Access Journals (Sweden)

    Humberto Ferreira Arquez

    2017-11-01

    Full Text Available Background: The paired parotid glands are the largest of the major salivary glands and produces mainly serous secretions. The secretion of this gland reaches the oral cavity through single parotid duct (Stensen’s duct. The parotid duct begins at the anterior border of the gland, crosses the masseter muscle, and then pierces the buccinator muscle to reach the mucosa lining the mouth at the level of the cheek. The purpose of this study is determine the morphologic features of the parotid duct and describe an anatomical variation until now unreported. Methods and Findings: A total of 17 cadavers were used for this study in the Morphology Laboratory at the University of Pamplona. In a cadaver were findings: The main parotid duct originated two conducts: Left superior parotid duct and Left inferior parotid duct, is observed the criss-cross of the ducts, and then perforated the buccinator muscle and entered the oral cavity at a double parotid papilla containing a double opening, separated from each other in 0,98 mm. In the remaining  33 parotid regions (97.06% the parotid duct is conformed to the classical descriptions given in anatomical textbooks. Conclusions: The parotid duct anatomy is important for duct endoscopy, lithotripsy, sialography and trans-ductal facial nerve stimulation in the early stage of facial palsy in some cases. The anatomical variations also has clinical importance for parotid gland surgery and facial cosmetic surgery. To keep in mind the parotid duct variation will reduce iatrogenic injury risks and improve diagnosis of parotid duct injury.

  20. Anatomic correlates of deep brain stimulation electrode impedance.

    Science.gov (United States)

    Satzer, David; Maurer, Eric W; Lanctin, David; Guan, Weihua; Abosch, Aviva

    2015-04-01

    The location of the optimal target for deep brain stimulation (DBS) of the subthalamic nucleus (STN) remains controversial. Electrode impedance affects tissue activation by DBS and has been found to vary by contact number, but no studies have examined association between impedance and anatomic location. To evaluate the relationship between electrode impedance and anatomic contact location, and to assess the clinical significance of impedance. We gathered retrospective impedance data from 101 electrodes in 73 patients with Parkinson's disease. We determined contact location using microelectrode recording (MER) and high-field 7T MRI, and assessed the relationship between impedance and contact location. For contact location as assessed via MER, impedance was significantly higher for contacts in STN, at baseline (111 Ω vs STN border, p=0.03; 169 Ω vs white matter, pimpedance was lowest in contacts situated at STN border (p=0.03). Impedance did not vary by contact location as assessed via imaging. Location determination was 75% consistent between MER and imaging. Impedance was inversely related to absolute symptom reduction during stimulation (-2.5 motor portion of the Unified Parkinson's Disease Rating Scale (mUPDRS) points per 1000 Ω, p=0.01). In the vicinity of DBS electrodes chronically implanted in STN, impedance is lower at the rostral STN border and in white matter, than in STN. This finding suggests that current reaches white matter fibres more readily than neuronal cell bodies in STN, which may help explain anatomic variation in stimulation efficacy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. THE AZYGOS VENOUS SYSTEM AND ITS ANATOMICAL VARIATIONS

    Directory of Open Access Journals (Sweden)

    Madiki Sudhakara Rao

    2016-06-01

    Full Text Available AIMS AND OBJECTIVES Azygos veins are important cavocaval and portacaval junctions, which form a collateral circulation in caval vein occlusion and in portal hypertension, cirrhosis of liver. The unpaired azygos venous system consists of azygos vein, hemiazygos vein and accessory azygos vein. This system of veins, along with its mediastinal, bronchial and oesophageal tributaries drains most of the body wall of trunk, namely posterior abdominal and thoracic wall. Anatomical variations of this unpaired azygos venous system are clinically important. AIMS To study and report the occurrence of anatomical variations of the unpaired azygos venous system in the region of East Godavari District, Andhra Pradesh (India. METHODS The present study was carried out in the Department of Anatomy, KIMS & RF, Amalapuram and G.S.L. Medical College, Rajahmundry over a period of 2 years. The present study was conducted on 60 cadavers (irrespective of age and sex. The entire course of the azygos venous system in these 60 cadavers was carefully observed and documented. RESULTS Anatomical variations were present in 16.66% of cases, out of which three distinct types were identified. 6.6% exhibited two separate azygos venous systems with no communications, 5% with communication between the left brachiocephalic vein and the azygos vein and 5% presence of post-aortic venous channels. CONCLUSION Variations of azygos venous system may be wrongly dubbed as aneurysm, lymphadenopathy or other abnormalities while reporting a CT scan of mediastinum. Venous anomalies are also detected only during surgery. The most troublesome intraoperative hazard is haemorrhage, which is mainly of venous origin. To avoid such situations is to have an awareness and knowledge of the expected venous anomalies.

  2. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  3. Imaging of hand injuries. Anatomic and radiodiagnostic considerations

    International Nuclear Information System (INIS)

    Schmitt, Rainer

    2011-01-01

    Imaging recommendations for assessing injuries of the forearm, wrist, metacarpus and the digits are given with respect to anatomic considerations. Furthermore, dedicated algorithms of advanced imaging are introduced with radiography as the primary diagnostic tool. High-resolution CT is used for detecting and staging the complex fractures of the radius and the wrist, whereas contrast-enhanced MRI serves for depicting the injured soft tissues. At the wrist, tears of the intrinsic ligaments and the TFCC are assessed with high accuracy when applying MR arthrography or CT arthrography. Dedicated radiologic tools as well as comprehensive reports are suggested in the management of the various hand injuries. (orig.)

  4. Device for removing foreign objects from anatomic organs

    Science.gov (United States)

    Angulo, Earl D. (Inventor)

    1992-01-01

    A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.

  5. Heidelberg Retina Tomography analysis in optic disks with anatomic particularities.

    Science.gov (United States)

    Dascalu, A M; Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C

    2010-01-01

    Due to its objectivity, reproducibility and predictive value confirmed by many large-scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapillae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities.

  6. Position of the mental foramen: an anatomical study.

    Science.gov (United States)

    Kqiku, Lumnije; Sivic, Ensad; Weiglein, Andreas; Städtler, Peter

    2011-05-01

    Knowledge of the position of the mental foramen is very important during all surgical procedures and it needs to be considered before all surgical procedures in the mandible region. The aim of this study was to determine the position of the mental foramen in the dissected human cadaver specimens. Four hundred hemimandible specimens from human cadavers were dissected and analyzed for the position of the mental foramen. The most common position of the mental foramen investigated - using anatomical dissection - was between the first and second mandibular premolars. These investigations provide relevant data for clinical anatomy, especially when planning oral operative treatment in the premolar area.

  7. Risky Cerebrovascular Anatomic Orientation: Implications for Brain Revascularization.

    Science.gov (United States)

    Nagm, Alhusain; Horiuchi, Tetsuyoshi; Yanagawa, Takao; Hongo, Kazuhiro

    2016-12-01

    This study documents a risky vascular anatomic orientation that might play an important role in the postoperative hemodynamics following anterior cerebral artery (ACA) revascularization. A 71-year-old woman presented with uncontrollable frequent right lower limb transient ischemic attacks (TIAs) attributed to a left cerebral ischemic lesion due to severe left ACA stenosis. She underwent successful left-sided superficial temporal artery-ACA bypass using interposed vascular graft. The patient awoke satisfactory from anesthesia; however, on postoperative day 1, she developed right-sided hemiparesis. Extensive postoperative investigations disclosed that watershed shift infarction was considered the etiology for this neurologic deterioration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Medial Column Arthrodesis Using an Anatomic Distal Fibular Locking Plate.

    Science.gov (United States)

    Nasser, Ellianne M; LaPorta, Guido A; Trott, Kasandra

    2015-01-01

    The medial column fusion is performed for a multitude of etiologies, including peritalar subluxation deformity, Charcot arthropathy, trauma, post-traumatic degenerative joint disease, and rheumatoid arthritis. Various surgical techniques have been described for medial column arthrodesis. We describe a new fixation method using an anatomic distal fibular locking plate for medial column arthrodesis. This technique provides a rigid construct in compromised or at risk bone. After a review of the surgical technique, we outline 2 case examples of patients with peritalar subluxation and Charcot arthropathy. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Correlative CT and anatomic study of the sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Pech, P.; Haughton, V.

    1985-05-01

    Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.

  10. Anatomical reconstruction of the anterior cruciate ligament: a logical approach

    Directory of Open Access Journals (Sweden)

    Julio Cesar Gali

    2015-08-01

    Full Text Available ABSTRACT We describe the surgical approach that we have used over the last years for anterior cruciate ligament (ACL reconstruction, highlighting the importance of arthroscopic viewing through the anteromedial portal (AMP and femoral tunnel drilling through an accessory anteromedial portal (AMP. The AMP allows direct view of the ACL femoral insertion site on the medial aspect of the lateral femoral condyle, does not require guides for anatomic femoral tunnel reaming, prevents an additional lateral incision in the distal third of the thigh (as would be unavoidable when the outside-intechnique is used and also can be used for double-bundle ACL reconstruction.

  11. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    Science.gov (United States)

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. © 2014 American Association of Anatomists.

  12. The anatomic surgical arterial segmentation of the kidney in wild boar (Sus scrofa

    Directory of Open Access Journals (Sweden)

    Elizângela Falcão Vale

    2006-12-01

    Full Text Available Thirty pairs of kidneys of wild boar (Sus scrofa were studied from adult males, with permission from the Brazilian Institute of the Environment (Process nº 02001.003237/05, aiming to characterize the vasculature and anatomic surgical segmentation. The arteries of these kidneys were injected with red pigment and subsequently submitted to acid corrosion in order to identify the renal arterial vascular pattern, particularly its divisions and distribution. The results reveal the sectorial branches of the renal arteries, two in number (cranial and caudal; the sectorial arteries provide the segmentary branches to the dorsal and ventral portions of the kidney; in the right kidney, the segmentary branches are 2-6 in the cranial sector and 3-7 in the caudal sector. In the right kidney, the segmentary branches are 3-7 and 2-7 in the same respective sectors; the vascular arterial symmetry (25% between the right and left kidney in the animals is evident. There are 3 arterial anatomic surgical segments on both kidneys. On the basis of the distribution of the sectorial and segmentary arteries, it is possible to accomplish setorectomy and segmentectomy on the kidneys of the wild boar, with functional aspects such as species preservation and animal experimental modeling.

  13. Discovering anatomical patterns with pathological meaning by clustering of visual primitives in structural brain MRI

    Science.gov (United States)

    Leon, Juan; Pulido, Andrea; Romero, Eduardo

    2015-01-01

    Computational anatomy is a subdiscipline of the anatomy that studies macroscopic details of the human body structure using a set of automatic techniques. Different reference systems have been developed for brain mapping and morphometry in functional and structural studies. Several models integrate particular anatomical regions to highlight pathological patterns in structural brain MRI, a really challenging task due to the complexity, variability, and nonlinearity of the human brain anatomy. In this paper, we present a strategy that aims to find anatomical regions with pathological meaning by using a probabilistic analysis. Our method starts by extracting visual primitives from brain MRI that are partitioned into small patches and which are then softly clustered, forming different regions not necessarily connected. Each of these regions is described by a co- occurrence histogram of visual features, upon which a probabilistic semantic analysis is used to find the underlying structure of the information, i.e., separated regions by their low level similarity. The proposed approach was tested with the OASIS data set which includes 69 Alzheimer's disease (AD) patients and 65 healthy subjects (NC).

  14. Anatomical reconstructions of the human cardiac venous system using contrast-computed tomography of perfusion-fixed specimens.

    Science.gov (United States)

    Spencer, Julianne; Fitch, Emily; Iaizzo, Paul A

    2013-04-18

    A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)(1) Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT(2). Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our

  15. Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision

    Science.gov (United States)

    Pan, Qing; Chen, Chong; Xu, Guoliang

    2017-08-01

    In this paper, we investigate the formulation of isogeometric analysis for minimal surface models on planar bounded domains by extended Loop surface subdivision approach. The exactness of the physical domain of interest is fixed on the coarsest level of the triangular discretization with any topological structure, which is thought of as the initial control mesh of Loop subdivision. By performing extended Loop subdivision, the control mesh can be repeatedly refined, and the geometry is described as an infinite set of quartic box-spline while maintaining its original exactness. The limit function representation of extended Loop subdivision forms our finite element space, which possesses C1 smoothness and the flexibility of mesh topology. We establish its inverse inequalities which resemble the ones of general finite element spaces. We develop the approximation estimate with the aid of H1 convergence property of the corresponding linear models. It enables us to overcome the difficulty of proving the boundedness of the gradient of finite element solutions appearing in the coefficient of minimal surface models. Numerical examples are given with the comparison to the classical linear finite element method which is consistent with our theoretical results.

  16. Late Pleistocene climate change and the global expansion of anatomically modern humans

    Science.gov (United States)

    Eriksson, Anders; Betti, Lia; Friend, Andrew D.; Lycett, Stephen J.; Singarayer, Joy S.; von Cramon-Taubadel, Noreen; Valdes, Paul J.; Balloux, Francois; Manica, Andrea

    2012-01-01

    The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence. PMID:22988099

  17. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  18. Anatomical traces of vocabulary acquisition in the adolescent brain.

    Science.gov (United States)

    Lee, HweeLing; Devlin, Joseph T; Shakeshaft, Clare; Stewart, Lauren H; Brennan, Amanda; Glensman, Jen; Pitcher, Katherine; Crinion, Jenny; Mechelli, Andrea; Frackowiak, Richard S J; Green, David W; Price, Cathy J

    2007-01-31

    A surprising discovery in recent years is that the structure of the adult human brain changes when a new cognitive or motor skill is learned. This effect is seen as a change in local gray or white matter density that correlates with behavioral measures. Critically, however, the cognitive and anatomical mechanisms underlying these learning-related structural brain changes remain unknown. Here, we combined brain imaging, detailed behavioral analyses, and white matter tractography in English-speaking monolingual adolescents to show that a critical linguistic prerequisite (namely, knowledge of vocabulary) is proportionately related to relative gray matter density in bilateral posterior supramarginal gyri. The effect was specific to the number of words learned, regardless of verbal fluency or other cognitive abilities. The identified region was found to have direct connections to other inferior parietal areas that separately process either the sounds of words or their meanings, suggesting that the posterior supramarginal gyrus plays a role in linking the basic components of vocabulary knowledge. Together, these analyses highlight the cognitive and anatomical mechanisms that mediate an essential language skill.

  19. Clinical repercussions of Martin-Gruber anastomosis: anatomical study

    Directory of Open Access Journals (Sweden)

    Cristina Schmitt Cavalheiro

    2016-04-01

    Full Text Available OBJECTIVE: The main objective of this study was to describe Martin-Gruber anastomosis anatomically and to recognize its clinical repercussions. METHOD: 100 forearms of 50 adult cadavers were dissected in an anatomy laboratory. The dissection was performed by means of a midline incision along the entire forearm and the lower third of the upper arm. Two flaps including skin and subcutaneous tissue were folded back on the radial and ulnar sides, respectively. RESULTS: Nerve communication between the median and ulnar nerves in the forearm (Martin-Gruber anastomosis was found in 27 forearms. The anastomosis was classified into six types: type I: anastomosis between the anterior interosseous nerve and the ulnar nerve (n = 9; type II: anastomosis between the anterior interosseous nerve and the ulnar nerve at two points (double anastomosis (n = 2; type III: anastomosis between the median nerve and the ulnar nerve (n = 4; type IV: anastomosis between branches of the median nerve and ulnar nerve heading toward the flexor digitorum profundus muscle of the fingers; these fascicles form a loop with distal convexity (n = 5; type V: intramuscular anastomosis (n = 5; and type VI: anastomosis between a branch of the median nerve to the flexor digitorum superficialis muscle and the ulnar nerve (n = 2. CONCLUSION: Knowledge of the anatomical variations relating to the innervation of the hand has great importance, especially with regard to physical examination, diagnosis, prognosis and surgical treatment. If these variations are not given due regard, errors and other consequences will be inevitable.

  20. An anatomically comprehensive atlas of the adult human brain transcriptome

    Science.gov (United States)

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  1. Variability of acorn anatomical characteristics in Quercus robur L. genotypes

    Directory of Open Access Journals (Sweden)

    Nikolić Nataša P.

    2010-01-01

    Full Text Available The aim of this study was to examine variability of acorn anatomical characteristics in seventeen Quercus robur L. genotypes. Acorns were collected in clonal seed orchard Banov Brod (Srem, Vojvodina, Serbia. Microscopic measurements were done for pericarp (total thickness, thickness of exocarp and mesocarp, seed coat (total thickness, thickness of outer epidermis, parenchyma, and inner epidermis, and embryo axis (diameter, thickness of cortical region, and diameter of stellar zone. Obtained results revealed certain divergence between genotypes. The thickness of pericarp varied from 418 to 559 mm (genotypes 20 and 22, respectively. On average, the participation of exocarp in the total thickness of pericarp was 36.3%, of mesocarp 61.0%, while of endocarp 2.6%. The thickness of seed coat for individual genotypes ranged from 71 mm (genotype 28 to 157 mm (genotype 38. In addition, anatomic parameters of embryo axis varied among studied genotypes. The lowest cortical zone thickness and stellar zone diameter were measured in genotype 40, while the highest values in genotype 33.

  2. The anatomical location and laterality of orbital cavernous haemangiomas.

    Science.gov (United States)

    McNab, Alan A; Selva, Dinesh; Hardy, Thomas G; O'Donnell, Brett

    2014-10-01

    To determine the anatomical location and laterality of orbital cavernous haemangiomas (OCH). Retrospective case series. The records of 104 patients with OCH were analyzed. The anatomical location of each OCH defined by the location of a point at the centre of the lesion, and its laterality. There were 104 patients included in the study. No patient had more than one lesion. Sixteen (15.4%) were located in the anterior third of the orbit, 74 (71.2%) were in the middle third, and 14 (13.5%) in the posterior third. In the middle third, 10 of 74 (13.5%) were extraconal and 64 intraconal (86.5%), with 30 of 64 (46.9%) middle third intraconal lesions lying lateral to the optic nerve. Of 104 lesions, 56 (53.8%) were left sided, showing a trend towards a predilection for the left side (p = 0.065). If data from other published series which included data on laterality is added to our own data and analysed, 270 of 468 (57.7%) OCH occurred in the left orbit (p lateral to the optic nerve. This may reflect an origin of these lesions from the arterial side of the circulation, as there are more small arteries in the intraconal space lateral to the optic nerve than in other locations. A predilection for the left orbit remains unexplained.

  3. Anatomical reconstruction of unstable trochanteric fractures through posterior approach

    Directory of Open Access Journals (Sweden)

    Partha Saha

    2015-01-01

    Full Text Available Objective Unstable intertrochanteric fractures continue to be a challenge for orthopedic surgeons due to the functional limitations it results in the postoperative period. Anatomical reconstruction of the posteromedial fragment becomes difficult through conventional lateral approach, leading to excessive fracture collapse and limping. Materials and Methods: prospective, nonrandomized study was done with 40 patients. They were operated in prone position through posterior approach. Cancellous screws or SS-wires were used to fix the greater or lesser trochanteric fragments and dynamic hip screw (DHS or dynamic condylar screw (DCS for the main two fragments. Bone grafts were used to pack cavities at the posterior trochanteric regions. Results: Fracture healing occurred earlier compared to conventional lateral approach without excessive fracture collapse in majority of cases (average time to achieve union was 13.8 weeks; range: 10–18 weeks. Good functional recovery was noted with 75% 'Good' or 'Excellent' Harris Hip Scores at 24 weeks. Conclusion: Anatomical reconstruction of unstable trochanteric fractures becomes easier through posterior approach with earlier and better functional recovery.

  4. Anatomical Considerations on Surgical Anatomy of the Carotid Bifurcation

    Directory of Open Access Journals (Sweden)

    Adamantios Michalinos

    2016-01-01

    Full Text Available Surgical anatomy of carotid bifurcation is of unique importance for numerous medical specialties. Despite extensive research, many aspects such as precise height of carotid bifurcation, micrometric values of carotid arteries and their branches as their diameter, length, and degree of tortuosity, and variations of proximal external carotid artery branches are undetermined. Furthermore carotid bifurcation is involved in many pathologic processes, atheromatous disease being the commonest. Carotid atheromatous disease is a major predisposing factor for disabling and possibly fatal strokes with geometry of carotid bifurcation playing an important role in its natural history. Consequently detailed knowledge of various anatomic parameters is of paramount importance not only for understanding of the disease but also for design of surgical treatment, especially selection between carotid endarterectomy and carotid stenting. Carotid bifurcation paragangliomas constitute unique tumors with diagnostic accuracy, treatment design, and success of operative intervention dependent on precise knowledge of anatomy. Considering those, it becomes clear that selection and application of proper surgical therapy should consider anatomical details. Further research might ameliorate available treatment options or even lead to innovative ones.

  5. The anatomic study of imageology related to TIPS

    International Nuclear Information System (INIS)

    Liang Huimin; Feng Gansheng; Yang Jianyong; Zhou Ruming; Zheng Chuansheng

    1998-01-01

    Purpose: To further increase the success rate, safety and reliability of TIPS procedures and search for new ways for portosystemic shunts and puncture guidance. Materials and methods: Using various medical imaging and anatomical methods, the detail relationships of hepatic arteries (HA) and bile ducts (BD) to portal veins (PV) were studied and the possibilities of injury to them in different puncture routes were estimated. The anatomic relationships between the hepatic segment of inferior vena cava (HIVC) and PV and the possibility of portal-vena cava shunt were also investigated. Results: The BD and HA were mainly located anterior or anterior-superior to the PV branch or mainstams of right PV and left PV, but the corner-and sagittal parts of left PV and bifurcation of right PV were often surrounded by them. HA, especially the right HA, going parallel to the mainstam of right PV in a regular ways, could be used for PV puncture guidance. HIVC came close to the PV in the region of hepatic porta, puncture from inferior vena cava (IVC) to PV possessing a wide range of safety, could be used as a new route for portal-cava shunt in order to avoid the hepatic vein. Conclusion: Familiarization with liver anatomy and reliable guidance during TIPS procedure was crucial to avoid serious complications of damage to BD and HA. Creating shunt with stent-grafts from the HIVC to PV directly is a promising way to prevent restenosis

  6. Anatomical study of the proximal origin of hamstring muscles.

    Science.gov (United States)

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  7. Morphological-anatomical characterization and identification of Tomentella ectomycorrhizas.

    Science.gov (United States)

    Jakucs, Erzsébet; Eros-Honti, Zsolt

    2008-09-01

    Over the last two decades, much information has been gathered on the ectomycorrhizal fungus community composition of plant associations of boreal, temperate, and tropical regions. Worldwide, Tomentella ectomycorrhizas (ECM) are often common and dominant in the mycorrhizosphere of coniferous and deciduous forests. They are present under different environmental conditions and associate with diverse plant hosts. Tomentella sporocarps, however, are rarely found aboveground, so Tomentella species are often missing from fungus community studies based on fruit-body presence. Tomentella is a resupinate genus of Thelephoraceae (Basidiomycota) forming black-brown, brown, yellow, or ochre ECM on the roots of gymnosperm and angiosperm trees, distinguished by typical morphological-anatomical characteristics (clamped hyphae, angular mantle, surface network, special rhizomorphs and cystidia). In this paper, we review the taxonomic position and morphological-anatomical characteristics of Tomentella ECM. A short summary of the microscopic features used for distinguishing tomentelloids during morphotyping and identification is presented in order to support molecular and ecological studies of ectomycorrhizal fungus communities.

  8. Functional and anatomical remodeling in human retinal detachment.

    Science.gov (United States)

    de Souza, Clairton F; Kalloniatis, Michael; Polkinghorne, Philip J; McGhee, Charles N J; Acosta, Monica L

    2012-04-01

    Rhegmatogenous retinal detachment is by far the most common indication for retinal surgery and a major cause of severe vision loss. Increased levels of glutamate found in the vitreous of human patients and persistent remodeling, even after reattachment, suggest substantial neurochemical, functional and anatomical changes have occurred in the detached retina. Therefore, this study was designed to characterize the morphological changes and glutamate receptor functionality in human rhegmatogenous retinal detachment. A cation channel permeating probe, agmatine (1-amino-4-guanidobutane; AGB), was employed to track endogenous and kainate (KA) driven channel functionality combined with immunocytochemical characterization of cellular remodeling. In the detached retina increased AGB permeability was identified in the outer retina while there was a decrease in the inner retina in basal conditions. KA receptors exhibited increased AGB permeability in ON bipolar cells and decreased permeability in calbindin labeled inner retinal cells. All retinal detachment samples demonstrated ectopic synaptic protein expression, photoreceptor processes extending toward the inner retina, and other remodeling features of retinal degeneration. These anatomical changes have been demonstrated in animal studies and are novel features unreported in primary cases of human retinal detachment. We conclude that deafferentation in retinal detachment leads to alteration of the glutamatergic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. The anterior talofibular and calcaneofibular ligaments: an anatomic study.

    Science.gov (United States)

    Yıldız, Selda; Yalcın, Bulent

    2013-08-01

    Inversion injuries of the ankle are the most common sport injuries. Extreme inversion of the ankle affects frequently lateral ankle ligaments, especially the anterior talofibular and calcaneofibular ligaments. The aim of this study is to investigate the ligaments in detail to contribute to accurate evaluation of radiological investigations and more precise surgical interventions by clarifying the anatomic structure of the ligaments by considering their functional importance. In the study, length between the attachment points and width at the midpoint of the anterior talofibular and calcaneofibular ligaments, length and width of the bands of anterior talofibular ligament, and connecting ligaments extending from the talus to calcaneus exchanging from the both ligaments were measured on the 46 ankles. In addition, angles between these ligaments and between longitudinal axis of the fibula and both ligaments were measured. Relationship between determined variables on the right and left sides was statistically analyzed. In diagnosis and treatment methods, the clinical importance of the anatomy of the lateral collateral ligaments of the ankle, especially the anterior talofibular and calcaneofibular ligaments, was frequently reported in the literature. Angular measurements benefit in determination of the ligament injury. Therefore, knowledge about normal anatomic angles between each other and angles between longitudinal axis of the fibula and both ligaments was certainly important for the correct diagnosis. Nowadays, surgical reconstructions of the ligaments are frequently used. During the surgical invention, length and width of the ligaments are necessary to determine quantity of ligament loss. Nonetheless, knowledge of ligament attachments contributes to more accurate reconstructions.

  11. Anatomic structural study of cerebellopontine angle via endoscope.

    Science.gov (United States)

    Xia, Yin; Li, Xi-ping; Han, De-min; Zheng, Jun; Long, Hai-shan; Shi, Jin-feng

    2007-10-20

    Minimally invasive surgery in skull base relying on searching for possible anatomic basis for endoscopic technology is controversial. The objective of this study was to observe the spatial relationships between main blood vessels and nerves in the cerebellopontine angle area and provide anatomic basis for lateral and posterior skull base minimally invasive surgery via endoscopic retrosigmoid keyhole approach. This study was conducted on thirty dried adult skulls to measure the spatial relationships among the surface bony marks of posterior cranial fossa, and to locate the most appropriate drilling area for retrosigmoid keyhole approach. In addition, we used 10 formaldehyde-fixed adult cadaver specimens for simulating endoscopic retrosigmoid approach to determine the visible scope. The midpoint between the mastoid tip and the asterion was the best drilling point for retrosigmoid approach. A hole centered on this point with the 2.0 cm in diameter was suitable for exposing the related structures in the cerebellopontine angle. Retrosigmoid keyhole approach can decrease the pressure on the cerebellum and expose the related structures effectively which include facial nerve, vestibulocochlear nerve, trigeminal nerve, glossopharyngeal nerve, vagus nerve, accessory nerve, hypoglossal nerve, anterior inferior cerebellar artery, posterior inferior cerebellar artery and labyrinthine artery, etc. Exact location on endoscope retrosigmoid approach can avoid dragging cerebellum during the minimally invasive surgery. The application of retrosigmoid keyhole approach will extend the application of endoscopic technology.

  12. CHRONIC LOWER BACKACHE: IS THIS THE ANATOMICAL ANSWER

    Directory of Open Access Journals (Sweden)

    Shivanand

    2016-03-01

    Full Text Available INTRODUCTION Sacrum is a flat bone which is triangular in shape and is actually formed by the fusion of five sacral vertebras. It connects the two hip bones posteriorly and superiorly it articulates with the fifth lumbar vertebra and distally with the coccyx. Majority of the times the coccyx will be fused with the sacrum. The spines of the vertebra fuse posteriorly but there is a hiatus at the lower end of medial crest because of the failure of fusion of the lamina of the fifth sacral vertebra. Back pain is the most common complaint in the modern life. In some incidences sacralisation of lumbar vertebra seems to be the most common cause for backache. The main aim of the study is to find:  To find out the anatomical variations in the level at which the hiatus opens.  To find out if sacralisation occurs and if present, to make an attempt to find the frequency of the condition.  To find out if sacralisation is associated with other anatomical defects. The study was done in Mysore Medical College from January 2012 to May 2012. Five hundred sacral bones were studied. The sacralisation was observed in Six vertebras. i.e. they were observed in 1.2% of the cases. In one bone there non-fusion of first sacral lamina was observed. The knowledge of the hiatal opening is very important to the people who are practicing Medicine, Orthopedics and Gynecology

  13. Assessment of anatomical knowledge: Approaches taken by higher education institutions.

    Science.gov (United States)

    Choudhury, Bipasha; Freemont, Anthony

    2017-04-01

    Assessment serves the primary function of determining a student's competence in a subject. Several different assessment formats are available for assessing anatomical skills, knowledge and understanding and, as assessment can drive learning, a careful selection of assessments can help to engender the correct deep learning facility required of the safe clinical practitioner. The aim of this review was to survey the published literature to see whether higher education institutions are taking an andragogical approach to assessment. Five databases (EMBASE, ERIC, Medline, PubMed, and Web of Knowledge) were searched using standardized search terms with two limits applied (English language, and 2000 to the present). Among the 2,094 papers found, 32 were deemed suitable for this review. Current literature on assessment can be categorized into the following themes: assessment driven learning, types of assessments, frequency of assessments, and use of images in assessments. The consensus is to use a variety of methods, written and practical, to assess anatomical knowledge and skill in different domains. Institutions aim for different levels of Bloom's taxonomy for students at similar stages of their medical degree. Formative assessments are used widely, in differing formats, with mostly good effects on the final examination grade. In conclusion, a wide variety of assessments, each aimed at a different level of Bloom's taxonomy, are used by different institutions. Clin. Anat. 30:290-299, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Anatomical, Clinical and Electrical Observations in Piriformis Syndrome

    Directory of Open Access Journals (Sweden)

    Assoum Hani A

    2010-01-01

    Full Text Available Abstract Background We provided clinical and electrical descriptions of the piriformis syndrome, contributing to better understanding of the pathogenesis and further diagnostic criteria. Methods Between 3550 patients complaining of sciatica, we concluded 26 cases of piriformis syndrome, 15 females, 11 males, mean age 35.37 year-old. We operated 9 patients, 2 to 19 years after the onset of symptoms, 5 had piriformis steroids injection. A dorsolumbar MRI were performed in all cases and a pelvic MRI in 7 patients. The electro-diagnostic test was performed in 13 cases, between them the H reflex of the peroneal nerve was tested 7 times. Results After a followup 1 to 11 years, for the 17 non operated patients, 3 patients responded to conservative treatment. 6 of the operated had an excellent result, 2 residual minor pain and one failed. 3 new anatomical observations were described with atypical compression of the sciatic nerve by the piriformis muscle. Conclusion While the H reflex test of the tibial nerve did not give common satisfaction in the literature for diagnosis, the H reflex of the peroneal nerve should be given more importance, because it demonstrated in our study more specific sign, with six clinical criteria it contributed to improve the method of diagnosis. The cause of this particular syndrome does not only depend on the relation sciatic nerve-piriformis muscle, but the environmental conditions should be considered with the series of the anatomical anomalies to explain the real cause of this pain.

  15. Anatomy of learning: instructional design principles for the anatomical sciences.

    Science.gov (United States)

    Terrell, Mark

    2006-11-01

    Teaching anatomy is becoming increasingly challenging due to the progressive evolution of university teaching missions, student populations, medical and undergraduate curricula, coupled with a paucity of empirically tested evidence-based instructional practices in the anatomical and medical education literature. As a mechanism to confront these pedagogical challenges, recent advances in educational psychology are analyzed for developing a framework to guide educational reform efforts. Extensive research in educational psychology over the last 100 years has resulted in four major theories on human learning that have facilitated a paradigm shift from teacher-centered to learner-centered classrooms and are described here in temporal order of development: behavioral theory, information processing theory, metacognitive theory, and social constructivist theory. Each theory is analyzed in detail and is used to construct instructional design principles for enhancing anatomical education research and practice. An example of a cognitively based learning environment for an undergraduate anatomy course is presented. Preliminary results suggest that intentionally drawing on different theories of learning when making instructional decisions gave students the learning support they needed to be successful and nearly doubled the course's student retention rate over a 3-year period.

  16. [Osteochondrodysplasias. Prenatal diagnosis and pathological-anatomic findings].

    Science.gov (United States)

    Tennstedt, C; Bartho, S; Bollmann, R; Schwenke, A; Nitz, I; Rothe, K

    1993-03-01

    Prenatal sonographic investigations were applied for malformations to 7,194 foetuses, between October 1985 and April 1992, with 28 cases of osteochondrodysplasia (OCD) and one case of dysostosis being dissected. Included were 20 cases of lethal osteochondrodysplasia, among them two cases of lethal hypophosphatasia, five cases of thanatophoric dysplasia, one case each of Type II shortrib (polydactyly) syndrome (VERMA-NAUMOFF) and metatropic dysplasia, three cases of campomelic dysplasia and eight cases of Type II A imperfect osteogenesis. Also observed were eight cases of nonlethal OCD, among them three cases of diastrophic dysplasia and five of achondroplasia. Dysostosis was recorded from one case and was diagnosed as Type V acrocephalosyndactyly (Pfeiffer). Identification of a specific OCD proved to be difficult in the second or third trimenon. Hence, the form of OCD was prenatally diagnosed only in ten of all cases investigated. Tentative diagnosis was first established from the postmortem radiograph. Additional malformations and other abnormalities then were detected by complementary pathologico-anatomic processing of findings. The final diagnosis was derived from radiological, pathologico-anatomic and histological findings. Diagnosis of this constitutional osteopathy is quite difficult and calls for interdisciplinary cooperation between gynaecologists, neonatologists, paediatric surgeons, radiologists, geneticists and pathologists. More effective counselling of affected families is the major purpose of all the efforts involved.

  17. Gross anatomical and dimensional characteristics of the proximal hamstring origin.

    Science.gov (United States)

    Feucht, Matthias J; Plath, Johannes E; Seppel, Gernot; Hinterwimmer, Stefan; Imhoff, Andreas B; Brucker, Peter U

    2015-09-01

    The current study was undertaken to better define the gross anatomical and dimensional characteristics of the proximal hamstring origin. Twelve paired whole-lower extremities from six embalmed cadavers were dissected. The gross anatomy of the proximal hamstrings was studied. With the tendons attached to the ischial tuberosity, the width and thickness of each tendon was measured 1 cm distally to their origin, and the distance from the most proximal border of the common origin of the semitendinosus (ST) and long head of the biceps (LB) to their distal junction was assessed. After removal of the hamstring group, the shape, orientation, and dimension of the tendon footprints were determined. One cadaver demonstrated unique anatomy, which was considered as an anatomic variant and was therefore excluded from the study group. The ST and LB had a common origin on the posterolateral aspect of the ischial tuberosity (ST/LB), whereas the semimembranosus (SM) had a separated origin at the anterolateral aspect. The mean distance from the most proximal border of the ST/LB origin to the distal junction was 10.0 ± 1.3 cm. The shape of both footprints was longitudinal-oval, with the longitudinal axes of the SM and ST/LB footprints parallel aligned. Mean tendon width was 3.4 ± 0.5 cm for the common ST/LB complex and 4.2 ± 0.9 cm for the SM (p = 0.009). The corresponding values for tendon thickness were 1.0 ± 0.3 cm (ST/LB) and 0.8 ± 0.2 cm (SM), respectively (n.s.). Mean footprint length was 3.9 ± 0.4 cm for ST/LB and 4.5 ± 0.5 cm for SM (p = 0.002). The corresponding values for footprint height were 1.4 ± 0.5 cm (ST/LB) and 1.2 ± 0.3 cm (SM), respectively (n.s.). The ST and LB had a common origin, whereas the SM originated separately. The site of origin of both tendons was the lateral aspect of the ischial tuberosity, with the SM footprint lying directly anterior to the footprint of the ST/LB complex. The footprint of the SM was significantly wider than the footprint of

  18. Anatomical and Visual Outcomes of Three Different Scleral Buckling Techniques

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2009-04-01

    Full Text Available

    PURPOSE: To compare the anatomical and visual outcomes of three different scleral buckling techniques and to explore the effect of cryotherapy and subretinal fluid drainage (SRFD on outcomes of surgery. METHODS: This retrospective study was performed on 111 eyes of 109 patients undergoing scleral buckling for rhegmatogenous retinal detachments (RRDs by a single surgeon. Pre-, intra- and postoperative data were retrieved from hospital records. RESULTS: Buckles were radial in 27 (24.3%, circumferential (segmental in 16 (14.4% and encircling in 68 (61.3% eyes. Anatomical and visual results were comparable with all three buckling techniques. Application of cryotherapy, the spot number, and SRFD did not affect anatomical and visual results. The only preoperative factor associated with poorer anatomical results was the presence of multiple retinal breaks (P=0.006. The following preoperative factors affected visual outcomes on univariate analysis: extent of retinal detachment (r=0.417, P=0.011 and relative afferent pupillary defect (r=0.423, P=0.02. Preoperative macular status (attached vs detached also had a significant effect on visual outcomes (P < 0.001. Based on multivariate analysis however, only preoperative macular status was significantly correlated with visual results (P=0.022. Silicone sponges placed for non

  19. Validation of computational fluid dynamics methods with anatomically exact, 3D printed MRI phantoms and 4D pcMRI.

    Science.gov (United States)

    Anderson, Jeff R; Diaz, Orlando; Klucznik, Richard; Zhang, Y Jonathan; Britz, Gavin W; Grossman, Robert G; Lv, Nan; Huang, Qinghai; Karmonik, Christof

    2014-01-01

    A new concept of rapid 3D prototyping was implemented using cost-effective 3D printing for creating anatomically correct replica of cerebral aneurysms. With a dedicated flow loop set-up in a full body human MRI scanner, flow measurements were performed using 4D phase contrast magnetic resonance imaging to visualize and quantify intra-aneurysmal flow patterns. Ultrashort TE sequences were employed to obtain high-resolution 3D image data to visualize the lumen inside the plastic replica. In-vitro results were compared with retrospectively obtained in-vivo data and results from computational fluid dynamics simulations (CFD). Rapid prototyping of anatomically realistic 3D models may have future impact in treatment planning, design of image acquisition methods for MRI and angiographic systems and for the design and testing of advanced image post-processing technologies.

  20. Surface-Based Regional Homogeneity in First-Episode, Drug-Naïve Major Depression: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Hui-Jie Li

    2014-01-01

    Full Text Available Background. Previous volume-based regional homogeneity (ReHo studies neglected the intersubject variability in cortical folding patterns. Recently, surface-based ReHo was developed to reduce the intersubject variability and to increase statistical power. The present study used this novel surface-based ReHo approach to explore the brain functional activity differences between first-episode, drug-naïve MDD patients and healthy controls. Methods. Thirty-three first-episode, drug-naïve MDD patients and 32 healthy controls participated in structural and resting-state fMRI scans. MDD patients were rated with a 17-item Hamilton Rating Scale for Depression prior to the scan. Results. In comparison with the healthy controls, MDD patients showed reduced surface-based ReHo in the left insula. There was no increase in surface-based ReHo in MDD patients. The surface-based ReHo value in the left insula was not significantly correlated with the clinical information or the depressive scores in the MDD group. Conclusions. The decreased surface-based ReHo in the left insula in MDD may lead to the abnormal top-down cortical-limbic regulation of emotional and cognitive information. The surface-based ReHo may be a useful index to explore the pathophysiological mechanism of MDD.