WorldWideScience

Sample records for surface wind sea

  1. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  2. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  3. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model (...

  4. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea. A satellite study

    Energy Technology Data Exchange (ETDEWEB)

    Tarkhova, T.I.; Permyakov, M.S.; Potalova, E.Yu.; Semykin, V.I. [V.I. Il' ichev Pacific Oceanological Institute of the Far Eastern Branch of Russian Academy of Sciences, Vladivostok (Russian Federation). Lab. of the Ocean and Atmosphere Interaction Studies

    2011-07-01

    Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summerautumn period of 2006-2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August- September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 C and wind speed lowered down to {proportional_to}7ms {sup -1} relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of {proportional_to}0.3 {sup -1} on 1 C. (orig.)

  5. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    Science.gov (United States)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  6. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  7. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  8. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  9. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  10. "Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS

    Science.gov (United States)

    Park, J.; Johnson, J. T.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.

  11. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  12. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  13. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  14. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  15. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    68

    characteristics and variable features where the wind circulation pattern is ..... is extended to understand the quality of AMSR-2 wind speed in a constructive ...... New Disclosures (potential conflicts of interest, funding, acknowledgements):.

  16. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low- SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the ...

  17. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km......Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...

  18. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    Science.gov (United States)

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  19. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  20. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    Science.gov (United States)

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  1. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  2. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  3. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    Directory of Open Access Journals (Sweden)

    Ioanna Karagali

    2013-11-01

    Full Text Available Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent with those obtained from several thousands of samples. Long-term spectra from QuikSCAT show that during the winter, slightly higher energy content is identified compared to the other seasons.

  4. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.

    1998-01-01

    that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...

  5. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  6. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  7. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the Sentinel-1 satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of high resolution sea surface winds data produced from Synthetic Aperture Radar (SAR) on board Sentinel-1A and Sentinel-1B satellites. This...

  8. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo; Farrar, J. Thomas; Beardsley, Robert C.; Chen, Ru; Chen, Changsheng

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward

  9. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    Science.gov (United States)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  10. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  11. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  12. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern....

  13. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  14. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  15. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  16. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  17. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    Science.gov (United States)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  18. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  19. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  20. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Hao [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  1. Sea Wind Europe

    International Nuclear Information System (INIS)

    2004-02-01

    The first and defining step towards European leadership in renewable energy must be the successful setting of an ambitious EU renewable energy target for 2020. This will set out the vision and create the framework within which our clean energy future can be delivered. Sea Wind Europe offers a clear blueprint of how to achieve its vision and outlines concrete policy measures that will give European renewables the foundation they need for success on a giant scale

  2. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  3. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  4. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    International Nuclear Information System (INIS)

    Zhong Jian; Dong Gang; Sun Yimei; Zhang Zhaoyang; Wu Yuqin

    2016-01-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. (paper)

  5. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  6. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  7. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Zhu, Rong

    2016-01-01

    We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave...

  8. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model

    Energy Technology Data Exchange (ETDEWEB)

    Goubanova, K. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Echevin, V.; Terray, P. [IPSL/UPMC/IRD, Laboratoire d' Oceanographie et de Climatologie, Experimentation et Approches Numeriques, Paris (France); Dewitte, B. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Instituto Geofisico del Peru, Lima (Peru); Codron, F. [UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France); Takahashi, K. [Instituto Geofisico del Peru, Lima (Peru); Vrac, M. [IPSL/CNRS/CEA/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France)

    2011-04-15

    The key aspect of the ocean circulation off Peru-Chile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru-Chile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10 m for the period 2000-2008. The large-scale 10 m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2 x CO{sub 2} and 4 x CO{sub 2} IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability. (orig.)

  9. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  10. Comparison of the ocean surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John

    2017-03-01

    Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.

  11. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    Science.gov (United States)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is

  12. Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom

    Science.gov (United States)

    Wang, Ting; Xiang, Jie; Fei, Jianfang; Wang, Yi; Liu, Chunxia; Li, Yuanxiang

    2017-12-01

    This paper presents an evaluation of the observational impacts on blended sea surface winds from a two-dimensional variational data assimilation (2D-Var) scheme. We begin by briefly introducing the analysis sensitivity with respect to observations in variational data assimilation systems and its relationship with the degrees of freedom for signal (DFS), and then the DFS concept is applied to the 2D-Var sea surface wind blending scheme. Two methods, a priori and a posteriori, are used to estimate the DFS of the zonal ( u) and meridional ( v) components of winds in the 2D-Var blending scheme. The a posteriori method can obtain almost the same results as the a priori method. Because only by-products of the blending scheme are used for the a posteriori method, the computation time is reduced significantly. The magnitude of the DFS is critically related to the observational and background error statistics. Changing the observational and background error variances can affect the DFS value. Because the observation error variances are assumed to be uniform, the observational influence at each observational location is related to the background error variance, and the observations located at the place where there are larger background error variances have larger influences. The average observational influence of u and v with respect to the analysis is about 40%, implying that the background influence with respect to the analysis is about 60%.

  13. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  14. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A

    different parameters shows that the sea surface temperature and air temperature are positively and significantly correlated over the study area. A similar relationship is found between wind speed and cloudiness amount. Wind speed and cloudiness...

  15. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  16. Offshore wind power in the Aegean Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Hahmann, Andrea N.

    hub heights at around 100 m using a combination of satellite wind fields and the long-term climate of atmospheric stability from the mesoscale model (Badger et al. 2016). The result of the mean wind speed at hub-height for the Aegean Sea is shown in Figure 1. The map shows the stability dependent......, where the spatial variations in wind speed are very high, accurate resource mapping is of great importance as the produced wind power is proportional to the cubed wind speed. It is challenging to model the wind resource and it is costly to measure from the ground at every place of interest. Maps based...

  17. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  18. Offshore Wind Power at Rough Sea

    DEFF Research Database (Denmark)

    Petersen, Kristian Rasmus; Madsen, Erik Skov; Bilberg, Arne

    2013-01-01

    This study compare the current operations and maintenance issues of one offshore wind park at very rough sea conditions and two onshore wind parks. Through a detailed data analysis and case studies this study identifies how improvements have been made in maintenance of large wind turbines. Howeve......, the study has also revealed the need for new maintenance models including a shift from breakdown and preventive maintenances and towards more predictive maintenance to reduce the cost of energy for offshore wind energy installations in the future.......This study compare the current operations and maintenance issues of one offshore wind park at very rough sea conditions and two onshore wind parks. Through a detailed data analysis and case studies this study identifies how improvements have been made in maintenance of large wind turbines. However...

  19. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  20. When wind turbines go to the sea

    International Nuclear Information System (INIS)

    Dupin, L.

    2010-01-01

    Land wind turbines are not designed to operate in the open seas. In order to enhance their reliability, facilitate their maintenance and increase their power, existing technologies are adapted to the offshore constraints (direct drive for the blades, maintenance optimization, etc.) while innovating designs (such as vertical axis wind turbines, floating platforms, etc.) are presently tested. Several of these new concepts are described

  1. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  2. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  3. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  4. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  5. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  6. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  7. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  8. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  9. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  10. Influence of orographically steered winds on Mutsu Bay surface currents

    Science.gov (United States)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  11. Wind impact on the Black Sea ecosystem

    Science.gov (United States)

    Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav

    2010-05-01

    Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with wind variability for different time scales. Next topics are highlighted in presentation: 1. Inter-annual variability of the wind stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with wind fields for summer 2007 and 2008. 5. "Valley" wind in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low wind conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 wind data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.

  12. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  13. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.; Jackson, Charles S.; Yao, Fengchao; Zedler, Sarah; Hoteit, Ibrahim

    2014-01-01

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  14. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  15. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  16. Sea surface stability parameters

    International Nuclear Information System (INIS)

    Weber, A.H.; Suich, J.E.

    1978-01-01

    A number of studies dealing with climatology of the Northwest Atlantic Ocean have been published in the last ten years. These published studies have dealt with directly measured meteorological parameters, e.g., wind speed, temperature, etc. This information has been useful because of the increased focus on the near coastal zone where man's activities are increasing in magnitude and scope, e.g., offshore power plants, petroleum production, and the subsequent environmental impacts of these activities. Atmospheric transport of passive or nonpassive material is significantly influenced by the turbulence structure of the atmosphere in the region of the atmosphere-ocean interface. This research entails identification of the suitability of standard atmospheric stability parameters which can be used to determine turbulence structure; the calculation of these parameters for the near-shore and continental shelf regions of the U.S. east coast from Cape Hatteras to Miami, Florida; and the preparation of a climatology of these parameters. In addition, a climatology for average surface stress for the same geographical region is being prepared

  17. Wind-forced modulations in crossing sea states over infinite depth water

    Science.gov (United States)

    Debsarma, Suma; Senapati, Sudipta; Das, K. P.

    2014-09-01

    The present work is motivated by the work of Leblanc ["Amplification of nonlinear surface waves by wind," Phys. Fluids 19, 101705 (2007)] which showed that Stokes waves grow super exponentially under fair wind as a result of modulational instability. Here, we have studied the effect of wind in a situation of crossing sea states characterized by two obliquely propagating wave systems in deep water. It is found that the wind-forced uniform wave solution in crossing seas grows explosively with a super-exponential growth rate even under a steady horizontal wind flow. This is an important piece of information in the context of the formation of freak waves.

  18. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  19. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Fore- casts (NCMRWF), New .... mization of a generalized cost function using the. Spectral ... power from a given location on the sea surface at multiple ...

  20. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  1. ISLSCP II Sea Surface Temperature

    Data.gov (United States)

    National Aeronautics and Space Administration — Sea surface temperature (SST) is an important indicator of the state of the earth climate system as well as a key variable in the coupling between the atmosphere and...

  2. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  3. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik

    2008-01-01

    An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock's roughness length model. In this form, the r...

  4. Sea wind parameters retrieval using Y-configured Doppler navigation system data. Performance and accuracy

    Science.gov (United States)

    Khachaturian, A. B.; Nekrasov, A. V.; Bogachev, M. I.

    2018-05-01

    The authors report the results of the computer simulations of the performance and accuracy of the sea wind speed and direction retrieval. The analyzed measurements over the sea surface are made by the airborne microwave Doppler navigation system (DNS) with three Y-configured beams operated as a scatterometer enhancing its functionality. Single- and double-stage wind measurement procedures are proposed and recommendations for their implementation are described.

  5. Three modes of interdecadal trends in sea surface temperature and sea surface height

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  6. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi

    2017-08-15

    A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Science.gov (United States)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  8. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  9. Maps of mesoscale wind variability over the North Sea region

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Badger, Jake

    Mesoscale wind fluctuations affect the operation of wind farms, particularly as the number of geographically concentrated wind farms in the North Sea increases (Akhmatov et al. 2007). The frequency and intensity of wind fluctuations could be considered as a new siting criterion, together with exi...... for a 1 year period. The model was run with a horizontal grid spacing of 2 km. The variability maps are created by integrating the average 24 hour spectra at every grid point over different time-scales....

  10. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  11. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes.

    Science.gov (United States)

    Purich, Ariaan; Cai, Wenju; England, Matthew H; Cowan, Tim

    2016-02-04

    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.

  12. Description of the North Sea wind climate for wind energy applications

    NARCIS (Netherlands)

    Coelingh, J.P.; Wijk, A.J.M. van; Cleijne, J.W.; Pleune, R.

    1992-01-01

    In The Netherlands it is foreseen that wind turbines will be installed on offshore locations in the North Sea before the year 2010. Therefore adequate knowledge of the offshore wind climate should be obtained, both for the estimation of energy yields and for the determination of wind load

  13. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  14. Impact of sea breeze on wind-seas off Goa, west coast of India

    Indian Academy of Sciences (India)

    during November–May, winds in the coastal regions of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near the coast. The impact is quite significant when large scale winds are weak. During one such event, 1–15 April 1997, a Datawell directional waverider buoy was deployed in 23m ...

  15. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  16. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  17. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  18. The wind sea and swell waves climate in the Nordic seas

    Science.gov (United States)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  19. Wind Atlas of Aegean Sea with SAR data

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Hasager, Charlotte Bay; Badger, Merete

    2013-01-01

    The Global Wind Atlas project is established to create a “free-to-use” wind atlas of the whole globe. The modelling chain of the project includes micro-scale models and new reanalysis datasets. Local measurements are planed to be use for test and validation. Unfortunately, it is not always possible...... to find long term offshore measurement to make wind statistics. The main reason is the cost of setup and maintenance of an offshore mast. One of the regions which has high potential in wind resources but so far is without any long term offshore measurement is the Aegean sea. Recent developments...... in satellite radar technologies made it possible to use Synthetic Aperture Radars (SAR) for wind speed and direction measurements at offshore locations. In this study, a new technique of making wind atlases is applied to the region of Aegean Sea is presented. The method has been tested and validated...

  20. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind

  1. Winter Counter-Wind Transport in the Inner Southwestern Yellow Sea

    Science.gov (United States)

    Wu, Hui; Gu, Jinghua; Zhu, Ping

    2018-01-01

    Coastal currents generally flow downshelf with land on the right side (Northern Hemisphere) under the geostrophic balance, and are often strengthened by downwelling-favorable winds. However, the recent mooring observation in the inner southwestern Yellow Sea showed that coastal transport direction can be substantially changed by tidal forcing. In the survey, the tidal-averaged transports at two out of three sites remained northward (i.e., in the upshelf direction) and opposite the downwelling-favorable northerly wind, except during a brief neap tide period. Numerical experiments showed that the incoming Poincaré wave tide from the East China Sea plays a key role in forming this counter-wind transport system. This tidal wave produces a shoreward tidal stress south of 33.5°N in the inner southwestern Yellow Sea, driving an upshelf transport under the Earth's rotation. Counterpropagating tidal waves from the East China Sea and the northern Yellow Sea collide in coastal water in 32.5-34°N, which produce a standing tidal wave and therefore a mean sea-surface setup with alongshore and cross-shelf scales of both >100 km. This sea-surface setup causes an alongshore sea surface gradient, which veers the upshelf transport to the offshore direction under geostrophic balance. The strong tidal current increases the tidal-mean bottom resistance in the SCW, thus reduces the wind-driven current to a magnitude smaller than the tide-induced residual transport velocity. Therefore, upshelf transport persists in the inner southwestern Yellow Sea, and the Changjiang River Estuary becomes a major source area for the inner southwestern Yellow Sea.

  2. Base line studies North Sea wind farms

    NARCIS (Netherlands)

    Krijgsveld, K.L.; Lieshout, S.M.J.; Schekkerman, H.; Lensink, Rick; Poot, M.J.M.; Dirksen, S.

    2003-01-01

    The Dutch government has granted ‘Noordzeewind’ (Nuon Renewable Energy Projects and Shell Wind Energy) the possibility to build a wind farm consisting of 36 wind turbines off the coast of the Netherlands, near Egmond. This project serves to evaluate the economical, technical, ecological and social

  3. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  4. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  5. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  6. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  7. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  8. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-01-01

    weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet

  9. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Hahmann, Andrea N.

    2016-01-01

    A large offshore observational data set from stations across the North and Baltic Sea is used to investigate the planetary boundary layer wind characteristics and their coherence, correlation and power spectra. The data of thirteen sites, with pairs of sites at a horizontal distance of 4 to 848 km...... on measurements and the WRF-derived time series. By normalising the frequency axes with the distance and mean wind speed it can be demonstrated that even for data with a wide range of distances, the coherence is a function of the frequency, mean wind and distance, which is consistent with earlier studies....... The correlation coefficient as a function of the distance calculated from WRF is however higher than observed in the measurements. For the power spectra, wind speed and wind speed step changes distribution the results for all sites are quite similar. The land masses strongly influence the individual wind...

  10. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  11. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  12. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    Science.gov (United States)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  13. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    OpenAIRE

    Zhao, X.; Huang, S.

    2010-01-01

    This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed ...

  14. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  15. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  16. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    Directory of Open Access Journals (Sweden)

    X. Zhao

    2010-12-01

    Full Text Available This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed Fourier split-step algorithm. Numerical experiments indicate that wind-driven roughened sea surface has an impact on the electromagnetic wave propagation in the duct environment, and the strength is intensified along with the increment of sea wind speeds and/or the operating frequencies. In a fixed duct environment, however, proper disposition of the transmitter could reduce these impacts.

  17. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  18. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  19. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2014-01-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen's and also Ardhuin's wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  20. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  1. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  2. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  3. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  4. Wind climate estimation using WRF model output: method and model sensitivities over the sea

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo

    2015-01-01

    setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface...... temperature used as lower boundary conditions. Also, the strength and form (grid vs spectral) of the nudging is quite irrelevant for the mean wind speed at 100 m. Large sensitivity is found to the choice of boundary layer parametrization, and to the length of the period that is discarded as spin-up to produce...... a wind climatology. It is found that the spin-up period for the boundary layer winds is likely larger than 12 h over land and could affect the wind climatology for points offshore for quite a distance downstream from the coast....

  5. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  6. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2015-01-01

    that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution

  7. WAsP engineering flow model for wind over land and sea

    DEFF Research Database (Denmark)

    Astrup, P.; Larsen, Søren Ejling

    1999-01-01

    This report presents the basic wind flow model of WAsP Engineering. The model consists in principle of three parts: the LINCOM model for neutrally stable flow over terrain with hills and varying surface roughness, a sea surface roughness model, and anobstacle model. To better predict flow over...... of literature data for the Charnock parameter as function of the so called wave age, the ratio between wave velocity and friction velocity, plus a correlation ofwave age to the geometrically obtainable water fetch. A model for the influence on the wind of multiple, finite size, interacting obstacles with any...

  8. A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds

    Science.gov (United States)

    Vlahos, Penny; Monahan, Edward C.

    2009-11-01

    The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.

  9. The Pacific sea surface temperature

    International Nuclear Information System (INIS)

    Douglass, David H.

    2011-01-01

    The Pacific sea surface temperature data contains two components: N L , a signal that exhibits the familiar El Niño/La Niña phenomenon and N H , a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F S ; (2) N H is phase locked directly to F S while N L is frequently phase locked to the 2nd or 3rd subharmonic of F S . At least ten distinct subharmonic time segments of N L since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N L is the familiar El Niño/La Niña effect. ► The second N H component has a period of 1 cycle/year. ► N L can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  10. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  11. Numerical modeling of wind waves in the Black Sea generated by atmospheric cyclones

    Science.gov (United States)

    Fomin, V. V.

    2017-09-01

    The influence of the translation speed and intensity of atmospheric cyclones on surface wind waves in the Black Sea is investigated by using tightly-coupled model SWAN+ADCIRC. It is shown that the wave field has a spatial asymmetry, which depends on the velocity and intensity of the cyclone. The region of maximum waves is formed to the right of the direction of the cyclone motion. Speedier cyclones generate wind waves of lower height. The largest waves are generated at cyclonic translation speed of 7-9 m/s. This effect is due to the coincidence of the characteristic values of the group velocity of the dominant wind waves in the deep-water part of the Black Sea with the cyclone translation speed.

  12. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  13. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  14. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    Science.gov (United States)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  15. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology

    Science.gov (United States)

    Coggins, Jack H. J.; McDonald, Adrian J.

    2015-03-01

    The Amundsen Sea Low (ASL) is an area of climatologically low atmospheric pressure situated over the Southern Ocean. The depth and location of this feature have significant effects on winds, temperature, moisture transport, and sea ice in its vicinity. In this article, we quantify the modulating effect of this feature on winds over the Ross Sea and Ross Ice Shelf. We examine composites of surface winds sampled according to extrema in ASL depth, longitude, and latitude. We employ the output of a previously developed synoptic climatology to identify the explanatory synoptic-scale forcings. In autumn, winter, and spring (AWS) we find that the impact of the depth of the ASL is smaller than that of its location. The ASL moves eastward when it is deep, thereby reducing its influence on Ross Sea winds. When the ASL is northward, we find strongly enhanced southerly flows over the Ross Sea and Ice Shelf, forced by greater cyclonic activity in the north of the Ross Sea. In summer, we find increased cyclonic flow coinciding with a deeper ASL, despite the ASL being located in the Bellingshausen Sea at this time. The responses to the ASL longitude and latitude are profoundly different to those in AWS, suggesting that relationships are strongly dependent on the varying seasonal location of the low. We examine two metrics of the ASL depth and identify that the absolute mean sea level pressure (MSLP) has a more widespread response than that of the relative MSLP.

  16. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  17. Impact of sea breeze on the wind-seas off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Shetye, S.R.; Chandramohan, P.

    , and fitted a theoretical equilibrium spectrum. The theoretical spectrum chosen was the TMA spectrum (Bouws et al 1985), formulated as an extension of the JONSWAP spec- trum (Hasselmann et al 1973) for wind-generated seas in a finite water depth. The depth... with the dispersion relationship for waves in finite water depth. The TMA spectrum that could provide the best fit for the sea-related observed spectrum off Goa, was determined by choosing the equivalent fetch and wind speed that minimized the sum of squares...

  18. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is observed that an intense dipolar eddy spins up in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend more than 100 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation in an idealized numerical model. Simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. © 2012. American Geophysical Union. All Rights Reserved.

  19. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    Ocean winds have been observed in the Baltic, Irish and North Seas from a combination of groundbased lidars, tall offshore meteorological masts and satellites remote sensing in recent years. In the FP7 project NORSEWInD (2008-2012) the project partners joined forces to ensure collection of these ...

  20. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  1. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  2. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  3. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  4. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  5. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  6. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  7. A study of the radar backscattering from the breaking of wind waves on the sea

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Yurovskij, Yu.Yu.; Malinovskij, V.V.

    2011-01-01

    The results of a field study of the relationship between radar backscattering parameters and geometrical characteristics of the wind wave breaking are presented. The radar cross-section of a whitecap is found to be proportional to the breaking crest length. It is shown that the accounting for a change of the non-Bragg scattering in the presence of an oil slick on the sea surface allows one to interpret experimental data correctly.

  8. Deterministic and Advanced Statistical Modeling of Wind-Driven Sea

    Science.gov (United States)

    2015-07-06

    It gives a ground for use an asymptotic approach for wind-driven seas in a spirit of our previous works [R16,R17]. Then we use simple...b𔃼)-—{b’’— b2 ) 1 - --r 2 b-k{\\b’\\2)--{b’k{\\b\\2)) ox *-(6’ 2) -. dx dx dx This equation has localized breather-type solution b{x,t) = B{x

  9. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  10. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2017-01-01

    Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.

  11. Analysis of North Sea Offshore Wind Power Variability

    Directory of Open Access Journals (Sweden)

    Aymeric Buatois

    2014-05-01

    Full Text Available This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

  12. Recent studies on wind seas and swells in the Indian Ocean: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rashmi, R.; Samiksha, S.V.; Aboobacker, V.M.

    resolution winds are necessary to understand the effect of land-sea breeze on wind-sea generation in the coastal regions We have used atmospheric models such as MM5 and WRF to generate fine resolution winds, and the same will be used in wave models...

  13. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  14. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  15. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  16. Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics

    Science.gov (United States)

    Silvestrova, K. P.; Zatsepin, A. G.; Myslenkov, S. A.

    2017-07-01

    Long series data of a thermistor chain in the Black Sea coastal zone near Gelendzhik were analyzed. A thermistor chain installed 1 km offshore and at a depth of 22 m. There are full and incomplete upwelling events observed. The study of upwelling genesis based on: wind speed data from the NCEP/CFSR reanalysis and Gelendzhik weather station, velocity and direction of coastal currents measured by ADCP profiler moored on the bottom near the thermistor chain. Over the whole observation period (warm seasons of 2013-2015), more than 40 events of upwelling were registered four of them were full upwellings, when presence of under-thermocline water was observed near the sea surface. For every upwelling event, conditions prior to the changes in thermic structure, were analyzed. It is found that full upwelling generally occur under synergistic wind and current forcing. Fairly strong forcing of one of these factors is sufficient for partial upwelling to occur.

  17. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  18. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2011-01-01

    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining......, waterlogging of marsh soils, which has retarded ecological succession. To conclude, we stress the need for a multitemporal perspective that recognizes the significance of short-term sea-level fluctuations nested within long-term trends......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...... to drive the increased frequency of flooding and such retarded succession. Skallingen, however, has showed more or less equilibrated yearly rates between sea-level rise and surface accretion. This implies that the long-term, gradual sea-level rise alone might not be enough to explain the increased...

  19. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  20. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  1. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  2. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  3. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  4. Wind-driven export of Weddell Sea slope water

    Science.gov (United States)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  5. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  6. On the diurnal ranges of Sea Surface Temperature (SST) in the ...

    Indian Academy of Sciences (India)

    (Solomon and Jin 2005). The diurnal change in. SST has also been examined to study the possible feedbacks on the atmosphere (Clayson and Chen. 2002; Bernie et al 2007). Solar heating of the sea surface in low-wind conditions can lead to the development of a stable warm layer of a few meters thickness at the surface.

  7. Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China.

    Science.gov (United States)

    Wang, Teng; Zou, Xinqing; Li, Baojie; Yao, Yulong; Li, Jiasheng; Hui, Hejiu; Yu, Wenwen; Wang, Chenglong

    2018-03-01

    Despite the rapid construction of offshore wind farms, the available information regarding the risks of this type of development in terms of emerging pollutants, particularly microplastics, is scarce. In this study, we quantified the level of microplastic pollution at an offshore wind farm in the Yellow Sea, China, in 2016. The abundance of microplastics was 0.330 ± 0.278 items/m 3 in the surface water and 2.58 ± 1.14 items/g (dry) in the sediment. To the best of our knowledge, the level of microplastic pollution in our study area was slightly higher than that in coastal areas around the world. The microplastics detected in the surface waters and sediments were mainly fibrous (75.3% and 68.7%, respectively) and consisted of some granules and films. The microplastics in the samples might originate from garments or ropes via wastewater discharge. The abundance of plastic in the water and sediment samples collected from the wind farm area was lower than that in the samples collected from outside the wind farm area. The anthropogenic hydrodynamic effect was the main factor affecting the local distribution of microplastics. The presence of a wind farm could increase the bed shear stress during ebb tide, disturbing the bed sediment, facilitating its initiation and transport, and ultimately increasing the ease of washing away the microplastics adhered to the sediment. This study will serve as a reference for further studies of the distribution and migration of microplastics in coastal zones subjected to similar marine utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  9. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  10. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  11. Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Izumo, T.; Lengaigne, M.; Han, W.; Mc; Muraleedharan, P.M.

    version: Geophys. Res. Lett.: 43(13); 2016; 7028-7035 Dominant role of winds near Sri Lanka in driving seasonal sea-level variations along the west coast of India I. Suresh1, J. Vialard2, T. Izumo2,3, M. Lengaigne,2,3, W. Han4, J. McCreary5, P... as manifested both in sea level and surface circulation of the North Indian Ocean (NIO) [e.g., Schott and McCreary, 2001]. The sea level along the west coast of India (WCI), in particular, is dominated by the seasonal cycle. Figure 1a, which shows...

  12. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.; Jiang, Houshuo; Farrar, J. Thomas

    2013-01-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley

  13. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  14. Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean

    OpenAIRE

    Glantz , P.; Nilsson , D. E.; Von Hoyningen-Huene , W.

    2006-01-01

    International audience; Retrieved aerosol optical thickness (AOT) based on data obtained by the Sea viewing Wide Field Sensor (SeaWiFS) is combined with surface wind speed, obtained at the European Centre for Medium-Range Weather Forecasts (ECMWFs), over the North Pacific for September 2001. In this study a cloud screening approach is introduced in an attempt to exclude pixels partly or fully covered by clouds. The relatively broad swath width for which the nadir looking SeaWiFS instrument sc...

  15. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  16. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature dataset derived from the International...

  17. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  18. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  19. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  20. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  1. Comparison of SeaWinds Backscatter Imaging Algorithms

    Science.gov (United States)

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  2. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  3. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  4. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    Science.gov (United States)

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  5. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  6. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Science.gov (United States)

    Lachkar, Zouhair; Lévy, Marina; Smith, Shafer

    2018-01-01

    The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased

  7. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2018-01-01

    Full Text Available The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs. This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from −50 to +50 % on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS coupled to a nitrogen-based nutrient–phytoplankton–zooplankton–detritus (NPZD ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years, the OMZ response is much slower (i.e., a timescale of decades. Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100–200 m of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there

  8. Sea surface temperature (SST) and surface current data collected from the Mar Mostro during the around-the-world Volvo Ocean Race (VOR) from 2011-11-05 to 2012-07-12 (NCEI Accession 0130694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Navigation, surface current, sea surface temperature, wind, and atmospheric pressure data collected by the Mar Mostro during the around-the-world Volvo Ocean Race...

  9. Deterministic prediction of surface wind speed variations

    Directory of Open Access Journals (Sweden)

    G. V. Drisya

    2014-11-01

    Full Text Available Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  10. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  11. The Carbon Dioxide System in the Baltic Sea Surface Waters

    Energy Technology Data Exchange (ETDEWEB)

    Wesslander, Karin

    2011-05-15

    The concentration of carbon dioxide (CO{sub 2}) in the atmosphere is steadily increasing because of human activities such as fossil fuel burning. To understand how this is affecting the planet, several pieces of knowledge of the CO{sub 2} system have to be investigated. One piece is how the coastal seas, which are used by people and influenced by industrialization, are functioning. In this thesis, the CO{sub 2} system in the Baltic Sea surface water has been investigated using observations from the last century to the present. The Baltic Sea is characterized of a restricted water exchange with the open ocean and a large inflow of river water. The CO{sub 2} system, including parameters such as pH and partial pressure of CO{sub 2} (pCO{sub 2}), has large seasonal and inter-annual variability in the Baltic Sea. These parameters are affected by several processes, such as air-sea gas exchange, physical mixing, and biological processes. Inorganic carbon is assimilated in the primary production and pCO{sub 2} declines to approx150 muatm in summer. In winter, pCO{sub 2} levels increase because of prevailing mineralization and mixing processes. The wind-mixed surface layer deepens to the halocline (approx60 m) and brings CO{sub 2}- enriched water to the surface. Winter pCO{sub 2} may be as high as 600 muatm in the surface water. The CO{sub 2} system is also exposed to short-term variations caused by the daily biological cycle and physical events such as upwelling. A cruise was made in the central Baltic Sea to make synoptic measurements of oceanographic, chemical, and meteorological parameters with high temporal resolution. Large short-term variations were found in pCO{sub 2} and oxygen (O{sub 2}), which were highly correlated. The diurnal variation of pCO{sub 2} was up to 40 muatm. The CO{sub 2} system in the Baltic Sea changed as the industrialization increased around 1950, which was demonstrated using a coupled physical-biogeochemical model of the CO{sub 2} system

  12. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  13. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  14. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  15. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2013-02-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea shelf, detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the southeastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the central and northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore winds and northward transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf, whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport, in both the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during the open water season. A continuing trend toward

  16. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-01-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea

  17. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  18. Multiscale wind cycles and current pulses at the Black Sea eastern boundary

    Science.gov (United States)

    Melnikov, Vasiliy; Moskalenko, Lidija; Piotoukh, Vladimir; Zatsepin, Andrey

    2015-04-01

    quantified anomalies, associated with different frequency components of variability, such as sub-meso-scale eddies, marginal shelf waves, inertial oscillations, diurnal, semi-diurnal and short-period internal waves, long surface waves, were estimated. Based on estimates of the statistical relationships between the different parameters of hydro-meteorological system, including meteorological elements, sea level, sea temperature and flow fields, space/time scales of the observed fields variability were estimated. Several new features of the physical mechanisms of multiscale hydro-physical processes in the shelf zone of the Black Sea, have been revealed. In particular, it is shown, that there are wind self-similar cycles at different time scales, each cycle being consisted of a pair of northeast and then southeast winds, which corresponds to the alternative influences of the Azores and Siberian highs(in winter). In the range of decadal (10 years) scale and in macro space view, long-term wind cycles support basic Black Sea circulation(Rim Current).Wind cycles with a time scale of about 20 days give rise to distinct upwellings, appeared with the same frequency. Along with each upwelling, radical hydrological restructuring of the stratification is accompanied by intense advection with high velocities(up to 1 m/s). Kinetic energy is dominated by alongshore currents, the direction being reversed periodically. The vertical structure of currents is rather complicated. When the current speed exceeds some threshold value, the flow gives rise to relaxation oscillations with a period of about 24 hours with counterclockwise velocity vector rotation. All the above mentioned events and current pulses cause significant variations of air-sea fluxes. This research was jointly supported by Ministry of Education of the RF (Agreement №14.604.21.0044), Russian Academy of Sciences(Program No 23), RFBR grant 14-05-00159,contract No 10/2013 RGS-RFBR.

  19. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  20. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2015-01-01

    orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending

  1. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique; Viswanadhapalli, Yesubabu; Dasari, Hari Prasad; Knio, Omar; Hoteit, Ibrahim

    2016-01-01

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model

  2. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea

    Science.gov (United States)

    Akpinar, Adem; Ponce de León, S.

    2016-03-01

    This study aims at an assessment of wind re-analyses for modelling storms in the Black Sea. A wind-wave modelling system (Simulating WAve Nearshore, SWAN) is applied to the Black Sea basin and calibrated with buoy data for three recent re-analysis wind sources, namely the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA) during an extreme wave condition that occurred in the north eastern part of the Black Sea. The SWAN model simulations are carried out for default and tuning settings for deep water source terms, especially whitecapping. Performances of the best model configurations based on calibration with buoy data are discussed using data from the JASON2, TOPEX-Poseidon, ENVISAT and GFO satellites. The SWAN model calibration shows that the best configuration is obtained with Janssen and Komen formulations with whitecapping coefficient (Cds) equal to 1.8e-5 for wave generation by wind and whitecapping dissipation using ERA-Interim. In addition, from the collocated SWAN results against the satellite records, the best configuration is determined to be the SWAN using the CFSR winds. Numerical results, thus show that the accuracy of a wave forecast will depend on the quality of the wind field and the ability of the SWAN model to simulate the waves under extreme wind conditions in fetch limited wave conditions.

  3. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    Science.gov (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  4. The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    An analysis of thermal Structure in the East Central Arabian Sea associated with a moderate cyclone is presented. The heat storage and the heat budget components have been computed. Under the influence of the cyclone the Sea Surface Temperature (SST...

  5. Wind stress over the Arabian Sea from ship reports and Seasat scatterometer data

    Science.gov (United States)

    Perigaud, C.; Minster, J. F.; Delecluse, P.

    1989-01-01

    Seasat scatterometer data over the Arabian Sea are used to build wind-stress fields during July and August 1978. They are first compared with 3-day wind analyses from ship data along the Somali coast. Seasat scatterometer specifications of 2-m/s and 20-deg accuracy are fulfilled in almost all cases. The exceptions are for winds stronger than 14 m/s, which are underestimated by the scatterometer by 15 percent. Wind stress is derived from these wind data using a bulk formula with a drag coefficient depending on the wind intensity. A successive-correction objective analysis is used to build the wind-stress field over the Arabian Sea with 2 x 2-deg and 6-day resolution. The final wind-stress fields are not significantly dependent on the objective analysis because of the dense coverage of the scatterometer. The combination of scatterometer and coastal ship data gives the best coverage to resolve monsoon wind structures even close to the coast. The final wind stress fields show wind features consistent with other monthly mean wind stress field. However, a high variability is observed on the 6-day time scale.

  6. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea

    Science.gov (United States)

    Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian

    2014-04-01

    Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.

  7. A decision support system for assessing offshore wind energy potential in the North Sea

    International Nuclear Information System (INIS)

    Schillings, Christoph; Wanderer, Thomas; Cameron, Lachlan; Tjalling van der Wal, Jan; Jacquemin, Jerome; Veum, Karina

    2012-01-01

    Offshore wind energy (OWE) in the North Sea has the potential to meet large share of Europe’s future electricity demand. To deploy offshore wind parks in a rational way, the overall OWE potential has to be realistically determined. This has to be done on an international, cross-border level and by taking into account the existing man-made and nature-related uses of the North Sea. As spatial conflicts will arise between existing uses and the new OWE uses, a Decision Support System (DSS) based on a Geographic Information System (GIS) was developed. Based on data of existing sea uses and calculation rules for spatial prioritisation analysis, the DSS helps in identifying areas that are (1) generally suitable for offshore wind power, (2) strictly excluded or (3) negotiable with respect to other existing sea uses. The combination of this conflict analysis together with cost assumptions for offshore wind farms and their expected electricity yield leads to identification of favourable areas for OWE deployment in the North Sea. This approach helps to reduce the conflict between offshore wind deployment and existing sea uses in the North Sea for future planning. The results can assist decision makers in developing transnational roadmaps for OWE. - Highlights: ► Decision Support System (DSS) to identify offshore wind energy (OWE) potential in the North Sea. ► Spatial analysis of existing sea use functions and offshore wind energy potential. ► Input parameters of DSS depend on the level of OWE spatial priority assumed by the user. ► DSS performs the required calculations and provides results in form of maps and statistics. ► DSS available after registration at (www.windspeed.eu).

  8. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.

    2013-08-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2. m and mean periods of 8. s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19-20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east-west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2. m and maximum wave heights of 14. m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a

  9. A decision support system for assessing offshore wind energy potential in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, T.; Schillings, C. [German Aerospace Center (DLR), Systems Analysis and Technology Assessment, Stuttgart (Germany); Cameron, L.; Veum, K. [Energy research Center of the Netherlands ECN, Policy Studies Department, Amsterdam (Netherlands); Tjalling van der Wal, J. [IMARES, Wageningen UR, Den Helder (Netherlands); Jacquemin, J. [GL Garrad Hassan, Paris (France)

    2012-10-15

    Offshore wind energy (OWE) in the North Sea has the potential to meet large share of Europe's future electricity demand. To deploy offshore wind parks in a rational way, the overall OWE potential has to be realistically determined. This has to be done on an international, cross-border level and by taking into account the existing man-made and nature-related uses of the North Sea. As spatial conflicts will arise between existing uses and the new OWE uses, a Decision Support System (DSS) based on a Geographic Information System (GIS) was developed. Based on data of existing sea uses and calculation rules for spatial prioritisation analysis, the DSS helps in identifying areas that are (1) generally suitable for offshore wind power, (2) strictly excluded or (3) negotiable with respect to other existing sea uses. The combination of this conflict analysis together with cost assumptions for offshore wind farms and their expected electricity yield leads to identification of favourable areas for OWE deployment in the North Sea. This approach helps to reduce the conflict between offshore wind deployment and existing sea uses in the North Sea for future planning. The results can assist decision makers in developing transnational roadmaps for OWE.

  10. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    Science.gov (United States)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  11. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  12. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    International Nuclear Information System (INIS)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity. (paper)

  13. Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

    National Research Council Canada - National Science Library

    Gentemann, Chelle L; Wick, Gary A; Cummings, James; Bayler, Eric

    2004-01-01

    ...) sensors and to then demonstrate the impact of these improved sea surface temperatures (SSTs) on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting...

  14. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  15. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  16. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  17. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  18. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  19. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  20. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  1. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  2. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    Science.gov (United States)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  3. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    Long-term eustatic sea-level variation has been recognized as a primary factor affecting the hydrological and geomorphic dynamics of salt marshes. However, recent studies suggest that wind waves influenced by atmospheric oscillations also may play an important role in many coastal areas. Although...... this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back......-barrier marsh on the Skallingen peninsula in Denmark. In the model, the frequency (number year(-1)) of wind-driven extreme high water level (HWL) events (> 130 cm Danish Ordnance Zero) was simulated in terms of the North Atlantic Oscillation (NAO) index. Then, surface accretion (cm year(-1)) and submergence...

  4. A FULL-SCALE MEASUREMENT OF WIND ACTIONS AND EFFECTS ON A SEA-CROSSING BRIDGE

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2017-10-01

    Full Text Available Wind loading is critical for the large-span and light-weight structures, and field measurement is the most effective way to evaluate the wind resistance performance of a specific structure. This study investigates the wind characteristics and wind-induced vibration on a sea-crossing bridge in China, namely Donghai Bridge, based on up to six years of monitoring data. It is found that: (1 there exists obvious discrepancy between the measured wind field parameters and the values suggested by the design code; and the wind records at the bridge site is easily interfered by the bridge structure itself, which should be considered in interpreting the measurements and designing structural health monitoring systems (SHMS; (2 for strong winds with high non-stationarity, a shorter averaging time than 10-min is preferable to obtain more stable turbulent wind characteristics; (3 the root mean square (RMS of the wind-induced acceleration of the girder may increase in an approximately quadratic curve relationship with the mean wind speed; and (4 compared to traffic load, the wind dominates the girder’s lateral vibration amplitude, while the heavy-load traffic might exert more influence on the girder’s vertical and torsional vibrations than the high winds. This study provides field evidence for the wind-resistant design and evaluation of bridges in similar operational conditions.

  5. Strategic environmental assessment (SEA) for wind energy planning: Lessons from the United Kingdom and Germany

    Energy Technology Data Exchange (ETDEWEB)

    Phylip-Jones, J., E-mail: jonesjp@liverpool.ac.uk; Fischer, T.B., E-mail: fischer@liv.ac.uk

    2015-01-15

    This paper reports on SEA applied in the wind energy sector in the UK and Germany. Based on a review of 18 SEAs, it is found that the quality of SEA documentation is variable, with over a third of them being deemed unsatisfactory. Furthermore, SEA processes are conducted to varying degrees of effectiveness, with scoping a strength but impact prediction and mitigation weaknesses. Generally speaking, the influence of SEA on German wind energy plan making was found to be low and the influence of SEA on UK plans deemed to be moderate. The German plans had a low influence mainly because of a perceived high environmental performance of the underlying plans in the first instance. Substantive outcomes of SEA are not always clear and the influence of SEA on decision making is said to be limited in many cases. Finally, a lack of effective tiering between SEA and project level EIA is also observed. In addition, our findings echo some of the weaknesses of SEA practice found in previous studies of SEA effectiveness, including poor impact prediction and significance sections and a lack of detailed monitoring programmes for post plan implementation.

  6. Validation of simulations of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainlie, M.A.; Gerdes, F.; Schäfke, A.; Özkan Sertlekc, H.

    2013-01-01

    This paper shows that it is possible to simulate realistic shallow-water acoustic communication channels using available acoustic propagation models. Key factor is the incorporation of realistic time-dependent sea surface conditions, including both waves and bubbles due to wind.

  7. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  8. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  9. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  10. Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea

    Directory of Open Access Journals (Sweden)

    Yong Wan

    2018-02-01

    Full Text Available The South China Sea is a major shipping hub between the West Pacific and Indian Oceans. In this region, the demand for energy is enormous, both for residents’ daily lives and for economic development. Wave energy and wind energy are two major clean and low-cost ocean sources of renewable energy. The reasonable development and utilization of these energy sources can provide a stable energy supply for coastal cities and remote islands of China. Before wave energy and wind energy development, however, we must assess the potential of each of these sources. Based on high-resolution and high-accuracy wave field data and wind field data obtained by ERA-Interim reanalysis for the recent 38-year period from 1979–2016, the joint development potential of wave energy and wind energy was assessed in detail for offshore and nearshore areas in the South China Sea. Based on potential installed capacity, the results revealed three promising areas for the joint development of nearshore wave energy and wind energy, including the Taiwan Strait, Luzon Strait and the sea southeast of the Indo-China Peninsula. For these three dominant areas (key stations, the directionality of wave energy and wind energy propagation were good in various seasons; the dominant wave conditions and the dominant wind conditions were the same, which is advantageous for the joint development of wave and wind energy. Existing well-known wave energy converters (WECs are not suitable for wave energy development in the areas of interest. Therefore, we must consider the distributions of wave conditions and develop more suitable WECs for these areas. The economic and environmental benefits of the joint development of wave and wind energy are high in these promising areas. The results described in this paper can provide references for the joint development of wave and wind energy in the South China Sea.

  11. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  12. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  13. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Science.gov (United States)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  14. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  15. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  16. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  17. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  18. Assessment of offshore wind power potential in the Aegean and Ionian Seas based on high-resolution hindcast model results

    Directory of Open Access Journals (Sweden)

    Takvor Soukissian

    2017-03-01

    Full Text Available In this study long-term wind data obtained from high-resolution hindcast simulations is used to analytically assess offshore wind power potential in the Aegean and Ionian Seas and provide wind climate and wind power potential characteristics at selected locations, where offshore wind farms are at the concept/planning phase. After ensuring the good model performance through detailed validation against buoy measurements, offshore wind speed and wind direction at 10 m above sea level are statistically analyzed on the annual and seasonal time scale. The spatial distribution of the mean wind speed and wind direction are provided in the appropriate time scales, along with the mean annual and the inter-annual variability; these statistical quantities are useful in the offshore wind energy sector as regards the preliminary identification of favorable sites for exploitation of offshore wind energy. Moreover, the offshore wind power potential and its variability are also estimated at 80 m height above sea level. The obtained results reveal that there are specific areas in the central and the eastern Aegean Sea that combine intense annual winds with low variability; the annual offshore wind power potential in these areas reach values close to 900 W/m2, suggesting that a detailed assessment of offshore wind energy would be worth noticing and could lead in attractive investments. Furthermore, as a rough estimate of the availability factor, the equiprobable contours of the event [4 m/s ≤ wind speed ≤ 25 m/s] are also estimated and presented. The selected lower and upper bounds of wind speed correspond to typical cut-in and cut-out wind speed thresholds, respectively, for commercial offshore wind turbines. Finally, for seven offshore wind farms that are at the concept/planning phase the main wind climate and wind power density characteristics are also provided.

  19. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  20. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  1. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  2. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  3. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    Science.gov (United States)

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea

    International Nuclear Information System (INIS)

    Schweizer, Joerg; Antonini, Alessandro; Govoni, Laura; Gottardi, Guido; Archetti, Renata; Supino, Enrico; Berretta, Claudia; Casadei, Carlo; Ozzi, Claudia

    2016-01-01

    Highlights: • First feasibility study for an offshore wind farm in the Northern Adriatic Sea. • Field wind and wave data collected at the site. • Site-specific design of transition piece and foundation. • Economical and technical feasibility applied to four different scenarios. - Abstract: The use of offshore wind power is becoming increasingly important towards a sustainable growth worldwide. In Italy, as well as in other countries where wind energy is provided only by onshore plants, the interest in the deployment of offshore wind resources is rapidly growing, despite relatively modest average wind speeds, compared to typical wind conditions in the North Sea. Research efforts have, so far, addressed the exploration of the most promising locations, based on wind characteristics; however, more extended evidence of technical and economic feasibility is now needed to raise awareness in the decision makers and secure to this source of renewable energy a proper role in the future energy policies. Within such a context, the paper presents the first feasibility study for the development of an offshore wind farm off the coast of Rimini, in the Northern Adriatic Sea. The study is based on an anemometric campaign started at the site in 2008 to provide a statistical assessment of the wind characteristics and the related wind energy potential, and on a 10-year wave measurement record next to the area, together with a thorough analysis of the site geological and environmental characteristics. Environmental data are interpreted with a proper consideration of the extreme events distribution and relevant results are used to select the most appropriate commercially available wind turbine and to design the site-specific support structure. A comprehensive evaluation of the investment costs and revenues is then carried out with reference to two wind farm layouts (a first smaller, constituted of 15 elements, and another one, featuring up to 60 elements) and in relation to two

  5. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  6. Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

    KAUST Repository

    Langodan, Sabique

    2017-12-27

    The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

  7. Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Pomaro, Angela; Portilla, Jesus; Abualnaja, Yasser; Hoteit, Ibrahim

    2017-01-01

    The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

  8. Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna

    2016-01-01

    A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing...... for Climate (ARC) dataset and with in situ observations. A dynamical bias correction scheme adjusts the Pathfinder observations toward the ARC and in situ observations. Largest Pathfinder-ARC differences are found in the summer months, when the Pathfinder observations are up to 0.4 °C colder than the ARC...... observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of -0.06 °C compared to moored buoys and a 0.46 °C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years...

  9. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  10. An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

    Directory of Open Access Journals (Sweden)

    Taekyeong Jin

    2018-04-01

    Full Text Available We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

  11. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  12. The climatology of the Red Sea - part 1: the wind

    KAUST Repository

    Langodan, Sabique

    2017-05-12

    The wind climatology of the Red Sea is described based on a 30-year high-resolution regional reanalysis generated using the Advanced Weather Research Forecasting model. The model was reinitialized on a daily basis with ERA-Interim global data and regional observations were assimilated using a cyclic three-dimensional variational approach. The reanalysis products were validated against buoy and scatterometers data. We describe the wind climatology and identify four major systems that determine the wind patterns in the Red Sea. Each system has a well-defined origin, and consequently different characteristics along the year. After analysing the relevant features of the basin in terms of their climatology, we investigate possible long-term trends in each system. It is found that there is a definite tendency towards lowering the strength of the wind speed, but at a different rate for different systems and periods of the year.

  13. The climatology of the Red Sea - part 1: the wind

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Vishwanadhapalli, Yesubabu; Pomaro, Angela; Bertotti, Luciana; Hoteit, Ibrahim

    2017-01-01

    The wind climatology of the Red Sea is described based on a 30-year high-resolution regional reanalysis generated using the Advanced Weather Research Forecasting model. The model was reinitialized on a daily basis with ERA-Interim global data and regional observations were assimilated using a cyclic three-dimensional variational approach. The reanalysis products were validated against buoy and scatterometers data. We describe the wind climatology and identify four major systems that determine the wind patterns in the Red Sea. Each system has a well-defined origin, and consequently different characteristics along the year. After analysing the relevant features of the basin in terms of their climatology, we investigate possible long-term trends in each system. It is found that there is a definite tendency towards lowering the strength of the wind speed, but at a different rate for different systems and periods of the year.

  14. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    Science.gov (United States)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  15. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  16. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  17. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  18. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1997-01-01

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones

  19. Offshore wind energy in Mediterranean and other european seas: Technology and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiosi, G

    1998-12-31

    In the last six years (1990-1996) the world wide capacity of grid connected offshore wind plants, at the prototypical stage, has reached 12 MW at energy costs some what higher than fifty per cent of similar on shore plants. Additional offshore installations are close to the construction and proposed for some hundreds MW in north european seas. The technology of the offshore wind turbines is evolving parallely to that of the onshore ones.

  20. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  1. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  2. Sea level changes induced by local winds on the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Tsimplis, M.N.; Desai, R.G.P.; Joseph, A.; Shaw, A.G.P.; Somayajulu, Y.K.; Cipollini, P.

    1 National Institute of Oceanography, Goa, India 2 National Oceanography Centre, Southampton, UK # [Corresponding author: pmehra@nio.org] Abstract The contribution of atmospheric pressure and wind to sea level variability at Goa (West...), Southampton under an Indian Ocean Tsunami Warning System (IOWTS) fellowship-2008-2009. We are all grateful to the International Oceanographic Commission for providing us with the opportunity of working together. 17 R: Correlation coefficient between sea...

  3. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  4. Mechanism of air-sea momentum flux from low to high winds

    Science.gov (United States)

    Zhao, Dongliang

    2017-04-01

    In the condition of wind speed less than 20 m/s, many studies have shown that drag coefficient roughly increases linearly with wind speed, which is usually extrapolated to high winds in practice. Since the pioneer work of Powell et al. (2003), both field and laboratory studies have indicated that the drag coefficient begins to decrease or saturate when wind speed is greater than a critical value such as 30 m/s. All the reduction mechanisms proposed up to now are related to the effect of sea spray induced by wave breaking in high winds. This study tries to propose another mechanism that is directly related to wave breaking. Based on the wind-wave growth relations, it is found that drag coefficient increases simultaneously with wave age and wave steepness. The reduction of drag coefficient with wave age that has been shown by previous studies mainly reflect the wind effect because the phase speeds of waves vary in a very narrow range, and can be roughly regarded as constant. It is indicated that two parameters including wave age and wave steepness together control the momentum transfer through air-sea interface. The wave age and wave steepness represent the abilities of wind input and wave receiving energy, respectively. In general, the two parameters are well correlated and can be replaced one another in the condition of low and moderate winds, in which the wave steepness decreases with the increasing wave age. In the condition of high winds, the wave steepness reaches to its upper threshold due to wave breaking, in which wave steepness cannot increase with the decreasing of wave age. At the same time, wave ages become very small, thus drag coefficients begin to decrease with wind speed. It is further suggested that there are two different upper thresholds of wave steepness for laboratory and field waves, which can be applied to explain the reduction of drag coefficient either in laboratory or in field

  5. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R; Pandya, R; Mathur, K.M.; Charyulu, R; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  6. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    experiments that the air-sea gas transfer coefficient for each of a wide range of gases, including carbon dioxide and .... generators with which the basin was equipped, the .... whitecaps in air-sea gas exchange; Gas Transfer at Water. Surfaces ...

  7. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  8. Low-Frequency Rotation of Surface Winds over Canada

    Directory of Open Access Journals (Sweden)

    Richard B. Richardson

    2012-10-01

    Full Text Available Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W to 25 days at Resolute (75°N, 95°W. Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.

  9. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  10. Co-existence of wind seas and swells along the west coast of India during non-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Rashmi, R.; Aboobacker, V.M.; Vethamony, P; John, M.P

    -dimensional significant wind sea heightH ∗S and peak wind sea period T ∗P have been calculated (Fig. 9). The best fit between log (H ∗Sws) and log (T ∗Pws) has been es- timated and resolved as follows: Fig. 7. (a), (b), (c), (d), (e) and (f) are wave energy spectrum, wave... of shallow water waves along Indian coast, J. Coastl. Res., 19, 1052–1065, 2003. Neetu, S., Shetye, S., and Chandramohan, P.: Impact of sea-breeze on wind seas off Goa, west coast of India, J. Earth Sys. Sci., 115, 229–234, 2006. Peterson, E. W. and Hennessey...

  11. 1994 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  12. 1993 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the NOAA...

  13. Performance evaluation of sea surface simulation methods for target detection

    Science.gov (United States)

    Xia, Renjie; Wu, Xin; Yang, Chen; Han, Yiping; Zhang, Jianqi

    2017-11-01

    With the fast development of sea surface target detection by optoelectronic sensors, machine learning has been adopted to improve the detection performance. Many features can be learned from training images by machines automatically. However, field images of sea surface target are not sufficient as training data. 3D scene simulation is a promising method to address this problem. For ocean scene simulation, sea surface height field generation is the key point to achieve high fidelity. In this paper, two spectra-based height field generation methods are evaluated. Comparison between the linear superposition and linear filter method is made quantitatively with a statistical model. 3D ocean scene simulating results show the different features between the methods, which can give reference for synthesizing sea surface target images with different ocean conditions.

  14. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  15. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  16. OW NOAA GOES-POES Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains blended satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellites (GOES)...

  17. OW AVISO Sea-Surface Height & Niiler Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  18. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  19. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  20. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  1. Surface Wind Gust Statistics at the Savannah River Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2001-01-01

    The Atmospheric Technologies Group (ATG) of the Savannah River Technology Center (SRTC) collects meteorological data for many purposes at the Savannah River Site (SRS) including weather forecasting. This study focuses on wind gusts and also, to a lesser degree, turbulence intensities that occur in fair weather conditions near the surface over time periods from 1 hour to one week (168 hours)

  2. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  3. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  4. Collision risks at sea: species composition and altitude distributions of birds in Danish offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Blew, J.; Hoffmann, M.; Nehls, G. [BioConsult SH (Germany)

    2007-07-01

    This study investigates the collision risks of birds in operating offshore wind farms, focussing on all bird species present in the direct vicinity of the wind farms, their altitude distribution and reactions. The project was conducted jointly by BioConsult SH and the University of Hamburg in the two Danish offshore wind farms Horns Rev (North Sea) and Nysted (Baltic Sea) in the framework of a Danish-German cooperation and financed by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Data were collected between March 2005 and November 2006, using a ship anchored at the edge of the offshore wind farms. In this way, bird species of all sizes could be considered. Daytime observations yielded data on species composition, flight routes and potential reactions of the birds. Radar observations provided altitude distributions inside and outside the wind farm area and also reactions. The results shall help to further describe and assess the collision risk of different species groups. Since data analysis is still running, exemplary results will be presented here. 114 species have been recorded in Nysted and 99 in Horns Rev, approximately 65% of which have been observed inside the wind farm areas. Migrating birds seem to avoid flying into the wind farms, whereas individuals present in the areas for extended time periods utilize areas within the wind farms. While a barrier effect exists for species on migration, resident species probably have a higher collision risk. Raptors migrating during daylight frequently enter the wind farm area on their flight routes, correcting their flight paths in order to avoid collisions. Radar results show that during times of intensive migration, the proportion of birds flying at high altitudes and thus above windmill height is higher than in times of low migration intensity. Consequently, there is a lower proportion of migrating birds flying within the risk area. Data will be further analysed to

  5. NOAA NDBC SOS, 2008-present, sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  6. Effects of the surface waves on air-sea interactions of the sea spray

    NARCIS (Netherlands)

    Francius, M.J.; Eijk, A.M.J. van

    2006-01-01

    Aerosols are important to a large number of processes in the marine boundary layer. On a micro-meteorological scale, they influence the heat and moisture budgets near the sea surface. Since the ocean acts both as a source and a sink for aerosols, the sea spray droplets may transfer water vapour and

  7. Zooplankton incidence in abnormally high sea surface temperature in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Zooplankton in an abnormally high sea surface temperature (33.1 to 33.8 degrees C) and alternate bands of slick formation were studied in the Eastern Arabian Sea during 26 and 29 April 1981. The phenomenon which may be due to intense diurnal heating...

  8. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  9. The winds regime of surface in the Colombian coffee area

    International Nuclear Information System (INIS)

    Orlando Guzman Martinez; Lucia Gomez Gomez

    1994-01-01

    The characteristics of the address and gust of wind of the surface winds have been studied in 15 stations of the Colombian coffee area. It was found that the relief plays an important paper in the wind circulation so that during the day (7 a.m. - 7 p.m.) these they blow of the low sector toward the mountain and at night (7 p.m. - 7 a.m.) this situation is invested, that which is consistent with the characteristic pattern of circulation valley-mountain of the mountainous regions. For this fact, in most of the analyzed places a single day and night dominant address that it takes the orientation in that it is the respective hydrographic basin. It was not observed that the Alisios winds of the northeast and southeast modify the address settled down by the local circulation (valley-mountain) on the other hand a remarkable increase of the gust of wind was appreciated in July and August in the Florida and Ospina, stations located to the south of the country, as direct consequence of the Alisios of the southeast. The daily gust of wind in most of the studied places is low and it doesn't exceed of the 10 km/h, reason why it can consider that the Colombian coffee area is free of important damages for the action of the wind. Nevertheless, in some stations as Alban, Maracay and Paraguaicito the daily maximum gust of wind can surpass the 30 km/h and in occasions to cause damage mechanic to cultivations of high behavior and not well anchored facilities

  10. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  11. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  12. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  13. Storm surges in the Singapore Strait due to winds in the South China Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Tkalich, P.; Vethamony, P.; Babu, M.T.; Malanotte-Rizzoli, P.

    on the north, Karimata Strait on the south, east cost of Peninsular Malaysia on the west, and break of Sunda Shelf on the east, could experience positive or negative SLAs depending on the wind direction and speed. Strong sea level surges during NE monsoon...

  14. Consequences of WindSpeed scenarios for other sea use functions

    NARCIS (Netherlands)

    Wal, van der J.T.; Glorius, S.T.; Jongbloed, R.H.

    2011-01-01

    Offshore wind energy can significantly contribute to the sustainable energy mix of Europe. However, competing usage of the sea, cost and grid barriers are important challenges to overcome. The Windspeed project, funded bij DG Energy and Transport under Intelligent Energy for Europe (IEE) programme,

  15. An attempt to define critical wave and wind scenarios leading to capsize in beam sea

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Kristensen, Hans Otto Holmegaard

    2016-01-01

    for current new buildings with large superstructures. Thus it seems rea-sonable to investigate the possibility of capsizing in beam sea under the joint action of waves and wind using direct time domain simulations. This has already been done in several studies. Here it is combined with the First Order...

  16. IFREMER-ADEME colloquium 'Offshore renewable energies: offshore wind energy - sea currents and waves. Collection of abstracts

    International Nuclear Information System (INIS)

    2004-10-01

    This document contains programme and abstracts of contributions presented during a colloquium. These contributions first addresses the context, and regulatory and economic aspects of offshore wind and sea energy: specificities related to the Public Maritime Domain for the implantation of offshore wind turbines, economy of sea energies within a perspective of de-carbonation of the world energy sector, case of offshore wind turbines and assessment of economic impacts of the implantation of sea renewable energy production units, financing stakes for offshore wind energy projects. A second set of contribution addresses the state-of -the-art and feedbacks for offshore wind energy installations. The third set addresses the assessment of resource potential, measurements, models and production prediction for offshore wind energy: case of French coasts, use of radar for remote sensing, wind climatology modelling, data acquisition for wind farm and data processing. The fourth set of contributions addresses the state-of-the-art, feedback, and R and D for sea current energy, while the fifth one addressed the same aspects for sea wave energy. Technology, installations, maintenance and storage in the field of wind energy are then addressed, and the last set deals with environmental and social-economical impacts of sea renewable energies

  17. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Russian Foundation for Basic Research (Grants No. 15-35-20953, 14-05-00367, 15-45-02580) and project ASIST of FP7. The field experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), numerical simulations are partially supported by Russian Science Foundation (Agreement No. 14-17-00667). References 1. A.V. Babanin, V.K. Makin Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233 2. S.S. Atakturk, K.B. Katsaros Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 1999, 29, pp. 633-650 3. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu.I. Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment // Hindawi Publishing Corporation, Advances in Meteorology, 2016, Vol. 1, article ID 574602 4. G.A. Baydakov, A.M. Kuznetsova, D.A. Sergeev, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, and Yu.I. Troitskaya Field study and numerical modeling of wind and surface waves at the middle-sized water body // Geophysical Research Abstracts, Vol.17, EGU2015-9427, Vienne, Austria, 2015.

  18. CYGNSS Surface Wind Validation and Characteristics in the Maritime Continent

    Science.gov (United States)

    Asharaf, S.; Waliser, D. E.; Zhang, C.; Wandala, A.

    2017-12-01

    Surface wind over tropical oceans plays a crucial role in many local/regional weather and climate processes and helps to shape the global climate system. However, there is a lack of consistent high quality observations for surface winds. The newly launched NASA Cyclone Global Navigation Satellite System (CYGNSS) mission provides near surface wind speed over the tropical ocean with sampling that accounts for the diurnal cycle. In the early phase of the mission, validation is a critical task, and over-ocean validation is typically challenging due to a lack of robust validation resources that a cover a variety of environmental conditions. In addition, it can also be challenging to obtain in-situ observation resources and also to extract co-located CYGNSS records for some of the more scientifically interesting regions, such as the Maritime Continent (MC). The MC is regarded as a key tropical driver for the mean global circulation as well as important large-scale circulation variability such as the Madian-Julian Oscillation (MJO). The focus of this project and analysis is to take advantage of local in-situ resources from the MC regions (e.g. volunteer shipping, marine buoys, and the Year of Maritime Continent (YMC) campaign) to quantitatively characterize and validate the CYGNSS derived winds in the MC region and in turn work to unravel the complex multi-scale interactions between the MJO and MC. This presentation will show preliminary results of a comparison between the CYGNSS and the in-situ surface wind measurements focusing on the MC region. Details about the validation methods, uncertainties, and planned work will be discussed in this presentation.

  19. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    Science.gov (United States)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  20. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    temperature anomalies for the above regions respectively. An analysis has shown that most of the short duration anomalies (i.e., anomalies with periods less than 4 months) are driven by the surface heat fluxes. The medium duration anomalies (i.e., anomalies...

  1. Conjunction of 2D and 3D modified flow solvers for simulating spatio-temporal wind induced hydrodynamics in the Caspian Sea

    Science.gov (United States)

    Zounemat-Kermani, Mohammad; Sabbagh-Yazdi, Saeed-Reza

    2010-06-01

    The main objective of this study is the simulation of flow dynamics in the deep parts of the Caspian Sea, in which the southern and middle deep regions are surrounded by considerable areas of shallow zones. To simulate spatio-temporal wind induced hydrodynamics in deep waters, a conjunctive numerical model consisting of a 2D depth average model and a 3D pseudo compressible model is proposed. The 2D model is applied to determine time dependent free surface oscillations as well as the surface velocity patterns and is conjunct to the 3D flow solver for computing three-dimensional velocity and pressure fields which coverage to steady state for the top boundary condition. The modified 2D and 3D sets of equations are conjunct considering interface shear stresses. Both sets of 2D and 3D equations are solved on unstructured triangular and tetrahedral meshes using the Galerkin Finite Volume Method. The conjunctive model is utilized to investigate the deep currents affected by wind, Coriolis forces and the river inflow conditions of the Caspian Sea. In this study, the simulation of flow field due to major winds as well as transient winds in the Caspian Sea during a period of 6 hours in the winter season has been conducted and the numerical results for water surface level are then compared to the 2D numerical results.

  2. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  3. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  4. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  5. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    Science.gov (United States)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  6. Development and evaluation of an empirical diurnal sea surface temperature model

    Science.gov (United States)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with

  7. Historic and ongoing buoy wave measurements, time series, spectral analysis, and other parameters (sea surface temperature, air temperature and pressure, wind speed and direction), worldwide, mostly US coastal, from November 1975 through present, from the Scripps Institution of Oceanography (SIO) Coastal Data Information Program (CDIP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contain raw and processed values concerning wave size and direction, energy spectral data (both original and processed), and, where available, sea surface...

  8. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?

    Science.gov (United States)

    Newman, Matthew; Sardeshmukh, Prashant D.

    2017-08-01

    The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.

  9. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than 9°C is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  10. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  11. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  12. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  13. Comparison of TOPEX/Poseidon Sea Level and Linear Model Results forced by Various Wind Products for the Tropical Pacific

    Science.gov (United States)

    Hackert, Eric C.; Busalacchi, Antonio J.

    1997-01-01

    The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.

  14. On the mechanisms of late 20th century sea-surface temperature trends over the Antarctic Circumpolar Current

    Science.gov (United States)

    Kravtsov, Sergey; Kamenkovich, Igor; Hogg, Andrew M.; Peters, John M.

    2011-11-01

    The Antarctic Circumpolar Current (ACC), with its associated three-dimensional circulation, plays an important role in global climate. This study concentrates on surface signatures of recent climate change in the ACC region and on mechanisms that control this change. Examination of climate model simulations shows that they match the observed late 20th century sea-surface temperature (SST) trends averaged over this region quite well, despite underestimating the observed surface-wind increases. Such wind increases, however, are expected to lead to significant cooling of the region, contradicting the observed SST trends. Motivated by recent theories of the ACC response to variable wind and radiative forcing, the authors used two idealized models to assess contributions of various dynamical processes to the SST evolution in the region. In particular, a high-resolution channel model of the ACC responds to increasing winds by net surface ACC warming due to enhanced mesoscale turbulence and associated heat transports in the mixed layer. These fluxes, modeled, in a highly idealized fashion, via increased lateral surface mixing in a coarse-resolution hybrid climate model, substantially offset zonally non-uniform surface cooling due to air-sea flux and Ekman-transport anomalies. These results suggest that the combination of these opposing effects must be accounted for when estimating climate response to any external forcing in the ACC region.

  15. Wind waves in the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-11-01

    In this study we describe the wind wave fields in the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal wave parameter variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1949 and 2010 were derived from the NCEP/NCAR reanalysis. According to our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant heavy sea are the southwestern and the northeastern parts of the sea as expressed in the spatial distribution of significant wave heights, wave lengths and periods. Besides, long-term annual variations of wave parameters were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the hindcast period. However, an intensification of storm activity is observed in the 1960s-1970s.

  16. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  17. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  18. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  19. Implementation and test of a coastal forecasting system for wind waves in the Mediterranean Sea

    Science.gov (United States)

    Inghilesi, R.; Catini, F.; Orasi, A.; Corsini, S.

    2010-09-01

    A coastal forecasting system has been implemented in order to provide a coverage of the whole Mediterranean Sea and of several enclosed coastal areas as well. The problem is to achieve a good definition of the small scale coastal processes which affect the propagation of waves toward the shores while retaining the possibility of selecting any of the possible coastal areas in the whole Mediterranean Sea. The system is built on a very high resolution parallel implementation of the WAM and SWAN models, one-way chain-nested in key areas. The system will shortly be part of the ISPRA SIMM forecasting system which has been operative since 2001. The SIMM sistem makes available the high resolution wind fields (0.1/0.1 deg) used in the coastal system. The coastal system is being tested on several Italian coastal areas (Ligurian Sea, Lower Tyrrenian Sea, Sicily Channel, Lower Adriatic Sea) in order to optimise the numerics of the coastal processes and to verify the results in shallow waters and complex bathymetries. The results of the comparison between hindcast and buoy data in very shallow (14m depth) and deep sea (150m depth) will be shown for several episodes in the upper Tyrrenian Sea.

  20. Improving SMOS Sea Surface Salinity in the Western Mediterranean Sea through Multivariate and Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Estrella Olmedo

    2018-03-01

    Full Text Available A new methodology using a combination of debiased non-Bayesian retrieval, DINEOF (Data Interpolating Empirical Orthogonal Functions and multifractal fusion has been used to obtain Soil Moisture and Ocean Salinity (SMOS Sea Surface Salinity (SSS fields over the North Atlantic Ocean and the Mediterranean Sea. The debiased non-Bayesian retrieval mitigates the systematic errors produced by the contamination of the land over the sea. In addition, this retrieval improves the coverage by means of multiyear statistical filtering criteria. This methodology allows obtaining SMOS SSS fields in the Mediterranean Sea. However, the resulting SSS suffers from a seasonal (and other time-dependent bias. This time-dependent bias has been characterized by means of specific Empirical Orthogonal Functions (EOFs. Finally, high resolution Sea Surface Temperature (OSTIA SST maps have been used for improving the spatial and temporal resolution of the SMOS SSS maps. The presented methodology practically reduces the error of the SMOS SSS in the Mediterranean Sea by half. As a result, the SSS dynamics described by the new SMOS maps in the Algerian Basin and the Balearic Front agrees with the one described by in situ SSS, and the mesoscale structures described by SMOS in the Alboran Sea and in the Gulf of Lion coincide with the ones described by the high resolution remotely-sensed SST images (AVHRR.

  1. Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea

    DEFF Research Database (Denmark)

    Furevik, Birgitte R.; Sempreviva, Anna Maria; Cavaleri, Luigi

    2011-01-01

    that the scatterometer is able to provide similar long-term statistics as available from buoy data, such as annual and monthly wind indexes. Such statistics is useful to give an overview of the climatology in the different areas. The correlation between QuikScat and in situ observations is degraded towards the coast...

  2. Long-term changes in sea surface temperatures

    International Nuclear Information System (INIS)

    Parker, D.E.

    1994-01-01

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales

  3. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  4. Impact Assessment of an Off-Shore Wind Park on Sea Ducks

    DEFF Research Database (Denmark)

    Guillemette, M.; Larsen, J. K.; Clausager, I.

    of the study with a marked difference between Tunø Knob and Ringebjerg Sand in the size available. This was associated with a general impoverishment of the whole benthic community. This suggests that the decrease observed in sea duck abundance over the three years was caused by the availability of food supply......As part of the plan of the Danish government to expand off-shore wind energy production, The Ministry of Environment and Energy, in collaboration with ELSAM (an energy consortium), initiated a three-year study of the potential conflict between the Tunø Knob off-shore wind park and aquatic birds...... in 1994-97. Danish coastal waters support very large, internationally important concentrations of moulting, migrating and wintering sea ducks which depend on shallow water areas as major feeding habitats. Denmark is committed, in relation to international conventions and EU directives, to protect...

  5. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  6. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  7. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  8. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Theoretical investigation and mathematical modelling of a wind energy system case study for Mediterranean and Red Sea

    Energy Technology Data Exchange (ETDEWEB)

    Shata, Ahmed Shata Ahmed

    2008-06-26

    Fossil fuel is getting more and more expensive every year, and is not readily available in some remote locations. Today, wind power can be harnessed to provide some or all of the power for many useful tasks such as generating electricity, pumping water and heating a house or barn. Egypt has two coastal areas that show significant promise for wind energy exploitation; the north coast on the Mediterranean Sea and the east coast on the Red Sea. The wind energy is utilized along the coast of Mediterranean Sea in Egypt on few occasions, while from national programs for wind energy utilization in Egypt, at the Red Sea coast, the master plan calls for 600 MW which are expected to be achieved by the year 2005. The contribution of fossil fuels (oil and natural gas) to electricity production in Egypt accounts for about 79% of total production, while 21% is hydropower. The demand is expected to grow rapidly to meet the large requirements of future projects. Studies showed that there is an additional need of annual electricity generation capacity around 1000 MW/year up to 2017 [14]. The purpose of this thesis is to present a new analytical method for the calculation of the wind energy potential available along the north coast of the Mediterranean Sea and the east coast of Red Sea in Egypt and moreover, it estimates the possible electrical power generated by large wind turbines and the expected cost in Euro cent/kWh for the power level of 2000 kW. It is hoped that the data analysis will help to identify good sites in Egypt for new wind turbine installations. This evaluation is hoped to trigger the use of large wind turbines at the selected sites along the coasts of Mediterranean Sea and Red Sea in Egypt. (orig.)

  10. AQUA AMSR-E Sea Surface Temperature

    Science.gov (United States)

    Gentemann, C. L.

    2011-12-01

    NASA's AQUA satellite carries the JAXA's Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). The AQUA satellite was launched in May 2002 into a polar, sun-synchronous orbit at an altitude of 705 km, with a LECT of 1:30 AM/PM. AMSR-E has 12 channels corresponding to 6 frequencies; all except 23.8 GHz measure both vertical and horizontal polarizations. Geophysical retrievals of SST, wind speed, water vapor, cloud liquid water, and rain rates are calculated using a multi-stage linear regression algorithm derived through comprehensive radiative transfer model simulations. SST retrievals are prevented by rain, sun glint, near land emissions, and radio frequency interference due to geostationary satellite broadcasts. Since only a small number of retrievals are unsuccessful, almost complete global coverage is available daily. At high latitudes, where cloud cover regularly prevents infrared observations of SSTs, the microwave observations of SST provide a significant improvement to measurement capabilities. Validation of the datasets through comparison to the global drifting buoy networks yields mean biases of -0.02 K and standard deviations of 0.50 K. AMSR-E SSTs have been widely used for numerical weather prediction, ocean modeling, fisheries, and oceanographic research.

  11. Impact assessment of an off-shore wind park on sea ducks

    International Nuclear Information System (INIS)

    Guillemette, M.; Kyed Larsen, J.; Clausager, I.

    1998-03-01

    As part of the plan of the Danish government to expand off-shore wind energy production, The Ministry of Environment and Energy, in collaboration with ELSAM (an energy consortium), initiated a three-year study of the potential conflict between the Tunoe Knob off-shore wind park and aquatic birds in 1994-97. Danish coastal waters support very large, internationally important concentrations of moulting, migrating and wintering sea ducks which depend on shallow water areas as major feeding habitats. Denmark is committed, in relation to international conventions and EU directives, to protect and maintain these populations of aquatic birds and such shallow coastal areas are precisely the type of areas in which future wind parks are planned. Two general approaches were adopted for the investigation: the before-after-control-impact design (BACI) and After studies conducted around the wind park. The aim of the BACI studies was to compare bird abundance and distribution before and after the construction of the wind park and between the area presumably affected by the development and a control area. This was carried out on three spatial scales: (i) conducting aerial surveys in two large zones (about 5,000 ha), Tunoe Knob and Ringebjerg Sand, while controlling the total number of birds in Aarhus Bay (88,000 ha), (ii) conducting ground surveys of two areas of about 700-800 ha coverage at Tunoe Knob and Ringebjerg Sand, using the latter as a control area and (iii) within Tunoe using three sub areas (160-250 ha) as controls compared to the construction area. The after experiments were conducted around the wind park with the aim of controlling the confounding effect of food supply and to establish (a) the short-term possible effects of noise and rotor movements generated by the turbines on the distribution and abundance of sea ducks and (b) the long-term scaring effect of the wind park (the impact of revolving rotors and the presence of the standing towers). Finally, an

  12. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions...

  13. SEA SURFACE TEMPERATURE and Other Data from MULTIPLE SHIPS From Sea of Japan from 19930101 to 19930630 (NODC Accession 9300173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The sea surface temperature data in this accession was collected in Sea of Japan. Data in this accession was collected over a six month period from thermistor. The...

  14. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  15. Epifauna dynamics at an offshore foundation--implications of future wind power farming in the North Sea.

    Science.gov (United States)

    Krone, Roland; Gutow, Lars; Joschko, Tanja J; Schröder, Alexander

    2013-04-01

    In the light of the introduction of thousands of large offshore wind power foundations into the North Sea within the next decades, this manuscript focuses on the biofouling processes and likely reef effects. The study explores the macrozoobenthos (biofouling) colonization at an offshore platform which is comparable to offshore wind turbine foundations. A total of 183 single samples were taken and the parameters water depth and time were considered comparing biofouling masses and communities. The blue mussel Mytilus edulis, Anthozoa and the Amphipoda Jassa spp. were the dominant species. The community from the 1 m zone and those from the 5 and 20-28 m zones can clearly be differentiated. The 10 m zone community represents the transition between the M. edulis dominated 1 m and 5 m zones and the Anthozoa dominated 20-28 m zone. In the future offshore wind farms, thousands of wind turbine foundations will provide habitat for a hard bottom fauna which is otherwise restricted to the sparse rocky habitats scattered within extensive sedimentary soft bottoms of the German Bight. However, offshore wind power foundations cannot be considered natural rock equivalents as they selectively increase certain natural hard bottom species. The surface of the construction (1280 m²) was covered by an average of 4300 kg biomass. This foundation concentrates on its footprint area (1024 m²) 35 times more macrozoobenthos biomass than the same area of soft bottom in the German exclusive economic zone (0.12 kg m(-2)), functioning as a biomass hotspot. Concerning the temporal biomass variation, we assume that at least 2700 kg biomass was exported on a yearly basis. 345 × 10(4) single mussel shells of different sizes were produced during the study period. It is anticipated that the M. edulis abundance will increase in the North Sea due to the expansion of the offshore wind farm development. This will result in the enhanced production of secondary hard substrate (mussel shells

  16. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  17. An evaluation of surface micro- and mesoplastic pollution in pelagic ecosystems of the Western Mediterranean Sea.

    Science.gov (United States)

    Faure, Florian; Saini, Camille; Potter, Gaël; Galgani, François; de Alencastro, Luiz Felippe; Hagmann, Pascal

    2015-08-01

    This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73%) followed by thin films (14%). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.

  18. Delays are unavoidable. Offshore wind farms in the North Sea; Verzoegerungen sind unvermeidlich. Offshore-Windparks in der Nordsee

    Energy Technology Data Exchange (ETDEWEB)

    Koenemann, Detlef

    2013-11-01

    The installation of 'sockets in the sea' cannot keep pace with the erection of the wind farms. In a few years the opposite will be the case, because then the erection of wind farms will be delayed, and the full capacity of the cable links cannot be used. (orig.)

  19. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping; Bower, Amy

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during

  20. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  1. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high...

  2. Loki Patera as the Surface of a Magma Sea

    Science.gov (United States)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  3. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds

    Science.gov (United States)

    Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.

    2017-08-01

    The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated

  4. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  5. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds

    Science.gov (United States)

    Troitskaya, Yuliya; Vdovin, Maxim; Sergeev, Daniil; Kandaurov, Alexander

    2017-04-01

    Air-sea coupling at extreme winds is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients was then confirmed by a number of field (e.g.[2]) and laboratory [3] experiments, which showed that the sea surface drag coefficient was significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. The theoretical explanations of the effect of the sea surface drag reduction exploit either peculiarities of the air flow over breaking waves (e.g.[4,5]) or the effect of sea drops and spray on the wind-wave momentum exchange (e.g. [6,7]). Recently an alternative hypothesis was suggested in [8], where the surface drag reduction in hurricanes was explained by the influence of foam covering sea surface on its aerodynamic roughness. This paper describes a series of laboratory experiments in Thermostratified Wind-Wave Tank (TSWiWaT) of IAP directed to investigation of the foam impact on the short-wave part of the surface waves and the momentum exchange in the atmospheric boundary layer at high winds in the range of equivalent 10-m wind speed from 12 to 38 m/s. A special foam generator was designed for these experiments. The air flow parameters were retrieved from measurements of the velocity profiles. The frequency-wavenumber spectra of surface waves were retrieved from the measurements of water surface elevation by the array 3-channel wave gauge. Foam coverage of water surface was controlled by video filming of the water surface. The results of measurements were compared with predictions of the quasi-linear model of atmospheric boundary layer over

  6. Anomalous sea surface structures as an object of statistical topography

    Science.gov (United States)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  7. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  8. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  9. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    1994-07-01

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  10. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  11. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  12. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect

  13. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  14. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S B

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  15. Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment

    Directory of Open Access Journals (Sweden)

    Anja Engel

    2018-06-01

    Full Text Available The surface microlayer (SML is the uppermost thin layer of the ocean and influencing interactions between the air and sea, such as gas exchange, atmospheric deposition and aerosol emission. Organic matter (OM plays a key role in air-sea exchange processes, but studying how the accumulation of organic compounds in the SML relates to biological processes is impeded in the field by a changing physical environment, in particular wind speed and wave breaking. Here, we studied OM dynamics in the SML under controlled physical conditions in a large annular wind wave channel, filled with natural seawater, over a period of 26 days. Biology in both SML and bulk water was dominated by bacterioneuston and -plankton, respectively, while autotrophic biomass in the two compartments was very low. In general, SML thickness was related to the concentration of dissolved organic carbon (DOC but not to enrichment of DOC or of specific OM components in the SML. Pronounced changes in OM enrichment and molecular composition were observed in the course of the study and correlated significantly to bacterial abundance. Thereby, hydrolysable amino acids, in particular arginine, were more enriched in the SML than combined carbohydrates. Amino acid composition indicated that less degraded OM accumulated preferentially in the SML. A strong correlation was established between the amount of surfactants coverage and γ-aminobutric acid, suggesting that microbial cycling of amino acids can control physiochemical traits of the SML. Our study shows that accumulation and cycling of OM in the SML can occur independently of recent autotrophic production, indicating a widespread biogenic control of process across the air-sea exchange.

  16. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    Science.gov (United States)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  17. A new class of actuator surface models for wind turbines

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2018-05-01

    Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.

  18. NORSEWIND – Mesoscale model derived Wind Atlases for the Irish Sea, the North Sea and the Baltic Sea

    DEFF Research Database (Denmark)

    Berge, Erik; Hasager, Charlotte Bay; Bredesen, Rolv Erlend

    2013-01-01

    estimate a random uncertainty of ±4.0 % and a bias of -6.4 % which is higher than for the average annual wind speed. It is emphasized that the amount of validation data is small and considerable spatial variability of the uncertainty may be expected. For example, near coastal zones model errors could...

  19. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  20. Modelling surface radioactive spill dispersion in the Alboran Sea

    International Nuclear Information System (INIS)

    Perianez, R.

    2006-01-01

    The Strait of Gibraltar and the Alboran Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alboran Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alboran circulation (the well known Western Alboran Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented

  1. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    Science.gov (United States)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  2. Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea

    Directory of Open Access Journals (Sweden)

    Hai Feng Wang

    2015-10-01

    Full Text Available The harvesting of wind energy is expected to increase greatly in the future because of its stability, abundance, and renewability in large coastal states such as China. The floating support structure will likely become the major structural form for wind turbines in the future due to its cost advantages when the water depth reaches 50 m. The 5MW wind turbine model from National Renewable Energy Lab (NREL and the modified tension leg platform model proposed by Harbin Institute of Technology (HIT were applied to certain sea conditions in the South China Sea in order to consider the effects of external load coupling actions. In this study, the internal force, mooring system force, as well as the acceleration, displacement and velocity of the floating structure of the modified HIT Tension Leg Platform (HIT-TLP were calculated. During this process, the physical parameters of its tension leg structure at a specific frequency domain were obtained to find the technical reserves for its practical application in the future.

  3. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  4. The global mean sea surface model WHU2013

    Directory of Open Access Journals (Sweden)

    Taoyong Jin

    2016-05-01

    Full Text Available The mean sea surface (MSS model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80°S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P, Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH, and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD of the differences between the models is about 5 cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  5. Wind waves on the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-02-01

    In this study we describe the wind waves fields on the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal storm variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 km × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1948 and 2010 were derived from the NCEP/NCAR reanalysis. In our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant storminess are the south-western and the north-eastern corners as expressed in the spatial distribution of wave heights, wave lengths and periods. Besides that, long-term annual variations of storminess were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the reanalysis period. However, an intensification of storm activity is observed in the 1960s-1970s.

  6. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    Science.gov (United States)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  7. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  8. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  9. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  10. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  11. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  12. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  13. Sea Surface Height, Absolute, Aviso, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Absolute Sea Surface Height is the Sea Surface Height Deviation plus the long term mean dynamic height. This is Science Quality data.

  14. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  15. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  16. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  17. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  18. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  19. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  20. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  1. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  2. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    .... Since ground truth of the sea surface is still widely missing, a better understanding of the physics of these upper meter processes is of very important for the study of air-sea gas and momentum...

  3. THRESHOLD DETERMINATION FOR LOCAL INSTANTANEOUS SEA SURFACE HEIGHT DERIVATION WITH ICEBRIDGE DATA IN BEAUFORT SEA

    Directory of Open Access Journals (Sweden)

    C. Zhu

    2018-05-01

    Full Text Available The NASA Operation IceBridge (OIB mission is the largest program in the Earth’s polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA’s ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and −0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.

  4. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  5. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    Science.gov (United States)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  6. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  7. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982–2012. These data indicate significant annual warming (from 0.24 °C decade−1 west of the Strait of Gibraltar to 0.51 °C decade−1 over the Black Sea and significant spatial variation in annual average SST (from 15 °C over the Black Sea to 21 °C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6 °C century−1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  8. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  9. DeepWind2012, 9. Deep Sea Offshore Wind R and D Seminar,19-20 January 2012, Royal Garden Hotel, Trondheim, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tande, John Olav Gjaever

    2012-11-01

    This report includes the presentations from DeepWind2012, the 9. Deep Sea Offshore Wind R and D Seminar, 19 to 20 January 2012 in Trondheim, Norway. The seminar has been arranged every year since 2004, and has been established as an important venue for the wind power sector in Norway and internationally. Presentations include plenary sessions with broad appeal and parallel sessions on specific technical themes: a) New turbine and generator technology b) Grid connection and power system integration c) Met-ocean conditions d) Operation and maintenance e) Installation and sub-structures f) Wind farm modelling Plenary presentations include offshore wind outlook and innovations. The presentations and further conference details are also available at the conference web page www.sintef.no/deepwind{sub 2}012. Full papers of selected presentations will be published online in Energy Procedia (Elsevier).(auth)

  10. Short-term changes in a microplankton community in the Chukchi Sea during autumn: consequences of a strong wind event

    Science.gov (United States)

    Yokoi, Naoya; Matsuno, Kohei; Ichinomiya, Mutsuo; Yamaguchi, Atsushi; Nishino, Shigeto; Onodera, Jonaotaro; Inoue, Jun; Kikuchi, Takashi

    2016-02-01

    Recent studies indicate an increase in atmospheric turbulence in the Chukchi Sea due to the recent drastic sea-ice reduction during summer months. The importance of the effects of this atmospheric turbulence on the marine ecosystem in this region, however, is not fully understood. To evaluate the effects of atmospheric turbulence on the marine ecosystem, high-frequency sampling (daily) from five layers of the microplankton community between 0 and 30 m at a fixed station in the Chukchi Sea from 10 through 25 September 2013 was conducted. During the study period, a strong wind event (SWE) was observed on 18 and 19 September. The abundance of microplankton was 2.6 to 17.6 cells mL-1, with a maximum abundance being reported at 20 m on 22 September, while diatoms were the most dominant taxa throughout the study period. The abundance of diatoms, dinoflagellates and ciliates ranged between 1.6 and 14.1, 0.5 and 2.4 and 0.1 and 2.8 cells mL-1, respectively. Diatoms belonging to 7 genera consisting of 35 species (Cylindrotheca closterium and Leptocylindrus danicus were dominant), dinoflagellates belonging to 7 genera consisting of 25 species (Prorocentrum balticum and Gymnodinium spp. were dominant) and ciliates belonging to 7 genera consisting of 8 species (Strobilidium spp. and Strombidium spp. were dominant) were identified. Within the microplankton species, there were 11 species with abundances that increased after the SWE, while there was no species with an abundance that decreased following the SWE. It is conjectured that atmospheric turbulences, such as that of an SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification of the Chukchi Sea Shelf during the autumn months. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.

  11. Wind effected redistribution of surface contamination. Progress report, September 1974--August 1975

    International Nuclear Information System (INIS)

    Amato, A.J.

    1975-01-01

    Theoretical resuspension ratios were computed through the extension of a one-dimensional model used to simulate the wind effected movement of surface contaminants. The surface movement of contamination associated with inhalable size particles was considered in relation to time, space, wind velocity, distance from the source, soil resuspension ratios, and other variables. A computer program was developed to calculate the wind effected distribution of surface contaminants. (U.S.)

  12. Sea surface microlayer in a changing ocean – A perspective

    Directory of Open Access Journals (Sweden)

    Oliver Wurl

    2017-06-01

    Full Text Available The sea surface microlayer (SML is the boundary interface between the atmosphere and ocean, covering about 70% of the Earth’s surface. With an operationally defined thickness between 1 and 1000 μm, the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global biogeochemical and climate-related processes. The redeveloped SML paradigm pushes the SML into a new and wider context that is relevant to many ocean and climate sciences.

  13. Spatial and temporal variability of winds in the Northern European Seas

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Hahmann, Andrea N.

    2013-01-01

    the spatial and temporal variability of the near-surface wind field, including the inter- and intra-annual variability for resource assessment purposes. This study demonstrates the applicability of satellite observations as the means to provide information useful for selecting areas to perform higher...

  14. Smart Specialization and Capabilities for Offshore Wind Services around the North Sea

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Tanner, Anne Nygaard; Alkærsig, Lars

    2014-01-01

    lacks an empirical and theoretical foundation that can help guide its application in practice. This paper develops a framework based on two strings of literature, namely the fields of evolutionary economic geography and innovation systems. Subsequently the framework is applied on a regional mapping...... exercise conducted in an EU funded ‘Regions of Knowledge’-project that focuses on the Offshore Wind Service sector in four regions around the North Sea. The purpose is to illustrate how a strategy-making process can be guided by a few theory based principles in pursuing the goals of smart specialization...

  15. Long term persistence in the sea surface temperature fluctuations

    OpenAIRE

    Monetti, Roberto A.; Havlin, Shlomo; Bunde, Armin

    2002-01-01

    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation $C(s)$ of temperature fluctuations separated by a time period $s$, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a...

  16. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  17. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  18. Surface combatant readiness to confront a sea control navy

    OpenAIRE

    Wissel, Nicholas E.

    2008-01-01

    This thesis proposes to correct the shortfalls in the US Surface Combatants ability to counter a Sea-Control Navy. The concept counters this threat using unmanned aerial systems, decoys, and a layered defense. We analyze the performance with a Filtering Model of Salvo Warfare that is an extension of the Hughes Salvo Equations. The model incorporates the diluting effect of decoys upon enemy salvos and accounts for the historical reality of leakers. We conclude that in the absence of air suppor...

  19. Simulation of barotropic wind-driven circulation in the upper layers of Bay of Bengal and Andaman Sea during the southwest and northeast monsoon seasons using observed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Unnikrishnan, A.S.

    A two-dimensional, nonlinear, vertically integrated model was used to simulate depth-mean wind-driven circulation in the upper Ekman layers of the Bay of Bengal and Andaman Sea. The model resolution was one third of a degree in the latitude...

  20. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  1. Nearshore circulation on a sea breeze dominated beach during intense wind events

    Science.gov (United States)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play

  2. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    Nutrients showed enrichment in the surface microlayer compared to those in sub-surface water and there was a decreasing trend in the enrichment factor from nearshore to offshore in Northern Arabian Sea. The nutrient concentrations were correlated...

  3. Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography

    Science.gov (United States)

    Wang, Jun; Ge, Cui; Yang, Zhifeng; Hyer, Edward J.; Reid, Jeffrey S.; Chew, Boon-Ning; Mahmud, Mastura; Zhang, Yongxin; Zhang, Meigen

    2013-03-01

    The online-coupled Weather Research and Forecasting model with Chemistry (WRFchem) is used to simulate the transport of smoke particles over the Southeast Asian Maritime Continent during September-October 2006. In this period, dry conditions associated with the moderate El Niño event caused the largest regional biomass burning outbreak since 1997. Smoke emission in WRFchem is specified according to the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. The modeled smoke transport pathway is found to be consistent with the MODIS true color images and measured mass concentration of surface PM10 (particulate matter with diameter less than 10 μm). The interplay of sea/land breezes, typhoons and storms over the subtropical western Pacific Ocean, trade winds, and topographic effects, can be clearly seen in the model simulation. The most severe smoke events in 1-5 October 2006 are found to be associated with the meteorological responses to the typhoon Xangsane (#18) over the western subtropical Pacific Ocean, which moved smoke from Sumatra eastward in the lower troposphere (below 700 hPa), forming smoke layers mixed with and above the boundary layer clouds over Borneo. In contrast, the second largest week-long smoke transport event of 15-18 October 2006 was associated with the seasonal monsoonal transition period, during which smoke plumes were wide spread over the 5°S-5°N zone as a result of (a) the near surface divergence coupled with the 700 hPa bifurcation of wind (flowing both to the west and to the east), and (b) the near-surface southeasterly and easterly winds along the equator transporting smoke from Borneo to Sumatra and Peninsular Malaysia. Analysis of data from the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) shows that smoke particles in October 2006 were primarily located within 3.5 km above the surface. Smoke particles contributed roughly half

  4. A comparison of visual observations of surface oil with Synthetic Aperture Radar imagery of the Sea Empress oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.

    2001-06-15

    A comparison has been made between the visual observations of surface oil and four satellite-borne Synthetic Aperture Radar (SAR) images taken during the Sea Empress oil spill in February 1996. Whilst the basic oil slick imaging capabilities of SAR are well documented, to be of use at the time of a major oil spill, the imagery must be able to provide information on the thickness of oil. This analysis suggests that, under certain environmental conditions, this is possible. The optimum wind speed for the identification of heavy surface oil is around 5-6 m s{sup -1}. At this wind speed, light and medium sheen is not evident in the imagery and there is a distinction between the backscatter reductions due to heavy sheen and thick brown/black oil. At higher wind speeds, even thick oil slicks readily mix into the water column and their SAR signature weakens. In light winds, pattern recognition is very important to the identification of oil sticks. The images are more sensitive to the presence of sheen within the sheltered waters of Milford Haven than in the open coastal waters, indicating a possible relationship between sheen visibility in satellite-borne SAR and sea state. (author)

  5. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    Science.gov (United States)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  6. TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  7. Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift

    Science.gov (United States)

    Kim, Yong Sun; Jang, Chan Joo; Yeh, Sang-Wook

    2018-03-01

    The Yellow and East China Seas (YECS) are widely believed to have experienced robust, basin-scale warming over the last few decades. However, the warming reached a peak in the late 1990s, followed by a significant cooling trend. In this study, we investigated the characteristics of this low-frequency sea surface temperature (SST) variance and its dynamic relationship with large-scale climate variability through cyclostationary orthogonal function analysis for the 1982-2014 period. Both regressed surface winds on the primary mode of the YECS SST and trends in air-sea heat fluxes demonstrate that the intensification of the northerly winds in winter contribute largely to the recent cooling trend by increasing heat loss to the atmosphere. As a localized oceanic response to these winds, the upwind flow seems to bring warm waters and partially counteracts the basin-scale cooling, thus contributing to a weakening of the cooling trend along the central trough of the Yellow Sea. In the context of the large-scale climate variabilities, a strong relationship between the YECS SST variability and Pacific Decadal Oscillation (PDO) became weak considerably during the recent cooling period after the late 1990s as the PDO signals appeared to be confined within the eastern basin of the North Pacific in association with the regime shift. In addition to this decoupling of the YECS SST from the PDO, the intensifying Siberian High pressure system likely caused the enhanced northerly winds, leading to the recent cooling trend. These findings highlight relative roles of the PDO and the Siberian High in shaping the YECS SST variance through the changes in the large-scale atmospheric circulation and attendant oceanic advection.

  8. The potential of wave and offshore wind energy in around the coastline of Malaysia that face the South China Sea

    International Nuclear Information System (INIS)

    Chiang, E.P.; Zainal, Z.A.; Aswatha Narayana, P.A.; Seetharamu, K.N.

    2006-01-01

    The world wide estimated wave resource is more than 2 TW. Offshore wind speeds are generally higher than wind speeds over land, hence higher available energy resource. The estimated offshore wind potential in European waters alone is in excess of 2500 TWh/annum. Offshore area also provides larger area for deploying wind energy devices. In recent year efforts to promote these two types of renewable and green energy sources have been intensify. Using the data obtained from the Malaysia Meteorological Service (MMS) analysis was conducted for the potential of wave energy and wind energy along the coastline of Malaysia facing the South China Sea. Maps of wave power potential were produced. The mean vector wind speed and direction were tabulated

  9. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    Science.gov (United States)

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  10. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    Science.gov (United States)

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable. Published by Elsevier Ltd.

  11. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  12. Comparison of the Retrieval of Sea Surface Salinity Using Different Instrument Configurations of MICAP

    Directory of Open Access Journals (Sweden)

    Lanjie Zhang

    2018-04-01

    Full Text Available The Microwave Imager Combined Active/Passive (MICAP has been designed to simultaneously retrieve sea surface salinity (SSS, sea surface temperature (SST and wind speed (WS, and its performance has also been preliminarily analyzed. To determine the influence of the first guess values uncertainties on the retrieved parameters of MICAP, the retrieval accuracies of SSS, SST, and WS are estimated at various noise levels. The results suggest that the errors on the retrieved SSS have not increased dues poorly known initial values of SST and WS, since the MICAP can simultaneously acquire SST information and correct ocean surface roughness. The main objective of this paper is to obtain the simplified instrument configuration of MICAP without loss of the SSS, SST, and WS retrieval accuracies. Comparisons are conducted between three different instrument configurations in retrieval mode, based on the simulation measurements of MICAP. The retrieval results tend to prove that, without the 23.8 GHz channel, the errors on the retrieved SSS, SST, and WS for MICAP could also satisfy the accuracy requirements well globally during only one satellite pass. By contrast, without the 1.26 GHz scatterometer, there are relatively large increases in the SSS, SST, and WS errors at middle/low latitudes.

  13. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  14. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    Science.gov (United States)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  15. Microplastic pollution in the surface waters of the Bohai Sea, China

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Zhang, Shoufeng; Wang, Juying; Wang, Yan; Mu, Jingli; Wang, Ping; Lin, Xinzhen; Ma, Deyi

    2017-01-01

    The ubiquitous presence and persistency of microplastics in aquatic environments is of particular concern because these pollutants represent an increasing threat to marine organisms and ecosystems. An identification of the patterns of microplastic distribution will help to understand the scale of their potential effect on the environment and on organisms. In this study, the occurrence and distribution of microplastics in the Bohai Sea are reported for the first time. We sampled floating microplastics at 11 stations in the Bohai Sea using a 330 μm trawling net in August 2016. The abundance, composition, size, shape and color of collected debris samples were analyzed after pretreatment. The average microplastic concentration was 0.33 ± 0.34 particles/m 3 . Micro-Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were polyethylene, polypropylene, and polystyrene. As the size of the plastics decreased, the percentage of polypropylene increased, whereas the percentages of polyethylene and polystyrene decreased. Plastic fragments, lines, and films accounted for most of the collected samples. Accumulation at some stations could be associated with transport and retention mechanisms that are linked to wind and the dynamics of the rim current, as well as different sources of the plastics. - Highlights: • First evaluation of microplastic in the surface water of the Bohai Sea. • The microplastics in Bohai is at medium-low level in contrast to other sea regions. • With the size of the plastics decreased, the proportion of polypropylene gradually increased. - This research indicates that microplastics are distributed widely in the Bohai Sea. As the size of the plastics decreased, the percentage of polypropylene increased.

  16. System of the Wind Wave Operational Forecast by the Black Sea Marine Forecast Center

    Directory of Open Access Journals (Sweden)

    Yu.B. Ratner

    2017-10-01

    Full Text Available System of the wind wave operational forecast in the Black Sea based on the SWAN (Simulating Waves Nearshore numerical spectral model is represented. In the course of the system development the SWAN model was adapted to take into account the features of its operation at the Black Sea Marine Forecast Center. The model input-output is agreed with the applied nomenclature and the data representation formats. The user interface for rapid access to simulation results was developed. The model adapted to wave forecast in the Black Sea in a quasi-operational mode, is validated for 2012–2015. Validation of the calculation results was carried out for all five forecasting terms based on the analysis of two-dimensional graphs of the wave height distribution derived from the data of prognostic calculations and remote measurements obtained with the altimeter installed on the Jason-2 satellite. Calculation of the statistical characteristics of the deviations between the wave height prognostic values and the data of their measurements from the Jason-2 satellite, as well as a regression analysis of the relationship between the forecasted and measured wave heights was additionally carried out. A comparison of the results obtained with the similar results reported in the works of other authors published in 2009–2016 showed their satisfactory compliance with each other. The forecasts carried out by the authors for the Black Sea as well as those obtained for the other World Ocean regions show that the current level of numerical methods for sea wave forecasting is in full compliance with the requirements of specialists engaged in studying and modeling the state of the ocean and the atmosphere, as well as the experts using these results for solving applied problems.

  17. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  18. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  19. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  20. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.; da Silva, J. C. B.; Pineda, J.

    2011-01-01

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  1. Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico

    Science.gov (United States)

    Turrent, Cuauhtémoc; Zaitsev, Oleg

    2014-05-01

    The results of numerical simulations of the troposphere over the Bay of La Paz, calculated for the months of January, April, July and October during the period 2006-2010 with the Weather Research and Forecast (WRF v3.5) regional model, are used to describe the seasonal features of the diurnal cycle of planetary boundary-layer winds. Two distinct near-surface diurnal flows with strong seasonal variability were identified: (1) a nocturnal and matutinal breeze directed from the subtropical Pacific Ocean, over the Baja California peninsula and the Bay of La Paz, into the Gulf of California that is associated with the regional sea-surface temperature difference between those two major water bodies; and (2) a mid to late afternoon onshore sea-breeze related to the peninsula's daily cycle of insolation heating that evolves with counter-clockwise rotation over the Bay of La Paz. The model results reveal the interaction over Baja California of opposing afternoon sea-breeze fronts that originate from the subtropical Pacific Ocean and the Gulf of California, with a convergence line forming over the peaks of the peninsula's topography and the associated presence of a closed vertical circulation cell over the Bay of La Paz and the adjacent Gulf. The collision of the opposing sea-breeze fronts over the narrow peninsula drives convection that is relatively weak due to the reduced heat source and only appears to produce precipitation sporadically. The spatial structure of the sea-breeze fronts over the Bay of La Paz region is complex due to shoreline curvature and nearby topographic features. A comparison of the numerical results with available meteorological near-surface observations indicates that the modelling methodology adequately reproduced the observed features of the seasonal variability of the local planetary boundary-layer diurnal wind cycle and confirms that the low-level atmospheric circulation over the Bay of La Paz is dominated by kinetic energy in the diurnal band

  2. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  3. Remote sensing of surface currents in the Fraser River plume with the SeaSonde HF radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.; Hardy, J.S.; Tinis, S.E.

    1994-09-01

    The SeaSonde 12.5-MHz radar system was deployed to measure surface currents in the Juan de Fuca Strait in July 1992. Reliable data were obtained from the two radars installed, and successful trials were conducted with the Infosat satellite link to transmit data from the remote site. Data recovery from the SeaSonde was generally good, with maximum ranges varying from 15 km to over 30 km. Sea echo return strength at both radars was correlated with wind, consistent with lower Bragg scattering at lower wind speeds. A simple surface current forecasting algorithm, based on decomposing the signal into tidal and residual bands, was examined. It was found that tides account for the greatest portion of currents in the study area, and could be forecasted out to 48 h with 1-2 d of input data. The nonpredictable, fluctuating part of the current signal was isolated and its statistics were calculated. The algorithm tests showed that the SeaSonde data can be used to measure and predict the slowly varying tidal and mean flow velocities, as well as the random part of the signal, both of which are important in oil spill modelling. Surface flow patterns and time-series data from the SeaSonde measurements, and from a three-dimensional hydrodynamic model, were compared from an oil spill modelling perspective. In general, surface flow patterns from the model were smoother than those observed. The differences were most noticeable in the cross-channel direction. The radar data indicate that a flow-dependent eddy viscosity formulation, with coefficients calibrated to reproduce the features observed with the radar, would improve agreement and yield a good model for data assimilation. 21 refs., 478 figs., 3 tabs

  4. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    Science.gov (United States)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  5. Implementation and validation of a coastal forecasting system for wind waves in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    R. Inghilesi

    2012-02-01

    Full Text Available A coastal forecasting system was implemented to provide wind wave forecasts over the whole Mediterranean Sea area, and with the added capability to focus on selected coastal areas. The goal of the system was to achieve a representation of the small-scale coastal processes influencing the propagation of waves towards the coasts. The system was based on a chain of nested wave models and adopted the WAve Model (WAM to analyse the large-scale, deep-sea propagation of waves; and the Simulating WAves Nearshore (SWAN to simulate waves in key coastal areas. Regional intermediate-scale WAM grids were introduced to bridge the gap between the large-scale and each coastal area. Even applying two consecutive nestings (Mediterranean grid → regional grid → coastal grid, a very high resolution was still required for the large scale WAM implementation in order to get a final resolution of about 400 m on the shores. In this study three regional areas in the Tyrrhenian Sea were selected, with a single coastal area embedded in each of them. The number of regional and coastal grids in the system could easily be modified without significantly affecting the efficiency of the system. The coastal system was tested in three Italian coastal regions in order to optimize the numerical parameters and to check the results in orographically complex zones for which wave records were available. Fifteen storm events in the period 2004–2009 were considered.

  6. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  7. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  8. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  9. North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bustamante, E.; Jimenez, P.A. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Navarro, J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Xoplaki, E. [University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern (Switzerland); Montavez, J.P. [Universidad de Murcia, Departamento de Fisica, Murcia (Spain)

    2012-01-15

    The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992-2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified

  10. Investigation of Range Profiles from a Simplified Ship on Rough Sea Surface and Its Multipath Imaging Mechanisms

    Directory of Open Access Journals (Sweden)

    Siyuan He

    2012-01-01

    Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.

  11. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  12. Cell surface of sea urchin micromeres and primary mesenchyme

    International Nuclear Information System (INIS)

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by 125 I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM

  13. Wind power in the open countryside, forests, mountains and seas; Vindkraft i oeppet landskap, skog, fjaell och hav

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, Aasa [Sociologiska inst,, Lunds Univ., Lund (Sweden); Ek, Kristina [Inst. foer Ekonomi, teknik och samhaelle, Luleaa Tekniska Univ., Luleaa (Sweden); Johansson, Maria [Miljoepsykologi, Institutionen foer Arkitektur och byggd miljoe, Lunds Univ., Lund (Sweden); Persson, Lars [Inst. foer Nationalekonomi, Umeaa Univ., Umeaa (Sweden)

    2013-01-15

    There is a support for the development of wind power. Meanwhile, there is uncertainty about how the landscape and the local values will be affected. Of the environments forests, mountains, open countryside and the sea, you can not point to any that would be suitable in particular for wind power. To find the right places, it is necessary to weigh the various factors. The report describes local conditions that are important for anchoring of wind power projects. It is about how people use the environment, what qualities they perceive as valuable, and how wind power project can be coordinated with other interests. It is about how people use the environment, what qualities they perceive as valuable, and how wind power project can be coordinated with other interests. Research also shows that people demand facts about wind power project's benefits and costs, both environmentally and economically. Also the ownership of wind turbines is important for attitude to planned wind power projects. The report is based on surveys and interview studies undertaken by an interdisciplinary research team in the areas of economics, environmental psychology and sociology. These studies underline the importance of dialogue and participation for all who feel concerned by a wind power establishment.

  14. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...

  15. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  16. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel climate model: simulation benefits from enhancing atmospheric resolution

    Science.gov (United States)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-05-01

    A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.

  17. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimation...

  18. Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor

    DEFF Research Database (Denmark)

    Sanz Martinez, Maria; Natarajan, Anand; Henriksen, Lars Christian

    2013-01-01

    of the newly designed floater and mooring assembly are analyzed from static and dynamic simulations of the wind turbine. The design loads on the universal joint on the sea floor are tuned with the needs for a ballast chamber. Using load simulations in the HAWC2 software, ultimate and equivalent fatigue loads...

  19. 'Landscape Mirror' & 'Feed the Wind' : Teaching Landscape Architecture on Site at Oerol Festival in the Wadden Sea

    NARCIS (Netherlands)

    Jauslin, D.T.; Bobbink, I.

    2012-01-01

    In the projects 'Landscape Mirror' 2011 and 'Feed the Wind' 2012 students of the Master of Landscape Architecture of the TU Delft have made an interactive project that evolved over the course of Oerol, a unique yearly recurring festival on the Wadden-Sea island Terschelling for landscape theatre &

  20. Simulation of barotropic wind-driven circulation in tbe Bay of Bengal and Andaman Sea during premonsoon and postmonsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Bahulayan, N.

    Two-dimensional vertically integrated model has been used to simulate depth-mean wind-driven circulation during premonsoon and postmonsoon seasons in the upper layers of the Bay of Bengal and Andaman Sea. The model is integrated for 365 d, forcEd...

  1. Sea ice and wind variability during the Holocene in East Antarctica: Insight on middle high latitude coupling

    NARCIS (Netherlands)

    Denis, D.; Crosta, X.; Barbera, L.; Masse, G.; Renssen, H.; Ther, O.; Giraudeau, J.

    2010-01-01

    Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at ∼140°E and eastern Prydz Bay at ∼77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale.

  2. Distribution of marine mammals in the North Sea for the generic appropriate assessment of future offshore wind farms

    NARCIS (Netherlands)

    Brasseur, S.M.J.M.; Scheidat, M.; Aarts, G.M.; Cremer, J.S.M.; Bos, O.G.

    2008-01-01

    The Dutch government has formulated the ambition to increase the generation of renewable energy, among others by increased exploitation of offshore wind farms in the North Sea. To compose the generic appropriate assessment, Deltares has asked IMARES to provide an overview of the current knowledge on

  3. Long-term effects of an offshore wind farm in the North Sea on fish communities

    DEFF Research Database (Denmark)

    Stenberg, Claus; Støttrup, Josianne; Deurs, Mikael van

    2015-01-01

    Long-term effects of the Horns Rev 1 offshore wind farm (OWF) on fish abundance, diversity and spatial distribution were studied. This OWF is situated on the Horns Reef sand bank in the North Sea. Surveys were conducted in September 2001, before the OWF was established in 2002, and again...... in September 2009, 7 yr post-establishment. The sampling surveys used a multi-mesh-size gillnet. The 3 most abundant species in the surveys were whiting Merlangius merlangus, dab Limanda limanda and sandeels Ammodytidae spp. Overall fish abundance increased slightly in the area where the OWF was established...... but declined in the control area 6 km away. None of the key fish species or functional fish groups showed signs of negative long-term effects due to the OWF. Whiting and the fish group associated with rocky habitats showed different distributions relative to the distance to the artificial reef structures...

  4. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  5. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...

  6. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  7. Some aspects of floating ice related to sea surface operations in the Barents sea

    International Nuclear Information System (INIS)

    Loeset, S.

    1993-01-01

    The present work highlights some aspects of floating ice related to sea surface operations in the Barents sea. The thesis consists of eight papers which fall into two main categories; one part deals with numerical modeling of the temperature distribution and ablation of icebergs (three papers), and the other part studies the behavior of broken ice, focusing on both laboratory experiments and numerical modeling. The temperature distribution within an iceberg affects the mechanical strength of the ice and is therefore crucial in engineering applications when estimating loads from impinging icebergs on offshore structures. A numerical model which simulates the temperature distribution and ablation of icebergs has been developed. The model shows that the depth of the thermal disturbance and slope of the temperature gradient of an iceberg depend on the boundary conditions and the time at sea. By about 12 m into the ice, the temperature is virtually free of any thermal boundary influence. Oil spill response techniques are vulnerable to the presence of sea ice. Deflecting ice upstream of a spill site by means of a flexible boom will facilitate the application of conventional oil spill recovery systems such as oil skimmers and booms. Experiments with such an ice deflecting boom were conducted in an ice tank to determine the loads on the boom and to study the ice-free wake. The study indicated the technical feasibility of the ice boom concept as an operational tool for oil spill cleanups. A two-dimensional discrete element model has been developed. This model simulates the dynamics and interaction forces between distinct ice floes in a broken ice field. The numerical model was applied to estimate the loads on a boom used for ice management. 121 refs., 70 figs., 10 tabs

  8. NOAA Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  9. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    coefficient (WAM Cycle 3).The second method follows the quassi linear wind-wave theory by Janssen(1989,1991) which also considers the atmospheric boundary layer effects and the roughness length of the sea surface (WAM Cycle 4).(SWAN Technical Documentation,2015) The dissipation caused by whitecapping depends on the steepness of the waves. There are two different steepness dependent coefficient configurations in SWAN model corresponding to the selected wind-wave interaction formulations which are mentioned above (Komen and Janssen approaches). Lastly ,there are 3 options for defining deep water non-linear wave-wave interaction, which are DIA(Discrete Interaction Approximation)by Hasselman (quadruplets), XNL(which is based on the original six-dimensional Boltzmann integral formulation of Hasselmann), and multiple DIA which considers up to 6 wave number configurations by Hashimoto et al. (2002).(SWAN Technical Documentation,2015) In this study, 540 test cases are modelled using all possible selections of deep water source and sinks approaches available in SWAN model. The computed results are compared with buoy measurements. The uncertainty due to different source sink selections are quantified using different statistical analysis. Preliminary results show that some of the term configurations predict the significant wave height (Hs) less than actual values measured at the buoy locations. One of the reasons of the underestimation of the wave parameters could be the lower wind speed estimated in closed basins and the other one is the uncertainties in the wind-sea interaction. All of the results, comparisons and discussions will highlight the best source sink approach to be used to model extreme wave events in Black Sea. References Kirezci C., Ozyurt G., (2015), "Comparison of Wave Models in Black Sea", UK YCSEC 2015, 21-23 March 2015, Manchester Özhan, E. and Abdalla, S.,(1999)"Wind and Wave Climotology of the Turkish Coast and the Black Sea:An Overview of the NATO TU

  10. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    Science.gov (United States)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  11. A preliminary evaluation of short-term thunderstorm forecasting using surface winds at Kennedy Space Center

    Science.gov (United States)

    Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.

    1990-01-01

    In 1987 NASA expanded its surface wind network onto the mainland west of Kennedy Space Center, increasing the network area from nearly 800 sq km to over 1600 sq km. Here, the results of this expansion are reported using three years of wind and lightning information collected during June, July, August, and September of 1987, 1988, and 1989. The divergence-lightning relationships and the importance of wind direction are addressed, and the verification is summarized.

  12. Wind Doesn't Just Stop at the Earth's Surface

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain such as the pre-Alpine regions of Germany, Austria, and other European Alpine regions, mountainous regions across USA and Canada, and many other parts of the world. In these areas, the system of the atmosphere, terrain, geology, people, and power system has is deeply interconnected but couplings are not completely known. This leads to challenging development conditions, increased cost of energy compared to flat terrain, and sometimes to tensions between different stakeholders. In this presentation, an overview of the wind energy system will be presented, and the challenges of developing wind energy in complex terrain will be highlighted. Results from several recent measurement campaigns and associated modelling carried out by members of WindForS will be used as examples. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to government and industry. Finally, the new WindForS wind energy research facility in complex terrain will be introduced. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. A major focus of the presentation will be on opportunities for interdisciplinary collaboration between the atmospheric science and geosciences communities and other stakeholders.

  13. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  14. Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind

    International Nuclear Information System (INIS)

    Kitada, T.; Igarashi, K.; Owada, M.

    1986-01-01

    Air pollution in the presence of two types of local flows (i.e., land/sea breeze and mountain/valley wind) was studies by advection simulation of the cluster of hypothetical fluid particles, and transport/chemistry calculation employing a three-dimensional Eulerian model for 20 advected species and about 90 chemical reactions. Three-dimensional flow fields over the River Yahagi basin in Japan were estimated for 48 h using an objective method with routine wind observations. Those obtained showed characteristics of the combined local flows such that in the daytime sea breeze and valley wind tend to form one united flow with substantial wind velocity in the whole region and, in contrast, land breeze and mountain wind during the nighttime form two separated circulating flows with a clear weak-wind area between the two local flow regimes. The results of the advection simulation of fluid particles and the transport/chemistry calculation using those flows as inputs elucidated how the features found in the diurnally varying, complex local flows contribute to produce characteristic time-variations of the concentrations of both primary and secondary pollutants. Among others, dynamics of NO 2 , HNO 3 , PAN, O 3 , SO 2 , and SO 4 /sup =/ concentrations are discussed

  15. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  16. Classification of new-ice in the Greenland Sea using Satellite SSM/I radiometer and SeaWinds scatterometer data and comparison with ice model

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Pedersen, Leif Toudal

    2005-01-01

    In the ice covered waters of the Greenland Sea the polarisation ratio of QuikSCAT SeaWinds Ku-band (13.4 GHz) scatterometer measurements and the polarisation ratio of DMSP-SSM/I 19 GHz radiometer measurements are used in combination to classify new-ice and mature ice. In particular, the formation...... to the physical transition of the ice cover from pancake ice to a consolidated young-ice sheet. The classification of each pixel into ice or water is done using two scatterometer parameters, namely the polarisation ratio and the daily standard deviation of the backscatter. (C) 2005 Elsevier Inc. All rights...

  17. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    Science.gov (United States)

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The sea surface microlayer: biology, chemistry and anthropogenic enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J T

    1982-01-01

    Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters. The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 10/sup 2/-10/sup 4/, 1-10/sup 2/, and 1-10, respectively. The trophic relationships or intergrated functioning of these neustonic communities have not been examined. Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex. The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 10/sup 2/-10/sup 4/ greater than those in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear.

  19. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  20. Study of sea surface temperature distribution, in Angra dos Reis Nuclear Plant region - Mission Angra 01

    International Nuclear Information System (INIS)

    Stevenson, M.R.; Steffen, C.A.; Villagra, H.M.I.

    1982-03-01

    A study of spectral and temporal variations of sea surface temperature, using data obtained from level of satellite, aircraft and surface, with the purpose of evaluate and plot the small scale variations of sea surface temperature, due to thermal discharge from a nuclear the results of the first mission called Angra 1. (maps). (C.G.C.)

  1. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Science.gov (United States)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  2. Initialization of high resolution surface wind simulations using NWS gridded data

    Science.gov (United States)

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  3. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  4. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  5. Projections of wind-waves in South China Sea for the 21st century

    Science.gov (United States)

    Mohammed, Aboobacker; Dykyi, Pavlo; Zheleznyak, Mark; Tkalich, Pavel

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). GCMs are not having a wind-wave variable due to a poor grid resolution; therefore, dynamical downscaling of wind-waves to the regional scale is advisable using well established models, such as Wave Watch III (WWIII) and SWAN. Rectilinear-coordinates WWIII model is adapted for the far field comprising the part of Pacific and Indian Oceans centered at the South China Sea and Sunda Shelf (90 °E-130 °E, 10 °S - 26.83 °N) with a resolution of 10' (about 18 km). Near-field unstructured-mesh SWAN model covers Sunda Shelf and centered on Singapore Strait, while reading lateral boundary values from WWIII model. The unstructured grid has the coarsest resolution in the South China Sea (6 to 10 km), medium resolution in the Malacca Strait (1 to 2 km), and the finest resolution in the Singapore Strait (400 m) and along the Singapore coastline (up to 100 m). Following IPCC methodology, the model chain is validated climatologically for the past period 1961-1990 against Voluntary Observing Ship (VOS) data; additionally, the models are validated using recent high-resolution satellite data. The calibrated model chain is used to project waves to 21st century using WRF-downscaled wind speed output of CCSM GCM run for A1FI climate change scenario. To comply with IPCC methodology the entire modeling period is split into three 30-years periods for which statistical parameters are computed individually. Time series of significant wave height at key points near Singapore and on ship sea routes in the SCS are statistically analysed to get probability distribution functions (PDFs) of extreme values. Climatological maps of mean and maximum significant wave height (SWH) values, and mean wave period are built for Singapore region for each 30-yrs period. Linear trends of mean SWH values

  6. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  7. Sea Surface Temperature Products and Research Associated with GHRSST

    Science.gov (United States)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  8. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson

    2013-09-01

    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  9. The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    José C. Báez

    2011-04-01

    Full Text Available The aim of this study was to explore the possible link between variations in the North Atlantic Oscillation (NAO and sea surface temperature (SST and the abundance of loggerhead turtles around the Strait of Gibraltar, using stranding data for the Andalusian coastal area as a proxy for abundance. The annual average SST (from November to October in the Gulf of Cadiz was negatively associated with the total number of loggerhead strandings each year from November 1997 to October 2006 in the Gulf of Cadiz and the Alboran Sea. The average NAO index was positively associated with the number of strandings in the Gulf of Cadiz in the following year. Prevailing westerly winds during positive NAO phases and the subsequent delayed decrease in SST may lead to turtles from the west Atlantic accumulating in the Gulf of Cadiz and unsuccessfully attempting to return. Secondary causes, such as buoyancy, cold stunning, longline fisheries, net fisheries, debilitated turtle syndrome, and trauma may also increase the number of turtle strandings.

  10. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    of sinusoidal component waves; a consequent idea arising out of Fourier analysis. It is hypothesised that a sea state which is always nonlinear to various degrees is a result of interaction, both linear and nonlinear, between nonlinear component waves...

  11. Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M. -A.; Khodri, M.; Mignot, J.

    2013-01-01

    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and long......-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling...... and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades....

  12. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2010-01-01

    This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama. As re...

  13. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  14. Wintertime sea surface temperature fronts in the Taiwan Strait

    Science.gov (United States)

    Chang, Yi; Shimada, Teruhisa; Lee, Ming-An; Lu, Hsueh-Jung; Sakaida, Futoki; Kawamura, Hiroshi

    2006-12-01

    We present wintertime variations and distributions of sea surface temperature (SST) fronts in the Taiwan Strait by applying an entropy-based edge detection method to 10-year (1996-2005) satellite SST images with grid size of 0.01°. From climatological monthly mean maps of SST gradient magnitude in winter, we identify four significant SST fronts in the Taiwan Strait. The Mainland China Coastal Front is a long frontal band along the 50-m isobath near the Chinese coast. The sharp Peng-Chang Front appears along the Peng-Hu Channel and extends northward around the Chang-Yuen Ridge. The Taiwan Bank Front evolves in early winter. As the winter progresses, the front becomes broad and moves toward the Chinese coast, connecting to the Mainland China Coastal Front. The Kuroshio Front extends northeastward from the northeastern tip of Taiwan with a semicircle-shape curving along the 100-m isobath.

  15. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  16. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  17. Information About Dynamics of the Sea Surface as a Means to Improve Safety of the Unmanned Vessel at Sea

    Directory of Open Access Journals (Sweden)

    Przyborski Marek

    2016-12-01

    Full Text Available One of the fundamental states of the sea surface is its heave. Despite of years of the intense scientific inquiry, no clear understanding of the influence of this aspect on the dynamics of the sea environment has emerged. The separation of two nearby fluid elements which one may observed for example as a free floating of small objects on the sea surface (rescuers on the rough sea or small research vessels is caused by the interaction of different components. On the other hand one may say that the heave of the sea is also a summary interaction of a few components describing the dynamics of the sea. Therefore it is the most important aspect, which influenced the dispersion phenomenon. This observation has important consequences for many different problems as for example conducting Search and Rescue missions and using unmanned ships. We would like to present results of our experiment focused on finding the answer to question about nature of the heave of the sea and its influence on safety of Unmanned Surface Vessels (USV.

  18. Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces

    Directory of Open Access Journals (Sweden)

    Sajad M.R. Khani

    2017-06-01

    Full Text Available Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results illustrated that the modular wind tower can decrease the air temperature significantly and increase the relative humidity of airflow into the building. The average differences for air temperature and air relative humidity between ambient air and air exiting from the wind tower were approximately 10 °C and 40%, respectively. The main advantage of the proposed wind tower is that it is a modular design that can reduce the cost of wind tower construction.

  19. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  20. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  1. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    Science.gov (United States)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature

  2. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  3. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  4. The 2015-16 El Niño - Birth, Evolution and Teleconnections from Scatterometer Observations of the Ocean Surface Winds

    Science.gov (United States)

    Hristova-Veleva, S. M.; Lee, T.; Stiles, B. W.; Rodriguez, E.; Turk, J.; Haddad, Z. S.

    2016-12-01

    The 2015-16 El Niño is one of the strongest events observed during the modern instrumentation period, rivaling the two big ones observed by satellites during 1982-83 and 1997-98. Yet, the precipitation anomalies differ from the expectations that were based on these two events. While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the signature eastward-blowing anomalous surface winds in the Western and Central Tropical Pacific are the pre-cursor and the main driver of the El Nino events. Here we use observations from NASA's RapidScat, EUMETSAT's ASCAT and also from collocated ECMWF analysis to monitor the evolution of the anomalous winds associated with the 2015-16 El Niño. To detect the El Nino signal, we first compute monthly means of the wind speed, wind components and wind convergence. We then perform a low-pass filter to extract the components of the larger-scale circulation and compute the 2015-2016 anomalies with respect to the corresponding months of 2014-2015. We find fast-evolving wind anomalies and relate them to the evolution of the SST field as depicted in the observations-based OSTIA product. Furthermore, we investigate the relationship between the GPM-observed precipitation and the surface wind convergence observed by the scatterometers. El Niño is known to have basin to global scale teleconnections. In addition to the characterization of the changes in the tropical Pacific, we will also describe the associated changes in the North and South Pacific. In particular, a strong anticyclonic anomaly is observed in the north-eastern Pacific. This anomalous circulation is likely associated with the subsidence (divergent) region of a stronger-than-normal Hadley cell, leading to modification of the midlatitude storm tracks and the related precipitation anomalies. Furthermore, these

  5. An analytical model for the description of the full-polarimetric sea surface Doppler signature

    NARCIS (Netherlands)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2015-01-01

    This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler

  6. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NARCIS (Netherlands)

    Schwenger, F.; Eijk, A.M.J. van

    2017-01-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping

  7. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  8. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  9. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    K. Laß

    2013-08-01

    Full Text Available The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE, southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  10. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)

    Science.gov (United States)

    Laß, K.; Bange, H. W.; Friedrichs, G.

    2013-08-01

    The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  11. Assessing the Impact of the Tunø Knob Wind Park on Sea Ducks : the Influence of Food Resources

    DEFF Research Database (Denmark)

    Guillemette, M.; Larsen, J. K.; Clausager, I.

    Abstract This study deals with the influence of benthos abundance when assessing the potential impact of a small wind park on wintering sea ducks. Using the Before-After-Control-Impact design, it was suggested in a recent study (Guillemette et al. 1998) that the wind park provoked a decline...... at Tunø Knob to test the hypothesis that, if food abundance increases again, we should also observe an increase in duck abundance. The methods used in this study are similar to those applied in the aforementioned study. The results showed that the average number of common eiders increased considerably...... in the abundance and a change in the distribution of common eiders Somateria mollissima and common scoters Melanitta nigra. However, the observed decline in sea duck abundance occurred con-comitantly with a decline of benthic food supplies. We measured con-comitant food and common eider abundance for a fourth year...

  12. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  13. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  14. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  15. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  16. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  17. Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.

    2014-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of

  18. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    Science.gov (United States)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  19. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    Science.gov (United States)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  20. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    The EU-NORSEWInD project www.norsewind.eu has taken place from August 2008 to July 2012 (4 years). NORSEWInD is short for Northern Seas Wind Index database. In the project ocean surface wind observations from space have been retrieved, processed and analysed. The overall aim of the work...... is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450...... in the Irish Sea to more than 1200 in most of the Baltic Sea. Wind resource statistics include maps at 2 km spatial resolution of mean wind speed, Weibull A and k, and energy density at 10 m above sea level. Uncertainty estimates on the number of available samples for each of the four parameters are presented...