WorldWideScience

Sample records for surface-atmosphere exchange fluxes

  1. Using model analyses and surface-atmosphere exchange measurements from the Howland AmeriFlux Site in Maine, USA, to improve understanding of forest ecosystem C cycling

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.; Dail, D. B.; Scott, N.

    2013-03-25

    Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.

  2. Surface - atmosphere exchange of ammonia over grazed pasture

    NARCIS (Netherlands)

    Plantaz, M.A.H.G.

    1998-01-01

    This thesis deals with the exchange of ammonia between the atmosphere and grazed pasture in an area of intensive livestock breeding. The term exchange is used because gaseous ammonia can be taken up (dry deposition) as well as released (emission) by this type of surface.
    Ammonia exchange

  3. Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models

    Directory of Open Access Journals (Sweden)

    G. Grossi

    2003-01-01

    Full Text Available Within the framework of a research project coupling meteorological and hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere Transfer model was developed and applied to simulate the energy fluxes at the land surface – atmosphere interface in an Alpine valley (Toce Valley - North Italy during selected flood events in the last decade. Energy fluxes simulated by the distributed energy transfer model were compared with those simulated by a limited area meteorological model for the event of June 1997 and the differences in the spatial and temporal distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to simulate the energy fluxes at the land surface-atmosphere interface for a single cell, assumed to be representative of the Siberia site (Toce Valley, where a micro-meteorological station was installed and operated for 2.5 months in autumn 1999. The Siberia site is very close to the Nosere site, where a standard meteorological station was measuring precipitation, air temperature and humidity, global and net radiation and wind speed during the same special observing period. Data recorded by the standard meteorological station were used to force the energy transfer model and simulate the point energy fluxes at the Siberia site, while turbulent fluxes observed at the Siberia site were used to derive the latent heat flux from the energy balance equation. Finally, the hourly evapotranspiration flux computed by this procedure was compared to the evapotranspiration flux simulated by the energy transfer model. Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent fluxes

  4. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    Science.gov (United States)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  5. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Science.gov (United States)

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  6. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  7. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.

    Science.gov (United States)

    Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.

    1997-01-01

    A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net

  8. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  9. Long-term Impacts of Hurricane Wilma on Land Surface-Atmosphere Exchanges

    Science.gov (United States)

    Fuentes, J. D.; Dowell, K. K.; Engel, V. C.; Smith, T. J.

    2008-05-01

    In October 2005, Hurricane Wilma made landfall along the mangrove forests of western Everglades National Park, Florida, USA. Damage from the storm varied with distance from landfall and included widespread mortality and extensive defoliation. Large sediment deposition events were recorded in the interior marshes, with erosion taking place along the coastal margins. Wilma made landfall near a 30 m flux tower where eddy-covariance measurements of ecosystem-level carbon and energy fluxes started in 2003. Repairs to the structure were completed in 2006, enabling comparisons of surface fluxes before and after the storm. One year after the hurricane, both the average and daily integrated CO2 fluxes are consistently lower than the pre-storm values. The storm's impact on standing live biomass and the slow recovery of leaf area appear to have resulted in decreased photosynthetic uptake capacity. Nighttime respiratory CO2 fluxes above the canopy are unchanged from pre-storm values. During some periods, daily integrated fluxes show the forest as a net source of CO2 to the atmosphere. Soil CO2 fluxes are not measured directly, but daytime soil temperatures and vertical heat fluxes have shown consistently higher values after the storm. Nighttime soil temperatures values have been slightly lower. These stronger diurnal soil temperature fluctuations indicate enhanced radiative fluxes at the soil surface, possibly as a result of the reduced leaf area. The increases in daytime soil temperatures are presumably leading to higher below-ground respiration rates and, along with the reduced photosynthetic capacity, contributing to the lower net CO2 assimilation rates. This hypothesis is supported by nearby measurements of declining surface elevations of the organic soils which have been correlated with mangrove mortality in impacted areas. Both sensible and latent heat fluxes above the canopy are found to be reduced following the hurricane, and soil heat storage is higher. Together

  10. Progress in understanding of land surface/atmosphere exchanges at high latitudes

    DEFF Research Database (Denmark)

    Harding, R.J.; Gryning, Sven-Erik; Halldin, S.

    2001-01-01

    This paper summarises some of the key results from two European field programmes, WINTEX and LAPP, undertaken in the Boreal/Arctic regions in 1996-98. Both programmes have illustrated the very important role that snow plays within these areas, not only in the determination of energy, water...... and carbon fluxes in the winter, but also in controlling the length of the summer active season, and hence the overall carbon budget. These studies make a considerable advance in our knowledge of the fluxes from snow-covered landscape and the interactions between snow and vegetation. Also some of the first...... desert in the high arctic. The overall annual budgets are everywhere limited by the very short active season in these regions. The heat flux over a high latitude boreal forest during late winter was found to be high. At low solar angles the forest shades most of the snow surface, therefore an important...

  11. Measurements and modeling of surface-atmosphere exchange of microorganisms in Mediterranean grassland

    Science.gov (United States)

    Carotenuto, Federico; Georgiadis, Teodoro; Gioli, Beniamino; Leyronas, Christel; Morris, Cindy E.; Nardino, Marianna; Wohlfahrt, Georg; Miglietta, Franco

    2017-12-01

    Microbial aerosols (mainly composed of bacterial and fungal cells) may constitute up to 74 % of the total aerosol volume. These biological aerosols are not only relevant to the dispersion of pathogens, but they also have geochemical implications. Some bacteria and fungi may, in fact, serve as cloud condensation or ice nuclei, potentially affecting cloud formation and precipitation and are active at higher temperatures compared to their inorganic counterparts. Simulations of the impact of microbial aerosols on climate are still hindered by the lack of information regarding their emissions from ground sources. This present work tackles this knowledge gap by (i) applying a rigorous micrometeorological approach to the estimation of microbial net fluxes above a Mediterranean grassland and (ii) developing a deterministic model (the PLAnET model) to estimate these emissions on the basis of a few meteorological parameters that are easy to obtain. The grassland is characterized by an abundance of positive net microbial fluxes and the model proves to be a promising tool capable of capturing the day-to-day variability in microbial fluxes with a relatively small bias and sufficient accuracy. PLAnET is still in its infancy and will benefit from future campaigns extending the available training dataset as well as the inclusion of ever more complex and critical phenomena triggering the emission of microbial aerosol (such as rainfall). The model itself is also adaptable as an emission module for dispersion and chemical transport models, allowing further exploration of the impact of land-cover-driven microbial aerosols on the atmosphere and climate.

  12. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  13. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    DEFF Research Database (Denmark)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik

    2016-01-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentratio...

  14. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2011-01-01

    Full Text Available The Border Air Quality and Meteorology study (BAQS-Met was an intensive field campaign conducted in Southwestern Ontario during the summer of 2007. The focus of BAQS-Met was determining the causes of the formation of ozone and fine particulate matter (PM2.5, and of the regional significance of trans-boundary transport and lake breeze circulations on that formation. Fast (1 Hz measurements of ammonia were acquired using a Quantum Cascade Laser Tunable Infrared Differential Absorption Spectrometer (QC-TILDAS at the Harrow supersite. Measurements of PM2.5 ammonium, sulfate and nitrate were made using an Ambient Ion Monitor Ion Chromatograph (AIM-IC with hourly time resolution. The median mixing ratio of ammonia was 2.5 ppb, with occasional high spikes at night resulting from local emissions. Measurements were used to assess major local emissions of NH3, diurnal profiles and gas-particle partitioning. The measurements were compared with results from A Unified Regional Air-quality Modelling System (AURAMS. While the fraction of total ammonia (NHx≡NH3 + NH4+ observed in the gas phase peaks between 0.1 and 0.8, AURAMS tended to predict fractions of either less than 0.05 or greater than 0.8. The model frequently predicted acidic aerosol, in contrast with observations wherein NHx almost always exceeded the observed equivalents of sulfate. One explanation for our observations is that the net flux of ammonia from the land surface to the atmosphere increases when aerosol sulfate is present, effectively buffering the mixing ratio of gas phase ammonia, a process not included in the model. A simple representation of an offline bi-directional flux parameterization using the ISORROPIA thermodynamic model was successful at reducing the population of zero gas fraction points, but not the higher gas fraction points.

  15. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  16. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    Science.gov (United States)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of

  17. Long-range atmospheric transport of persistent organic pollutants, I: description of surface-atmosphere exchange modules and implementation in EUROS.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Pul, van W.A.J.

    1996-01-01

    Concerns a description of a model for the exchange of gaseous Persistent Organic Pollutants (POP) at land and sea surfaces and its application in the Eulerian air pollution transport model EUROS. Sample simulations of the net deposition of lindane over Europe are discussed. For non-emission areas

  18. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal...... variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences...

  19. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  20. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  1. NACP North American 8-km Net Ecosystem Exchange and Component Fluxes, 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides modeled carbon flux estimates at 8-km spatial resolution over North America for the year 2004 of (1) net ecosystem exchange (NEE) of...

  2. NACP North American 8-km Net Ecosystem Exchange and Component Fluxes, 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides modeled carbon flux estimates at 8-km spatial resolution over North America for the year 2004 of (1) net ecosystem exchange (NEE) of carbon...

  3. Energy exchanges in a Central Business District - Interpretation of Eddy Covariance and radiation flux measurements (London UK)

    Science.gov (United States)

    Kotthaus, S.; Grimmond, S.

    2013-12-01

    Global urbanisation brings increasingly dense and complex urban structures. To manage cities sustainably and smartly, currently and into the future under changing climates, urban climate research needs to advance in areas such as Central Business Districts (CBD) where human interactions with the environment are particularly concentrated. Measurement and modelling approaches may be pushed to their limits in dense urban settings, but if urban climate research is to contribute to the challenges of real cities those limits have to be addressed. The climate of cities is strongly governed by surface-atmosphere exchanges of energy, moisture and momentum. Observations of the relevant fluxes provide important information for improvement and evaluation of modelling approaches. Due to the CBD's heterogeneity, a very careful analysis of observations is required to understand the relevant processes. Current approaches used to interpret observations and set them in a wider context may need to be adapted for use in these more complex areas. Here, we present long-term observations of the radiation balance components and turbulent fluxes of latent heat, sensible heat and momentum in the city centre of London. This is one of the first measurement studies in a CBD covering multiple years with analysis at temporal scales from days to seasons. Data gathered at two sites in close vicinity, but with different measurement heights, are analysed to investigate the influence of source area characteristics on long-term radiation and turbulent fluxes. Challenges of source area modelling and the critical aspect of siting in such a complex environment are considered. Outgoing long- and short-wave radiation are impacted by the anisotropic nature of the urban surface and the high reflectance materials increasingly being used as building materials. Results highlight the need to consider the source area of radiometers in terms of diffuse and direct irradiance. Sensible heat fluxes (QH) are positive

  4. Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2004-01-01

    Full Text Available A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd, canopy resistances (Rc and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3 fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+] of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.

  5. Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl

    Science.gov (United States)

    Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.

    2004-07-01

    A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.

  6. Heat flux exchange estimation by using ATSR SST data in TOGA area

    Science.gov (United States)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  7. Fluxes and exchange rates of radon and oxygen across an air-sea interface

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; La Torre, M. de

    1986-01-01

    The flux of 222 Rn and O 2 from shallow water off the Bay of Malaga has been measured. The mean value of flux of 222 Rn is evaluated to be 74 atoms/m 2 · s. The Bay is a weak source of oxygen to the atmosphere, where the net production of oxygen is found to be 1.82 mol/m 2 · y. Moreover, the gas exchange rates of 222 Rn and O 2 across the air-sea interface has been determined by the radon method. The gas exchange rates and the wind speed have been estimated. (author)

  8. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  9. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2016-12-01

    Full Text Available The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  10. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  11. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements

    Science.gov (United States)

    Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario

    2017-04-01

    Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.

  13. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    Science.gov (United States)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  14. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  15. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Science.gov (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  16. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Cropley, Ford

    2015-01-01

    variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature......-arid savanna sites; half-hourly GPP and Reco peaked at -43μmol CO2m-2s-1 and 20μmol CO2m-2s-1, and daily GPP and Reco peaked at -15gCm-2 and 12gCm-2, respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure...

  17. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    International Nuclear Information System (INIS)

    Marandet, Y.; Tsitrone, E.; Boerner, P.; Reiter, D.; Beaute, A.; Delchambre, E.; Escarguel, A.; Brezinsek, S.; Genesio, P.; Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B.

    2009-01-01

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  18. Effects of urban density on carbon dioxide exchanges: observations of dense urban, suburban and woodland areas of southern England

    OpenAIRE

    Ward, H.C.; Kotthaus, S.; Grimmond, C.S.B.; Bjorkegren, A.; Wilkinson, M.; Morrison, W.T.J.; Evans, J.G.; Morison, J.I.L.; Iamarino, M.

    2015-01-01

    Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes ...

  19. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  20. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    Science.gov (United States)

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  1. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  2. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  3. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    Science.gov (United States)

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  4. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  5. Activation of sea urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux

    NARCIS (Netherlands)

    Dorsten, van F.A.; Wyss, M.; Wallimann, T.; Nicolaij, K.

    1997-01-01

    The kinetics of the creatine kinase (CK) reaction were studied in suspensions of quiescent and active, intact sea-urchin spermatozoa in artificial seawater, using 31P-NMR magnetization transfer. In inactive sperm, no CK-mediated exchange flux was detected, whereas in activated motile sperm, the

  6. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    Science.gov (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  7. Net ecosystem carbon dioxide exchange in tropical rainforests - sensitivity to environmental drivers and flux measurement methodology

    Science.gov (United States)

    Fu, Z.; Stoy, P. C.

    2017-12-01

    VPD, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests.

  8. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  9. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  10. Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2012-10-01

    Full Text Available Peroxynitrates are responsible for global scale transport of reactive nitrogen. Recent laboratory observations suggest that they may also play an important role in delivery of nutrients to plant canopies. We measured eddy covariance fluxes of total peroxynitrates (ΣPNs and three individual peroxynitrates (APNs ≡ PAN + PPN + MPAN over a ponderosa pine forest during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009 (BEARPEX 2009. Concentrations of these species were also measured at multiple heights above and within the canopy. While the above-canopy daytime concentrations are nearly identical for ΣPNs and APNs, we observed the downward flux of ΣPNs to be 30–60% slower than the flux of APNs. The vertical concentration gradients of ΣPNs and APNs vary with time of day and exhibit different temperature dependencies. These differences can be explained by the production of peroxynitrates other than PAN, PPN, and MPAN within the canopy (presumably as a consequence of biogenic VOC emissions and upward fluxes of these PN species. The impact of this implied peroxynitrate flux on the interpretation of NOx fluxes and ecosystem N exchange is discussed.

  11. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  12. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  13. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    Science.gov (United States)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region

  14. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  15. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  16. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain)

    Science.gov (United States)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.

    2015-04-01

    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  17. Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition

    International Nuclear Information System (INIS)

    Satapathy, Ashok K.

    2009-01-01

    In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.

  18. Environmental controls of daytime leaf carbon exchange: Implications for estimates of ecosystem fluxes in a deciduous forest

    Science.gov (United States)

    Heskel, M.; Tang, J.

    2017-12-01

    Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.

  19. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  20. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui

    2005-01-01

    [1]Aubinet, M., Heinesch, B., Longdoz, B., Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections,heterogeneity of the site and inter-annual variability, Global Change Biology, 2002, 8:1053-1071.[2]Charlotte, L.R., Nigel, T.R., Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog, Global Biogeochemical Cycles, 2003, 171029, doi: 10.1029/20029B001889.[3]Baldocchi, D.D., Hicks, B.B., Meyers, T. P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 1988, 69:1331-1340.[4]Baldocchi, D.D., Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique, Global change biology, 2003, 9: 478-492.[5]Canadell, J. G., Mooney, H. A., Baldocchi, D. D. et al., Carbon metabolism of the terrestrial biosphere: A multi technique approach for improved understanding, Ecosystems, 2000, 3:115-130.[6]Schmid, H. P., Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agricultural and Forest Meteorology, 2002, 113: 159-183.[7]Wofsy, S. C., Goulden, M. L., Munger, J. W. et al., Net exchange on CO2 in a mid-latitude forest, Science, 1993, 260: 1314-1317.[8]Massman, W. J., Lee, X. H., Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges,Agricultural and Forest Meteorology, 2002, 113: 121-144.[9]Baldocchi, D. D., Finnigan, J., Wilson, K. et al., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain, Boundary-Layer Meteorology, 2000, 96: 257-291.[10]Anthoni, P. M., Unsworth, M. H., Law, B. E. et al., Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems, Agricultural and Forest Meteorology, 2002, 111: 203-222.[11]Paw U, K. T., Baldocchi, D. D., Meyers, T. P. et al., Correction of eddy-covariance measurements incorporating both advective

  1. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin)

    Science.gov (United States)

    Bouillon, S.; Yambélé, A.; Spencer, R. G. M.; Gillikin, D. P.; Hernes, P. J.; Six, J.; Merckx, R.; Borges, A. V.

    2012-06-01

    The Oubangui is a major tributary of the Congo River, draining an area of ~500 000 km2 mainly consisting of wooded savannahs. Here, we report results of a one year long, 2-weekly sampling campaign in Bangui (Central African Republic) since March 2010 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM), bulk concentration and stable isotope composition of particulate organic carbon (POC and δ13CPOC), particulate nitrogen (PN and δ15NPN), dissolved organic carbon (DOC and δ13CDOC), dissolved inorganic carbon (DIC and δ13CDIC), dissolved greenhouse gases (CO2, CH4 and N2O), and dissolved lignin composition. δ13C signatures of both POC and DOC showed strong seasonal variations (-30.6 to -25.8‰, and -31.8 to -27.1‰, respectively), but their different timing indicates that the origins of POC and DOC may vary strongly over the hydrograph and are largely uncoupled, differing up to 6‰ in δ13C signatures. Dissolved lignin characteristics (carbon-normalised yields, cinnamyl:vanillyl phenol ratios, and vanillic acid to vanillin ratios) showed marked differences between high and low discharge conditions, consistent with major seasonal variations in the sources of dissolved organic matter. We observed a strong seasonality in pCO2, ranging between 470 ± 203 ppm for Q production may be high enough to dominate the particulate organic carbon pool, and lower pCO2 values to near equilibrium values during low discharge conditions. The total annual flux of TSM, POC, PN, DOC and DIC are 2.33 Tg yr-1, 0.14 Tg C yr-1, 0.014 Tg N yr-1, 0.70 Tg C yr-1, and 0.49 Tg C yr-1, respectively. While our TSM and POC fluxes are similar to previous estimates for the Oubangui, DOC fluxes were ~30% higher and bicarbonate fluxes were ~35% lower than previous reports. DIC represented 58% of the total annual C flux, and under the assumptions that carbonate weathering represents 25% of the DIC flux and that CO2 from respiration drives

  2. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    Science.gov (United States)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of

  3. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing

    NARCIS (Netherlands)

    Langensiepen, M.; Kupisch, M.; Wijk, van M.T.; Ewert, F.

    2012-01-01

    Transient type canopy chambers are still the only currently available practical solution for rapid screening of gas-exchange in agricultural fields. The technique has been criticized for its effect on canopy microclimate during measurement which affects the transport regime and regulation of plant

  4. Impacts of Precipitation Diurnal Timing on Ecosystem Carbon Exchanges in Grasslands: A Synthesis of AmeriFlux Data

    Science.gov (United States)

    Song, X.; Xu, X.; Tweedie, C. E.

    2015-12-01

    Drylands have been found playing an important role regulating the seasonality of global atmospheric carbon dioxide concentrations. Precipitation is a primary control of ecosystem carbon exchanges in drylands where a large proportion of the annual total rainfall arrives through a small number of episodic precipitation events. While a large number of studies use the concept of "precipitation pulses" to explore the effects of short-term precipitation events on dryland ecosystem function, few have specifically evaluated the importance of the diurnal timing of these events. The primary goal of this study was to determine how the diurnal timing of rainfall events impacts land-atmosphere net ecosystem CO2 exchanges (NEE) and ecosystem respiration in drylands. Our research leverages a substantial and existing long-term database (AmeriFlux) that describes NEE, Reco and meteorological conditions at 11 sites situated in different dryland ecosystems in South West America. All sites employ the eddy covariance technique to measure land-atmosphere the CO2 exchange rates between atmosphere and ecosystem. Data collected at these sites range from 4 to 10 years, totaling up to 73 site-years. We found that episodic precipitation events stimulate not only vegetation photosynthesis but also ecosystem respiration. Specifically, the morning precipitation events decrease photosynthesis function at daytime and increase ecosystem respiration at nighttime; the afternoon precipitation events do not stimulate ecosystem photosynthesis at daytime, while stimulate ecosystem respiration; the night precipitations suppress photosynthesis at daytime, and enhance ecosystem respiration at nighttime.

  5. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin

    Directory of Open Access Journals (Sweden)

    S. Bouillon

    2012-06-01

    above and, occasionally, below atmospheric equilibrium. Water-atmosphere CO2 fluxes estimated using two independent approaches averaged 105 and 204 g C m−2 yr−1, i.e. more than an order of magnitude lower than current estimates for large tropical rivers globally. Although tropical rivers are often assumed to show much higher CO2 effluxes compared to temperate systems, we show that in situ production may be high enough to dominate the particulate organic carbon pool, and lower pCO2 values to near equilibrium values during low discharge conditions. The total annual flux of TSM, POC, PN, DOC and DIC are 2.33 Tg yr−1, 0.14 Tg C yr−1, 0.014 Tg N yr−1, 0.70 Tg C yr−1, and 0.49 Tg C yr−1, respectively. While our TSM and POC fluxes are similar to previous estimates for the Oubangui, DOC fluxes were ~30% higher and bicarbonate fluxes were ~35% lower than previous reports. DIC represented 58% of the total annual C flux, and under the assumptions that carbonate weathering represents 25% of the DIC flux and that CO2 from respiration drives chemical weathering, this flux is equivalent to ~50% of terrestrial-derived riverine C transport.

  6. The influence of river water temperature annual variation to the moderator heat exchangers heat flux

    International Nuclear Information System (INIS)

    Nita, I. P.

    2015-01-01

    The Main Moderator heat exchangers are the most important consumers supplied by Recirculated Cooling Water (RCW) System. In order to determine an appropriate operating configuration of the RCW system it is needed to determine the flowrate required by the Main Moderator consumers, in real time. From operating experience, the required RCW flowrate necessary to be supplied to the main moderator heat exchangers is much lower than design flowrate. In installation, there are no flow elements that could measure especially that flow. However, there are two control valves which regulate the flow to the main moderator heaters; they control the outlet temperature of the moderator to 69"oC. That leads to the requirement of calculating the flowrate function of the outside temperature for all possible temperatures during a calendar year. One considered all possible temperatures during an operating year, and more, going beyond design point, up to 36"oC, temperature that can occur during quick transients after forth RCW pump starting. The calculation was made to verify the capacity of heat exchanger to remove the designed 100 MW(t) in the new condition of reducing moderator temperature outlet from 77 to 69°C. The obtained model was validated using field temperatures and flow measurements and the conclusion was the model can accurately predict how the RCW system operates in all year operation conditions. (authors)

  7. Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.

    Directory of Open Access Journals (Sweden)

    Andrew J Cole

    Full Text Available Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1-1 vol.day-1 using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5-1 vol.day-1, where uptake rates peaked at 1.09 g.m-2.day-1 for nitrogen and 0.13 g.m-2.day-1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m-2.day-1 and a phosphorous flux of 0.6 g.m-2.day-1 was the minimum required to maintain the growth of Oedogonium at 16-17 g DW.m-2.day-1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m-2.day-1, Oedogonium requires 0.09 g.m-2.day-1 of nitrogen and 0.04 g.m-2.day-1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the bioremediation of wastewater and the

  8. Removing Constraints on the Biomass Production of Freshwater Macroalgae by Manipulating Water Exchange to Manage Nutrient Flux

    Science.gov (United States)

    Cole, Andrew J.; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1–1 vol.day−1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5–1 vol.day−1, where uptake rates peaked at 1.09 g.m−2.day−1 for nitrogen and 0.13 g.m−2.day−1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m−2.day−1 and a phosphorous flux of 0.6 g.m−2.day−1 was the minimum required to maintain the growth of Oedogonium at 16–17 g DW.m−2.day−1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m−2.day−1), Oedogonium requires 0.09 g.m−2.day−1 of nitrogen and 0.04 g.m−2.day−1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the

  9. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  10. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  11. Use of a numerical simulation approach to improve the estimation of air-water exchange fluxes of polycyclic aromatic hydrocarbons in a coastal zone.

    Science.gov (United States)

    Lai, I-Chien; Lee, Chon-Lin; Ko, Fung-Chi; Lin, Ju-Chieh; Huang, Hu-Ching; Shiu, Ruei-Feng

    2017-07-15

    The air-water exchange is important for determining the transport, fate, and chemical loading of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in aquatic systems. Investigations of PAH air-water exchange are mostly based on observational data obtained using complicated field sampling processes. This study proposes a new approach to improve the estimation of long-term PAH air-water exchange fluxes by using a multivariate regression model to simulate hourly gaseous PAH concentrations. Model performance analysis and the benefits from this approach indicate its effectiveness at improving the flux estimations and at decreasing the field sampling difficulty. The proposed GIS mapping approach is useful for box model establishment and is tested for visualization of the spatiotemporal variations of air-water exchange fluxes in a coastal zone. The air-water exchange fluxes illustrated by contour maps suggest that the atmospheric PAHs might have greater impacts on offshore sites than on the coastal area in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved

  13. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    Science.gov (United States)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  14. Expanding dryland ecosystem flux datasets enable novel quantification of water availability and carbon exchange in Southwestern North America

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Smith, W. K.; Litvak, M. E.; MacBean, N.

    2017-12-01

    Global-scale studies suggest that water-limited dryland ecosystems dominate the increasing trend in magnitude and interannual variability of the land CO2 sink. However, the terrestrial biosphere models and remote sensing models used in large-scale analyses are poorly constrained by flux measurements in drylands, which are under-represented in global datasets. In this talk, I will address this gap with eddy covariance data from 30 ecosystems across the Southwest of North America with observed ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (160 site-years). This extensive dryland dataset enables new approaches including 1) separation of temporal and spatial patterns to infer fast and slow ecosystem responses to change, and 2) partitioning of precipitation into hydrologic losses, evaporation, and ecosystem-available water. I will then compare direct flux measurements with models and remote sensing used to scale fluxes regionally. Combining eddy covariance and streamflow measurements, I will show how evapotranspiration (ET), which is the efflux of soil moisture remaining after hydrologic losses, is a better metric than precipitation of water available to drive ecosystem CO2 exchange. Furthermore, I will present a novel method to partition ET into evaporation and transpiration using the tight coupling of transpiration and photosynthesis. In contrast with typical carbon sink function in wetter, more-studied regions, dryland sites express an annual net carbon uptake varying from -350 to +330 gC m-2. Due to less respiration losses relative to photosynthesis gains during winter, declines in winter precipitation across the Southwest since 1999 are reducing annual net CO2 uptake. Interannual variability of net uptake is larger than for wetter regions, and half the sites pivot between sinks in wet years to sources in dry years. Biospheric and remote sensing models capture only 20-30 % of interannual

  15. Regional Scaling of Airborne Eddy Covariance Flux Observation

    Science.gov (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  16. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains

    Science.gov (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  17. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change.

    Science.gov (United States)

    Fleischer, Elisa; Khashimov, Ilhom; Hölzel, Norbert; Klemm, Otto

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Hans Peter Schmid; Craig Wayson

    2009-05-05

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.

  19. Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2010-05-01

    Full Text Available Total ammonium (tot-NH4+ and total nitrate (tot-NO3 provide chemically conservative quantities in the measurement of surface exchange of reactive nitrogen compounds ammonia (NH3, particulate ammonium (NH4+, nitric acid (HNO3, and particulate nitrate (NO3, using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+ and total nitrate (HNO3 and NO3 measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4+, and NO3 were 0.57, 0.12, 0.76, and 0.48 μg m−3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen, respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies on occult deposition (fog water interception at the study site, the total N deposition in September 2007 was estimated to 5.86 kg ha−1.

  20. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Elisa, E-mail: elisa.fleischer@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany); Khashimov, Ilhom, E-mail: nixonlp@mail.ru [Institute of Earth Science, Physical Geography and Geoecology Department, Tyumen State University, Tyumen (Russian Federation); Hölzel, Norbert, E-mail: nhoelzel@uni-muenster.de [Institute of Landscape Ecology, Biodiversity and Ecosystem Research Group, University of Münster, Münster (Germany); Klemm, Otto, E-mail: otto.klemm@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany)

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. - Highlights: • Grasslands on drained peat soil can act as carbon sinks. • Arable fields on drained peat act as carbon sources due to long phases of bare soil. • CH{sub 4} emissions from drained peatlands seem to play a smaller role than CO{sub 2} fluxes. • Conversion from grassland to arable field has

  1. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  2. High Flux Heat Exchanger

    Science.gov (United States)

    1993-01-01

    maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar

  3. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l.-above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly...... negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0.......78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...

  4. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    NARCIS (Netherlands)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-01-01

    We present 5 years (2009–2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. – above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly

  5. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  6. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  7. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  8. Surface-atmospheric water cycle at Gale crater through multi-year MSL/REMS observations

    Science.gov (United States)

    Harri, A. M.; Genzer, M.; McConnochie, T. H.; Savijarvi, H. I.; Smith, M. D.; Martinez, G.; de la Torre Juarez, M.; Haberle, R. M.; Polkko, J.; Gomez-Elvira, J.; Renno, N. O.; Kemppinen, O.; Paton, M.; Richardson, M. I.; Newman, C. E.; Siili, T. T.; Mäkinen, T.

    2017-12-01

    The Mars Science laboratory (MSL) has been successfully operating for almost three Martian years. That includes an unprecedented long time series of atmospheric observations by the REMS instrument performing measurements of atmospheric pressure, relative humidity (REMS-H), temperature of the air, ground temperature, UV and wind speed and direction. The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the REMS-H instrument data for the period of almost three Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts. We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not seem to result in significant water deposition on the ground. Hence, our modelling results presumably indicate that adsorption processes take place during the nighttime and desorption during the daytime. Other processes, e.g. convective

  9. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  10. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  11. Exchange of fluxes across the air-sea interface during the onset phase of the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Rao, M.V.

    The fluxes of momentum, sensible and latent heat over the southwest coast of India for the period of 27th May-10th June, 1984 based on the surface meteorological data have been presented on the time scale. The latent heat transfer has been discussed...

  12. Investigation of edge neutral flux on the ISX-B tokamak using a low-energy charge-exchange analyzer

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1983-08-01

    To study the emission of D 0 from the periphery of a tokamak plasma, a low-energy neutral particle spectrometer optimized for (16 0 neutrals and a four-channel electrostatic analyzer to energy analyze the negative ions. The spectrometer was absolutely calibrated using D 0 beams formed by electron capture by positive ions in a gas cell and by photo-detachment of negative ions by a yttrium-aluminum-garnet laser. For the observation region chosen on ISX-B (120 0 toroidally away from the limiter, near the gas puff), the neutral particle flux has a two-component nature. These data are well fit by two separate exponential distributions of equivalent temperatures 6 to 8 eV for particle energies below about 80 eV and 70 to 80 eV for particle energies above 80 eV. For ohmically heated discharges, the measured particle flux in the energy range 25 to 700 eV is approx. 2.5 x 10 15 cm - 2 .s - 1 ; the mean particle energy is approx. 70 eV, and the calculated flux at the wall is approx. 30 mW/cm 2 . The major effect of neutral beam heating is to increase the particle flux in the 25- to 700-eV range by a factor of 3

  13. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Directory of Open Access Journals (Sweden)

    M. D. Rowe

    2012-05-01

    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs.

  14. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    Science.gov (United States)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  15. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    Science.gov (United States)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  16. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements

    International Nuclear Information System (INIS)

    Martens, C.S.; Kipphut, G.W.; Klump, J.V.

    1980-01-01

    In situ radon-222 flux experiments conducted in benthic chambers in Cape Lookout Bight, a small marine basin on the North Carolina coast, reveal that enhanced chemical transport across the sediment-water interface during summer months is caused by abiogenic bubble tube structures. Transport rates for dissolved radon, methane, and ammonium more than three times greater than those predicted on the basis of molecular diffusion occur when open tubes are maintained by semidiurnal low-tide bubbling

  17. Investigation of edge neutral flux on the ISX-B tokamak using a low-energy charge-exchange analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D. M.

    1983-08-01

    To study the emission of D/sup 0/ from the periphery of a tokamak plasma, a low-energy neutral particle spectrometer optimized for (16 < E < 500 eV) has been built and employed on the Impurity Study Experiment (ISX-B) tokamak. The diagnostic utilizes a cesium vapor cell to form negative ions from the incident D/sup 0/ neutrals and a four-channel electrostatic analyzer to energy analyze the negative ions. The spectrometer was absolutely calibrated using D/sup 0/ beams formed by electron capture by positive ions in a gas cell and by photo-detachment of negative ions by a yttrium-aluminum-garnet laser. For the observation region chosen on ISX-B (120/sup 0/ toroidally away from the limiter, near the gas puff), the neutral particle flux has a two-component nature. These data are well fit by two separate exponential distributions of equivalent temperatures 6 to 8 eV for particle energies below about 80 eV and 70 to 80 eV for particle energies above 80 eV. For ohmically heated discharges, the measured particle flux in the energy range 25 to 700 eV is approx. 2.5 x 10/sup 15/ cm/sup -2/.s/sup -1/; the mean particle energy is approx. 70 eV, and the calculated flux at the wall is approx. 30 mW/cm/sup 2/. The major effect of neutral beam heating is to increase the particle flux in the 25- to 700-eV range by a factor of 3.

  18. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland.

    Science.gov (United States)

    Järveoja, Järvi; Nilsson, Mats B; Gažovič, Michal; Crill, Patrick M; Peichl, Matthias

    2018-04-30

    The net ecosystem CO 2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching-/vegetation removal plots to partition NEE into its production (i.e. gross and net primary production; GPP and NPP) and respiration (i.e. ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above-/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle. This article is protected by

  19. A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia

    Science.gov (United States)

    Wyers, G. P.; Otjes, R. P.; Slanina, J.

    A new diffusion denuder is described for the continuous measurement of atmospheric ammonia. Ammonia is collected in an absorption solution in a rotating denuder, separated from interfering compounds by diffusion through a semi-permeable membrane and detected by conductometry. The method is free from interferences by other atmospheric gases, with the exception of volatile amines. The detection limit is 6 ng m -3 for a 30-min integration time. This compact instrument is fully automated and suited for routine deployment in field studies. The precision is sufficiently high for micrometeorological studies of air-surface exchange of ammonia.

  20. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  1. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    2000-03-01

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.Key words: Hydrology (desertification - Meterology and atmospheric

  2. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    Science.gov (United States)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on

  3. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  4. Use of the isotope flux ratio approach to investigate the C18O16O and 13CO2 exchange near the floor of a temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    P. Bartlett

    2012-07-01

    Full Text Available Stable isotopologues of CO2, such as 13CO2 and C18OO, have been used to study the CO2 exchange between land and atmosphere. The advent of new measuring techniques has allowed near-continuous measurements of stable isotopes in the air. These measurements can be used with micrometeorological techniques, providing new tools to investigate the isotope exchange in ecosystems. The objectives of this study were to evaluate the use of the isotope flux ratio method (IFR near the forest floor of a temperate deciduous forest and to study the temporal dynamics of δ18O of CO2 flux near the forest floor by comparing IFR estimates with estimates of δ18O of net soil CO2 flux provided by an analytical model. Mixing ratios of 12C16O2, 13CO2 and C16O18O were measured within and above a temperate deciduous forest, using the tunable diode laser spectroscopy technique. The half-hourly compositions of the CO2 flux near the forest floor (δ13CF and δ18OF were calculated by IFR and compared with estimates provided by a modified Keeling plot technique (mKP and by a Lagrangian dispersion analysis (WT analysis. The mKP and IFR δ18OF estimates showed good agreement (slope = 1.03 and correlation, R2 = 0.80. The δ13CF estimates from the two methods varied in a narrow range of −32.7 and −23‰; the mean (± SE mKP and IFR δ13CF values were −27.5‰ (±0.2 and −27.3‰ (±0.1, respectively, and were statistically identical (p>0.05. WT analysis and IFR δ18OF estimates showed better correlation (R2 = 0.37 when only turbulent periods (u*>0.6 m s−1 were included in the analysis. The large amount of data captured (~95 % of half-hour periods evaluated for the IFR in comparison with mKP (27 % shows that the former provides new opportunities for studying δ18OF dynamics within forest canopies. Values of δ18OF showed large temporal variation, with values ranging from −31.4‰ (DOY 208 to −11.2‰ (DOY 221. Precipitation events caused substantial variation (~8

  5. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  7. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    Science.gov (United States)

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  8. Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest

    Science.gov (United States)

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas

    2011-01-01

    This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962

  9. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  10. Strong Links Between Teleconnections and Ecosystem Exchange Found at a Pacific Northwest Old-Growth Forest from Flux Tower and MODIS EVI Data

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Chasmer, L; Falk, M; Paw U, K T

    2009-03-12

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase

  11. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.

    Science.gov (United States)

    Ford, Trent W; Frauenfeld, Oliver W

    2016-01-18

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

  12. NEON's Eddy-Covariance Storage Exchange: from Tower to Data Portal

    Science.gov (United States)

    Durden, N. P.; Luo, H.; Xu, K.; Metzger, S.; Durden, D.

    2017-12-01

    NEON's eddy-covariance storage exchange system (ECSE) consists of a suite of sensors including temperature sensors, a CO2 and H2O gas analyzer, and isotopic CO2 and H2O analyzers. NEON's ECSE was developed to provide the vertical profile measurements of temperature, CO2 and H2O concentrations, the stable isotope ratios in CO2 (δ13C) and H2O (δ18O and δ2H) in the atmosphere. The profiles of temperature and concentrations of CO2 and H2O are key to calculate storage fluxes for eddy-covariance tower sites. Storage fluxes have a strong diurnal cycle and can be large in magnitude, especially at temporal scales less than one day. However, the storage term is often neglected in flux computations. To obtian accurate eddy-covariance fluxes, the storage fluxes are calculated and incorporated into the calculations of net surface-atmosphere ecosystem exchange of heat, CO2, and H2O for each NEON tower site. Once the ECSE raw data (Level 0, or L0) is retrieved at NEON's headquarters, it is preconditioned through a sequence of unit conversion, time regularization, and plausibility tests. By utilizing NEON's eddy4R framework (Metzger et al., 2017), higher-level data products are generated including: Level 1 (L1): Measurement-level specific averages of temperature and concentrations of CO2 and H2O. Level 2 (L2): Time rate of change of temperature and concentrations of CO2 and H2O over 30 min at each measurement level along the vertical tower profile. Level 3 (L3): Time rate of change of temperature and concentrations of CO2 and H2O over 30 min (L2), spatially interpolated along the vertical tower profile. Level 4 (L4): Storage fluxes of heat, CO2, and H2O calculated from the integrated time rate of change spatially interpolated profile (L3). The L4 storage fluxes are combined with turbulent fluxes to calculate the net surface-atmosphere ecosystem exchange of heat, CO2, and H2O. Moreover, a final quality flag and uncertainty budget are produced individually for each data stream

  13. Tracking Seasonal and Diurnal Photosynthesis and Plant Water Status in Maize Using SIF, Eddy Covariance Fluxes, PAM Fluorescence and Gas Exchange

    Science.gov (United States)

    Chang, C.; Melkonian, J.; Riha, S. J.; Gu, L.; Sun, Y.

    2017-12-01

    Improving the sensitivity of methods for crop monitoring and yield forecasting is crucial as the frequency of extreme weather events increases. Conventional remote monitoring methods rely on greenness-based indices such as NDVI and EVI, which do not directly measure photosynthesis and are not sufficiently sensitive to rapid plant stress response. Solar-induced chlorophyll fluorescence (SIF) is a promising new technology that serves as a direct functional proxy of photosynthesis. We developed the first system utilizing dual QE Pro spectrometers to continuously measure the diurnal and seasonal cycle of SIF, and deployed the system in a corn field in upstate New York in 2017. To complement SIF, canopy-level measurements of carbon and water fluxes were also measured, along with concurrent leaf-level measurements of gas exchange and PAM fluorescence, midday water potential, leaf pigments, phenology, LAI, and soil moisture. We show that SIF is well correlated to GPP during the growing season and show that both are controlled by similar environmental conditions including PAR and water availability. We also describe diurnal changes in photosynthesis and plant water status and demonstrate the sensitivity of SIF to diurnal plant response.

  14. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.

    2006-01-01

    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  15. Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

    Directory of Open Access Journals (Sweden)

    J. H. Rydsaa

    2017-09-01

    Full Text Available Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km. Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.

  16. Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England.

    Science.gov (United States)

    Ward, H C; Kotthaus, S; Grimmond, C S B; Bjorkegren, A; Wilkinson, M; Morrison, W T J; Evans, J G; Morison, J I L; Iamarino, M

    2015-03-01

    Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum

    Science.gov (United States)

    Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.

    2004-12-01

    Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.

  18. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal).

    Science.gov (United States)

    Rafael, S; Martins, H; Marta-Almeida, M; Sá, E; Coelho, S; Rocha, A; Borrego, C; Lopes, M

    2017-05-01

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue

    Science.gov (United States)

    Goodrich, D.C.; Chehbouni, A.; Goff, B.; MacNish, B.; Maddock, T.; Moran, S.; Shuttleworth, W.J.; Williams, D.G.; Watts, C.; Hipps, L.H.; Cooper, D.I.; Schieldge, J.; Kerr, Y.H.; Arias, H.; Kirkland, M.; Carlos, R.; Cayrol, P.; Kepner, W.; Jones, B.; Avissar, R.; Begue, A.; Bonnefond, J.-M.; Boulet, G.; Branan, B.; Brunel, J.P.; Chen, L.C.; Clarke, T.; Davis, M.R.; DeBruin, H.; Dedieu, G.; Elguero, E.; Eichinger, W.E.; Everitt, J.; Garatuza-Payan, J.; Gempko, V.L.; Gupta, H.; Harlow, C.; Hartogensis, O.; Helfert, M.; Holifield, C.; Hymer, D.; Kahle, A.; Keefer, T.; Krishnamoorthy, S.; Lhomme, J.-P.; Lagouarde, J.-P.; Lo, Seen D.; Luquet, D.; Marsett, R.; Monteny, B.; Ni, W.; Nouvellon, Y.; Pinker, R.; Peters, C.; Pool, D.; Qi, J.; Rambal, S.; Rodriguez, J.; Santiago, F.; Sano, E.; Schaeffer, S.M.; Schulte, M.; Scott, R.; Shao, X.; Snyder, K.A.; Sorooshian, S.; Unkrich, C.L.; Whitaker, M.; Yucel, I.

    2000-01-01

    The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere-biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997-1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources.

  20. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  1. Multi-station synthesis of early twentieth century surface atmospheric electricity measurements for upper tropospheric properties

    Directory of Open Access Journals (Sweden)

    R. G. Harrison

    2007-07-01

    Full Text Available The vertical columnar current density in the global atmospheric electrical circuit depends on the local columnar resistance. A simple model for the columnar resistance is suggested, which separates the local boundary layer component from the upper troposphere cosmic ray component, and calculates the boundary layer component from a surface measurement of air conductivity. This theory is shown to provide reasonable agreement with observations. One application of the simple columnar model theory is to provide a basis for the synthesis of surface atmospheric electrical measurements made simultaneously at several European sites. Assuming the ionospheric potential to be common above all the sites, the theoretical air-earth current density present in the absence of a boundary layer columnar resistance can be found by extrapolation. This is denoted the free troposphere limit air-earth current density, J0. Using early surface data from 1909 when no ionospheric potential data are available for corroboration, J0 is found to be ~6 pA m−2, although this is subject to uncertainties in the data and limitations in the theory. Later (1966–1971 European balloon and surface data give J0=2.4 pA m−2.

  2. Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets

    DEFF Research Database (Denmark)

    Skiba, U.; Drewer, J.; Tang, Y.S.

    2009-01-01

    The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites...

  3. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  4. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    Science.gov (United States)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  5. Updating representation of land surface-atmosphere feedbacks in airborne campaign modeling analysis

    Science.gov (United States)

    Huang, M.; Carmichael, G. R.; Crawford, J. H.; Chan, S.; Xu, X.; Fisher, J. A.

    2017-12-01

    An updated modeling system to support airborne field campaigns is being built at NASA Ames Pleiades, with focus on adjusting the representation of land surface-atmosphere feedbacks. The main updates, referring to previous experiences with ARCTAS-CARB and CalNex in the western US to study air pollution inflows, include: 1) migrating the WRF (Weather Research and Forecasting) coupled land surface model from Noah to improved/more complex models especially Noah-MP and Rapid Update Cycle; 2) enabling the WRF land initialization with suitably spun-up land model output; 3) incorporating satellite land cover, vegetation dynamics, and soil moisture data (i.e., assimilating Soil Moisture Active Passive data using the ensemble Kalman filter approach) into WRF. Examples are given of comparing the model fields with available aircraft observations during spring-summer 2016 field campaigns taken place at the eastern side of continents (KORUS-AQ in South Korea and ACT-America in the eastern US), the air pollution export regions. Under fair weather and stormy conditions, air pollution vertical distributions and column amounts, as well as the impact from land surface, are compared. These help identify challenges and opportunities for LEO/GEO satellite remote sensing and modeling of air quality in the northern hemisphere. Finally, we briefly show applications of this system on simulating Australian conditions, which would explore the needs for further development of the observing system in the southern hemisphere and inform the Clean Air and Urban Landscapes (https://www.nespurban.edu.au) modelers.

  6. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    Directory of Open Access Journals (Sweden)

    Kodwo Annan

    2012-01-01

    Full Text Available The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

  7. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, S., E-mail: sandra.rafael@ua.pt [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Martins, H. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), SE-60176 Norrköping (Sweden); Marta-Almeida, M. [Centro Oceanográfico A Coruña, Instituto Español de Oceanografía, A Coruña (Spain); Sá, E.; Coelho, S. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rocha, A. [CESAM & Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Borrego, C.; Lopes, M. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal)

    2017-05-15

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986–2005) scenario and a future scenario (2046–2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. - Highlights: • Assessment of energy fluxes behaviour under past period and medium-term climate change projection. • Evaluation of climate change at urban scale. • Meteorological variables alters the partitioning of the energy fluxes. • Changes in the partition of the annual energy balance are found between the two analysed periods. • Increase in the magnitude of sensible and storage heat fluxes.

  8. On the use of tower-flux measurements to assess the performance of global ecosystem models

    Science.gov (United States)

    El Maayar, M.; Kucharik, C.

    2003-04-01

    Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the

  9. The influence of carbon exchange of a large lake on regional tracer-transport inversions: results from Lake Superior

    International Nuclear Information System (INIS)

    Vasys, Victoria N; Desai, Ankur R; McKinley, Galen A; Bennington, Val; Michalak, Anna M; Andrews, Arlyn E

    2011-01-01

    Large lakes may constitute a significant component of regional surface-atmosphere fluxes, but few efforts have been made to quantify these fluxes. Tracer-transport inverse models that infer the CO 2 flux from the atmospheric concentration typically assume that the influence from large lakes is negligible. CO 2 observations from a tall tower in Wisconsin segregated by wind direction suggested a CO 2 signature from Lake Superior. To further investigate this difference, source-receptor influence functions derived using a mesoscale transport model were applied and results revealed that air masses sampled by the tower have a transit time over the lake, primarily in winter when the total lake influence on the tower can exceed 20% of the total influence of the regional domain. When the influence functions were convolved with air-lake fluxes estimated from a physical-biogeochemical lake model, the overall total contribution of lake fluxes to the tall tower CO 2 were mostly negligible, but potentially detectable in certain periods of fall and winter when lake carbon exchange can be strong and land carbon efflux weak. These findings suggest that large oligotrophic lakes would not significantly influence inverse models that incorporate tall tower CO 2 .

  10. The role of entrainment in surface-atmosphere interactions over the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.J. [Minnesota Univ., St. Paul, MN (United States). Dept. of Soil Science; Lenschow, D.H.; Oncley, S.P. [National Center for Atmospheric Research, Boulder, Colorado (United States); Kiemle, C.; Ehret, G.; Giez, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Mann, J. [Risoe National Lab., Roskilde (Denmark)

    1997-07-01

    We present a description of the evolution of the convective boundary layer (CBL) over the boreal forests of Saskatchewan and Manitoba, as observed by the national center for atmospheric research (NCAR) Electra research aircraft during the 1994 boreal ecosystem-atmosphere study (BOREAS). All observations were made between 1530 and 2230 UT (0930-1630 local solar time, LST). We show that the CBL flux divergence often led to drying of the CBL over the course of the day, with the greatest drying (approaching 0.5 gkg{sup -1}hr{sup -1}) observed in the morning, 1000-1200 LST, and decreasing over time to nearly no drying (0 to 0.1 gkg{sup -1}hr{sup -1}) by midafternoon (1500-1600 LST). The maximum warming (0.45 Khr{sup -1}) also occurred in the morning and decreased slightly to about 0.4 Khr{sup -1} by midafternoon. The CBL vapor pressure deficit (VPD) increases over the course of the day. A significant portion of this increase can be explained by the vertical flux divergence, though horizontal advection also appears to be important. We suggest a linkage between boundary layer growth, the vertical flux divergences, and boundary layer cloud formation, with cloud activity peaking at midday in response to rapid CBL growth, then decreasing somewhat later in the day in response to CBL warming and decreased growth. We also see evidence of feedback between increasing VPD and stomatal control. (orig.) 39 refs.

  11. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Beverly E.; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  12. Strong links between teleconnections and ecosystem exchange found at a Pacific Northwest old-growth forest from flux tower and MODIS EVI data

    Science.gov (United States)

    Sonia Wharton; Laura Chasmer; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and EI Nino-Southern Oscillation (ENSO). We use 9 years of eddy covariance...

  13. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China

    Science.gov (United States)

    Pan, Jing; Yang, Yong-Liang; Zhang, Gan; Shi, Jing-Lei; Zhu, Xiao-Hua; Li, Yong; Yu, Han-Qing

    2011-07-01

    Near-surface atmospheric aerosol samples were collected at the sampling frequency of 2-3 d per week for one year from August 2006 to August 2007 at a low latitude station in Tianhe District, Guangzhou, Guangdong Province of southern China. The samples were analyzed for cosmogenic nuclide 7Be and persistent organic pollutants, i.e. organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The annual average 7Be concentration was 2.59 mBq m -3, with the maximum occurred in May (8.45 mBq m -3) and minimum in late August and early September (0.07 mBq m -3). Winter and spring were the seasons in which the 7Be concentrations were high while summer and autumn were the lower 7Be seasons. Spring peaks in 7Be in the near-surface atmospheric aerosols may have associated with the "spring leak maximum" episode. The annual average ∑OCPs concentration was 345.6 pg m -3, ∑ 33PCBs 317.6 pg m -3, and ∑ 31PBDEs 609.0 pg m -3. The variation trends in the time-series of 7Be, OCPs, PCBs, and PBDEs in near-surface atmospheric aerosol showed both common features and differences. Significant correlations ( R2 = 0.957 and 0.811. respectively, p = 0.01) were observed between the monthly average 7Be concentrations and those of ∑PCBs and ∑PBDEs in summer, autumn, and early winter. The difference between the seasonal variation features of OCPs and PCBs (and PBDEs) could be attributed to the different source functions and physical-chemical properties which could control the behaviors of these compounds in air-aerosol partitions as well as atmospheric transport.

  14. Reconciling top-down and bottom-up estimates of CO2 fluxes to understand increased seasonal exchange in Northern ecosystems

    Science.gov (United States)

    Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.

    2017-12-01

    Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.

  15. Progress in Understanding Land-Surface-Atmosphere Coupling from LBA Research

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2010-06-01

    Full Text Available LBA research has deepened our understanding of the role of soil water storage, clouds and aerosols in land-atmosphere coupling. We show how the reformulation of cloud forcing in terms of an effective cloud albedo per unit area of surface gives a useful measure of the role of clouds in the surface energy budget over the Amazon. We show that the diurnal temperature range has a quasi-linear relation to the daily mean longwave cooling; and to effective cloud albedo because of the tight coupling between the near-surface climate, the boundary layer and the cloud field. The coupling of surface and atmospheric processes is critical to the seasonal cycle: deep forest rooting systems make water available throughout the year, whereas in the dry season the shortwave cloud forcing is reduced by regional scale subsidence, so that more light is available for photosynthesis. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months, evaporation rates increased in the dry season, coincident with increased radiation. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season showed clear evidence of reduced evaporation in the dry season coming from water stress. In all these sites, the seasonal variation of the effective cloud albedo is a major factor in determining the surface available energy. Dry season fires add substantial aerosol to the atmosphere. Aerosol scattering and absorption both reduce the total downward surface radiative flux, but increase the diffuse/direct flux ratio, which increases photosynthetic efficiency. Convective plumes produced by fires enhance the vertical transport of aerosols over the Amazon, and effectively inject smoke aerosol and gases directly into the middle troposphere with substantial impacts on mid- tropospheric dispersion. In the rainy season in Rondônia, convection in low-level westerly flows with low aerosol content resembles oceanic convection with

  16. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Baldocchi, Dennis [Univ. of California, Berkeley, CA (United States)

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  17. The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux.

    Science.gov (United States)

    Bagnato, E; Sproveri, M; Barra, M; Bitetto, M; Bonsignore, M; Calabrese, S; Di Stefano, V; Oliveri, E; Parello, F; Mazzola, S

    2013-11-01

    The first attempt to systematically investigate the atmospheric mercury (Hg) in the MBL of the Augusta basin (SE Sicily, Italy) has been undertaken. In the past the basin was the receptor for Hg from an intense industrial activity which contaminated the bottom sediments of the Bay, making this area a potential source of pollution for the surrounding Mediterranean. Three oceanographic cruises have been thus performed in the basin during the winter and summer 2011/2012, where we estimated averaged Hgatm concentrations of about 1.5±0.4 (range 0.9-3.1) and 2.1±0.98 (range 1.1-3.1) ng m(-3) for the two seasons, respectively. These data are somewhat higher than the background Hg atm value measured over the land (range 1.1±0.3 ng m(-3)) at downtown Augusta, while are similar to those detected in other polluted regions elsewhere. Hg evasion fluxes estimated at the sea/air interface over the Bay range from 3.6±0.3 (unpolluted site) to 72±0.1 (polluted site of the basin) ng m(-2) h(-1). By extending these measurements to the entire area of the Augusta basin (~23.5 km(2)), we calculated a total sea-air Hg evasion flux of about 9.7±0.1 g d(-1) (~0.004 tyr(-1)), accounting for ~0.0002% of the global Hg oceanic evasion (2000 tyr(-1)). The new proposed data set offers a unique and original study on the potential outflow of Hg from the sea-air interface at the basin, and it represents an important step for a better comprehension of the processes occurring in the marine biogeochemical cycle of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange?

    Directory of Open Access Journals (Sweden)

    S. Widdicombe

    2009-10-01

    Full Text Available Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7 and 2300 (pH 7.3, plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.

  19. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube; Etude experimentale des coefficients d'echanges thermiques, des flux de chaleur critiques et des pertes de charge avec des melanges eau-vapeur en ecoulement turbulent dans un tube vertical

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P; De La Harpe, A; Rebiere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1960-12-15

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm{sup 2}, flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x{sub s} > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [French] On a utilise deux tubes en acier inox (avec des diametres de 5 et 10 mm, et des longueurs respectives 400 et 600 mm) chauffes electriquement (50 Hz). Le melange s'ecoule de haut en bas. Les etudes ont porte plus specialement sur des melanges de titres eleves (x > 0,1) a des pressions comprises entre 60 et 90 kg/cm{sup 2} dont l'ecoulement se fait avec film liquide annulaire et gouttelettes en suspension dans le coeur de vapeur. Par l'analyse des lois de transfert de chaleur, on a precise les mecanismes d'echanges et l'on a d'autre part determine dans quelles conditions le flux de chaleur critique peut etre depasse sans danger de 'burnout' proprement dit. On peut ainsi obtenir des

  20. Arctic summertime measurements of ammonia in the near-surface atmosphere

    Science.gov (United States)

    Moravek, A.; Murphy, J. G.; Wentworth, G.; Croft, B.; Martin, R.

    2016-12-01

    Measurements of gas-phase ammonia (NH3) in the summertime Arctic are rare, despite the impact NH3 can have on new particle formation rates and nitrogen deposition. The presence of NH3 can also increase the ratio of particulate-phase ammonium (NH4+) to non-sea salt sulphate (nss-SO42-) which decreases particle acidity. Known regional sources of NH3in the Arctic summertime include migratory seabird colonies and northern wildfires, whereas the Arctic Ocean is a net sink. In the summer of 2016, high time resolution measurements were collected in the Arctic to improve our understanding of the sources, sinks and impacts of ammonia in this remote region. A four week study was conducted at Alert, Canada (82.5º N, 62.3 º W) from June 23 to July 19, 2016 to examine the magnitude and sources of NH3 and SO42-. The Ambient Ion Monitor-Ion Chromatography system (AIM-IC) provided on-line, hourly averaged measurements of NH3, NH4+, SO42- and Na+. Measurements of NH3 ranged between 50 and 700 pptv (campaign mean of 240 pptv), consistent with previous studies in the summertime Arctic boundary layer. Levels of NH4+ and nss-SO42- were near or below detection limits ( 20 ng m-3) for the majority of the study. Tundra and lake samples were collected to investigate whether these could be important local sources of NH3 at Alert. These surface samples were analyzed for NH4+, pH and temperature and a compensation point (χ) for each sample was calculated to determine if these surface reservoirs can act as net NH3 sources. Precipitation samples were also collected throughout the study to better constrain our understanding of wet NH4+deposition in the summertime Arctic. From mid-July through August, 2016, NH3 was measured continuously using a laser spectroscopy technique onboard the Canadian Coast Guard Ship Amundsen in the eastern Arctic Ocean. Ocean-atmosphere exchange of NH3 was quantified using measurements of sea surface marine NH4+ concentrations. In addition, wet deposition of

  1. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    Science.gov (United States)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  2. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes

    International Nuclear Information System (INIS)

    Arneth, A.; Kolle, O.; Lloyd, J.; Schulze, E.D.; Kurbatova, J.; Vygodskaya, N.N.

    2002-01-01

    Net ecosystem-atmosphere exchange of CO 2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol/m 2 /d), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO 2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO 2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO 2 -C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO 2 -C uptake are discussed, including associated uncertainties

  3. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.

    Science.gov (United States)

    Rafael, S; Martins, H; Sá, E; Carvalho, D; Borrego, C; Lopes, M

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200Wm(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of -62.8 and -35Wm(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  5. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China].

    Science.gov (United States)

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan

    2012-04-01

    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  6. Beryllium-7 in near-surface atmospheric aerosols in mid-latitude (40 deg N) city Beijing, China

    International Nuclear Information System (INIS)

    Keyan Tan; Yongliang Yang; Xiaohua Zhu; Shu Chen; Xingchun Jiao; Nan Gai; Yi Huang

    2013-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been used to measure the activity of 7 Be in near-surface atmospheric aerosols at sampling frequency of 3 days week for 1 year from August 2009 to July 2010 at Beijing in the mid-latitude region of East Asia monsoon. The measurements indicate that the average concentration of 7 Be was 8.39 ± 0.49 mBq m -3 , which was significantly higher than values reported for other cities in the East Asia monsoon region and in the world during the same period. The maximum and minimum of the weekly means of 7 Be concentration were observed in September and May, respectively. The 7 Be concentrations varied in accordance with the monsoon phases. Low but frequent wet precipitation may have caused lower 7 Be observed in July when southeasterly was prevailing. Higher seasonal mean of 7 Be concentrations in autumn could be attributed to the abnormal atmospheric circulation in autumn 2009. (author)

  7. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  8. Effects of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence

    Science.gov (United States)

    Carmel E. Johnston,; Stephanie A. Ewing,; Harden, Jennifer W.; Ruth K. Varner,; Wickland, Kimberly P.; Koch, Joshua C.; Fuller, Christopher C.; Manies, Kristen L.; M. Torre Jorgenson,

    2014-01-01

    Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH4), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO2) and CH4 exchange along sites that constitute a ~1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH4exchange in July (123 ± 71 mg CH4–C m−2 d−1) was observed in features that have been thawed for 30 to 70 (peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH4 dynamics.

  9. Spring in the boreal environment: observations on pre- and post-melt energy and CO{sub 2} fluxes in two central Siberian ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A. [Dept. of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden); Lloyd, J. [Scool of Geography, Leeds Univ., Leeds (United Kingdom); Shibistova, O. [V.N. Sukachev Forest Inst., Akademgorodok, Krasnoyarsk (Russian Federation); Sogachev, A. [Dept. of Physical Sciences, Helsinki Univ. (Finland); Kolle, O. [Max Planck Inst. for Biogeochemistry, Jena (Germany)

    2006-07-01

    A range of observations points towards earlier onset of spring in northern high latitudes. However, despite the profound effects this may have on vegetation-atmosphere exchange of carbon (NEE), vegetation-atmosphere physical coupling, or the location of the tundra-taiga interface, the number of studies that investigate winter-spring transition fluxes in contrasting northern vegetation types is limited. Here, we examine spring ecosystem-atmosphere energy and carbon exchange in a Siberian pine forest and mire. Divergent surface albedo before and during snow-melt resulted in daytime net radiation (R{sub n}) above the forest exceeding R{sub n} above the mire by up to 10 MJ m{sup -2}. Until stomata could open, absorbed radiation by the green pine canopy caused substantial daytime sensible heat fluxes (H > 10MJ m{sup -2}). H above the mire was very low, even negative (< -2 MJ m{sup -2}), during that same period. Physiological activity in both ecosystems responded rapidly to warming temperatures and snow-melt, which is essential for survival in Siberia with its very short summers. On days with above-zero temperatures, before melt was complete, low rates of forest photosynthesis (1-2 {mu}mol m{sup -2} s{sup -1}) were discernible. Forest and mire NEE became negative the same day, or shortly after, photosynthesis commenced. The mire lagged by about two weeks behind the forest and regained its full carbon uptake capacity at a slower rate. Our data provide empirical evidence for the importance the timing of spring and the relative proportion of forest vs. mire has for late winter/spring boundary-layer growth, and production and surface-atmosphere mixing of trace gases. Models that seek to investigate effects of increasingly earlier spring in high latitudes must correctly account for contrasting physical and biogeochemical ecosystem-atmosphere exchange in heterogeneous landscapes. (orig.)

  10. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  11. Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling

    Science.gov (United States)

    Menzer, Olaf; Meiring, Wendy; Kyriakidis, Phaedon C.; McFadden, Joseph P.

    2015-01-01

    A small, but growing, number of flux towers in urban environments measure surface-atmospheric exchanges of carbon dioxide by the eddy covariance method. As in all eddy covariance studies, obtaining annual sums of urban CO2 exchange requires imputation of data gaps due to low turbulence and non-stationary conditions, adverse weather, and instrument failures. Gap-filling approaches that are widely used for measurements from towers in natural vegetation are based on light and temperature response models. However, they do not account for key features of the urban environment including tower footprint heterogeneity and localized CO2 sources. Here, we present a novel gap-filling modeling framework that uses machine learning to select explanatory variables, such as continuous traffic counts and temporal variables, and then constrains models separately for spatially classified subsets of the data. We applied the modeling framework to a three year time series of measurements from a tall broadcast tower in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. The gap-filling performance was similar to that reported for natural measurement sites, explaining 64% to 88% of the variability in the fluxes. Simulated carbon budgets were in good agreement with an ecophysiological bottom-up study at the same site. Total annual carbon dioxide flux sums for the tower site ranged from 1064 to 1382 g C m-2 yr-1, across different years and different gap-filling methods. Bias errors of annual sums resulting from gap-filling did not exceed 18 g C m-2 yr-1 and random uncertainties did not exceed ±44 g C m-2 yr-1 (or ±3.8% of the annual flux). Regardless of the gap-filling method used, the year-to-year differences in carbon exchange at this site were small. In contrast, the modeled annual sums of CO2 exchange differed by a factor of two depending on wind direction. This indicated that the modeled time series captured the spatial variability in both the biogenic and

  12. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Science.gov (United States)

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  13. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  14. Dis-aggregation of airborne flux measurements using footprint analysis

    NARCIS (Netherlands)

    Hutjes, R.W.A.; Vellinga, O.S.; Gioli, B.; Miglietta, F.

    2010-01-01

    Aircraft measurements of turbulent fluxes are generally being made with the objective to obtain an estimate of regional exchanges between land surface and atmosphere, to investigate the spatial variability of these fluxes, but also to learn something about the fluxes from some or all of the land

  15. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... by HIRHAM simulated precipitation. The last two simulations include iv) a standard HIRHAM simulation, and v) a fully coupled HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE area, while HIRHAM in standard configuration is used for the remaining model area...

  16. A comprehensive assessment of land surface-atmosphere interactions in a WRF/Urban modeling system for Indianapolis, IN

    Directory of Open Access Journals (Sweden)

    Daniel P. Sarmiento

    2017-05-01

    Full Text Available As part of the Indianapolis Flux (INFLUX experiment, the accuracy and biases of simulated meteorological fields were assessed for the city of Indianapolis, IN. The INFLUX project allows for a unique opportunity to conduct an extensive observation-to-model comparison in order to assess model errors for the following meteorological variables: latent heat and sensible heat fluxes, air temperature near the surface and in the planetary boundary layer (PBL, wind speed and direction, and PBL height. In order to test the sensitivity of meteorological simulations to different model packages, a set of simulations was performed by implementing different PBL schemes, urban canopy models (UCMs, and a model subroutine that was created in order to reduce an inherent model overestimation of urban land cover. It was found that accurately representing the amount of urban cover in the simulations reduced the biases in most cases during the summertime (SUMMER simulations. The simulations that used the BEP urban canopy model and the Bougeault & Lacarrere (BouLac PBL scheme had the smallest biases in the wintertime (WINTER simulations for most meteorological variables, with the exception being wind direction. The model configuration chosen had a larger impact on model errors during the WINTER simulations, whereas the differences between most of the model configurations during the SUMMER simulations were not statistically significant. By learning the behaviors of different PBL schemes and urban canopy models, researchers can start to understand the expected biases in certain model configurations for their own simulations and have a hypothesis as to the potential errors and biases that might occur when using a multi-physics ensemble based modeling approach.

  17. Exchangers man the pumps

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670

  18. Net CO2 and water exchanges of trees and grasses in a semi-arid region (Gourma, Mali)

    Science.gov (United States)

    Le Dantec, Valérie; Kergoat, Laurent; Timouk, Franck; Hiernaux, Pierre; Mougin, Eric

    2010-05-01

    An improved understanding of plant and soil processes is critical to predict land surface-atmosphere water exchanges, especially in semi-arid environments, where knowledge is still severely lacking. Within the frame of the African Monsoon Multidisciplinary Project (AMMA), eddy covariance and sapflow stations have been installed to document the intensity, the temporal variability and the main drivers of net CO2 fluxes, water fluxes and contribution of the trees to these fluxes in a pastoral Sahelian landscape. Indeed, although the importance of vegetation in the West African monsoon system has long been postulated, extremely few data were available sofar to test and develop land surface models. In particular, data documenting seasonal and inter-annual dynamics of vegetation/atmosphere exchanges did not exist at 15° N in West Africa before AMMA. The site is located in the Gourma, Mali. Vegetation in this area is sparse and mainly composed of annual grasses and forbs, and trees. Vegetation is organized according to soil type and lateral water redistribution, with bare soil with scattered trees on shallow soils and rocky outcrops (35% of the area), annual grasses and scattered trees on sandy soils (65% of the area), and more dense canopies of grasses and trees growing in valley bottoms over clay soil. To quantify tree transpiration in the overall evapotranspiration flux, sapflow measurements, associated to soil moisture measurements, have been conducted on the main tree species (Acacia senegal, A. seyal, A. raddiana, Combretum glutinosum, Balanites aegyptiaca) in a grassland site and in an open forest site, where eddy covariance fluxes measured the total flux. Using this dataset, we have studied the effects of plant diversity on carbon and water fluxes at the foot-print scale and seasonal dynamics of fluxes due to plant phenology and variations of soil water content (SWC). Carbon fluxes were documented as well, over two years. NEE was close to 0 during the dry season

  19. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  20. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  1. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario

    International Nuclear Information System (INIS)

    Rafael, S.; Martins, H.; Sá, E.; Carvalho, D.; Borrego, C.; Lopes, M.

    2016-01-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of + 200 W m"−"2) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of − 62.8 and − 35 W m"−"2, respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. - Graphical abstract: A combination of white roofs and increased green urban areas has the potential do reduce the sensible heat flux of urban areas, being of great effectiveness in improving the thermal comfort of the urban population under future climate. - Highlights: • Evaluation of energy fluxes behaviour under RCP8.5 climate change scenario • Increase in the frequency, duration and magnitude of severe heat waves • Cities must become resilient to be able to deal with climate change

  2. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, S., E-mail: sandra.rafael@ua.pt; Martins, H.; Sá, E.; Carvalho, D.; Borrego, C.; Lopes, M.

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of + 200 W m{sup −2}) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of − 62.8 and − 35 W m{sup −2}, respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. - Graphical abstract: A combination of white roofs and increased green urban areas has the potential do reduce the sensible heat flux of urban areas, being of great effectiveness in improving the thermal comfort of the urban population under future climate. - Highlights: • Evaluation of energy fluxes behaviour under RCP8.5 climate change scenario • Increase in the frequency, duration and magnitude of severe heat waves • Cities must become resilient to be able to deal with climate change

  3. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence

    International Nuclear Information System (INIS)

    Johnston, Carmel E; Ewing, Stephanie A; Harden, Jennifer W; Fuller, Christopher C; Manies, Kristen; Varner, Ruth K; Wickland, Kimberly P; Koch, Joshua C; Jorgenson, M Torre

    2014-01-01

    Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH 4 ), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO 2 ) and CH 4 exchange along sites that constitute a ∼1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH 4 exchange in July (123 ± 71 mg CH 4 –C m −2 d −1 ) was observed in features that have been thawed for 30 to 70 (<100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH 4 –C m −2 d −1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH 4 –C m −2 d −1 in July). Carbon lost via CH 4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH 4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH 4 emission, CO 2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH 4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH 4 dynamics. (paper)

  4. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  5. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  6. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    Science.gov (United States)

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  7. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  8. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    .e. uncoupled over India and coupled elsewhere, preliminary results suggest an increase in rainfall, surface temperature and pressure over northern India and the Himalayas, as well as a decrease in rainfall over the Bay of Bengal and the Maritime Continent. Other metrics, such as the northward propagation of intraseasonal rainfall variability and sensible and latent heat fluxes, are also discussed.

  9. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  10. FLUXNET Marconi Conference Gap-Filled Flux and Meteorology Data, 1992-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Fluxes of carbon dioxide, water vapor, and energy exchange have been measured at 38 forest, grassland, and crop sites as part of the EUROFLUX and AmeriFlux...

  11. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    Science.gov (United States)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture

  12. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  13. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  14. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  15. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  16. Exchange Network

    Science.gov (United States)

    The Environmental Information Exchange Network (EN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  17. Fluxes of ammonia in the coastal marine boundary layer

    DEFF Research Database (Denmark)

    Sørensen, L.L.; Hertel, O.; Skjøth, C.A.

    2003-01-01

    Concentrations of ammonia in air and ammonium in surface water were measured from a platform in the Southern North Sea close to the Dutch coast. Fluxes were derived from the measurements applying Monin-Obukhov similarity theory and exchange velocities calculated. The fluxes and air concentrations...

  18. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  19. On the physical air-sea fluxes for climate modeling

    NARCIS (Netherlands)

    Bonekamp, J.G.

    2001-01-01

    At the sea surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an

  20. On the exchange of sensible and latent heat between the atmosphere and melting snow

    Science.gov (United States)

    Stoy, Paul C.; Peitzsch, Erich H.; Wood, David J. A.; Rottinghaus, Daniel; Wohlfahrtd, Georg; Goulden, Michael; Ward, Helen

    2018-01-01

    to melt more slowly and earlier in the year under conditions of lower net radiation (Rn). Eddy covariance research networks such as Ameriflux must improve their ability to observe cold-season processes to enhance our understanding of water resources and surface-atmosphere exchange in a changing climate.

  1. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  2. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  3. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  4. Modeling the nitrogen fluxes in the Black Sea using a 3D coupledhydrodynamical-biogeochemical model: transport versus biogeochemicalprocesses, exchanges across the shelf break and comparison of the shelf anddeep sea ecodynamics

    Directory of Open Access Journals (Sweden)

    M. Grégoire

    2004-01-01

    Full Text Available A 6-compartment biogeochemical model of nitrogen cycling and plankton productivity has been coupled with a 3D general circulation model in an enclosed environment (the Black Sea so as to quantify and compare, on a seasonal and annual scale, the typical internal biogeochemical functioning of the shelf and of the deep sea as well as to estimate the nitrogen and water exchanges at the shelf break. Model results indicate that the annual nitrogen net export to the deep sea roughly corresponds to the annual load of nitrogen discharged by the rivers on the shelf. The model estimated vertically integrated gross annual primary production is 130gCm-2yr-1 for the whole basin, 220gCm-2yr-1 for the shelf and 40gCm-2yr-1 for the central basin. In agreement with sediment trap observations, model results indicate a rapid and efficient recycling of particulate organic matter in the sub-oxic portion of the water column (60-80m of the open sea. More than 95% of the PON produced in the euphotic layer is recycled in the upper 100m of the water column, 87% in the upper 80 m and 67% in the euphotic layer. The model estimates the annual export of POC towards the anoxic layer to 4 1010molyr-1. This POC is definitely lost for the system and represents 2% of the annual primary production of the open sea.

  5. Heat exchanger

    International Nuclear Information System (INIS)

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  6. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  7. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  8. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  9. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  10. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  11. Exchange rates.

    Science.gov (United States)

    Mills, Bev

    2003-09-01

    IN MAY this year, I was lucky enough to go to Larissa in northern Greece as part of Hope Exchange 2003, an annual study tour organised by the European Union's hospital committee and administered by the Institute of Healthcare Management (IHM).

  12. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  13. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  14. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    Science.gov (United States)

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  15. Micrometeorological measurements of ammonia and total reactive nitrogen exchange over semi-natural peatland

    Science.gov (United States)

    Brümmer, Christian; Richter, Undine; Schrader, Frederik; Kutsch, Werner

    2015-04-01

    deposition modeling added up to 8.5 kg N ha-1 yr-1. Values of monthly averaged diurnal flux courses of ΣNr ranged between -40 and +20 ng N m-2 s-1 with the majority of fluxes showing net deposition of ΣNr to the land surface. The cumulative net exchange of ΣNr resulted in an uptake of the ecosystem of only ~1.2 kg N ha-1 yr-1 with intermittent periods showing net ΣNr release. Our study stresses the importance of a thorough method inter-comparison, e.g. with denuder systems and dry deposition modeling. The implementation of adequate ammonia compensation point parameterizations becomes crucial in surface-atmosphere exchange schemes for bog vegetation. We found indication for an oversaturation of the investigated N-limited moorland site caused by agricultural practices such as livestock production and fertilization. Bog plants were temporarily not capable of taking up the surplus nitrogen from the atmosphere, which highlights the importance for a thorough reassessment of protection guidelines for vulnerable ecosystems such as peatlands.

  16. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  17. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  18. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  19. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  20. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  1. Exchanging information

    International Nuclear Information System (INIS)

    1971-01-01

    The Agency has a statutory mandate to foster 'the exchange of scientific and technical information on the peaceful uses of atomic energy'. The prime responsibility for this work within the Agency lies with the Division of Scientific and Technical Information, a part of the Department of Technical Operations. The Division accomplishes its task by holding conferences and symposia (Scientific Conferences Section), through the Agency Library, by publishing scientific journals, and through the International Nuclear Information System (INIS). The Computer Section of the Division, which offers services to the Agency as a whole, provides resources for the automation of data storage and retrieval. (author)

  2. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75......% for latent heat (lambdaE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods...

  3. Matchmaker Exchange.

    Science.gov (United States)

    Sobreira, Nara L M; Arachchi, Harindra; Buske, Orion J; Chong, Jessica X; Hutton, Ben; Foreman, Julia; Schiettecatte, François; Groza, Tudor; Jacobsen, Julius O B; Haendel, Melissa A; Boycott, Kym M; Hamosh, Ada; Rehm, Heidi L

    2017-10-18

    In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  4. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Harada, F; Yanagida, T; Fujie, K; Futawatari, H

    1975-04-30

    The purpose of this construction is the improvement of heat transfer in finned tube heat exchangers, and therefore the improvement of its efficiency or its output per unit volume. This is achieved by preventing the formation of flow boundary layers in gaseous fluid. This effect always occurs on flow of smooth adjacent laminae, and especially if these have pipes carrying liquid passing through them; it worsens the heat transfer of such a boundary layer considerably compared to that in the turbulent range. The fins, which have several rows of heat exchange tubes passing through them, are fixed at a small spacing on theses tubes. The fins have slots cut in them by pressing or punching, where the pressed-out material remains as a web, which runs parallel to the level of the fin and at a small distance from it. These webs and slots are arranged radially around every tube hole, e.g. 6 in number. For a suitable small tube spacing, two adjacent tubes opposite each other have one common slot. Many variants of such slot arrangements are illustrated.

  5. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  6. Flux of Cadmium through Euphausiids

    International Nuclear Information System (INIS)

    Benayoun, G.; Fowler, S.W.; Oregioni, B.

    1976-01-01

    Flux of the heavy metal cadmium through the euphausiid Meganyctiphanes norvegica was examined. Radiotracer experiments showed that cadmium can be accumulated either directly from water or through the food chain. When comparing equilibrium cadmium concentration factors based on stable element measurements with those obtained from radiotracer experiments, it is evident that exchange between cadmium in the water and that in euphausiid tissue is a relatively slow process, indicating that, in the long term, ingestion of cadmium will probably be the more important route for the accumulation of this metal. Approximately 10% of cadmium ingested by euphausiids was incorporated into internal tissues when the food source was radioactive Artemia. After 1 month cadmium, accumulated directly from water, was found to be most concentrated in the viscera with lesser amounts in eyes, exoskeleton and muscle, respectively. Use of a simple model, based on the assumption that cadmium taken in by the organism must equal cadmium released plus that accumulated in tissue, allowed assessment of the relative importance of various metabolic parameters in controlling the cadmium flux through euphausiids. Fecal pellets, due to their relatively high rate of production and high cadmium content, accounted for 84% of the total cadmium flux through M. norvegica. Comparisons of stable cadmium concentrations in natural euphausiid food and the organism's resultant fecal pellets indicate that the cadmium concentration in ingested material was increased nearly 5-fold during its passage through the euphausiid. From comparisons of all routes by which cadmium can be released from M. norvegica to the water column, it is concluded that fecal pellet deposition represents the principal mechanism effecting the downward vertical transport of cadmium by this species. (author)

  7. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  8. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  9. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  10. Finite-Time Approach to Microeconomic and Information Exchange Processes

    Directory of Open Access Journals (Sweden)

    Serghey A. Amelkin

    2009-07-01

    Full Text Available Finite-time approach allows one to optimize regimes of processes in macrosystems when duration of the processes is restricted. Driving force of the processes is difference of intensive variables: temperatures in thermodynamics, values in economics, etc. In microeconomic systems two counterflow fluxes appear due to the only driving force. They are goods and money fluxes. Another possible case is two fluxes with the same direction. The processes of information exchange can be described by this formalism.

  11. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  12. Neutron flux measurements at the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    Weller, A.; Maassberg, H.

    1985-10-01

    In addition to charge exchange analysis (CX) and charge exchange recombination spectroscopy (CXRS), the time evolution of the central ion temperature during neutral beam heated plasma discharges in the Wendelstein VII-A stellarator is derived from the neutron flux from thermal D-D reactions. In general, good quantitative agreement between the different methods is obtained. Neutron flux measurements also permit to investigate the slowing down of fast D + -ions from neutral beam injection (NBI). The results agree well with the predictions based on the assumption of a collisional slowing down mechanism. (orig.)

  13. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  14. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  15. On the use of radiative surface temperature to estimate sensible heat flux over sparse shrubs in Nevada

    Science.gov (United States)

    Chehbouni, A.; Nichols, W. D.; Qi, J.; Njoku, E. G.; Kerr, Y. H.; Cabot, F.

    1994-01-01

    The accurate partitioning of available energy into sensible and latent heat flux is crucial to the understanding of surface atmosphere interactions. This issue is more complicated in arid and semi arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. A three component model to estimate sensible heat flux over heterogeneous surfaces is presented. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil, the second of open 'illuminated' soil. Data collected at two different sites in Nevada (U.S.) during the Summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.

  16. Continuous magnetic flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  17. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  18. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  19. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  20. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism : A quantitative approach by non-stationary 13C metabolic flux analysis

    NARCIS (Netherlands)

    Suarez-Mendez, C. A.; Hanemaaijer, M.; ten Pierick, Angela; Wolters, J. C.; Heijnen, J.J.; Wahl, S. A.

    2016-01-01

    13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are

  1. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  2. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  3. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  4. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  5. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  6. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  7. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    Science.gov (United States)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  8. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  9. Meromorphic flux compactification

    Energy Technology Data Exchange (ETDEWEB)

    Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)

    2017-04-26

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  10. Meromorphic flux compactification

    International Nuclear Information System (INIS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-01-01

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  11. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  12. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  13. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  14. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  15. Testing experience with fast flux test facility

    International Nuclear Information System (INIS)

    Noordhoff, B.H.; McGough, C.B.; Nolan, J.E.

    1975-01-01

    Early FFTF project planning emphasized partial and full-scale testing of major reactor and plant prototype components under expected environmental conditions, excluding radiation fields. Confirmation of component performance during FFTF service was considered essential before actual FFTF startup, to provide increased assurance against FFTF startup delays or operational difficulties and downtime. Several new sodium facilities were constructed, and confirmation tests on the prototype components are now in progress. Test conditions and results to date are reported for the primary pump, intermediate heat exchanger, sodium-to-air dump heat exchanger, large and small sodium valves, purification cold trap, in-vessel handling machine, instrument tree, core restraint, control rod system, low-level flux monitor, closed loop ex-vessel machine, refueling equipment, and selected maintenance equipment. The significance and contribution of these tests to the FFTF and Liquid Metal Fast Breeder Reactor (LMFBR) program are summarized. (U.S.)

  16. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  17. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  18. Traveling-wave device with mass flux suppression

    Science.gov (United States)

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  19. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Science.gov (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  20. Exchange market pressure

    NARCIS (Netherlands)

    Jager, H.; Klaassen, F.; Durlauf, S.N.; Blume, L.E.

    2010-01-01

    Currencies can be under severe pressure in the foreign exchange market, but in a fixed (or managed) exchange rate regime that is not fully visible via the change in the exchange rate. Exchange market pressure (EMP) is a concept developed to nevertheless measure the pressure in such cases. This

  1. Alongshore wind stress and heat flux divergence off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, B.P.; Rao, D.P.

    Annual variation of heat flux divergence (Qv) was computed for the coastal waters of Visakhapatnam. The mean values of net heat exchange (Qn) and heat flux divergence (Qv) were found to be 114 and 115 W.m/2 respectively on annual scale. The net heat...

  2. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    Science.gov (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  3. The NASA Carbon Airborne Flux Experiment (CARAFE: instrumentation and methodology

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2018-03-01

    Full Text Available The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1–1000 km, potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40–90 % for a nominal resolution of 2 km or 16–35 % when averaged over a full leg (typically 30–40 km. CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  4. The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology

    Science.gov (United States)

    Wolfe, Glenn M.; Kawa, S. Randy; Hanisco, Thomas F.; Hannun, Reem A.; Newman, Paul A.; Swanson, Andrew; Bailey, Steve; Barrick, John; Thornhill, K. Lee; Diskin, Glenn; DiGangi, Josh; Nowak, John B.; Sorenson, Carl; Bland, Geoffrey; Yungel, James K.; Swenson, Craig A.

    2018-03-01

    The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1-1000 km), potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40-90 % for a nominal resolution of 2 km or 16-35 % when averaged over a full leg (typically 30-40 km). CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  5. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  6. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  7. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  8. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  9. Flux vacua and supermanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Pietro Antonio [CERN, Theory Unit, CH-1211 Geneva, 23 (Switzerland); Marescotti, Matteo [Dipartimento di Fisica Teorica, Universita di Torino, Via Giuria 1, I-10125, Turin (Italy)

    2007-01-15

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds.

  10. Flux vacua and supermanifolds

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Marescotti, Matteo

    2007-01-01

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds

  11. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  12. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  13. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  14. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.

    1986-01-01

    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  15. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  16. Solar Wind Earth Exchange Project (SWEEP)

    Science.gov (United States)

    2016-10-28

    highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the...Newton, an X-ray astronomical observatory. We use OMNI solar wind conditions, heavy ion composition data from ACE, the Hodges neutral hydrogen model...of SWEEP was to compare theoretical models of X-ray emission in the terrestrial magnetosphere caused by the Solar Wind Charge Exchange

  17. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holladay, S. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cook, R. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Falge, E. [Univ. Bayreuth, Bayreuth (Germany); Baldocchi, D. [Univ. of California, Berkeley, CA (United States); Gu, L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  18. Design of a flux buffer based on the flux shuttle

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented

  19. Lobotomy of flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala,Box 803, SE-751 08 Uppsala (Sweden); Guarino, Adolfo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Roest, Diederik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4 9747 AG Groningen (Netherlands)

    2014-05-15

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T{sup 6} with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N=4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N=8 theory.

  20. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.

    Science.gov (United States)

    Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao

    2017-01-30

    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  2. Flux agreement above a Scots pine plantation

    Science.gov (United States)

    Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.

    1996-03-01

    The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent

  3. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  4. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  5. NCHRP peer exchange 2008.

    Science.gov (United States)

    2008-09-01

    Peer exchanges for state department of transportation (DOT) research programs originated with : the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). That federal legislation : required the states to conduct periodic peer exchanges to...

  6. Indiana Health Information Exchange

    Science.gov (United States)

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  7. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  8. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Kock

    2012-03-01

    Full Text Available Sea-to-air and diapycnal fluxes of nitrous oxide (N2O into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.

  9. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    Science.gov (United States)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  10. Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger

    OpenAIRE

    Xiao-Hui Sun; Hongbin Yan; Mehrdad Massoudi; Zhi-Hua Chen; Wei-Tao Wu

    2018-01-01

    It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turb...

  11. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  12. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  13. Critical heat flux evaluation

    International Nuclear Information System (INIS)

    Banner, D.

    1995-01-01

    Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs

  14. Neutron flux monitor

    International Nuclear Information System (INIS)

    Seki, Eiji; Tai, Ichiro.

    1984-01-01

    Purpose: To maintain the measuring accuracy and the reponse time within an allowable range in accordance with the change of neutron fluxes in a nuclear reactor pressure vessel. Constitution: Neutron fluxes within a nuclear reactor pressure vessel are detected by detectors, converted into pulse signals and amplified in a range switching amplifier. The amplified signals are further converted through an A/D converter and digital signals from the converter are subjected to a square operation in an square operation circuit. The output from the circuit is inputted into an integration circuit to selectively accumulate the constant of 1/2n, 1 - 1/2n (n is a positive integer) respectively for two continuing signals to perform weighing. Then, the addition is carried out to calculate the integrated value and the addition number is changed by the chane in the number n to vary the integrating time. The integrated value is inputted into a control circuit to control the value of n so that the fluctuation and the calculation time for the integrated value are within a predetermined range and, at the same time, the gain of the range switching amplifier is controlled. (Seki, T.)

  15. Exchange rate policy

    Directory of Open Access Journals (Sweden)

    Plačkov Slađana

    2013-01-01

    Full Text Available Small oscillations of exchange rate certainly affect the loss of confidence in the currency (Serbian dinar, CSD and because of the shallow market even the smallest change in the supply and demand leads to a shift in exchange rate and brings uncertainty. Some economists suggest that the course should be linked to inflation and thus ensure predictable and stable exchange rates. Real exchange rate or slightly depressed exchange rate will encourage the competitiveness of exporters and perhaps ensure the development of new production lines which, in terms of overvalued exchange rate, had no economic justification. Fixed exchange rate will bring lower interest rates, lower risk and lower business uncertainty (uncertainty avoidance, but Serbia will also reduce foreign exchange reserves by following this trend. On the other hand, a completely free exchange rate, would lead to a (real fall of Serbian currency, which in a certain period would lead to a significant increase in exports, but the consequences for businessmen and citizens with loans pegged to the euro exchange rate, would be disastrous. We will pay special attention to the depreciation of the exchange rate, as it is generally favorable to the export competitiveness of Serbia and, on the other hand, it leads to an increase in debt servicing costs of the government as well as of the private sector. Oscillations of the dinar exchange rate, appreciation and depreciation, sometimes have disastrous consequences on the economy, investors, imports and exports. In subsequent work, we will observe the movement of the dinar exchange rate in Serbia, in the time interval 2009-2012, in order to strike a balance and maintain economic equilibrium. A movement of foreign currencies against the local currency is controlled in the foreign exchange market, so in case economic interests require, The National Bank of Serbia (NBS, on the basis of arbitrary criteria, can intervene in the market.

  16. Automated exchange transfusion and exchange rate.

    Science.gov (United States)

    Funato, M; Shimada, S; Tamai, H; Taki, H; Yoshioka, Y

    1989-10-01

    An automated blood exchange transfusion (BET) with a two-site technique has been devised by Goldmann et al and by us, using an infusion pump. With this method, we successfully performed exchange transfusions 189 times in the past four years on 110 infants with birth weights ranging from 530 g to 4,000 g. The exchange rate by the automated method was compared with the rate by Diamond's method. Serum bilirubin (SB) levels before and after BET and the maximal SB rebound within 24 hours after BET were: 21.6 +/- 2.4, 11.5 +/- 2.2, and 15.0 +/- 1.5 mg/dl in the automated method, and 22.0 +/- 2.9, 11.2 +/- 2.5, and 17.7 +/- 3.2 mg/dl in Diamond's method, respectively. The result showed that the maximal rebound of the SB level within 24 hours after BET was significantly lower in the automated method than in Diamond's method (p less than 0.01), though SB levels before and after BET were not significantly different between the two methods. The exchange rate was also measured by means of staining the fetal red cells (F cells) both in the automated method and in Diamond's method, and comparing them. The exchange rate of F cells in Diamond's method went down along the theoretical exchange curve proposed by Diamond, while the rate in the automated method was significantly better than in Diamond's, especially in the early stage of BET (p less than 0.01). We believe that the use of this automated method may give better results than Diamond's method in the rate of exchange, because this method is performed with a two-site technique using a peripheral artery and vein.

  17. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  18. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    Science.gov (United States)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  19. Thermotronics. Towards nanocircuits to manage radiative heat flux

    International Nuclear Information System (INIS)

    Ben-Abdallah, Philippe; Sherbrooke Univ., PQ; Biehs, Svend-Age

    2017-01-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20 th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  20. Thermotronics. Towards nanocircuits to manage radiative heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik

    2017-05-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20{sup th} century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  1. Oxygen, nitrogen and sulphide fluxes in the Black Sea

    Directory of Open Access Journals (Sweden)

    S.K. KONOVALOV

    2000-12-01

    Full Text Available The fluxes and production/consumption rates of oxygen, nitrate, ammonium and sulphide are estimated in the paper utilising results of the 1.5-dimensional stationary model of vertical exchange in the Black Sea (Samodurov & Ivanov, 1998. The profiles of the vertical flux and rate of production/consumption of these substances have revealed a number of intriguing features in the biogeochemical nature of the Black Sea. An approximate redox balance of the counter-fluxes of nitrate and ammonium into the sub-oxic zone has been revealed confirming that intensive denitrification may be the primary loss of nitrogen in the Black Sea. A low ratio of the nitrate stock to the flux of nitrate from the oxycline confirms the possibility of prominent changes in the distribution of nitrate on the time scale of a year. The ratio of the nitrate to oxygen vertical flux has revealed a lack of nitrate in the oxycline above the nitrate maximum. The lateral (related to the "Bosporus plume" flux of oxygen in the layer of the main pycnocline appears to be very important for the existing biogeochemical structure of the Black sea water column being the reason of sulphide consumption inside the anoxic zone and changes in the ammonium-sulphide stoichiometry of the anoxic zone, the primary reason of the existence of the sub-oxic layer and the basic reason of relative stability of the sulphide onset.

  2. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  3. FLUXNET: A Global Network of Eddy-Covariance Flux Towers

    Science.gov (United States)

    Cook, R. B.; Holladay, S. K.; Margle, S. M.; Olsen, L. M.; Gu, L.; Heinsch, F.; Baldocchi, D.

    2003-12-01

    The FLUXNET global network was established to aid in understanding the mechanisms controlling the exchanges of carbon dioxide, water vapor, and energy across a variety of terrestrial ecosystems. Flux tower data are also being used to validate ecosystem model outputs and to provide information for validating remote sensing based products, including surface temperature, reflectance, albedo, vegetation indices, leaf area index, photosynthetically active radiation, and photosynthesis derived from MODIS sensors on the Terra and Aqua satellites. The global FLUXNET database provides consistent and complete flux data to support global carbon cycle science. Currently FLUXNET consists of over 210 sites, with most flux towers operating continuously for 4 years or longer. Gap-filled data are available for 53 sites. The FLUXNET database contains carbon, water vapor, sensible heat, momentum, and radiation flux measurements with associated ancillary and value-added data products. Towers are located in temperate conifer and broadleaf forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra on five continents. Selected MODIS Land products in the immediate vicinity of the flux tower are subsetted and posted on the FLUXNET Web site for 169 flux-towers. The MODIS subsets are prepared in ASCII format for 8-day periods for an area 7 x 7 km around the tower.

  4. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  5. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  6. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  7. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    Science.gov (United States)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model

  8. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  9. Outlook for ion exchange

    International Nuclear Information System (INIS)

    Kunin, R.

    1977-01-01

    This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties

  10. Exchange processes between a coniferous forest and the atmosphere

    NARCIS (Netherlands)

    Bosveld, F.C.

    1999-01-01

    This thesis deals with the research question: which processes are relevant in controlling the exchange fluxes between the forest and the atmosphere and how can this control be quantified? Answering this question is relevant for research in the fields of air pollution, weather and climate

  11. Carbon cycling and gas exchange in soils

    International Nuclear Information System (INIS)

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO 2 and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of 137 Cs and 14 C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO 2 and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO 2 and CH 4 . In Chapter 3, the natural tracer 222 Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest

  12. Titan Coupled Surface/Atmosphere Retrievals

    Science.gov (United States)

    West, R. A.; Pitman, K. M.

    2009-05-01

    Titan's thick haze obscures its surface at visible wavelengths and hinders surface photometric studies in the near-infrared. The large vertical extent of the haze produces two effects which require radiative transfer analysis beyond the capability of plane-parallel multi-scatter models. Haze aerosols extend to altitudes above 500 km and require a spherical-shell RT algorithm close to the limb or terminator. Even near nadir viewing, horizontal scattering at spatial scales less than a few hundred km requires a code capable of simulating the adjacency effect. The adjacency effect will reduce contrast more for small spatial scales than for large spatial scales, and the amount of contrast reduction depends on many factors (haze optical thickness, vertical distribution, single scattering albedo, scattering geometry, spatial scale). Titan's haze is strongly forward scattering even near 1-µm wavelength and many RT codes do a poor job. Fortunately the problem is more tractable at longer wavelengths. We show how data from the Cassini VIMS and ISS instruments can be used to understand surface contrast and atmospheric haze properties.

  13. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  14. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    , while there were no discernable drivers of CO2 fluxes in Stordalen, growing season length showed significant controls on net ecosystem exchange (NEE) in Zackenberg and with gross primary production (GPP) and ecosystem respiration (Re) in Daring Lake. This is important considering the recent observations...... compensates for the shorter growing season due to increase snow cover and duration. Other drivers of growing season CO2 fluxes were mainly air temperature, growing degree days and photosynthetic active radiation in a high and a low Arctic tundra ecosystem. Upscaling Arctic tundra NEE based on an acquired...... understanding of the drivers of NEE during this research venture, shows an estimation of reasonable fluxes at three independent sites in low Arctic Alaska. However, this later project is still ongoing and its findings are only preliminary....

  15. Microsoft Exchange 2013 cookbook

    CERN Document Server

    Van Horenbeeck, Michael

    2013-01-01

    This book is a practical, hands-on guide that provides the reader with a number of clear, step-by-step exercises.""Microsoft Exchange 2013 Cookbook"" is targeted at network administrators who deal with the Exchange server in their day-to-day jobs. It assumes you have some practical experience with previous versions of Exchange (although this is not a requirement), without being a subject matter expert.

  16. Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM

    OpenAIRE

    Nilsen, Jan Even Øie; Gao, Yongqi; Drange, Helge; Furevik, Tore; Bentsen, Mats

    2003-01-01

    The variability in the volume exchanges between the North Atlantic and the Nordic Seas during the last 50 years is investigated using a synoptic forced, global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The simulated volume fluxes agree with the existing observations. The net volume flux across the Faroe-Shetland Channel (FSC) is positively correlated with the net flux through the Denmark Strait (DS; R = 0.74 for 3 years low pass filtering), but negatively correlated with ...

  17. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  18. Variability in carbon exchange of European croplands

    DEFF Research Database (Denmark)

    Eddy J, Moors; Jacobs, Cor; Jans, Wilma

    2010-01-01

    The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken as the st......The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken...... as the standard deviation of these cropping periods was 251 gC m-2. These numbers do not include lateral inputs such as the carbon content of applied manure, nor the carbon exchange out of the cropping period. Both are expected to have a major effect on the C budget of high energy summer crops such as maize. NEE...... and gross primary production (GPP) can be estimated by crop net primary production based on inventories of biomass at these sites, independent of species and regions. NEE can also be estimated by the product of photosynthetic capacity and the number of days with the average air temperature >5 °C. Yield...

  19. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Beverly E. Law; Jiquan Chen; Dennis D. Baldocchi; David R. Cook; Ram Oren; Andrew D. Richardson; Sonia Wharton; Siyan Ma; Tomothy A. Martin; Shashi B. Verma; Andrew E. Suyker; Russel L. Scott; Russel K. Monson; Marcy Litvak; David Y. Hollinger; Ge Sun; Kenneth J. Davis; Paul V. Bolstad; Sean P. Burns; Peter S. Curtis; BErt G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; Gabriel G. Katul; Roser Matamala; Steve McNulty; Tilden P. Meyers; J. William Munger; Asko Noormets; Walter C. Oechel; Kyaw Tha U Paw; Hans Peter Schmid; Gregory Starr; Margaret S. Torn; Steven C. Wofsy

    2010-01-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales....

  20. Reactor fuel exchanging facility

    International Nuclear Information System (INIS)

    Kubota, Shin-ichi.

    1981-01-01

    Purpose: To enable operation of an emergency manual operating mechanism for a fuel exchanger with all operatorless trucks and remote operation of a manipulator even if the exchanger fails during the fuel exchanging operation. Constitution: When a fuel exchanging system fails while connected to a pressure tube of a nuclear reactor during a fuel exchanging operation, a stand-by self-travelling truck automatically runs along a guide line to the position corresponding to the stopping position at that time of the fuel exchanger based on a command from a central control chamber. At this time the truck is switched to manual operation, and approaches the exchanger while being monitored through a television camera and then stops. Then, a manipurator is connected to the emergency manual operating mechanism of the exchanger, and is operated through necessary emergency steps by driving the snout, the magazine, the grab or the like in the exchanger in response to the problem, and necessary operations for the emergency treatment are thus performed. (Sekiya, K.)

  1. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  2. AmeriFlux Site and Data Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    The AmeriFlux network was established in 1996. The network provides continuous observations of ecosystem-level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. The current network, including both active and inactive sites, consists of 141 sites in North, Central, and South America. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the AmeriFlux network including long-term data storage and dissemination. AmeriFlux offers a broad suite of value-added data products: Level 1 data products at 30 minute or hourly time intervals provided by the site teams, Level 2 data processed by CDIAC and Level 3 and 4 files created using CarboEurope algorithms. CDIAC has developed a relational database to house the vast array of AmeriFlux data and information and a web-based interface to the database, the AmeriFlux Site and Data Exploration System (http://ameriflux.ornl.gov), to help users worldwide identify, and more recently, download desired AmeriFlux data. AmeriFlux and CDIAC offer numerous value-added AmeriFlux data products (i.e., Level 1-4 data products, biological data) and most of these data products are or will be available through the new data system. Vital site information (e.g., location coordinates, dominant species, land-use history) is also displayed in the new system. The data system provides numerous ways to explore and extract data. Searches can be done by site, location, measurement status, available data products, vegetation types, and by reported measurements just to name a few. Data can be accessed through the links to full data sets reported by a site, organized by types of data products, or by creating customized datasets based on user search criteria. The new AmeriFlux download module contains features intended to ease compliance of the AmeriFlux fair-use data policy, acknowledge the contributions of submitting

  3. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  4. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  5. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  6. Assessing environmental impacts on stream water quality: the use of cumulative flux and cumulative flux difference approaches to deforestation of the Hafren Forest, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A method for examining the impacts of disturbance on stream water quality based on paired catchment “controlâ€? and “responseâ€? water quality time series is described in relation to diagrams of cumulative flux and cumulative flux difference. The paper describes the equations used and illustrates the patterns expected for idealised flux changes followed by an application to stream water quality data for a spruce forested catchment, the Hore, subjected to clear fell. The water quality determinands examined are sodium, chloride, nitrate, calcium and acid neutralisation capacity. The anticipated effects of felling are shown in relation to reduction in mist capture and nitrate release with felling as well as to the influence of weathering and cation exchange mechanisms, but in a much clearer way than observed previously using other approaches. Keywords: Plynlimon, stream, Hore, acid neutralisation capacity, calcium, chloride, nitrate, sodium, cumulative flux, flux

  7. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  8. Energy flux simulation in heterogeneous cropland - a two year study

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2016-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially

  9. Carbon fluxes from an urban tropical grassland

    International Nuclear Information System (INIS)

    Ng, B.J.L.; Hutyra, L.R.; Nguyen, H.; Cobb, A.R.; Kai, F.M.; Harvey, C.; Gandois, L.

    2015-01-01

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO 2 respiration. Standing aboveground turfgrass biomass was 80 gC m −2 , with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1 . The contribution of autotrophic respiration was 49–76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO 2 concentrations. - Highlights: • We measured urban turfgrass CO 2 respiration rates and soil characteristics. • Mean observed ecosystem respiration was 7.9 ± 1.1 μmol m −2  s −1 . • Soil temperature and moisture were largely insignificant drivers of observed flux. - We found a Singapore urban turfgrass to be approximately carbon neutral, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1

  10. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  11. Squeezing Flux Out of Fat

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2018-01-01

    Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...

  12. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  13. GRUNDTVIG in transnational exchange

    DEFF Research Database (Denmark)

    Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg.......Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg....

  14. Building Relationships through Exchange

    Science.gov (United States)

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder…

  15. Exotic baryonium exchanges

    International Nuclear Information System (INIS)

    Nicolescu, B.

    1978-05-01

    The prominent effects supposed to be associated with the exchange of exotic baryonium Regge trajectories are reviewed. The experimental presence of all expected effects leads to suggest that the baryonium exchange mechanism is a correct phenomenological picture and that mesons with isospin 2 or 3/2 or with strangeness 2, strongly coupled to the baryon-antibaryon channels, must be observed

  16. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  17. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  18. Standardizing exchange formats

    International Nuclear Information System (INIS)

    Lemmel, H.D.; Schmidt, J.J.

    1992-01-01

    An international network of co-operating data centres is described who maintain identical data bases which are simultaneously updated by an agreed data exchange procedure. The agreement covers ''data exchange formats'' which are compatible to the centres' internal data storage and retrieval systems which remain different, optimized at each centre to the available computer facilities and to the needs of the data users. Essential condition for the data exchange is an agreement on common procedures for the data exchange is an agreement on common procedures for the data compilation, including critical data analysis and validation. The systems described (''EXFOR'', ''ENDF'', ''CINDA'') are used for ''nuclear reaction data'', but the principles used for data compilation and exchange should be valid also for other data types. (author). 24 refs, 4 figs

  19. Fractional flux excitations and flux creep in a superconducting film

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.

    1995-01-01

    We consider the transport properties of a modulated superconducting film in a magnetic field parallel to the film. Modulation can be either intrinsic, due to the layered structure of the high-T c superconductors, or artificial, e.g. due to thickness modulation. This system has an infinite set ( >) of pinned phases. In the pinned phase the excitation of flux loops with a fractional number of flux quanta by the applied current j results in flux creep with a generated voltage V ∝ exp[-jo/j[. (orig.)

  20. Water flux characterization through hydraulic head and temperature data assimilation: Numerical modeling and sandbox experiments

    Science.gov (United States)

    Ju, Lei; Zhang, Jiangjiang; Chen, Cheng; Wu, Laosheng; Zeng, Lingzao

    2018-03-01

    Spatial distribution of groundwater recharge/discharge fluxes has an important impact on mass and energy exchanges in shallow streambeds. During the last two decades, extensive studies have been devoted to the quantification of one-dimensional (1-D) vertical exchange fluxes. Nevertheless, few studies were conducted to characterize two-dimensional (2-D) heterogeneous flux fields that commonly exist in real-world cases. In this study, we used an iterative ensemble smoother (IES) to quantify the spatial distribution of 2-D exchange fluxes by assimilating hydraulic head and temperature measurements. Four assimilation scenarios corresponding to different potential field applications were tested. In the first three scenarios, the heterogeneous hydraulic conductivity fields were first inferred from hydraulic head and/or temperature measurements, and then the flux fields were derived through Darcy's law using the estimated conductivity fields. In the fourth scenario, the flux fields were estimated directly from the temperature measurements, which is more efficient and especially suitable for the situation that a complete knowledge of flow boundary conditions is unavailable. We concluded that, the best estimation could be achieved through jointly assimilating hydraulic head and temperature measurements, and temperature data were superior to the head data when they were used independently. Overall, the IES method provided more robust and accurate vertical flux estimations than those given by the widely used analytical solution-based methods. Furthermore, IES gave reasonable uncertainty estimations, which were unavailable in traditional methods. Since temperature can be accurately monitored with high spatial and temporal resolutions, the coupling of heat tracing techniques and IES provides promising potential in quantifying complex exchange fluxes under field conditions.

  1. LMFBR intermediate-heat-exchanger experience

    International Nuclear Information System (INIS)

    Cho, S.M.; Beaver, T.R.

    1983-01-01

    This paper presents developmental and operating experience of large Intermediate Heat Exchangers (IHX's) in US from the Fast Flux Test Facility (FFTF) to the Clinch River Breeder Reactor Plant (CRBRP) to the Large Development Plant (LDP). Design commonalities and deviations among these IHX's are synopsized. Various developmental tests that were conducted in the areas of hydraulic, structural and mechanical design are also presented. The FFTF is currently operating. Performance data of the FFTF IHXs are reviewed, and comparisons between actual and predicted performances are made. The results are used to assess the adequacy of IHX designs

  2. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  3. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  4. Particle flux across the mid-European continental margin

    CERN Document Server

    Antia, A N; Peinert, R

    1999-01-01

    Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49 degrees N within the Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid- slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off- slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of partic...

  5. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  6. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.

    2010-01-01

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  7. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Science.gov (United States)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  8. Inundation and Gas Fluxes from Amazon Lakes and Wetlands

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.

    2015-12-01

    Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than

  9. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  10. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  11. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  12. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  13. Specification of ROP flux shape

    International Nuclear Information System (INIS)

    Min, Byung Joo; Gray, A.

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs

  14. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  15. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  16. Flux networks in metabolic graphs

    International Nuclear Information System (INIS)

    Warren, P B; Queiros, S M Duarte; Jones, J L

    2009-01-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms

  17. Data Exchange Inventory System (DEXI)

    Data.gov (United States)

    Social Security Administration — Enterprise tool used to identify data exchanges occurring between SSA and our trading partners. DEXI contains information on both incoming and outgoing exchanges and...

  18. Pion double charge exchange

    International Nuclear Information System (INIS)

    Cooper, M.D.

    1978-01-01

    The pion double charge exchange data on the oxygen isotopes is reviewed and new data on 9 Be, 12 C, 24 Mg, and 28 Si are presented. Where theoretical calculations exist, they are compared to the data. 9 references

  19. Research peer exchange, 2014.

    Science.gov (United States)

    2017-08-01

    The WSDOT Research Peer Exchange was held in Olympia, Washington on May 13 and 14, 2014 and addressed Research Program and Project Management as described in the following paragraphs: Program Management There are numerous funding programs, standing c...

  20. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  1. Exchange Risk Management Policy

    CERN Document Server

    2005-01-01

    At the Finance Committee of March 2005, following a comment by the CERN Audit Committee, the Chairman invited the Management to prepare a document on exchange risk management policy. The Finance Committee is invited to take note of this document.

  2. HUD Exchange Grantee Database

    Data.gov (United States)

    Department of Housing and Urban Development — The About Grantees section of the HUD Exchange brings up contact information, reports, award, jurisdiction, and location data for organizations that receive HUD...

  3. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  4. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  5. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  6. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  7. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  8. Floating Exchange Rate Regime

    OpenAIRE

    Quader, Syed Manzur

    2004-01-01

    In recent years, many developing countries having a history of high inflation, unfavorable balance of payment situation and a high level of foreign currencies denominated debt, have switched or are in the process of switching to a more flexible exchange rate regime. Therefore, the stability of the exchange rate and the dynamics of its volatility are more crucial than before to prevent financial crises and macroeconomic disturbances. This paper is designed to find out the reasons behind Bangla...

  9. Heat exchange apparatus

    International Nuclear Information System (INIS)

    Thurston, G.C.; McDaniels, J.D.; Gertsch, P.R.

    1979-01-01

    The present invention relates to heat exchangers used for transferring heat from the gas cooled core of a nuclear reactor to a secondary medium during standby and emergency conditions. The construction of the heat exchanger described is such that there is a minimum of welds exposed to the reactor coolant, the parasitic heat loss during normal operation of the reactor is minimized and the welds and heat transfer tubes are easily inspectable. (UK)

  10. Hibernation and gas exchange.

    Science.gov (United States)

    Milsom, William K; Jackson, Donald C

    2011-01-01

    Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature. © 2011 American Physiological Society.

  11. Real exchange rate misalignments

    OpenAIRE

    Terra, Maria Cristina T.; Valladares, Frederico Estrella Carneiro

    2003-01-01

    This paper characterizes episodes of real appreciations and depreciations for a sample of 85 countries, approximately from 1960 to 1998. First, the equilibrium real exchange rate series are constructed for each country using Goldfajn and Valdes (1999) methodology (cointegration with fundamentals). Then, departures from equilibrium real exchange rate (misalignments) are obtained, and a Markov Switching Model is used to characterize the misalignments series as stochastic autor...

  12. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  13. Hydraulic Validation of the LHC Cold Mass Heat Exchanger Tube

    CERN Document Server

    Provenaz, P

    1998-01-01

    The knowledge of the helium mass flow vs. the fraction of the tube wetted by the liquid helium II in the heat exchanger is a crucial input parameter for the heat exchange since the heat flux is direct ly proportional to the wetted surface. In the range of liquid and gas velocities inside the heat exchanger, the liquid flow behaves like in an open channel. Looking at the flow equations for such a s ituation, the velocity depends on the fluid properties only by the friction factor which is a function of the Reynolds number. Thus it was decided to build an experiment with water in order to check t he open channel equations in the heat exchanger geometry. This paper shows the results for water and gives the extrapolation for helium.

  14. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  15. P fluxes and exotic branes

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-12-21

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  16. P fluxes and exotic branes

    International Nuclear Information System (INIS)

    Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano

    2016-01-01

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T 6 /[ℤ 2 ×ℤ 2 ] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  17. Cryptographic Combinatorial Securities Exchanges

    Science.gov (United States)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  18. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  19. Turbulent exchange processes of the planetary boundary layer - TUAREG

    International Nuclear Information System (INIS)

    Beier, N.; Weber, M.

    1992-11-01

    A mobile groundstation with associated sovftware has been developed to measure fluxes of properties and constituents, and the vertical distribution of chemically reactive trace gases. The significance and accuracy of the derived fluxes have been investigated. Within the validity of the meteorological assumptions used, the error is less than 10%. The turbulent vertical transport has been investigated over homogeneous areas in mixed heterogeneous terrain during four field experiments. The following results were obtained: characteristics of the structure of the turbulence - diurnal variations of the fluxes of momentum and energy - the vertical distribution of NO, NO 2 and O 3 -diurnal variations of their flux and deposition velocity - balance of ozone and exchange processes in the convective PBL. Correlation and profile measurements at a fixed point in mixed heterogeneous terrain are representative of the surface type, if the upwind dimension of the homogeneous areas is at least 500 m. If this is not the case, anisotropic and organized turbulence develops. Then the formally calculated fluxes arise, in part, due to random numbers and cannot be attributed to a local site. A definitive conclusion would require measurements of the three dimensional structure of turbulence. There are no counter-gradient fluxes in the nondivergent PBL. They arise from the use of inadequate integration intervals in correlation and profile calculations. In contrast, they do occur in regions of divergence. Since the similarity theory is not valid in this case, fluxes can be neither measured nor calculated. Airborne measurements were carried out by the ''Institut fuer Physik der Atmosphaere'', DLR. The following results are attached: the mean structure of the PBL - the turbulent fluxes of meteorological variables - the horizontal variability of the fluxes near the ground - the turbulent flux of ozone and the ozone balance. Comparisons with model calculations show good agreement. (orig./KW). 116

  20. Nonlinear interaction of an ion flux with plasma

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Krasheninnikov, S.I.; Pistunovich, V.I.; Soboleva, T.K.; Yushamanov, P.N.

    The present report discusses the interaction of an ion beam, formed during the charge exchange of injected neutral atoms, with a plasma. Methods of analytical study by means of quasi-linear equations as well as two-dimensional numerical modelling are used. It is shown that at a beam velocity U 0 /C/sub s/ approximately less than 1 / 2 , the relaxation process may be described by using the theory of quasi-linear relaxation of electron beams, at U 0 /C/sub s/ approximately greater than 10; one can neglect the slowing down of the ion beam and consider only the angular spread. An analytical dependence of the spread angle on time was obtained. On the basis of the ion beam relaxation theory evolved, experiments on charge exchange of plasma fluxes on a gas target are analyzed. It is shown that the anomalous scattering of the plasma flux observed in a series of experiments may be explained by the interaction of ions of the flux with ion-acoustic oscillations of the target plasma. Consideration of damping of ion-acoustic noise by the plasma electrons and ions leads to a limitation of the relaxation of the angular distribution function. The relationships obtained are in good agreement with the experimental results

  1. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  2. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom)], E-mail: ms@ceh.ac.uk; Nemitz, E. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Erisman, J.W. [ECN, Clean Fossil Fuels, PO Box 1, 1755 ZG Petten (Netherlands); Beier, C. [Riso National Laboratory, PO Box 49, DK-4000 Roskilde (Denmark); Bahl, K. Butterbach [Institute of Meteorology and Climate Research, Atmos. Environ. Research (IMK-IFU), Research Centre Karlsruhe GmbH, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen (Germany); Cellier, P. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Vries, W. de [Alterra, Green World Research, PO Box 47, 6700 AA Wageningen (Netherlands); Cotrufo, F. [Dip. Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy); Skiba, U.; Di Marco, C.; Jones, S. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Laville, P.; Soussana, J.F.; Loubet, B. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Twigg, M.; Famulari, D. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Whitehead, J.; Gallagher, M.W. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL (United Kingdom); Neftel, A.; Flechard, C.R. [Agroscope FAL Reckenholz, Federal Research Station for Agroecology and Agriculture, PO Box, CH 8046 Zurich (Switzerland)] (and others)

    2007-11-15

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N{sub 2} fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N{sub 2}O, NO and bi-directional NH{sub 3} exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols. - Current N research is separated by form; the challenge is to link N components, scales and issues.

  3. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    Science.gov (United States)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  4. LBA-ECO CD-10 CO2 and H2O Eddy Flux Data at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports eddy flux measurements of CO2 and H2O exchange and associated meteorological measurements at the Para Western (Santarem) - km 67, Primary...

  5. LBA-ECO CD-10 CO2 and H2O Eddy Fluxes at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports eddy flux measurements of CO2 and H2O exchange and associated meteorological measurements at the Para Western (Santarem) - km 67,...

  6. Tensor exchange amplitudes in K +- N charge exchange reactions

    International Nuclear Information System (INIS)

    Svec, M.

    1979-01-01

    Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy

  7. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  8. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  9. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  10. Optimal determination of the parameters controlling biospheric CO{sub 2} fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Tuula [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Research; Ciais, Philippe; Moulin, Cyril [UMR CEA-CNRS, Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l' Environnement; Chevillard, Anne [CEA, Fontenay-aux-Roses (France). DPRE/SERGD/LEIRPA

    2004-04-01

    Ecosystem CO{sub 2} flux measurements using the eddy covariance method were compared with the biospheric CO{sub 2} exchange estimates of a regional scale atmospheric model. The model described the seasonal patterns quite well, but underestimated the amplitude of the fluxes, especially at the northern sites. Two model parameters, photosynthetic efficiency for light use and Q{sub 10} for soil respiration, were re-evaluated on a diurnal and seasonal basis using the results from flux measurements. In most cases the photosynthetic efficiency was higher than the earlier estimate. The resulting flux was very sensitive to the value of photosynthetic efficiency, while changes in Q{sub 10} did not have a significant effect.

  11. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis.

    Science.gov (United States)

    Suarez-Mendez, C A; Hanemaaijer, M; Ten Pierick, Angela; Wolters, J C; Heijnen, J J; Wahl, S A

    2016-12-01

    13 C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h -1 ) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13 C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.

  12. Exchanging Description Logic Knowledge Bases

    NARCIS (Netherlands)

    Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; Sherkhonov, E.

    2012-01-01

    In this paper, we study the problem of exchanging knowledge between a source and a target knowledge base (KB), connected through mappings. Differently from the traditional database exchange setting, which considers only the exchange of data, we are interested in exchanging implicit knowledge. As

  13. Social dilemmas as exchange dilemmas

    NARCIS (Netherlands)

    Dijkstra, Jacob; van Assen, Marcel A.L.M.

    2016-01-01

    We develop a new paradigm to study social dilemmas, called exchange dilemmas. Exchange dilemmas arise from externalities of exchanges with third parties, and many real-life social dilemmas are more accurately modeled as exchange dilemmas rather than prisoner's dilemmas. Building on focusing and

  14. Social dilemmas as exchange dilemmas

    NARCIS (Netherlands)

    Dijkstra, J.; van Assen, M.A.L.M.

    2016-01-01

    We develop a new paradigm to study social dilemmas, called exchange dilemmas. Exchange dilemmas arise from externalities of exchanges with third parties, and many real-life social dilemmas are more accurately modeled as exchange dilemmas rather than prisoner's dilemmas. Bulding on focusing and

  15. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  16. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  17. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  18. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  19. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  20. Thermality of the Hawking flux

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Matt [School of Mathematics, Statistics, and Operations Research,Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)

    2015-07-03

    Is the Hawking flux “thermal”? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word “thermal”. The original 1850’s notions of thermality — based on classical thermodynamic reasoning applied to idealized “black bodies” or “lamp black surfaces” — when supplemented by specific basic quantum ideas from the early 1900’s, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but without any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only approximately Planck-shaped over an explicitly bounded range of frequencies. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is approximately Planck-shaped from both above and below — the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  1. Thermality of the Hawking flux

    International Nuclear Information System (INIS)

    Visser, Matt

    2015-01-01

    Is the Hawking flux “thermal”? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word “thermal”. The original 1850’s notions of thermality — based on classical thermodynamic reasoning applied to idealized “black bodies” or “lamp black surfaces” — when supplemented by specific basic quantum ideas from the early 1900’s, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but without any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only approximately Planck-shaped over an explicitly bounded range of frequencies. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is approximately Planck-shaped from both above and below — the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  2. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  3. New approaches for air-sea fluxes in the Southern Ocean

    CSIR Research Space (South Africa)

    Gille, S

    2016-05-01

    Full Text Available Air-sea exchanges in the Southern Ocean of momentum, heat, freshwater, carbon dioxide, and other gases are not well documented because fluxes are sparsely sampled (see Figure 1) and because high winds, high sea state, and lack of calibration...

  4. Magnitude and directional measures of water and Cr(VI) fluxes by passive flux meter.

    Science.gov (United States)

    Campbell, Timothy J; Hatfield, Kirk; Klammler, Harald; Annable, Michael D; Rao, P S C

    2006-10-15

    A new configuration of the passive fluxmeter (PFM) is presented that provides for simultaneous measurements of both the magnitude and the direction of ambient groundwater specific discharge qo and Cr(VI) mass flux J(Cr). The PFM is configured as a cylindrical unit with an interior divided into a center section and three outer sectors, each packed with a granular anion exchange resin having high sorption capacity for the Cr(VI) oxyanions CrO4(2-) and HCrO4-. The sorbent in the center section is preloaded with benzoate as the "resident" tracer. Laboratory experiments were conducted in which PFMs were placed in porous packed bed columns, through which was passed a measured volume of synthetic groundwater containing Cr(VI). During the deployment period, some of the resident tracer is depleted while the Cr(VI) is sorbed. The resin was then removed from the four sectors separately and extracted to determine the "captured" mass of Cr(VI) and the residual mass of the resident tracer in each. Cumulative specific discharge, q0t, values were assessed using the residual mass of benzoate retained in the center section. The direction of this discharge theta was ascertained from the mass distribution of benzoate intercepted and retained in the outer three sections of the PFM. Cumulative chromium fluxes, J(Cr)t, were quantified using the total Cr(VI) mass intercepted and retained on the PFM. Experiments produced an average measurement error for direction theta of 3 degrees +/- 14 degrees, while the average measurement errors for q0 and J(Cr) were, respectively, -8% +/- 15% and -12% +/- 23%. Results demonstrate the potential utility of the new PFM configuration for characterizing groundwater and contaminant fluxes.

  5. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  6. Social dilemmas as exchange dilemmas

    OpenAIRE

    Dijkstra, J.; van Assen, M.A.L.M.

    2016-01-01

    We develop a new paradigm to study social dilemmas, called exchange dilemmas. Exchange dilemmas arise from externalities of exchanges with third parties, and many real-life social dilemmas are more accurately modeled as exchange dilemmas rather than prisoner's dilemmas. Bulding on focusing and framing research we predict that defection is omnipresent in exchange dilemmas, which is corroborated in to very different experiments. Our results suggest that the fundamental problem of cooperation in...

  7. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  8. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  9. Tubular heat exchanger

    International Nuclear Information System (INIS)

    Hayden, Owen; Willby, C.R.

    1976-01-01

    The invention concerns a heat exchanger of which the tubes, placed in a long casing, cross the casing cover in a sealed manner. These tubes are fixed to the tube plate forming this cover or to the branch tubes it comprises by means of compression joints. These joints make it possible to do away with welds that are sources of defects and to improve the operational safety of the apparatus. An advantageous form of the heat exchanger under the invention includes a manifold for each thermal exchange fluid, and one end of each tube is connected to this manifold by a pipe that is itself connected to the tube by a threaded connection. The latter provides for easy disconnection of the pipe in order to introduce a probe for inspecting the state of the tubes [fr

  10. Stratosphere-troposphere exchange in an extratropical cyclone, calculated with a Lagrangian method

    Directory of Open Access Journals (Sweden)

    M. Sigmond

    Full Text Available A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.

    Key words: Meteorology and atmospheric dynamics (general circulation; mesoscale meteorology; middle atmosphere dynamics

  11. Stratosphere-troposphere exchange in an extratropical cyclone, calculated with a Lagrangian method

    Directory of Open Access Journals (Sweden)

    M. Sigmond

    2000-05-01

    Full Text Available A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.Key words: Meteorology and atmospheric dynamics (general circulation; mesoscale meteorology; middle atmosphere dynamics

  12. Flux driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.

    1999-01-01

    This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)

  13. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  14. High heat flux facility GLADIS

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  15. Heat flux driven ion turbulence

    International Nuclear Information System (INIS)

    Garbet, X.

    1998-01-01

    This work is an analysis of an ion turbulence in a tokamak in the case where the thermal flux is fixed and the temperature profile is allowed to fluctuate. The system exhibits some features of Self-Organized Critical systems. In particular, avalanches are observed. Also the frequency spectrum of the thermal flux exhibits a structure similar to the one of a sand pile automaton, including a 1/f behavior. However, the time average temperature profile is found to be supercritical, i.e. the temperature gradient stays above the critical value. Moreover, the heat diffusivity is lower for a turbulence calculated at fixed flux than a fixed temperature gradient, with the same time average temperature. This behavior is attributed to a stabilizing effect of avalanches. (author)

  16. Ideal flux field dielectric concentrators.

    Science.gov (United States)

    García-Botella, Angel

    2011-10-01

    The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.

  17. Flux flow and flux creep in thick films of YBCO. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Rickets, J.; Vinen, W.F.; Abell, J.S.; Shields, T.C. (Superconductivity Research Group, Univ. of Birmingham (United Kingdom))

    1991-12-01

    The results are described of new experiments designed to study flux creep and flux flow along a single flux percolation path in thick films of YBCO. The flux flow regime is studied by a four-point resistive technique using pulsed currents, and the flux creep regime by observing the rate at which flux enters a superconducting loop in parallel with the resistance that is associated with the flux percolation path. (orig.).

  18. Experimental studies of rotating exchange flow

    Science.gov (United States)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows

  19. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  20. Classification of exchange currents

    International Nuclear Information System (INIS)

    Friar, J.L.

    1983-01-01

    After expansion of the vector and axial vector currents in powers of (v/c), a heretofore unremarked regularity results. Meson exchange currents can be classified into types I and II, according to the way they satisfy the constraints of special relativity. The archetypes of these two categories are the impulse approximation to the vector and axial vector currents. After a brief discussion of these constraints, the (rhoπγ) and (ωsigmaγ) exchange currents are constructed and classified, and used to illustrate a number of important points which are often overlooked

  1. Alert Exchange Process Protocol

    Science.gov (United States)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  2. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    , and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  3. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  4. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  5. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  6. The flux database concerted action

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    1999-01-01

    This paper summarizes the background to the UIR action on the development of a flux database for radionuclide transfer in soil-plant systems. The action is discussed in terms of the objectives, the deliverables and the progress achieved so far by the flux database working group. The paper describes the background to the current initiative and outlines specific features of the database and supporting documentation. Particular emphasis is placed on the proforma used for data entry, on the database help file and on the approach adopted to indicate data quality. Refs. 3 (author)

  7. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN above a Ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2009-01-01

    Full Text Available During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007, we observed eddy covariance (EC fluxes of speciated acyl peroxy nitrates (APNs, including peroxyacetyl nitrate (PAN, peroxypropionyl nitrate (PPN and peroxymethacryloyl nitrate (MPAN, above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s−1; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15% is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil. Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.

  8. Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary

    Science.gov (United States)

    Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.

    2014-01-01

    Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.

  9. Charge exchange reactions and solar neutrino detection in 81Br

    International Nuclear Information System (INIS)

    Liu, K.F.; Gabbard, F.

    1983-01-01

    The feasibility of 81 Br as the detector of the solar neutrino flux hinges upon the knowledge of the Gamow-Teller matrix element from the ground state of 81 Br to the (5/2) - state at 0.457 MeV in 81 Kr. The possibility of obtaining this matrix element is discussed in terms of the (p,n) and ( 3 He, t) charge exchange reactions. .ID CR2009 .PG 98 112

  10. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  11. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  12. Innovative heat exchangers

    CERN Document Server

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  13. Organizing Equity Exchanges

    Science.gov (United States)

    Schaper, Torsten

    In the last years equity exchanges have diversified their operations into business areas such as derivatives trading, post-trading services, and software sales. Securities trading and post-trading are subject to economies of scale and scope. The integration of these functions into one institution ensures efficiency by economizing on transactions costs.

  14. Resonance charge exchange processes

    International Nuclear Information System (INIS)

    Duman, E.L.; Evseev, A.V.; Eletskij, A.V.; Radtsig, A.A.; Smirnov, B.M.

    1979-01-01

    The calculation results for the resonance charge exchange cross sections for positive and negative atomic and molecular ions are given. The calculations are performed on the basis of the asymptotic theory. The factors affecting the calculation accuracy are analysed. The calculation data for 28 systems are compared with the experiment

  15. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  16. Basic Exchange Rate Theories

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2005-01-01

    textabstractThis four-chapter overview of basic exchange rate theories discusses (i) the elasticity and absorption approach, (ii) the (long-run) implications of the monetary approach, (iii) the short-run effects of monetary and fiscal policy under various economic conditions, and (iv) the transition

  17. Method for exchanging data

    NARCIS (Netherlands)

    2014-01-01

    The present invention relates to a method for exchanging data between at least two servers with use of a gateway. Preferably the method is applied to healthcare systems. Each server holds a unique federated identifier, which identifier identifies a single patient (P). Thus, it is possible for the

  18. Baltic Exchange toodi Tallinna

    Index Scriptorium Estoniae

    2007-01-01

    Viimane osa merekonteineritesse kokkupakitud Londoni laevandus- ja merebörsi Baltic Exchange'i endise peakorteri detailidest jõudis 2007. a. juunis Tallinna. Hoone detailid ostnud ärimehed Heiti Hääl ja Eerik-Niiles Kross plaanivad leida hoonele koha Tallinna kesklinnas. E.-N. Krossi kommentaar

  19. Telephone Exchange Maintenance

    CERN Multimedia

    2005-01-01

    Urgent maintenance work on CERN telephone exchanges will be performed on 24 March from 6 a.m. to 8 a.m. Telephone services may be disrupted or even interrupted during this time. For more details, please contact us by email at Standard.Telephone@cern.ch.

  20. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  1. Application of ion exchangers

    International Nuclear Information System (INIS)

    Markhol, M.

    1985-01-01

    Existing methods of multi-element separation for radiochemical analysis are considered. The majority of existing methods is noted to be based on application of organic and inorganic ion exchangers. Distillation, coprecipitation, extraction as well as combination of the above methods are also used. Concrete flowsheets of multi-element separation are presented

  2. Fuel exchanger control device

    International Nuclear Information System (INIS)

    Kurabayashi, Masaharu.

    1985-01-01

    Purpose: To improve the stability and the operationability of the fuel exchanging work by checking the validity of the data before the initiation of the work. Constitution: A floppy disc stores the initial charging state data showing the arrangement of fuel assemblies in the reactor core pool, data showing the working procedures for the fuel exchange and a final charged state data upon completion of the work. The initial data and the procedure data are read from the disk and stored once into a memory. Then, the initial data are sequentially performed on the memory in accordance with the procedure data and, thereafter, they were compared with the final data read from the disk. After confirming that there are no errors in the working data, the procedure data are orderly instructed to the fuel exchanger for performing fuel replacement. Accordingly, since the data are checked before the initiation of the work, the fuel exchange can be performed automatically thereby improving the operationability thereof. (Yoshino, Y.)

  3. Upright heat exchanger

    International Nuclear Information System (INIS)

    Martoch, J.; Kugler, V.; Krizek, V.; Strmiska, F.

    1988-01-01

    The claimed heat exchanger is characteristic by the condensate level being maintained directly in the exchanger while preserving the so-called ''dry'' tube plate. This makes it unnecessary to build another pressure vessel into the circuit. The design of the heat exchanger allows access to both tube plates, which facilitates any repair. Another advantage is the possibility of accelerating the indication of leakage from the space of the second operating medium which is given by opening the drainage pipes of the lower bundle into the collar space and from there through to the indication pipe. The exchanger is especially suitable for deployment in the circuits of nuclear power plants where the second operating medium will be hot water of considerably lower purity than is that of the condensate. A rapid display of leakage can prevent any long-term penetration of this water into the condensate, which would result in worsening water quality in the entire secondary circuit of the nuclear power plant. (J.B.). 1 fig

  4. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  5. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    Science.gov (United States)

    Kogadeeva, Maria

    2016-01-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses. PMID:27626798

  6. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    Science.gov (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-07-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  7. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    Science.gov (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  8. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  9. Simple models with ALICE fluxes

    CERN Document Server

    Striet, J

    2000-01-01

    We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.

  10. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  11. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  12. Horizontal Curve Virtual Peer Exchange : an RSPCB Peer Exchange

    Science.gov (United States)

    2014-06-01

    This report summarizes the Horizontal Curve Virtual Peer Exchange sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professional Capacity Building Program on June 17, 2014. This virtual peer exchange was the f...

  13. Fluctuations of radiative heat exchange between two bodies

    Science.gov (United States)

    Biehs, S.-A.; Ben-Abdallah, P.

    2018-05-01

    We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.

  14. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  15. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.type="synopsis">type="main">Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good

  16. The Metaphysics of Economic Exchanges

    Directory of Open Access Journals (Sweden)

    Massin Olivier

    2017-05-01

    Full Text Available What are economic exchanges? The received view has it that exchanges are mutual transfers of goods motivated by inverse valuations thereof. As a corollary, the standard approach treats exchanges of services as a subspecies of exchanges of goods. We raise two objections against this standard approach. First, it is incomplete, as it fails to take into account, among other things, the offers and acceptances that lie at the core of even the simplest cases of exchanges. Second, it ultimately fails to generalize to exchanges of services, in which neither inverse preferences nor mutual transfers hold true. We propose an alternative definition of exchanges, which treats exchanges of goods as a special case of exchanges of services and which builds in offers and acceptances. According to this theory: (i The valuations motivating exchanges are propositional and convergent rather than objectual and inverse; (ii All exchanges of goods involve exchanges of services/actions, but not the reverse; (iii Offers and acceptances, together with the contractual obligations and claims they bring about, lie at the heart of all cases of exchange.

  17. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  18. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...

  19. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  20. Data Exchange Inventory (DEXI) System

    Data.gov (United States)

    Social Security Administration — DEXI is an intranet application used by SSA users to track all incoming and outgoing data exchanges between SSA and our data exchange partners. Information such as...

  1. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas

    2014-01-01

    Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists...... of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...... the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange...

  2. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...... index (LAI) and Rubisco capacity (v(cmax)). Furthermore, this ecosystem was found to be functioning close to its optimum temperature regarding carbon accumulation rates. During the modeling period from May to October, the net assimilation was greater than the respiration, leading to a net accumulation...

  3. Automatic fuel exchanging device

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu.

    1984-01-01

    Purpose: To enable to designate the identification number of a fuel assembly in a nuclear reactor pressure vessel thereby surely exchanging the designated assembly within a short time. Constitution: Identification number (or letter) pressed on a grip of a fuel assembly is to be detected by a two-dimensional ultrasonic probe of a pull-up mechanism. When the detected number corresponds with the designated number, a control signal is outputted, whereby the pull-up drive control mechanism or pull-up mechanism responds to pull-up and exchange the fuel assembly of the identified number. With such a constitution, the fuel assembly can rapidly and surely be recognized even if pressed letters deviate to the left or right of the probe, and further, the hinge portion and the signal processing portion can be simplified. (Horiuchi, T.)

  4. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    Burton, J.E.; Tombs, R.W.T.

    1980-01-01

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  5. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  6. Exchange currents in nuclear physics

    International Nuclear Information System (INIS)

    Truglik, Eh.

    1980-01-01

    Starting from Adler's low-energy theorem for the soft pion production amplitudes the predictions of the meson exchange currents theory for the nuclear physics are discussed. The results are reformulated in terms of phenomenological lagrangians. This method allows one to pass naturally to the more realistic case of hard mesons. The predictions are critically compared with the existing experimental data. The main processes in which vector isovector exchange currents, vector isoscalar exchange currents and axial exchange currents take place are pointed out

  7. LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...

  8. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  9. Exchange rate rebounds after foreign exchange market interventions

    Science.gov (United States)

    Hoshikawa, Takeshi

    2017-03-01

    This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.

  10. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  11. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  12. Timing Foreign Exchange Markets

    Directory of Open Access Journals (Sweden)

    Samuel W. Malone

    2016-03-01

    Full Text Available To improve short-horizon exchange rate forecasts, we employ foreign exchange market risk factors as fundamentals, and Bayesian treed Gaussian process (BTGP models to handle non-linear, time-varying relationships between these fundamentals and exchange rates. Forecasts from the BTGP model conditional on the carry and dollar factors dominate random walk forecasts on accuracy and economic criteria in the Meese-Rogoff setting. Superior market timing ability for large moves, more than directional accuracy, drives the BTGP’s success. We explain how, through a model averaging Monte Carlo scheme, the BTGP is able to simultaneously exploit smoothness and rough breaks in between-variable dynamics. Either feature in isolation is unable to consistently outperform benchmarks throughout the full span of time in our forecasting exercises. Trading strategies based on ex ante BTGP forecasts deliver the highest out-of-sample risk-adjusted returns for the median currency, as well as for both predictable, traded risk factors.

  13. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  14. Flavour mixings in flux compactifications

    International Nuclear Information System (INIS)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-01

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  15. Superconducting flux flow digital circuits

    International Nuclear Information System (INIS)

    Martens, J.S.; Zipperian, T.E.; Hietala, V.M.; Ginley, D.S.; Tigges, C.P.; Phillips, J.M.; Siegal, M.P.

    1993-01-01

    The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-μm linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps, and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic

  16. Heisenberg groups and noncommutative fluxes

    International Nuclear Information System (INIS)

    Freed, Daniel S.; Moore, Gregory W.; Segal, Graeme

    2007-01-01

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z 2 -graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured

  17. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1992-01-01

    The accelerator at the Los Alamos Meson Physiscs Facility produces a 1 mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of 10 from the present level of about 5 E + 17 m -2 s -1 . This requires changing the beam stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. (orig.)

  18. Flux through a Markov chain

    International Nuclear Information System (INIS)

    Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel

    2016-01-01

    Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.

  19. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  20. Social exchange: Relations and networks

    OpenAIRE

    Dijkstra, Jacob

    2015-01-01

    In this short paper, I review the literature on social exchange networks, with specific attention to theoretical and experimental research. I indicate how social exchange theory is rooted in general social theory and mention a few of its main links to social network analysis and empirical network research. The paper provides an accessible entry into the literature on social exchange.

  1. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  2. Integrated Foreign Exchange Risk Management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen

    Empirical research has focused on export as a proxy for the exchange rate exposure and the use of foreign exchange derivatives as the instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role...

  3. Rapid reconnection of flux lines

    International Nuclear Information System (INIS)

    Samain, A.

    1982-01-01

    The rapid reconnection of flux lines in an incompressible fluid through a singular layer of the current density is discussed. It is shown that the liberated magnetic energy must partially appear in the form of plasma kinetic energy. A laminar structure of the flow is possible, but Alfven velocity must be achieved in eddies of growing size at the ends of the layer. The gross structure of the flow and the magnetic configuration may be obtained from variational principles. (author)

  4. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  5. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  6. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  7. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  8. Ocean Margin EXchange II database from the upwelling region of the narrow Iberian margin from 1997 to 2000 (NODC Accession 0000560)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Margin EXchange (OMEX) II aims at studying, measuring and modeling the processes and fluxes occurring along and across the European shelf break facing the...

  9. Mastering Microsoft Exchange Server 2010

    CERN Document Server

    McBee, Jim

    2010-01-01

    A top-selling guide to Exchange Server-now fully updated for Exchange Server 2010. Keep your Microsoft messaging system up to date and protected with the very newest version, Exchange Server 2010, and this comprehensive guide. Whether you're upgrading from Exchange Server 2007 SP1 or earlier, installing for the first time, or migrating from another system, this step-by-step guide provides the hands-on instruction, practical application, and real-world advice you need.: Explains Microsoft Exchange Server 2010, the latest release of Microsoft's messaging system that protects against spam and vir

  10. Force sensor using changes in magnetic flux

    Science.gov (United States)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  11. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  12. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  13. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  14. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  15. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Roger [Univ. of California, Irvine, CA (United States); Karl, Thomas [Univ. of Innsbruck (Austria); Guenther, Alex B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States); Hosman, Kevin P. [Univ. of Missouri, Columbia, MO (United States); Pallardy, Stephen G. [Univ. of Missouri, Columbia, MO (United States); Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Geron, Chris [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Harley, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegeta-tion and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately repre-sented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diur-nal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were domi-nated by isoprene, which attained high emission rates of up to 35.4 mg m-2h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which high-lights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Never-theless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, conflrming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement cam-paign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes

  16. Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest

    Directory of Open Access Journals (Sweden)

    S. Schallhart

    2016-06-01

    Full Text Available Recently, the number and amount of biogenically emitted volatile organic compounds (VOCs has been discussed in great detail. Depending on the ecosystem, the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF mass spectrometer and calculated using the eddy covariance (EC method. Detectable fluxes were observed for up to 29 compounds, dominated by isoprene, which comprised over 60 % of the total upward flux (on a molar basis. The daily average of the total VOC upward flux was 10.4 nmol m−2 s−1. Methanol had the highest concentration and accounted for the largest downward flux. Methanol seemed to be deposited to dew, as the downward flux happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 30 % of the upward flux of methyl vinyl ketone (MVK and methacrolein (MACR originated from atmospheric oxidation of isoprene. A comparison between two methods for the flux detection (manual and automated was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results.

  17. Sensitivity of spectral indices to CO2 fluxes for several plant communities in a Sphagnum-dominated peatland

    International Nuclear Information System (INIS)

    Letendre, J.; Poulin, M.; Rochefort, L.

    2008-01-01

    A study was conducted in which the relationship between spectral indices and carbon dioxide (CO 2 ) fluxes was tested for different communities in a Sphagnum-dominated peatland. This paper focused on the remote sensing approach that was used to directly link spectral indices to CO 2 fluxes to highlight the potential of remote sensing for mapping the spatial distribution of CO 2 fluxes. Carbon exchange in these ecosystems has become an environmental concern since peatlands play a key role in the global carbon cycle. A portable climate-controlled chamber was used to measure fluxes while simultaneously recording reflectance with a hand-held spectroradiometer. A laboratory experiment was also conducted to find a water-related index that most correlated with Sphagnum water content in order to regulate the normalized difference vegetation index (NDVI) values obtained in the field. The laboratory experiment showed a strong correlation between Sphagnum water content and all spectral indices, notably the water index (WI), normalized difference water index (NDWI), and relative depth index (RDI). The water index was chosen to regulate NDVI values. This paper described the indices that were tested in the field for CO 2 flux estimations. NDVI alone was found to be a poor predictor of net ecosystem exchange. The relationship between CO 2 fluxes and narrow band chlorophyll indices was reasonably well adjusted. It was concluded that the chlorophyll indices may be the most promising for mapping the spatial distribution of CO 2 fluxes in the future. 62 refs., 2 tabs., 4 figs

  18. Exchange functional by a range-separated exchange hole

    International Nuclear Information System (INIS)

    Toyoda, Masayuki; Ozaki, Taisuke

    2011-01-01

    An approximation to the exchange-hole density is proposed for the evaluation of the exact exchange energy in electronic structure calculations within the density-functional theory and the Kohn-Sham scheme. Based on the localized nature of density matrix, the exchange hole is divided into the short-range (SR) and long-range (LR) parts by using an adequate filter function, where the LR part is deduced by matching of moments with the exactly calculated SR counterpart, ensuring the correct asymptotic -1/r behavior of the exchange potential. With this division, the time-consuming integration is truncated at a certain interaction range, largely reducing the computation cost. The total energies, exchange energies, exchange potentials, and eigenvalues of the highest-occupied orbitals are calculated for the noble-gas atoms. The close agreement of the results with the exact values suggests the validity of the approximation.

  19. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    Science.gov (United States)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  20. Framework for Flux Qubit Design

    Science.gov (United States)

    Yan, Fei; Kamal, Archana; Krantz, Philip; Campbell, Daniel; Kim, David; Yoder, Jonilyn; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems Team

    A qubit design for higher performance relies on the understanding of how various qubit properties are related to design parameters. We construct a framework for understanding the qubit design in the flux regime. We explore different parameter regimes, looking for features desirable for certain purpose in the context of quantum computing. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  1. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  2. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  3. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Jansson, P.E.; van der Linden, Leon

    2013-01-01

    Temperate forests are globally important carbon sinks and stocks. Trends in net ecosystem exchange have been observed in a Danish beech forest and this trend cannot be entirely attributed to changing climatic drivers. This study sought to clarify the mechanisms responsible for the observed trend...... for nitrogen demand during mast years is supported by the inter-annual variability in the estimated parameters. The inter-annual variability of photosynthesis parameters was fundamental to the simulation of the trend in carbon fluxes in the investigated beech forest and this demonstrates the importance......, the latent and sensible heat fluxes and the CO2 fluxes decreased the parameter uncertainty considerably compared to using CO2 fluxes as validation data alone. The fitted model was able to simulate the observed carbon fluxes well (R2=0.8, mean error=0.1gCm−2d−1) but did not reproduce the decadal (1997...

  4. Exercise: Kinetic considerations for gas exchange.

    Science.gov (United States)

    Rossiter, Harry B

    2011-01-01

    The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease. © 2011 American Physiological Society.

  5. Exchange and fellowship programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    By February 1959, the IAEA had received and considered nearly 300 nominations from 31 countries for nuclear science fellowships. More than 200 of the candidates - from 29 countries - had been selected for placement in centres of training in 21 countries. The programme covers three types of training: 1. General techniques training: to develop skills in the use of some fundamental techniques in the field of nuclear energy; 2. Specialist training: to prepare specialists in the theoretical and experimental aspects of the science and technology of nuclear energy; 3. Research training: to provide advanced training, including active participation in research work; this is for persons potentially qualified to develop and carry out research programmes in the basic sciences and engineering. The duration of training varies from some weeks to five or six years. The long-duration training is given at universities or educational establishments of university level, and is of special interest to Member States lacking personnel with the requisite university education. Under its 1959 exchange and fellowship programme, the Agency will be in a position to award over 400 fellowships. Some of these will be paid out of the Agency's operating fund, while 130 fellowships have been offered directly to IAEA by Member States for training at their universities or institutes. There are two new features in the Agency's 1959 programme. One provides for fellowships for scientific research work, the other is the exchange of specialists

  6. Fuel exchanging apparatus

    International Nuclear Information System (INIS)

    Imada, Takahiko; Sato, Hideo.

    1975-01-01

    Object: To provide a centripetal device, which has an initial spring force greater than a frictional force in an oscillating direction of a telescope mast, on a mast fixing device mounted on a body of fuel exchanging apparatus so that the telescope mast may be secured quickly returning to a predetermined initial position. Structure: When the body of fuel exchanging apparatus is stopped at a predetermined position, a tension spring, which has an initial spring force greater than a frictional force in an oscillating direction of the telescope mast, causes a lug to be forced by means of a push rod to position a sliding base plate to its original position. At the same time, a device of similar structure causes an operating arm to be positioned to the original position, and a lock pin urged by a cylinder is inserted into a through hole in the sliding base plate and operating arm so that the telescope mast may be fixed and retained. (Hanada, M.)

  7. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  8. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  9. Efficient gas exchange between a boreal river and the atmosphere

    Science.gov (United States)

    Huotari, Jussi; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Ojala, Anne

    2013-11-01

    largest uncertainties in accurately resolving the role of rivers and streams in carbon cycling stem from difficulties in determining gas exchange between water and the atmosphere. So far, estimates for river-atmosphere gas exchange have lacked direct ecosystem-scale flux measurements not disturbing gas exchange across the air-water interface. We conducted the first direct riverine gas exchange measurements with eddy covariance in tandem with continuous surface water CO2 measurements in a large boreal river for 30 days. Our measured gas transfer velocity was, on average, 20.8 cm h-1, which is clearly higher than the model estimates based on river channel morphology and water velocity, whereas our floating chambers gave comparable values at 17.3 cm h-1. These results demonstrate that present estimates for riverine CO2 emissions are very likely too low. This result is also relevant to any other gases emitted, as their diffusive exchange rates are similarly proportional to gas transfer velocity.

  10. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    Science.gov (United States)

    Foken, T.; Biermann, T.; Babel, W.; Ma, Y.

    2013-12-01

    the vegetation cover, net ecosystem exchange and respiration decreased from IRM over DRM to BS while ratio respiration/assimilation increased. Since measurements were conducted in succession and not parallel, a direct comparison would need further investigation. On the basis of the eddy-covariance data set measured in 2010, two models were applied and tested for Kobresia pastures: one for sensible and latent heat flux and one for carbon dioxide flux. Therefore continuously modelled fluxes were available for the chamber experiment in 2012. Significant differences were found in the carbon uptake and evapotranspiration, with the highest values on IRM and the lowest on BS. But higher fluxes were also found on IRM in September and not in the measuring period in August. It could be shown that this was in agreement with the modelled fluxes, and a different water vapour deficit was indicated as the reason.

  11. Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2

    Science.gov (United States)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2017-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different

  12. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  13. Triode for magnetic flux quanta.

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii; Colauto, Fabiano; Benseman, Timothy; Rosenmann, Daniel; Kwok, Wai-Kwong

    We designed a magnetic vortex triode using an array of closely spaced soft magnetic Py strips on top of a Nb superconducting film. The strips act similar to the grid electrode in an electronic triode, where the electron flow is regulated by the grid potential. In our case, we tune the vortex motion by the magnetic charge potential of the strip edges, using a small magnetic field rotating in the film plane. The magnetic charges emerging at the stripe edges and proportional to the magnetization component perpendicular to the edge direction, form linear potential barriers or valleys for vortex motion in the superconducting layer. We directly imaged the normal flux penetration into the Py/Nb films and observed retarded or accelerated entry of the normal vortices depending on the in-plane magnetization direction in the stripes. The observed flux behavior is explained by interactions between magnetically charged lines and magnetic monopoles of vortices similar to those between electrically charged strings and point charges. We discuss the possibility of using our design for manipulation of individual vortices in high-speed, low-power superconducting electronic circuits. This work was supported by the U.S. DOE, Office of Science, Materials Sciences and Engineering Division, and Office of BES (contract DE-AC02-06CH11357). F. Colauto thanks the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3).

  14. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  15. Neutron flux enhancement at LASREF

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. (Los Alamos National Lab., Los Alamos, NM (United States)); Ferguson, P.D. (Univ. of Missouri, Rolla, MO (United States)); Wechsler, M.S. (Iowa State Univ., Ames, IA (United States))

    1992-09-01

    The accelerator at the Los Alamos Meson Physiscs Facility produces a 1 mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of 10 from the present level of about 5 E + 17 m[sup -2] s[sup -1]. This requires changing the beam stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. (orig.).

  16. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  17. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  18. Investigation of ammonia air-surface exchange processes in a ...

    Science.gov (United States)

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  19. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad

    2009-01-01

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  20. Data Exchange Protocol in Repsail

    Directory of Open Access Journals (Sweden)

    Gucma Maciej

    2017-12-01

    Full Text Available Article presents implantation and theoretical considerations of data exchange protocol developed for the RepSail project, where main objective was design and building innovative hybrid yacht. One of problems during the design process was improper functioning of data exchange protocols that were available in the commercially available devices to mention navigation purpose NMEA183 or 2000 as well as automation dedicated ones (CAN and similar. Author shows the basis of the dedicated format of exchange for in board devices.