WorldWideScience

Sample records for surface wind sea

  1. An overview on SAR measurements of sea surface wind

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies show that synthetic aperture radar (SAR) has the capability of providing high-resolution (sub-kilometer) sea surface wind fields. This is very useful for applications where knowledge of the sea surface wind at fine scales is crucial. This paper aims to review the latest work on sea surface wind field retrieval using SAR images. As shown, many different approaches have been developed for retrieving wind speed and wind direction. However, much more work will be required to fully exploit the SAR data for improving the retrieval accuracy of high-resolution winds and for producing wind products in an operational sense.

  2. WIND STRESS AND SURFACE ROUGHNESS AT AIR-SEA INTERFACE

    Science.gov (United States)

    Based on the compiled data of thirty independent observations, the report presents the wind - stress coefficient, the surface roughness and the...boundary layer flow regime at the air-sea interface under various wind conditions. Both the wind - stress coefficient and the surface roughness are found to...data and Charnock’s proportionality constant is determined. Finally, two approximate formulae for the wind - stress coefficient, one for light wind and the other for strong wind are suggested.

  3. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  4. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    and the Baltic Sea. The aim is to evaluate their potential use and demonstrate their applicability within the context of offshore wind energy; for the quantication of the wind resources and for the identication of diurnal warming of the sea surface temperature. Space-borne observations of wind are obtained from...

  5. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea...

  6. Comparison among four kinds of data of sea surface wind stress in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    谢强; 王卫强; 毛庆文

    2002-01-01

    By using remote sensing (ERS) data, FSU data, GOADS data and Hellerman & Rcsenstein objective analysis data to analyze the sea surface wind stress in the South China Sea, it is found that the remote sensing data have higher resolution and more reasonable values. Therefore we suggest that remote sensing data be chosen in the study of climatological features of sea surface wind stress and its seasonal variability in the South China Sea, especially in the study of small and middle scale eddies.

  7. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    have made an attempt to study the annual and inter-annual variability of certain prominent processes occurring over the tropical Indian Ocean. The monthly mean values of Wind Speed (FSU), Sea Surface Temperature (REYNOLDS) and Sea Surface Height Anomaly...

  8. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...

  9. Simulation of the surface wind field and wind waves over the Oman Sea

    Science.gov (United States)

    Hamzeloo, Sima; Hadi Moeini, Mohammad; Jandaghi Alaee, Majid

    2016-04-01

    Surface wind field is one of the most important factors in the generation of the marine hydrodynamic phenomena such as wind waves that highly affected by the surface winds. Therefore, accessibility to the correct wind field is of great importance for accurate prediction and simulation of the hydrodynamic variables. Nowadays numerical mesoscale weather prediction models are widely applied as powerful tools to simulate wind and other atmospheric variables with predefined temporal and spatial resolution in desired areas. Despite appropriate results of the numerical models in many regions, there are still some complications in the simulation of the surface wind field in areas with complex orography since the surface wind field is highly affected by the local topography, land-sea discontinuity, temperature gradient etc. Nowadays, with the development of high-speed processors the third generation spectral models are generally used for simulation of wind waves. Wind data are the main input parameters of the numerical spectral wave model. Therefore, the quality of the input wind data can be assessed by comparison of the wave model outputs with measured values. The main goal of the current study is to simulate surface wind field over the Oman Sea using WRF modeling system. To verify the model results, the simulated wind speeds were compared with synoptic and buoy measurements and satellite observations. Wind-wave parameters simulated by the spectral model were also compared with wave measurements to verify simulated surface wind field as the input of the wave model. The Comparison simulated wind speed and directions in coastal synoptic stations and QuikSCAT satellite shows sufficient results for both offshore and coastal areas.

  10. Interannual variations of surface winds over China marginal seas

    Institute of Scientific and Technical Information of China (English)

    SUN Che; YAN Xiaomei

    2012-01-01

    In a study of surface monsoon winds over the China marginal seas,Sun et al.(2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability.This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric,oceanic and land factors.The findings include:1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastem China,Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal,strengthening in the La Ni(n)a phase and weakening in the El Ni(n)o phase.This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.

  11. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  12. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    Science.gov (United States)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  13. Near-nadir microwave specular returns from the sea surface - Altimeter algorithms for wind and wind stress

    Science.gov (United States)

    Wu, Jin

    1992-01-01

    Two approaches have been adopted to construct altimeter wind algorithms: one is based on the mean-square sea surface slope, and the other is based on the Seasat scatterometer wind. Both types of algorithms are critically reviewed with respect to the mechanism governing near-nadir sea returns and the comparison between altimeter and buoy winds. A new algorithm is proposed; it is deduced on the basis of microwave specular reflection and is finely tuned with buoy-measured winds. On the basis of this algorithm and the formula of the wind-stress coefficient, a simple wind-stress algorithm is also proposed.

  14. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  15. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    and autonomous weather station) were utilized for measuring sea truth parameters such as sea surface temperature (SST), Sea Surface Wind Speed (WS) and Columnar Water Vapor (WV). Total match-ups for SST and WS measured from various platforms exceeded 1400 (2 hrs...

  16. Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yili

    2013-01-01

    WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer,which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space.In this paper,a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat.The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model.Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation,by which a group of ambiguous wind directions was obtained.A median filter was then used to remove ambiguity of wind direction.Evaluated with sea surface wind speed and direction data from the U.S.National Data Buoy Center (NDBC),root mean square errors are 1.2 m/s and 30° for retrieved wind speed and wind direction,respectively.The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications,without reducing accuracy.

  17. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  18. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    Science.gov (United States)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  19. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar

    Science.gov (United States)

    Liu, Zhishen; Wang, Zhangjun; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Zhang, Xin; Bi, Decang; Chen, Yubao; Li, Rongzhong; Yang, Yuqiang

    2009-06-01

    The Key Laboratory of Ocean Remote Sensing of the Ministry of Education of China, Ocean University of China, has developed the first mobile Doppler wind lidar in China. As an important component of meteorological services for the Good Luck Beijing 2007 Qingdao International Regatta, the mobile Doppler wind lidar was used to measure the sea surface wind (SSW) with 100 m*100 m spatial and 10-min temporal resolution in Qingdao from 15 to 23 August 2007. We present the results from two aspects of this campaign. First, the lidar was operated in the fixed-direction mode and compared to SSW simultaneously measured by a collocated buoy. Second, we present lidar wind measurements throughout the regatta and show good agreement with the match situation of the International Regatta. In addition, we present a case study, accounting for the observation of sailboats stopped by the headwind. With considerable data accumulated, we have shown that the mobile Doppler wind lidar can indeed provide near real-time SSW in support of the sailing games. The lidar has also provided meteorological services for the 2008 Olympic sailing games from 8 to 22 August and Paralympics Sailing Games from 8 to 13 September 2008 in Qingdao.

  20. Removing the impact of wind direction on remote sensing of sea surface salinity

    Institute of Scientific and Technical Information of China (English)

    YIN Xiaobin; LIU Yuguang; ZHANG Hande

    2006-01-01

    Using the small-slope approximation model of microwave emission of rough sea surface, the impacts of sea surface wind on brightness temperature variations generated by the surface roughness, i.e. △Th,v, are investigated. Here △T denotes the brightness temperature variation, and "h" and "v" denote the horizontal and vertical polarizations respectively. △Th,v has a linear relation with wind speed, sea surface temperature (SST) and sea surface salinity (SSS) respectively. Further more, the impact of wind direction on SSS retrieval, under small incidence angles, can be removed by calculating (△Th+△Tv). These characteristics provide simple new ways to develop an SSS retrieval algorithm without wind direction factor.

  1. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaoqi; ZHU Jianhua; LIN Mingsen; ZHAO Yili; WANG He; CHEN Chuntao; PENG Hailong; ZHANG Youguang

    2014-01-01

    A scanning microwave radiometer (RM) was launched on August 16, 2011, on board HY-2 satellite. The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations, respectively, from January to June 2012. The wind speed root-mean-square (RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform, respectively. On a global scale, the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat, the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above. With analyzing the global map of a mean difference between HY-2 RM and WindSat, it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions. In the open sea, there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations, while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.

  2. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  3. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...

  4. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  5. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  6. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...... or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent...

  7. Altimeter Estimation of Sea Surface Wind Stress for Light to Moderate Winds

    Science.gov (United States)

    Vandemark, Douglas; Edson, James B.; Chapron, Bertrand

    1997-01-01

    Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.

  8. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  9. Retrieval of sea surface winds under hurricane conditions from GNSS-R observations

    Institute of Scientific and Technical Information of China (English)

    JING Cheng; YANG Xiaofeng; MA Wentao; YU Yang; DONG Di; LI Ziwei; XU Cong

    2016-01-01

    Reflected signals from global navigation satellite systems (GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds. The power of GNSS reflectometry (GNSS-R) signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps (DDMs), whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds. However, the bistatic radar cross section (BRCS), which is strongly related to the sea surface roughness, is extensively used in radar. Therefore, a bistatic radar cross section (BRCS) map with a modified BRCS equation in a GNSS-R application is introduced. On the BRCS map, three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed. Airborne Hurricane Dennis (2005) GNSS-R data are then used. More than 16 000 BRCS maps are generated to establish GMFs of the three observables. Finally, the proposed model and classic one-dimensional delay waveform (DW) matching methods are compared, and the proposed model demonstrates a better performance for the high wind speed retrievals.

  10. Cauchy-Matern Model of Sea Surface Wind Speed at the Lake Worth, Florida

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available We study the Cauchy-Matern (CM process with long-range dependence (LRD. The closed form of its power spectrum density (PSD function is given. We apply it to model the autocovariance function (ACF and the PSD of the sea surface wind speed (wind speed for short observed in the Lake Worth, Florida, over the 1984–2006 period. The present results exhibit that the wind speed at the Lake Worth over 1984–2006 is of LRD. The present results exhibit that the CM process may yet be a novel model to fit the wind speed there.

  11. Satellite SAR observation of the sea surface wind field caused by rain cells

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; YUAN Xinzhe; DING Jing; XIE Xuetong; ZHANG Yi; XU Ying

    2016-01-01

    Rain cells or convective rain, the dominant form of rain in the tropics and subtropics, can be easy detected by satellite Synthetic Aperture Radar (SAR) images with high horizontal resolution. The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops, as well as the downward airflow. In this study, we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study. We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data, Advance Scatterometer (ASCAT) onboard European MetOp-A satellite and microwave scatterometer onboard Chinese HY-2 satellite, respectively. The root-mean-square errors (RMSE) of these SAR wind speeds, validated against NCEP, ASCAT and HY-2, are 1.48 m/s, 1.64 m/s and 2.14 m/s, respectively. Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed (or sea surface roughness) variety caused by downdraft associated with rain cells. The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80. The background wind speed, the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve. Eight cases interpreted and analyzed in this study all show the same conclusion.

  12. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  13. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    Science.gov (United States)

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  14. Remote Sensing of Sea Surface Wind of Hurricane Michael by GPS Reflected Signals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the propagating geometry and the waveform of the GPS reflected signals are expatiated in detail. Furthermore, the principle and the method of retrieving sea surface wind are presented. In order to test the feasibility of retrieval, the experiment data obtained by NASA in Hurricane Michael are used. The result shows that the retrieval accuracy of wind speed is about 2 m/s.

  15. Effects of winds, tides and storm surges on ocean surface waves in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; TIAN Jiwei; LI Peiliang; HOU Yijun

    2007-01-01

    Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.

  16. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo QU

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  17. Optimizing Surface Winds using QuikSCAT Measurements in the Mediterranean Sea During 2000-2006

    Science.gov (United States)

    2009-02-28

    r.com/ locate / jmarsysOptimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006 A. Birol Kara a,⁎, Alan J...flux algorithms. J. Geophys. Res. 113, C04009. doi:10.1029/2007JC004324. Large, W.G., Danabasoglu, G., Doney, S.C., McWilliams , J.C., 1997

  18. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    Science.gov (United States)

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  19. Intercomparison of Several Ocean Surface Wind Products over the Nordic Seas

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2014-05-01

    Surface winds are one of the key parameters that control the exchange of energy between the atmosphere and oceans. Being the major source of momentum for the upper ocean, winds mainly control ocean processes and air-sea interaction especially in synoptically active regions such as the Nordic Seas (Greenland, Norwegian, Iceland, and Barents Seas). Intense formation of water masses takes place in the Nordic Seas through cooling, brine rejection, and mixing of Arctic Ocean and North Atlantic waters. Deep water produced in this region by deep convection participates in the Atlantic Meridional Overturning Circulation. Water masses formed in the Nordic Seas are also important for the maintenance of thermohaline structure of the Arctic Ocean. The Nordic Seas has always been a challenging region for Arctic Ocean modeling due to complex ocean circulation, water mass transformation, intense air-sea interaction, deep vertical convection, etc. The lack of reliable high-resolution wind products over the Polar region is another factor that has been impacting modeling of the Arctic Ocean in general and the Nordic Seas in particular. Coarse resolution atmospheric fields are often used to force the Arctic Ocean models. The major drawback of the coarse resolution wind products is their inability to resolve small- and meso-scale cyclones frequently impacting the Nordic Seas. Several gridded surface wind products derived from scatterometer wind observations have reasonably high spatial resolution to represent most of the small scale cyclones in the region. In the present model study, Cross-Calibrated Multi-Platform surface wind data (CCMP) are compared against the wind fields from traditional the NCEP/NCAR Reanalysis 2 (NCEPR), from NCEP Climate Forecast System Reanalysis (CFSR), and from the interium version (30km) of the Arctic System Reanalysis (ASR). The NCEPR is a coarse resolution product (1.9°) and still is the primary source of forcing fields for the Arctic Ocean models. The

  20. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  1. The seasonal variations in the significant wave height and sea surface wind speed of the China’s seas

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chongwei; PAN Jing; TAN Yanke; GAO Zhansheng; RUI Zhenfeng; CHEN Chaohui

    2015-01-01

    Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China’s seas WS and SWH are determined based on 24 a (1988–2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China’s WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China’s seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF;the smallest area was apparent in SON. In contrast to the WS, almost all of China’s seas exhibited a significant increase in SWH in MAM and DJF;the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China’s seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.

  2. NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.

  3. Effects of sea surface winds on marine aerosols characteristics and impacts on longwave radiative forcing over the Arabian Sea

    Directory of Open Access Journals (Sweden)

    Vijayakumar S. Nair

    2008-08-01

    Full Text Available Collocated measurements of spectral aerosol optical depths (AODs, total and BC mass concentrations, and number size distributions of near surface aerosols, along with sea surface winds, made onboard a scientific cruise over southeastern Arabian Sea, are used to delineate the effects of changes in the wind speed on aerosol properties and its implication on the shortwave and longwave radiative forcing. The results indicated that an increase in the sea-surface wind speed from calm to moderate (<1 to 8 m s−1 values results in a selective increase of the particle concentrations in the size range 0.5 to 5 μm, leading to significant changes in the size distribution, increase in the mass concentration, decrease in the BC mass fraction, a remarkable increase in AODs in the near infrared and a flattening of the AOD spectrum. The consequent increase in the longwave direct radiative forcing almost entirely offsets the corresponding increase in the short wave direct radiative forcing (or even overcompensates at the top of the atmosphere; while the surface forcing is offset by about 50%.

  4. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    DEFF Research Database (Denmark)

    Lange, B.; Larsen, Søren Ejling; Højstrup, Jørgen;

    2004-01-01

    in the Danish Baltic Sea. Monin-Obukhov theory is often used for the description of the wind speed profile. From a given wind speed at one height, the profile is predicted using two parameters, Obukhov length and sea surface roughness. Different methods to estimate these parameters are discussed and compared......-Obukhov theory, a simple correction method to account for this effect has been developed and is tested in the same way. The models for the estimation of the sea surface roughness were found to lead only to small differences. For the purpose of wind resource assessment, even the assumption of a constant roughness......). The power output estimation has also been compared with the method of the resource estimation program WAsP. For the Rodsand data set the prediction error of WAsP is about 4%. For the extrapolation with Monin-Obukhov theory with different L and z(0) estimations, it is 5-9%. The simple wind profile correction...

  5. Effects of surface current-wind interaction in an eddy-rich general ocean circulation simulation of the Baltic Sea

    Science.gov (United States)

    Dietze, Heiner; Löptien, Ulrike

    2016-08-01

    Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth) are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current-wind effects inhibits the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however (e.g. off the southern coast of Sweden and Finland) the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current-wind effects drive substantial local upwelling of cold and nutrient-replete waters.

  6. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  7. Surface mixed layer deepening through wind shear alignment in a seasonally stratified shallow sea

    Science.gov (United States)

    Lincoln, B. J.; Rippeth, T. P.; Simpson, J. H.

    2016-08-01

    Inertial oscillations are a ubiquitous feature of the surface ocean. Here we combine new observations with a numerical model to investigate the role of inertial oscillations in driving deepening of the surface mixed layer in a seasonally stratified sea. Observations of temperature and current structure, from a mooring in the Western Irish Sea, reveal episodes of strong currents (>0.3 m s-1) lasting several days, resulting in enhanced shear across the thermocline. While the episodes of strong currents are coincident with windy periods, the variance in the shear is not directly related to the wind stress. The shear varies on a subinertial time scale with the formation of shear maxima lasting several hours occurring at the local inertial period of 14.85 h. These shear maxima coincide with the orientation of the surface current being at an angle of approximately 90° to the right of the wind direction. Observations of the water column structure during windy periods reveal deepening of the surface mixed layer in a series of steps which coincide with a period of enhanced shear. During the periods of enhanced shear gradient, Richardson number estimates indicate Ri-1 ≥ 4 at the base of the surface mixed layer, implying the deepening as a result of shear instability. A one-dimensional vertical exchange model successfully reproduces the magnitude and phase of the shear spikes as well as the step-like deepening. The observations and model results therefore identify the role of wind shear alignment as a key entrainment mechanism driving surface mixed layer deepening in a shallow, seasonally stratified sea.

  8. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    OpenAIRE

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J; Sakaguchi, Koichi; LIU, Xiaohong

    2016-01-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into ac...

  9. Evaluation of ENVISAT ASAR data for sea surface wind retrieval in Hong Kong coastal waters of China

    Institute of Scientific and Technical Information of China (English)

    XU Qing; LIN Hui; ZHENG Quanan; XIU Peng; CHENG Yongcun; LIU Yuguang

    2008-01-01

    The C-band wind speed retrieval models,CMOD4,CMOD-IFR2,and CMODS were applied to retrieval of sea surface wind speeds from ENVISAT(European environmental satellite)ASAR(advanced synthetic aperture radar)data in the coastal waters near Hang Kong during a period from October 2005 to July 2007.The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT(quick scatterometer)wind products.The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s.The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896,respectively.The root mean square errors are the same 1.74m/s.Namely,the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the COastal waters near Hong Kong.

  10. Effect of Surface waves On air-sea momentum flux in high wind conditions for typhoons in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    Liangming Zhou; Aifang Wang; Peifang Guo; Zhifeng Wang

    2008-01-01

    The WAVEWATCH-Ⅲ wave model is implemented in the South China Sea to investigate the air-sea momentum flux in high wind conditions during 23 passages of typhoon occurred in 2005.The wave model is driven by the reanalyzed surface winds assimilated by sevcral meteorologic data sources.The friction velocity was calculated and the relationships between different air-sea momentum param. eters were studied.The results show that the drag coefficient decreases with the wave age generally and levels off for wind speeds higher than 35 m/s under typhoon wind forcing.The spatial variations of air-sea momentum flux parameters in high wind conditions forced by typhoons are completely different from those at weak wind speeds and significantly depend on the relative position from the typhoon center.

  11. A Ka-Band Backscatter Model Function and an Algorithm for Measurement of the Wind Vector Over the Sea Surface

    NARCIS (Netherlands)

    Nekrasov, A.; Hoogeboom, P.

    2005-01-01

    A Ka-band backscatter model and an algorithm for measurement of the wind speed and direction over the sea surface by a frequency-modulated continous-wave radar demonstrator system operated in scatterometer mode have been developed. To evaluate the proposed algorithm, a simulation of the wind vector

  12. Succession of the sea-surface microlayer in the Baltic Sea under natural and experimentally induced low-wind conditions

    Directory of Open Access Journals (Sweden)

    C. Stolle

    2010-05-01

    Full Text Available The sea-surface microlayer (SML is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston compared to the underlying bulk water (ULW were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.

  13. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  14. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    Science.gov (United States)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  15. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  16. Variability in the coupling between sea surface temperature and wind stress in the global coastal ocean

    Science.gov (United States)

    Wang, Yuntao; Castelao, Renato M.

    2016-08-01

    Mesoscale ocean-atmosphere interaction between sea surface temperature (SST) and wind stress throughout the global coastal ocean was investigated using 7 years of satellite observations. Coupling coefficients between crosswind SST gradients and wind stress curl and between downwind SST gradients and wind stress divergence were used to quantify spatial and temporal variability in the strength of the interaction. The use of a consistent data set and standardized methods allow for direct comparisons between coupling coefficients in the different coastal regions. The analysis reveals that strong coupling is observed in many mid-latitude regions throughout the world, especially in regions with strong fronts like Eastern and Western Boundary Currents. Most upwelling regions in Eastern Boundary Currents are characterized by strong seasonal variability in the strength of the coupling, which generally peaks during summer in mid latitudes and during winter at low latitudes. Seasonal variability in coastal regions along Western Boundary Currents is comparatively smaller. Intraseasonal variability is especially important in regions of strong eddy activity (e.g., Western Boundary Currents), being particularly relevant for the coupling between crosswind SST gradients and wind stress curl. Results from the analysis can be used to guide modeling studies, since it allows for the a priori identification of regions in which regional models need to properly represent the ocean-atmosphere interaction to accurately represent local variability.

  17. Features of wind field over the sea surface in the coastal area

    Science.gov (United States)

    Monzikova, A. K.; Kudryavtsev, V. N.; Myasoedov, A. G.; Chapron, B.; Zilitinkevich, S. S.

    2017-01-01

    In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the "smooth" water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land-Lake Chudskoe-land-Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.

  18. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  19. WISE 2000 campaign: sea surface salinity and wind retrievals from L-band radiometry

    Science.gov (United States)

    Camps, Adriano; Corbella, Ignasi; Font, Jordi; Etchetto, Jacqueline; Duffo, Nuria; Vall-llossera, Merce; Bara, Javier; Torres, Francisco; Wursteisen, Patrick; Martin-Neira, Manuel

    2000-12-01

    Sea surface salinity (SSS) has been recognized as a key parameter in climatological studies. SSS can be measured by passive microwave remote sensing at L band, where the sensitivity of the brightness temperatures shows a maximum and the atmosphere is almost transparent. To provide global coverage of this basic parameter with a 3-day revisit time, the SMOS mission was recently selected by ESA within the frame of the Earth Explorer Opportunity Missions. The SMOS mission will carry the MIRAS instrument, the first 2D L-band aperture synthesis interferometric radiometer. To address new challenges that this mission presents, such as incidence angle variation with pixel, polarization mixing, effect of wind and foam and others, a measurement campaign has been sponsored by ESA under the name of WISE 2000 and it is scheduled for October-November 2000. Two L-band radiometers, a video, a IR and a stereo-camera and four oceanographic and meteorological buoys will be installed in the oil platform 'Casablanca' located at 40 Km off the coast of Tarragona, where the sea conditions are representative of the Mediterranean open sea with periodic influence of the Ebro river fresh water plume.

  20. Spatio-temporal variability in sea surface wind stress near and off the east coast of Korea

    Institute of Scientific and Technical Information of China (English)

    NAM SungHyun; KIM Young Ho; PARK Kyung-Ae; KIM Kuh

    2005-01-01

    Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCAT), and global reanalyzed products (ECMWF,NOGAPS,and NCEP/NCAR). Temporal variabilities are analyzed at 3 frequency bands; synoptic (2~20 d), intra-seasonal (20~90 d),and seasonal (>90 d).Synoptic and intra-seasonal variations are predominant near and off the Donghae City due to the passage of the mesoscale weather system. Seasonal variation is caused by southeastward wind stress during Asian winter monsoon. The sea surface wind stress from reanalyzed datasets,QuikSCAT and KMA-B measurements off the coast show good agreement in the magnitude and direction,which are strongly aligned with the alongshore direction. At the land-based sites,wind stresses are much weaker by factors of 3~10 due to the mountainous landmass on the east parts of Korea Peninsula. The first EOF modes(67 % ~70%) of wind stresses from reanalyzed and QuikSCAT data have similar structures of the strong southeastward wind stress in winter along the coast but show different curl structures at scales less than 200 kn due to the orographic effects. The second EOF modes (23 % ~25%)show southwestward wind stress in every September along the east coast of the North Korea

  1. Correlations of global sea surface temperatures with the solar wind speed

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian; Chu, Huimin; Xiao, Ziniu

    2016-11-01

    A significant correlation between the solar wind speed (SWS) and sea surface temperature (SST) in the region of the North Atlantic Ocean has been found for the Northern Hemisphere winter from 1963 to 2010, based on 3-month seasonal averages. The correlation is dependent on Bz (the interplanetary magnetic field component parallel to the Earth's magnetic dipole) as well as the SWS, and somewhat stronger in the stratospheric quasi-biennial oscillation (QBO) west phase than in the east phase. The correlations with the SWS are stronger than those with the F10.7 parameter representing solar UV inputs to the stratosphere. SST responds to changes in tropospheric dynamics via wind stress, and to changes in cloud cover affecting the radiative balance. Suggested mechanisms for the solar influence on SST include changes in atmospheric ionization and cloud microphysics affecting cloud cover, storm invigoration, and tropospheric dynamics. Such changes modify upward wave propagation to the stratosphere, affecting the dynamics of the polar vortex. Also, direct solar inputs, including energetic particles and solar UV, produce stratospheric dynamical changes. Downward propagation of stratospheric dynamical changes eventually further perturbs tropospheric dynamics and SST.

  2. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2011-01-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoreti

  3. Tropical Pacific Sea Surface Temperature Anomalies, El Niño, and Equatorial Westerly Wind Events*.

    Science.gov (United States)

    Vecchi, Gabriel A.; Harrison, D. E.

    2000-06-01

    The authors examine global statistical relationships between westerly wind events (WWEs) and sea surface temperature anomaly (SSTA) variability, using a compositing technique for the period 1986-98. The authors describe the extent to which equatorial WWEs are associated with central and eastern equatorial Pacific waveguide warming and with local SSTA changes under the WWE. Their goal is to quantify the extent to which equatorial WWEs are fundamental to the onset and maintenance of warm El Niño-Southern Oscillation conditions. In order to understand the effect of WWEs on SSTA evolution, they begin by examining how SSTA changes in the absence of equatorial WWEs. They find that SSTA tends toward mean climate values in the absence of equatorial WWEs, whether the eastern equatorial Pacific has close to normal SSTA or warmer than normal SSTA.The two equatorial WWE types whose main surface wind anomalies are west of the date line are associated with weak local surface cooling. The equatorial WWE type that has equatorial westerly wind anomalies east of the date line is associated with weak warming under those anomalies, when the eastern equatorial Pacific SSTA is close to normal.When the tropical Pacific has near-normal eastern equatorial Pacific SST, each of the equatorial WWE types is followed by substantial equatorial waveguide warming in the central and eastern Pacific (composite warming as large as 1.0°C); also more than 50% of the large-amplitude WWEs were followed by Niño-3 SSTA warming in excess of 0.5°C. These changes are of similar amplitude and spatial structure as those seen in the onset of El Niño and are consistent with the predicted oceanic response to WWE forcing. When the eastern equatorial Pacific is initially warmer than usual, the two westernmost equatorial WWE types are associated with the maintenance of warm El Niño eastern and central Pacific SSTA; these warm anomalies tend to disappear in the absence of those WWE types. WWEs, or some mechanism

  4. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data

    Institute of Scientific and Technical Information of China (English)

    SHAO Weizeng; SUN Jian; GUAN Changlong; SUN Zhanfeng

    2014-01-01

    To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by com-bining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval re-sults by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

  5. Measurement of Wind Signatures on the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Rotbøll, Jesper; Skou, Niels

    2002-01-01

    A series of circle flights have been carried out over the wind driven sea, using the EMIRAD L-band polarimetric radiometer, described in J. Rotboll et al. (2001). Data are calibrated and corrected for aircraft attitude, and 360 degrees azimuth profiles are generated. The results show some variation...... over a full circle, typically about 1 K, and no clear, repeated azimuth signature from circle to circle is identified. Averaging reduces the variations, and frequency analysis of the profiles show an almost flat spectrum, which excludes a simple extrapolation of wind signatures, known at higher...

  6. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern.......A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise...

  7. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Hao [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  8. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  9. The effect of wind-generated bubbles on sea-surface backscatter

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since t

  10. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  11. The effect of wind-generated bubbles on sea-surface backscatter

    OpenAIRE

    Vossen, R.; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since they mainly contribute to long range propagation. Second, existing theoretical models based on a bubble-free interface underestimate the surface back-scattering strength at larger grazing angles. We...

  12. The Impact of Sea-Surface Winds on Meteorological Conditions in Israel: An Initial Study

    Science.gov (United States)

    Otterman, J.; Saaroni, H.; Atlas, R.; Ardizzone, J.; Ben-Dor, E.; Druyan, L.; Jusem, C. J.; Karnieli, A.; Terry, J.

    2000-01-01

    The SSM/I (Spectral Sensor Microwave Imager) dataset is used to monitor surface wind speed and direction at four locations over the Eastern Mediterranean during December 1998 - January 1999. Time series of these data are compared to concurrent series of precipitation, surface temperature, humidity and winds at selected Israeli stations: Sde Dov (coastal), Bet Dagan (5 km. inland), Jerusalem (Judean Hills), Hafetz Haim (3 km. inland) and Sde Boker (central Negev). December 1998 and the beginning of January 1999 were dry in Israel, but significant precipitation was recorded at many stations during the second half of January (1999). SSM/I data show a surge in westerly surface winds west of Israel (32 N, 32.5 E) on 15 January, coinciding with the renewal of precipitation. We discuss the relevant circulation and pressure patterns during this transition in the context of the evolving meteorological conditions at the selected Israeli locations. The SSM/I dataset of near ocean surface winds, available for the last 12 years, is described. We analyze lagged correlation between these data and the Israeli station data and investigate possibility of predictive skill. Application of such relationships to short-term weather prediction would require real-time access to the SSM/I observations.

  13. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    Science.gov (United States)

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model

  14. Features of Ocean Surface Winds Observed by the QuikSCAT Satellite Before Tropical Cyclogenesis over the South China Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LAU Kai-Hon; FUNG Chi-Hung; ZHANG Qinghong

    2008-01-01

    Ocean surface winds observed by the Quick Scatterometer (QuikSCAT) satellite prior to the geneses of 36 tropical cy- clones (TCs) in the South China Sea (SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [-(f+ζ)( u/ x+ v/ y)] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis, which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.

  15. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  16. High-resolution satellite-derived ocean surface winds in the Nordic-Barents seas region: Implications for ocean modeling (Invited)

    Science.gov (United States)

    Dukhovskoy, D. S.; Bourassa, M. A.; Hughes, P. J.

    2010-12-01

    High-resolution (0.25°) ocean surface wind velocity data derived from satellite observations are used to analyze winds in the Nordic-Barents seas during 2007-2008. For the analysis, a Cross-Calibrated, Multi-Platform (CCMP), multi-instrument ocean surface wind velocity data set is utilized. The product has been developed by National Aeronautics and Space Administration (NASA) within Making Earth Science data records for Use in Research Environments (MEaSUREs) Program. A variational method was used to combine wind measurements derived from satellite-born active and passive remote sensing instruments. In the objective procedure, winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis (DS111.1) were used as the background fields. The ocean surface wind fields are compared with those derived from the National Centers for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The NCEP/NCAR fields are commonly used to provide atmospheric forcing for Arctic Ocean models. The utility of using high-resolution winds in the ocean modeling is discussed. In particular, air-sea heat fluxes estimated from the two wind data sets are compared. It is anticipated that wind fields with higher spatial and temporal resolution will better resolve small-scale, short-lived atmospheric systems. As an example, the ice free region in the Nordic and Barents seas is frequently impacted by very intense cyclones known as “polar lows” with wind speeds near to or above gale force. A polar low forms over the sea and predominantly during the winter months. The size of these cyclones varies greatly from 100 to 1000 km. Presumably small-scale cyclones are misrepresented or not resolved in the NCAR fields leading to biases in the air-sea flux calculations in the ocean models. Inaccurate estimates of the air-sea fluxes eventually lead to biases in the Arctic Ocean model solutions.

  17. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz.

    Science.gov (United States)

    van Vossen, Robbert; Ainslie, Michael A

    2011-11-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoretical predictions of scattering strength require a good understanding of physical mechanisms giving rise to the scattering and the relative importance of these. In this paper, scattering from individual resonant bubbles is introduced as a potential mechanism and a scattering model is derived that incorporates the contribution from these together with that of rough surface scattering. The model results are fitted to Critical Sea Test (CST) measurements at a frequency of 940 Hz, treating the number of large bubbles, parameterized through the spectral slope of the size spectrum for bubbles whose radii exceed 1 mm, as a free parameter. This procedure illustrates that the CST data can be explained by scattering from a small number of large resonant bubbles, indicating that these provide an alternative mechanism to that of scattering from bubble clouds.

  18. An atmosphere-wave regional coupled model: improving predictions of wave heights and surface winds in the southern North Sea

    Science.gov (United States)

    Wahle, Kathrin; Staneva, Joanna; Koch, Wolfgang; Fenoglio-Marc, Luciana; Ho-Hagemann, Ha T. M.; Stanev, Emil V.

    2017-04-01

    The coupling of models is a commonly used approach when addressing the complex interactions between different components of earth systems. We demonstrate that this approach can result in a reduction of errors in wave forecasting, especially in dynamically complicated coastal ocean areas, such as the southern part of the North Sea - the German Bight. Here, we study the effects of coupling of an atmospheric model (COSMO) and a wind wave model (WAM), which is enabled by implementing wave-induced drag in the atmospheric model. The numerical simulations use a regional North Sea coupled wave-atmosphere model as well as a nested-grid high-resolution German Bight wave model. Using one atmospheric and two wind wave models simultaneously allows for study of the individual and combined effects of two-way coupling and grid resolution. This approach proved to be particularly important under severe storm conditions as the German Bight is a very shallow and dynamically complex coastal area exposed to storm floods. The two-way coupling leads to a reduction of both surface wind speeds and simulated wave heights. In this study, the sensitivity of atmospheric parameters, such as wind speed and atmospheric pressure, to the wave-induced drag, in particular under storm conditions, and the impact of two-way coupling on the wave model performance, is quantified. Comparisons between data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justify its implementation for both operational and climate simulations.

  19. Succession of the sea-surface microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind conditions

    Directory of Open Access Journals (Sweden)

    C. Stolle

    2010-09-01

    Full Text Available The sea-surface microlayer (SML is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the coastal zone of the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston compared to the underlying bulk water (ULW were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.

  20. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    Science.gov (United States)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  1. Simultaneous measurements of air-sea gas transfer velocity and near surface turbulence at low to moderate winds (Invited)

    Science.gov (United States)

    Wang, B.; Liao, Q.; Fillingham, J. H.; Bootsma, H. A.

    2013-12-01

    Parameterization of air-sea gas transfer velocity was routinely made with wind speed. Near surface turbulent dissipation rate has been shown to have better correlation with the gas transfer velocity in a variety of aquatic environments (i.e., the small eddy model) while wind speed is low to moderate. Wind speed model may underestimate gas transfer velocity at low to moderate winds when the near surface turbulence is produced by other environmental forcing. We performed a series of field experiments to measure the CO2 transfer velocity, and the statistics of turbulence immediately below the air-water interface using a novel floating PIV and chamber system. The small eddy model was evaluated and the model coefficient was found to be a non-constant, and it varies with the local turbulent level (figure 1). Measure results also suggested an appropriate scaling of the vertical dissipation profile immediately below the interface under non-breaking conditions, which can be parameterized by the wind shear, wave height and wave age (figure 2). Figure 1. Relation between the coefficient of the small eddy model and dissipation rate. The data also include Chu & Jirka (2003) and Vachon et al. (2010). The solid regression line: α = 0.188log(ɛ)+1.158 Figure 2. Non-dimensional dissipation profiles. Symbols: measured data with the floating PIV. Solid line: regression of measured data with a -0.79 decaying rate. Dash line with -2 slope: Terray et al. (1996) relation. Dash line with two layer structure: Siddiqui & Loewen (2007) relation.

  2. Gap Filling of the CALYPSO HF Radar Sea Surface Current Data through Past Measurements and Satellite Wind Observations

    Directory of Open Access Journals (Sweden)

    Adam Gauci

    2016-01-01

    Full Text Available High frequency (HF radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.

  3. Ocean surface wind stress

    Science.gov (United States)

    Harrison, D. E.

    1984-01-01

    The need for improved surface wind and wind stress data is discussed. The collection of wind data using ship reports, research buoys, and cloud motion vectors is examined. The need for data on surface-wind stress fields is emphasized. Accurate stress data are required for studying: (1) the normal seasonal cycle and the intraannual events; (2) wind stress curls and the forcing of ocean circulation; (3) El Nino events; and (4) the low response of the midlatitude ocean circulation.

  4. Statistical characterization of short wind waves from stereo images of the sea surface

    Science.gov (United States)

    Mironov, Alexey; Yurovskaya, Maria; Dulov, Vladimir; Hauser, Danièle; Guérin, Charles-Antoine

    2013-04-01

    We propose a methodology to extract short-scale statistical characteristics of the sea surface topography by means of stereo image reconstruction. The possibilities and limitations of the technique are discussed and tested on a data set acquired from an oceanographic platform at the Black Sea. The analysis shows that reconstruction of the topography based on stereo method is an efficient way to derive non-trivial statistical properties of surface short- and intermediate-waves (say from 1 centimer to 1 meter). Most technical issues pertaining to this type of datasets (limited range of scales, lacunarity of data or irregular sampling) can be partially overcome by appropriate processing of the available points. The proposed technique also allows one to avoid linear interpolation which dramatically corrupts properties of retrieved surfaces. The processing technique imposes that the field of elevation be polynomially detrended, which has the effect of filtering out the large scales. Hence the statistical analysis can only address the small-scale components of the sea surface. The precise cut-off wavelength, which is approximatively half the patch size, can be obtained by applying a high-pass frequency filter on the reference gauge time records. The results obtained for the one- and two-points statistics of small-scale elevations are shown consistent, at least in order of magnitude, with the corresponding gauge measurements as well as other experimental measurements available in the literature. The calculation of the structure functions provides a powerful tool to investigate spectral and statistical properties of the field of elevations. Experimental parametrization of the third-order structure function, the so-called skewness function, is one of the most important and original outcomes of this study. This function is of primary importance in analytical scattering models from the sea surface and was up to now unavailable in field conditions. Due to the lack of precise

  5. Impact of high-resolution sea surface temperature, emission spikes and wind on simulated surface ozone in Houston, Texas during a high ozone episode

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Jeon, Wonbae; Roy, Anirban; Westenbarger, David A.; Kim, Hyun Cheol

    2017-03-01

    Model-measurement comparisons for surface ozone often show significant error, which could be attributed to problems in meteorology and emissions fields. A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the contributions of these inputs. In this space, a base WRF run (BASE) and a WRF run initializing with NOAA GOES satellite sea surface temperature (SST) (SENS) were performed to clarify the impact of high-resolution SST on simulated surface ozone (O3) over the Greater Houston area during 25 September 2013, corresponding to the high O3 episode during the NASA DISCOVER-AQ Texas campaign. The SENS case showed reduced land-sea thermal contrast during early morning hours due to 1-2 °C lower SST over water bodies. The lowered SST reduced the model wind speed and slowed the dilution rate. These changes led to a simulated downwind O3 change of ∼5 ppb near the area over land with peak simulated afternoon O3. However, the SENS case still under-predicted surface O3 in urban and industrial areas. Episodic flare emissions, dry sunny postfrontal stagnated conditions, and land-bay/sea breeze transitions could be the potential causes of the high O3. In order to investigate the additional sources of error, three sensitivity simulations were performed for the high ozone time period. These involved adjusted emissions, adjusted wind fields, and both adjusted emissions and winds. These scenarios were superimposed on the updated SST (SENS) case. Adjusting NOx and VOC emissions using simulated/observed ratios improved correlation and index of agreement (IOA) for NOx from 0.48 and 0.55 to 0.81 and 0.88 respectively, but still reported spatial misalignment of afternoon O3 hotspots. Adjusting wind fields to represent morning weak westerly winds and afternoon converging zone significantly mitigated under-estimation of the observed O3 peak. For example, simulations with adjusted wind fields and adjusted (emissions + wind fields) reduced under-estimation of the peak

  6. The SeaWinds Scatterometer Instrument

    Science.gov (United States)

    Wu, C.; Graf, J.; Freilich, M.; Long, D.; Spencer, M.; Tsai, W.; Lisman, D.; Winn, C.

    1994-01-01

    The SeaWinds scatterometer instrument is currently being developed by NASA/JPL, as part of the NASA EOS Program, for flight on the Hapanese ADEOS II mission in 1999. This Ku-band radar scatterometer will infer surface wind speed and direction by measuring the radar normalized backscatter cross-section over several different azimuth angles. This paper presents the design characteristics of and operational approach to the instrument itself.

  7. Comments on Navy/NRL requirements for sea surface temperature and surface wind measurements on Seasat-A

    Science.gov (United States)

    Ruskin, R. E.; Jeck, R. K., Jr.

    1974-01-01

    SEASAT instrumentation payload requirements to provide satellite data for the Navy fleet operational fog prediction program include: (1) some form of C-band microwave radiometer capability; (2) a scanning antenna with a 40-km Instanteneous Field of View (IFOV) for the C-band channel; (3) a narrow band and high resolution IR scanning radiometer for cloud free areas; and (4) a capability for measuring surface winds of 3 to 50 m/sec at + or - 10% accuracy and 50 to 100 km spatial resolution.

  8. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Zhu, Rong;

    2016-01-01

    We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave...

  9. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    Science.gov (United States)

    Zhong, Jian; Dong, Gang; Sun, Yimei; Zhang, Zhaoyang; Wu, Yuqin

    2016-11-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. Project supported by the National Natural Science Foundation of China (Grant Nos. 41230421 and 41605075) and the National Basic Research Program of China (Grant No. 2013CB430101).

  10. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model

    Energy Technology Data Exchange (ETDEWEB)

    Goubanova, K. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Echevin, V.; Terray, P. [IPSL/UPMC/IRD, Laboratoire d' Oceanographie et de Climatologie, Experimentation et Approches Numeriques, Paris (France); Dewitte, B. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Instituto Geofisico del Peru, Lima (Peru); Codron, F. [UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France); Takahashi, K. [Instituto Geofisico del Peru, Lima (Peru); Vrac, M. [IPSL/CNRS/CEA/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France)

    2011-04-15

    The key aspect of the ocean circulation off Peru-Chile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru-Chile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10 m for the period 2000-2008. The large-scale 10 m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2 x CO{sub 2} and 4 x CO{sub 2} IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability. (orig.)

  11. Wind energy input in coastal seas east of China

    Institute of Scientific and Technical Information of China (English)

    ZANG Nan; WU Dexing

    2013-01-01

    This study investigates the wind energy input,an important source of mechanical energy,in the coastal seas east of China.Using the wind field from the high-resolution sea surface meteorology dataset in the Bohai Sea,Yellow Sea,and East China Sea,we studied the wind energy input through surface ageostrophic currents and surface waves.Using a simple analytical formula for the Ekman Spiral with timedependent wind,the wind energy input through ageostrophic currents was estimated at ~22 GW averaged from 1960 to 2007,and through use of an empirical formula,the wind energy input through surface waves was estimated at ~169 GW.We also examined the seasonal variation and long-term tendency of mechanical energy from wind stress,and found that the wind energy input to the East China Sea decreased before the 1980s,and then subsequently increased,which is contrary to what has been found for the Bohai Sea and Yellow Sea.More complicated physical processes and varying diffusivity need to be taken into account in future studies.

  12. Offshore wind power in the Aegean Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Hahmann, Andrea N.

    The wind climate of the Mediterranean Sea has been estimated from atmospheric modelling (Cavaleri 2005, Lavignini et al. 2006) and QuikSCAT (Furevik et al. 2011). The latter shows the Aegean Sea as a promising area for offshore wind power development. According to the Hellenic Wind Energy...... Association (HWEA), the sites of particular interest for offshore wind energy are located close to the mainland and islands in the Aegean Sea. Wind farm developers aim to select local areas with favorable wind conditions to optimize the annual energy production and the economic profit. In the Aegean Sea...... winds (SDW). It is planned to combine the Envisat wind fields with Sentinel-1a and Sentinel-1b wind fields to further detail the offshore wind resource within the New European Wind Atlas. The work is in progress. Sentinel-1a images are processed at DTU Wind Energy near-real-time and we are updating our...

  13. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    The trends and periodicities of surface meteorological parameters (sea surface temperature, air temperature, cloudiness, wind speed and sea level pressure) over the western, central, eastern and southern Arabian Sea regions are studied...

  14. Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds

    Science.gov (United States)

    2013-09-30

    scalar fluxes as L,T L,int L, spH H H= + , (3a) s,T s,int s, spH H H= + , (3b) en,T s,int L,int en,spQ H H Q= + + . (3c) In these, subscript T...APPLICATIONS One of our goals is to develop Fortran code for a bulk air-sea flux algorithm that couples the ocean and atmosphere through flux...boundary conditions. Andreas et al. (2008) presented our first version of that code . The analyses and results described in the last three sections are the

  15. Applications of AMSR-E Measurements for Tropical Cyclone Predictions Part Ⅰ: Retrieval of Sea Surface Temperature and Wind Speed

    Institute of Scientific and Technical Information of China (English)

    Banghua YAN; Fuzhong WENG

    2008-01-01

    Existing satellite microwave algorithms for retrieving Sea Surface Temperature(Sst)and wind(SSW)are applicable primarily for non-raining cloudy conditions.With the launch of the Earth Observing System (EOS)Aqua satellite in 2002,the Advanced Microwave Scanning Radiometer(AMSR-E)onboard provides some unique measurements at lower frequencies which are sensitive to ocean surface parameters under ad-verse weather conditions.In this study,a new algorithm is developed to derive SST and SSW for hurricane predictions such as hurricane vortex analysis from the AMSR-E measurements at 6.925 and 10.65 GHz.In the algorithm,the effects of precipitation emission and scattering on the measurements are properly taken into account.The algorithm performances are evaluated with buoy measurements and aircraft dropsonde data.It is found that the root mean square (RMS) errors for SST and SSW are about 1.8K and 1.9m s(-1),respectively,when the results are compared with the buoy data over open oceans under precipitating clouds (e.g.,its liquid water path is larger than 0.5 mm),while they are 1.1 K for SST and 2.0 ms(-1)for SSW,respectively,when the retrievals are validated against the dropsonde measurements over warm oceans.These results indicate that our newly developed algorithm catl provide some critical surface information for trop-ical cycle predictions.Currently,this newly developed algorithm has been implemented into the hybrid variational scheme for the hurricane vortex analysis to provide predictions of SST and SSW fields.

  16. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  17. Coastal sea-surface temperature anomalies during the 2014-2016 northeast Pacific marine heat wave: regional variability, timing, and relation to wind stress anomalies

    Science.gov (United States)

    Gentemann, C. L.; Fewings, M. R.; Garcia-Reyes, M.

    2016-12-01

    In 2014-2016, sea-surface temperatures (SSTs) in the region along the Washington, Oregon, and California coasts were significantly warmer than usual, with a maximum SST anomaly of 6.2°C measured near Santa Barbara. This marine heat wave was associated with major ecosystem disturbances, including a toxic algae bloom of Pseudo-nitzschia that had massive economic and ecological impacts. Here, we use satellite and blended reanalysis products to report the magnitude, extent, duration, and evolution of SST, wind stress, and wind stress curl anomalies along the west coast of the continental United States during 2014-2016. Using high-resolution wind stress instead of the Bakun upwelling index shows clear differences in upwelling phenology in 2015.

  18. The Use of MTM-SVD Technique to Explore the Joint Spatiotemporal Modes of Wind and Sea Surface Variability in the North Indian Ocean during 1993–2005

    Directory of Open Access Journals (Sweden)

    Thaned Rojsiraphisal

    2009-01-01

    Full Text Available Sea surface height (SSH and sea surface temperature (SST in the North Indian Ocean are affected predominantly by the seasonally reversing monsoons and in turn feed back on monsoon variability. In this study, a set of data generated from a data-assimilative ocean model is used to examine coherent spatiotemporal modes of variability of winds and surface parameters using a frequency domain technique, Multiple Taper Method with Singular Value Decomposition (MTM-SVD. The analysis shows significant variability at annual and semiannual frequencies in these fields individually and jointly. The joint variability of winds and SSH is significant at interannual (2-3 years timescale related to the ENSO mode—with a “/dipole/” like spatial pattern. Joint variability with SST showed similar but somewhat weaker behavior. Winds appear to be the driver of variability in both SSH and SST at these frequency bands. This offers prospects for long-lead projections of the North Indian Ocean climate.

  19. Sensitivity of simulated circulation dynamics to the choice of surface wind forcing in the Japan/East Sea

    Science.gov (United States)

    Hogan, Patrick J.; Hurlburt, Harley E.

    2005-06-01

    The circulation sensitivity to the choice of wind-forcing product is investigated with the NRL Layered Ocean Model (NLOM) configured for the Japan/East Sea. Monthly climatologies from seven different wind-stress data sets (and wind-stress curl) are formed from observed and model-derived atmospheric data sets. The resulting maps of wind-stress curl reveal significantly different spatial patterns and magnitudes, even two with largely opposite large-scale patterns of wind-stress curl. These wind sets were used in forcing three sets of simulations, 1/8° linear and 1/8° and 1/32° nonlinear. In addition, seasonally varying straits forcing (inflow through Tsushima balanced by outflow through Tsugaru and Soya) was included in all the simulations, and simulations with straits forcing only were performed. The 1.5-layer linear reduced-gravity simulations include only the lowest order dynamics, mainly Munk β 1/3 western boundary layers (due to both wind and straits forcing) and a Sverdrup interior. The nonlinear simulations add bottom topography, multiple internal modes, diapycnal mixing, and ventilation of layer interfaces. At 1/8° resolution, only weak barotropic/baroclinic instabilities occur, but at 1/32° resolution these are much stronger, allowing vigorous transfer of energy from the upper ocean to the abyssal layer via baroclinic instability. This drives much stronger mean abyssal currents that more strongly steer upper-ocean current pathways than at 1/8°, i.e. there is much stronger upper ocean-topographical coupling. The linear model simulates most of the basic features, e.g., the subpolar gyre with all but the straits forcing only, the East Korean Warm Current (EKWC) and its connection to the subpolar front with all but one wind-forcing set, but the remaining wind set gives a continuous Nearshore Branch (NB) of the Tsushima Warm Current along the coast of Honshu. In all of the linear simulations with an EKWC, the separation latitude from the coast of Korea is

  20. Data Fusion Between Microwave and Thermal Infrared Radiometer Data and Its Application to Skin Sea Surface Temperature, Wind Speed and Salinity Retrievals

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Method for data fusion between Microwave Scanning Radiometer: MSR and Thermal Infrared Radiometer: TIR derived skin sea surface temperature: SSST, wind speed: WS and salinity is proposed. SSST can be estimated with MSR and TIR radiometer data. Although the contribution ocean depth to MSR and TIR radiometer data are different each other, SSST estimation can be refined through comparisons between MSR and TIR derived SSST. Also WS and salinity can be estimated with MSR data under the condition of the refined SSST. Simulation study results support the idea of the proposed data fusion method.

  1. Airborne sound propagation over sea during offshore wind farm piling.

    Science.gov (United States)

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.

  2. DISCUSS ON THE SEA SURFACE ROUGHNESS OF THE WIND ENERGY ASSESSMENT IN THE OFFSHORE WIND FARM%海上风电场风能计算中关于海面粗糙度问题的探讨

    Institute of Scientific and Technical Information of China (English)

    彭秀芳; 王秀杰; 辜晋德

    2012-01-01

    The offshore roughness length is an important influence factor on the offshore wind energy resource assessment. A novel method to calculate the offshore roughness length to deduce the sea surface roughness using measured wind speed at 10m altitude was presented. Based on the analysis, calculation and comparison with the measured wind speed, wind velocity error was 2. 04 percent using the novel method while it was 4. 51 percent using the traditional calculation method. Wind energy density error is 10. 39 percent comparing with 16. 88 percent using the traditional method. The errors for wind speed and wind power density in the windy periods, using traditional calculation method were 3.42% and 5.04%. The example shows that it is more reliable to assess the wind energy resource using the new method.%提出一种利用海上10m高度的实测风速推求海面粗糙度的新方法.通过分析计算并与实测值进行对比,采用新方法计算时,风速误差为2.04%,风功率密度的误差为10.39%;采用传统零粗糙度计算方法时,风速误差为4.51%,风功率密度的误差为16.88%;在大风时段,用新方法计算时风速和风功率密度的计算结果比传统方法的计算结果更接近实测值.实例表明:采用新的粗糙度计算方法能够使海面推求的风资源结果更接近真实值.

  3. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  4. Numerical simulation of scatterometer assimilated wind and ocean wave in eastern China seas and adjacent waters

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using the latest version of Mesoscale Modeling System (MM5v3), we assimilated wind data from the scatterometer and built a model to assimilate the wind field over eastern China seas and adjacent waters and applied the wave model WAVEWATCH-Ⅲ to test the sea area with assimilative wind and blended wind of QSCAT and NCEP as driving forces. High precision and resolution numerical wave results were obtained.Analysis indicated that ifwe replace the model wind result with the blended wind, better sea surface wind results and wave results could be obtained.

  5. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    a certain class of conditions can be found. Here, the HHT is applied to create conditional spectra which demonstrate patterns in the occurrence of severe wind variability. It is shown that wind fluctuations over the North Sea are more severe for westerly flow than for easterly flow, and that severe...

  6. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Divergence

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  7. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  8. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  9. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  10. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  11. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  12. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  13. Offshore Wind Power at Rough Sea

    DEFF Research Database (Denmark)

    Petersen, Kristian Rasmus; Madsen, Erik Skov; Bilberg, Arne

    2013-01-01

    This study compare the current operations and maintenance issues of one offshore wind park at very rough sea conditions and two onshore wind parks. Through a detailed data analysis and case studies this study identifies how improvements have been made in maintenance of large wind turbines. However......, the study has also revealed the need for new maintenance models including a shift from breakdown and preventive maintenances and towards more predictive maintenance to reduce the cost of energy for offshore wind energy installations in the future....

  14. On the spectra and coherence of some surface meteorological parameters in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    Spectra and cross-spectra of monthly time series of the surface meteorological parameters, sea surface temperature, air temperature, cloudiness, wind speed and sea level pressure were computed for the period 1948-1972 over the Arabian Sea...

  15. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    Indian Academy of Sciences (India)

    Haralambos S Bagiorgas; Giouli Mihalakakou; Shafiqur Rehman; Luai M Al-Hadhrami

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15–16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (∼2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  16. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  17. Coupling between SST and wind speed over mesoscale eddies in the South China Sea

    Science.gov (United States)

    Sun, Shuangwen; Fang, Yue; Liu, Baochao; ᅟ, Tana

    2016-11-01

    The coupling between sea surface temperature (SST) and sea surface wind speed over mesoscale eddies in the South China Sea (SCS) was studied using satellite measurements. Positive correlations between SST anomalies (SSTA) and wind speed anomalies were found over both cyclonic and anticyclonic eddies. In contrast to the open oceans, the spatial patterns of the coupling over mesoscale eddies in the SCS depend largely on the seasonal variations of the background SST gradient, wind speed, and wind directional steadiness. In summer, the maximum SSTA location coincides with the center of eddy-induced sea surface height anomalies. In winter, the eddy-induced SSTA show a clear dipole pattern. The spatial patterns of wind speed anomalies over eddies are similar to those of the SSTA in both seasons. Wind speed anomalies are linearly correlated with SSTA over anticyclonic and cyclonic eddies. The coupling coefficients between SSTA and wind speed anomalies in the SCS are comparable to those in the open oceans.

  18. Eddy- and wind-sustained moderate primary productivity in the temperate East Sea (Sea of Japan

    Directory of Open Access Journals (Sweden)

    G.-H. Hong

    2013-06-01

    Full Text Available As part of the Dokdo East Sea Time Series Studies (DETS in the East/Japan Sea, a DETS buoy system was moored on the 130 m deep continental shelf off the Dok Islets in the central part of the East Sea. Chlorophyll a concentrations in the surface water observed by the DETS buoy system exhibited low-frequency bimodal variations in the annual chlorophyll a concentration due to a spring phytoplankton bloom and a smaller fall bloom. In addition, between late spring and early fall when the water column is stratified, frequent low-concentration maxima occurred, which appear to have been triggered by the injection of nutrient-rich subsurface water to the sunlit surface water. The primary productivity in the nutrient-depleted surface ocean was found to be enhanced by subsurface water upwelling where the wind and water move in the same direction as the mesoscale eddy. New observations in the East/Japan Sea based on time-series measurements of chlorophyll a, wind, and other oceanographic variables at fixed sites in the center of the sea and using satellite measurements reveal that the vertical movement of water caused by wind-eddy interactions depends on the relative angle between the wind and the water current. The wind-eddy interaction appears to contribute to the unusually high primary productivity in the region where it was often sustained by the long-lived warm and cold eddies.

  19. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  20. A new algorithm for microwave radiometer remote sensing of sea surface salinity and temperature

    Institute of Scientific and Technical Information of China (English)

    YIN; Xiaobin; LIU; Yuguang; WANG; Zhenzhan

    2006-01-01

    The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface temperature, sea surface salinity and incidence angle of observation are investigated. Based on the investigations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.

  1. Analytic Theory of Wind-Driven Sea

    Science.gov (United States)

    Zakharov, V. E.

    2016-12-01

    Wind-driven sea is characterized by the spatial energy spectrum E(k), k - is a wave vector. The spectrum has a sharp maximum at k ≈ kp is defined by the wind velocity U and by the "wave-age" - degree of the sea development. For the"well developed sea" kp ≈ g/U2. For a typical value of U ≈ 15 m/sec (moderate gale) λp = 2π/kp≈ 100m. The minimalscale λcap λ > λcrit, λcrit ≈ 10-2λp. This range of scales contains more then 90% of wave energy. Wave dissipation in this range is negligibly small.2. Region of energy dissipation λ < λcrit. This region contains no more than 10% of wave energy but provides dissipation of all wave energy.If the wind velocity is smooth U < 5m/sec, the sea is also smooth and the dissipation is provided by transformation of gravity waves to capillary waves. For strong winds the dissipation is realized due to wave breaking. In this case one can observe the range of scales 5•10-2m < λ < λcrit which can be called " the Phillips sea". The main message of this lecture is the following. The most interesting energy-capacitive range of wave scales can be self-consistently discribed by the method of theoretical physics. The statistical description of this part of the wind driven sea is described by the Hasselmann kinetic equation for the energy spectrum. This kinetic equation has a rich family of exact solutions, both stationary and time-dependent. It allows a comfortable and fast numerical simulations. Putting together results of the analytical theory and numerical simulations of waves it is possible to explain a bulk of facts, accumulated by experimentalists for decades.

  2. Extreme wind mapping over the North Sea

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    Atlases of the 50-year wind over the North Sea have been created for two heights, 10 m and 100 m. The atlases have also been made for a range of temporal resolutions, from the original time resolution of the NCEP/NCAR reanalysis of 6 hours to 1 hour and further to 10 min. Two methods were used fo...

  3. OW CCMP ocean surface wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of ocean...

  4. Wind Stress Forcing of the North Sea "Pole Tide"

    Science.gov (United States)

    OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.

    1998-01-01

    We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.

  5. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  6. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2016-09-01

    Full Text Available We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave Imager (SSM/I ocean winds extrapolated from 10 m to 100 m using the Charnock relationship and the logarithmic profile method are compared to Weather Research and Forecasting (WRF model results in both seas and to in-situ observations in the North Sea. The mean wind speed from SSM/I and WRF differ only by 0.1 m/s at Fino1 in the North Sea, while west of Hainan in the South China Sea the difference is 1.0 m/s. Linear regression between SSM/I and WRF winds at 100 m show correlation coefficients squared of 0.75 and 0.67, standard deviation of 1.67 m/s and 1.41 m/s, and mean difference of −0.12 m/s and 0.83 m/s for Fino1 and Hainan, respectively. The WRF-derived winds overestimate the values in the South China Sea. The inter-annual wind speed variability is estimated as 4.6% and 4.4% based on SSM/I at Fino1 and Hainan, respectively. We find significant changes in the seasonal wind pattern at Fino1 with springtime winds arriving one month earlier from 1988 to 2013 and higher winds in June; no yearly trend in wind speed is observed in the two seas.

  7. Surface winds over West Antarctica

    Science.gov (United States)

    Bromwich, David

    1993-01-01

    Five winter months (April-August 1988) of thermal infrared satellite images were examined to investigate the occurrence of dark (warm) signatures across the Ross Ice Shelf in the Antarctic continent. These features are inferred to be generated by katabatic winds that descend from southern Marie Byrd Land and then blow horizontally across the ice shelf. Significant mass is added to this airstream by katabatic winds blowing from the major glaciers that flow through the Transantarctic Mountains from East Antarctica. These negatively buoyant katabatic winds can reach the northwestern edge of the shelf - a horizontal propagation distance of up to 1,000 km - 14 percent of the time. Where the airstream crosses from the ice shelf to the ice-covered Ross Sea, a prominent coastal polynya is formed. Because the downslope buoyancy force is near zero over the Ross Ice Shelf, the northwestward propagation of the katabatic air mass requires pressure gradient support. The study shows that the extended horizontal propagation of this atmospheric density current occurred in conjunction with the passage of synoptic cyclones over the southern Amundsen Sea. These cyclones can strengthen the pressure gradient in the interior of West Antarctica and make the pressure field favorable for northwestward movement of the katabatic winds from West Antarctica across the ice shelf in a geostrophic direction. The glacier winds from East Antarctica are further accelerated by the synoptic pressure gradient, usually undergo abrupt adjustment beyond the exit to the glacier valley, and merge into the mountain-parallel katabatic air mass.

  8. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Satellite sea surface winds data on CD-ROM (NODC Accession 0000318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface wind and other data were collected using microwave scatterometers satellite in a world-wide distribution from May 5, 1991 to May 31, 2000. Data were...

  9. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  10. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  11. Simulation of laser beam reflection at the sea surface

    Science.gov (United States)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  12. How predictable are equatorial Atlantic surface winds?

    Science.gov (United States)

    Richter, Ingo; Doi, Takeshi; Behera, Swadhin

    2017-04-01

    Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the variability and predictability of monthly mean surface winds in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface wind variability over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface wind variability is due to either internal atmospheric variability or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of variability in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface wind variability decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface wind variance in AMJ is predictable, while the rest is due to internal atmospheric variability. Other months show significantly lower predictability. The relatively strong internal variability as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic variability.

  13. Mesoscale wind field modifications over the Baltic Sea

    DEFF Research Database (Denmark)

    Källstrand, B.; Bergström, H.; Højstrup, J.

    2000-01-01

    For two consecutive days during spring 1997, the wind field over the Baltic Sea has been studied. The strength of the geostrophic wind speed is the major difference in synoptic conditions between these two days. During both days, the mesoscale wind field over most of the Baltic Sea is quite heter...

  14. On the Wind Stress - Sea Level Power Law.

    Science.gov (United States)

    1983-06-01

    The response of coastal sea level to local forcing by synpotic scale winds is usually assumed to be linear in wind stress . However, the response of...response to wind stress may allow significant improvement in the analysis of some sea-level problems. (Author)

  15. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    Science.gov (United States)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  16. 风对南海波浪的能量输入及其长期变化%Wind energy input and its secular change of surface waves in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    崔超然; 管玉平; 朱耀华; 王辉; 黄瑞新

    2016-01-01

    The energy of winds into surface waves in the South China Sea during 1871-2008 was estimated by using the ocean reanalysis data of SODA (simple ocean data assimilation) 2.2.4 (1871-2008). The results showed that the annual wind energy input is about 0.2 TW, and that the spatial pattern of this kind of input is mainly located in the northern parts of the South China Sea during winter and in the southern parts in summer;and the intensity of summer input is much weaker than that of winter. Similar results were obtained by using the ERA-40 (European Centre for Medium-Range Weather Forecasts re-analysis-40) (1957-2002) and ERA-20C (1900-2010) data sets. The secular trend of wind energy input into waves was reduced at the rate of 0.43%per year since 1950. We also studied the swells and wind waves, which are two categories of the waves, by using the ERA-interim data. The spatial pattern of wind energy input into the swells and wind waves is mainly located in the northern parts of the South China Sea, but there is also a high wind energy input into the wind waves area in the southern parts of the South China Sea. The secular trend of the wind energy input into swells was increasing, and the same trend of wind energy input into the wind waves was reducing; the total energy input was also reducing by the joint effect of swells and wind waves. All of this was thanks to the weakening East Asian monsoon, which dominated in the South China Sea, in recent decades. These results are significant for understanding the variation of the surface waves in the South China Sea.%利用美国的全球海洋同化资料SODA(simple ocean data assimilation)2.2.4(1871—2008)中的风应力数据,估算了风输入给南海波浪的能量。结果表明,风向南海波浪输入能量的年均值约为0.2TW,其空间分布冬季以南海北部为主,夏季以南部为主且强度比冬季要弱得多;风对南海波浪能量的输入一直呈减少趋势,用欧洲中期天气预

  17. THE ROLE OF MERIDIONAL WIND STRESS IN THE TROPICAL UNSTABLE AIR-SEA INTERACTION

    Institute of Scientific and Technical Information of China (English)

    房佳蓓; 杨修群

    2003-01-01

    With a simple tropical coupled ocean-atmosphere model, this paper presents an analysis aiming to understand the relative role of the meridional and zonal wind stresses in the tropical unstable air-sea interaction. The roles of thezonal wind stress, the meridional wind stress and the both are considered respectively into the coupled system. It is demonstrated that the meridional component of the wind stress does not lead to any instability under the local thermal balance assumption, but it does lead to a weak instability under the sea surface temperature advection assumption. Unstable air-sea interaction is dominated by the zonal component of the wind stress, suggesting that ignoring the meridional wind stress is approximately feasible in studying the tropical unstable air-sea interaction.

  18. A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea

    CERN Document Server

    Reistad, Magnar; Haakenstad, Hilde; Aarnes, Ole Johan; Furevik, Birgitte R; Bidlot, Jean-Raymond; 10.1029/2010JC006402

    2011-01-01

    A combined high-resolution atmospheric downscaling and wave hindcast based on the ERA-40 reanalysis covering the Norwegian Sea, the North Sea and the Barents Sea is presented. The period covered is from September 1957 to August 2002. The dynamic atmospheric downscaling is performed as a series of short prognostic runs initialized from a blend of ERA-40 and the previous prognostic run to preserve the fine-scale surface features from the high-resolution model while maintaining the large-scale synoptic field from ERA-40. The nested WAM wave model hindcast consists of a coarse 50 km model covering the North Atlantic forced with ERA-40 winds and a nested 10-11 km resolution model forced with downscaled winds. A comparison against in situ and satellite observations of wind and sea state reveals significant improvement in mean values and upper percentiles of wind vectors and the significant wave height over ERA-40. Improvement is also found in the mean wave period. ERA-40 is biased low in wind speed and significant ...

  19. Wind energy resources in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Karamanis, D. [Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio (Greece); Tsabaris, C.; Georgopoulos, D. [Institute of Oceanography, Hellenic Center for Marine Research, 190 13 Anavyssos, Attica (Greece); Stamoulis, K. [Center of Archaeometry, University of Ioannina, 45221 Ioannina (Greece)

    2011-02-15

    The wind speed and direction as well as the availability, the duration and the diurnal variation of two offshore sites, Zakinthos and Pylos (BZK and BPY) in the Ionian Sea were assessed. For an analysis period of two years, the mean wind speed at 10 m was determined as 5.7 {+-} 0.1 m s{sup -1} and 5.8 {+-} 0.1 m s{sup -1} for the BZK and BPY sites, respectively. The wind speed variations over the hours of the day were quite small. The monthly variation in the average wind speeds was between 4.3 (May) and 7.5 m s{sup -1} (December) for the BZK site and 4.4 (August) and 7.3 m s{sup -1} (December) for the BPY site. Moreover, QuikSCAT satellite mean values for the grids of the two buoy regions were systematically overestimated in comparison to the buoy data with differences in the range from 8 to 13%. Statistical analysis revealed the high QuikSCAT data uncertainty for wind speeds less than 5 m s{sup -1} as the major factor of the observed mean value differences. The mean wind power densities were calculated with the buoy wind speed measurements and were found more than 250 W m{sup -2} at 10 m, suggesting the suitability of the sites for offshore wind energy applications. Capacity factors of up to 48% for energy production were calculated with the existing offshore turbines technology at a hub height of 100 m. Furthermore, the energy yield for different wind turbines and a service life of 20 years were determined from 6.5 to 8.7 and the energy pay-back periods from 2.8 to 2.1 years, respectively. The maximum avoided greenhouse emissions were 140 kt CO{sub 2}-e for an offshore turbine generator of 5 MW and a period of 20 years. (author)

  20. An analytical model for wind-driven Arctic summer sea ice drift

    Directory of Open Access Journals (Sweden)

    H.-S. Park

    2015-03-01

    Full Text Available The authors present an approximate analytical model for wind-induced sea-ice drift that includes an ice–ocean boundary layer with an Ekman spiral in the ocean velocity. This model provides an analytically tractable solution that is most applicable to the marginal ice zone, where sea-ice concentration is substantially below 100%. The model closely reproduces the ice and upper-ocean velocities observed recently by the first ice-tethered profiler equipped with a velocity sensor (ITPV. The analytical tractability of our model allows efficient calculation of the sea-ice velocity provided that the surface wind field is known and that the ocean surface geostrophic velocity is relatively weak. The model is applied to estimate intraseasonal variations in Arctic sea ice cover due to short-timescale (around 1 week intensification of the southerly winds. Utilizing 10 m surface winds from ERA-Interim reanalysis, the wind-induced sea-ice velocity and the associated changes in sea-ice concentration are calculated and compared with satellite observations. The analytical model captures the observed reduction of Arctic sea-ice concentration associated with the strengthening of southerlies on intraseasonal time scales. Further analysis indicates that the wind-induced surface Ekman flow in the ocean increases the sea-ice drift speed by 50% in the Arctic summer. It is proposed that the southerly wind-induced sea-ice drift, enhanced by the ocean's surface Ekman transport, can lead to substantial reduction in sea-ice concentration over a timescale of one week.

  1. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  2. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  3. Wind climate estimation using WRF model output: method and model sensitivities over the sea

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo

    2015-01-01

    setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface......High-quality tall mast and wind lidar measurements over the North and Baltic Seas are used to validate the wind climatology produced from winds simulated by the Weather, Research and Forecasting (WRF) model in analysis mode. Biases in annual mean wind speed between model and observations at heights...... around 100m are smaller than 3.2% at offshore sites, except for those that are affected by the wake of a wind farm or the coastline. These biases are smaller than those obtained by using winds directly from the reanalysis. We study the sensitivity of the WRF-simulated wind climatology to various model...

  4. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  5. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  6. Vertical Structure of the Wind Speed Profile at the North Sea Offshore Measurement Platform FINO1

    Science.gov (United States)

    Kettle, A. J.

    2013-12-01

    The vertical wind speed profile in the lowest 100m of the marine atmospheric boundary layer has been characterized from data collected at the FINO1 offshore research platform in the German North Sea sector for 2005. Located in 30m of water, the platform has a dense vertical array of meteorological instrumentation to measure wind speed, air temperature, relative humidity, and atmospheric turbulence characteristics. Along measurements of the ocean temperature and surface waves, the platform is well-equipped to characterize wind properties in the near-surface boundary layer. Preliminary analysis reveals a high incidence of vertical wind speed profiles that deviate significantly from Monin-Obukhov similarity theory with wind speed inflections that suggest decoupled layers near the surface. The presentation shows how the properties of the vertical wind speed profile change mainly depending on the wind speed, wind direction, and time of year. The results are significant because there are few reports of inflections in the vertical wind speed profile over the ocean and there is an a priori assumption that the vertical wind speed profile varies smoothly according to similarity theory. There are possible consequences for the wind energy development in terms of understanding the forces acting on offshore wind turbines whose rotors sweep across heights 150-200m above the sea surface.

  7. New method of sea surface wind speed retrieval using genetic algorithms and neural network%基于遗传神经网络算法的海面风速反演新方法

    Institute of Scientific and Technical Information of China (English)

    石汉青; 张雷; 杜华栋; 龙智勇; 姜世泰

    2013-01-01

    There exist the complexity of sea surface and the limitation of theoretical model of electromagnet-ic scattering,and nonlinear phenomena in the retrieval of sea surface wind speed,which is based on syn-thetic aperture radar (SAR)images.With the method of genetic neural network and Fletcher-Reeves,this paper established a new model of retrieving wind speed based on operational data of CMOD4 model func-tion.The result shows that this model is available in retrieving ocean surface wind.When random error is less than 10%,this model has high denoising ability and the accuracy of the retrieved ocean surface wind speed is ideal.Comparing the results of different wind speed,shows that in the case of low or middle wind,the fitness of learning model and the accuracy of predicted tests have both ideal accuracy,and that in the case of strong wind,the inversion result of this model is comparatively poor.%针对海面运动的复杂性、海面电磁散射理论模型的局限性以及利用 SAR 图像反演海面风速存在的非线性现象,基于遗传神经网络的方法,以业务化的 CMOD4模式函数数据为基础,采用 Fletcher-Reeves 算法的变梯度反向传播算法,建立一种 SAR 风速反演的新模型。试验结果表明,利用遗传神经网络方法反演海面风速是可行的,当随机误差小于10%时,模型的抗噪能力较强,风速反演的精度较为理想。比较不同风速下的反演结果可以发现,在中、小风速的情况下,模型的抗噪能力较强,模型学习拟合和预测检验的精度相对较高;在大风速的情况下,模型的反演能力有待于进一步提高。

  8. Recent studies on wind seas and swells in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rashmi, R.; Samiksha, S.V.; Aboobacker, V.M.

    , Dec 7 & 8, 2012 Recent studies on wind seas and swells in the Indian ocean non-local upward mixing and local downward mixing (ACM2) (Pleim) scheme (Pleim, 2007) and surface physics by Pleim-Xiu scheme. The simulated wind parameters were validated...

  9. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik

    2008-01-01

    An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock's roughness length model. In this form, the r...

  10. Spatial and temporal variability of winds in the Northern European Seas

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Hahmann, Andrea N.

    2013-01-01

    Satellite data are used to characterize the near-surface winds over the Northern European Shelf Seas. We compare mean winds from QuikSCAT with reanalysis fields from the Weather Research and Forecasting (WRF) model and in situ data from the FINO-1 offshore research mast. The aim is to evaluate...

  11. Sea breeze-induced wind sea growth in the central west coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Aboobacker, V.M.; Seemanth, M.; Samiksha, S.V.; Sudheesh, K.; Kerkar, J.; Vethamony, P.

    Fine resolution wind data is required in wave models to study the interaction between wind seas generated by coastal winds, and swells. In the present study, a mesoscale model, MM5, which is capable of reproducing fine details of sea breeze...

  12. Estimation of oceanic rainfall using passive and active measurements from SeaWinds spaceborne microwave sensor

    Science.gov (United States)

    Ahmad, Khalil Ali

    The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT/ SeaWinds Radiometer (QRad/SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active/passive rain estimates from SeaWinds are presented, and comparisons are made with the standard

  13. Sea level changes induced by local winds on the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Tsimplis, M.N.; Desai, R.G.P.; Joseph, A.; Shaw, A.G.P.; Somayajulu, Y.K.; Cipollini, P.

    The contribution of atmospheric pressure and local wind to sea level variability at Goa (West coast of India) for the period 2007–2008 is investigated. Sea level data from a tide gauge are compared with measured local surface meteorological as well...

  14. The Influence of wave state and sea spray on drag coefficient from low to high wind speeds

    Science.gov (United States)

    Shi, Jian; Zhong, Zhong; Li, Xunqiang; Jiang, Guorong; Zeng, Wenhua; Li, Yan

    2016-02-01

    Ocean waves alter the roughness of sea surface, and sea spray droplets redistribute the momentum flux at the air-sea interface. Hence, both wave state and sea spray influence sea surface drag coefficient. Based on the new sea spray generation function which depends on sea surface wave, a wave-dependent sea spray stress is obtained. According to the relationship between sea spray stress and the total wind stress on the sea surface, a new formula of drag coefficient at high wind speed is acquired. With the analysis of the new drag coefficient, it is shown that the drag coefficient reduces at high wind speed, indicating that the sea spray droplets can limit the increase of drag coefficient. However, the value of high wind speed corresponding to the initial reduced drag coefficient is not fixed, and it depends on the wave state, which means the influence of wave cannot be ignored. Comparisons between the theoretical and measured sea surface drag coefficients in field and laboratory show that under different wave ages, the theoretical result of drag coefficient could include the measured data, and it means that the new drag coefficient can be used properly from low to high wind speeds under any wave state condition.

  15. Co-existence of wind seas and swells along the west coast of India during non-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Rashmi, R.; Aboobacker, V.M.; Vethamony, P.; John, M.P.

    propagates opposite to the direction of the wind and wind sea. Wind seas have minimum angular spreads in multimodal state. Under low winds, the interaction between wind sea and swell dominates and thereby the multimodal state reduces to unimodal state...

  16. Effect of film slicks on near-surface wind

    Science.gov (United States)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  17. Mapping sea-surface roughness using microwave radiometry.

    Science.gov (United States)

    Strong, A. E.

    1971-01-01

    Microwave radiometry data (1.55 cm) taken by aircraft over the Salton Sea have been corrected for viewing angle and atmospheric effects, rectified, and mapped. No fetch-limited conditions are observed along the upwind shore despite a 15 m/sec wind, which indicates that the radiometer is sensitive to the short wavelength surface roughness but not to the longer wavelengths. The brightness temperature field can be represented as a nearly linear function of the surface wind speed.

  18. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  19. Maps of mesoscale wind variability over the North Sea region

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Badger, Jake

    Mesoscale wind fluctuations affect the operation of wind farms, particularly as the number of geographically concentrated wind farms in the North Sea increases (Akhmatov et al. 2007). The frequency and intensity of wind fluctuations could be considered as a new siting criterion, together with exi......Mesoscale wind fluctuations affect the operation of wind farms, particularly as the number of geographically concentrated wind farms in the North Sea increases (Akhmatov et al. 2007). The frequency and intensity of wind fluctuations could be considered as a new siting criterion, together...... with existing criteria such as the wind resource and proximity to grid connection points. We used the Weather Research and Forecasting (WRF) model to calculate the average wind variability over the North Sea for wind fluctuations with periods of 30 minutes to 8 hours. Modelled winds are saved every 10 minutes...... for a 1 year period. The model was run with a horizontal grid spacing of 2 km. The variability maps are created by integrating the average 24 hour spectra at every grid point over different time-scales....

  20. SAR-based Wind Resource Statistics in the Baltic Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo;

    2011-01-01

    Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR) images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps...... deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images...

  1. Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    杨劲松; 黄韦艮; 周长宝

    2001-01-01

    A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.

  2. Description of the North Sea wind climate for wind energy applications

    NARCIS (Netherlands)

    Coelingh, J.P.; Wijk, A.J.M. van; Cleijne, J.W.; Pleune, R.

    1992-01-01

    In The Netherlands it is foreseen that wind turbines will be installed on offshore locations in the North Sea before the year 2010. Therefore adequate knowledge of the offshore wind climate should be obtained, both for the estimation of energy yields and for the determination of wind load

  3. Description of the North Sea wind climate for wind energy applications

    NARCIS (Netherlands)

    Coelingh, J.P.; Wijk, A.J.M. van; Cleijne, J.W.; Pleune, R.

    1992-01-01

    In The Netherlands it is foreseen that wind turbines will be installed on offshore locations in the North Sea before the year 2010. Therefore adequate knowledge of the offshore wind climate should be obtained, both for the estimation of energy yields and for the determination of wind load parameters

  4. Long term trend of sea surface wind speed in the Northern Indian Ocean from 1958 to 2001%近44年北印度洋海表风速变化趋势分析

    Institute of Scientific and Technical Information of China (English)

    刘铁军; 郑崇伟; 李训强; 张文静

    2013-01-01

    In this paper,based on the ERA-40 wind field data from ECMWF (European Centre for Medium-Range Weather Forecasts),the long-term linear trend of sea surface wind speed from 1958 to 2001 in the northern Indian Ocean was analyzed.Results show that,(1) from 1958 to 2001,wind speed in low latitude of northern Indian Ocean and a wide range areas from Somalia to Sri Lanka shows an obvious increasing trend.Only some scatter regions have a decreasing trend during the last 44 years.(2) Sea surface wind speed in the entire of the northern Indian Ocean shows an obvious increasing trend with a rate of 0.0061m· s-1· a-1 from 1958 to 2011.(3) Linear trends of sea surface wind speed in different areas of the northern Indian Ocean have prominent seasonal variability.(4) During the last 44 years,there is a significant 2.0 years 2.6-3.7 years,5.2 years of change cycles,and 26 years of long-period oscillation for the North Indian Ocean sea surface wind speed.%利用来自ECMWF的ERA-40风场资料,就北印度洋海表风速的长期变化趋势展开分析,以期可为海洋水文保障、防灾减灾、研究全球气候变化提供参考.结果表明:(1)1958-2001年期间,北印度洋低纬度海域、索马里至斯里兰卡一带的大范围海域的海表风速表现出显著的逐年线性递增趋势,基本在0.01-0.02 m·s-1·a-1;呈显著性递减的区域主要分布于亚丁湾、红海、波斯湾、斯里兰卡北部零星海域、以及缅甸仰光西南部近海等小范围海域,约-0.01-0.005m·s-1·a-1;阿拉伯海、孟加拉湾等海域的海表风速在近44年期间则无显著性变化趋势;(2)近44年期间,北印度洋海域的海表风速整体上以0.0061m·s-1 ·a-1的速度显著性震荡递增,震荡区间在5.0-5.5 m·S-1之间;(3)不同海域海表风速的变化趋势在不同季节表现出很大差异:冬季和夏季,大部分海域海表风速的变化趋势显著,春季次之,秋季仅在赤道附近一带海域呈显著性递增;(4)近44

  5. A microwave emissivity model of sea surface under wave breaking

    Institute of Scientific and Technical Information of China (English)

    Wei En-Bo; Ge Yong

    2005-01-01

    With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.

  6. Comparison among sea surface roughness schemes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No.44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u*, drag coefficient Cd and wind stress τ indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%-50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The O02 scheme gives overestimated values for u* and Cd. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.

  7. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes

    Science.gov (United States)

    Purich, Ariaan; Cai, Wenju; England, Matthew H.; Cowan, Tim

    2016-02-01

    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.

  8. SEA SURFACE HEIGHT (SSH) CHANGE AND ITS RELATIONSHIP WITH WIND STRESS IN THE NORTH PACIFIC OCEAN%北太平洋海表面高度(SSH)与风应力变化的关系

    Institute of Scientific and Technical Information of China (English)

    黄琳; 孙佳; 杨逸秋; 袁逸凡

    2013-01-01

    利用1958-2008年的北太平洋海表面高度和风应力资料,并与ENSO和PDO指数进行相关分析.结果发现,风应力及其经向分量主要通过季节振动影响海表面高度(SSH)的年周期变化,纬向风应力主要通过多年振动影响SSH的ENSO和PDO周期.纬向风应力和SSH均以黑潮延伸体主轴为界,两侧呈现出相反的升降趋势,SSH为北降南升,纬向风应力南降北升.风应力和SSH升降趋势相同,均表现为“上升—下降—上升”的变化特征.在地形变化剧烈、等深线南北分布的海区,西风增强会导致SSH升高,且西侧升高较为明显.北风增强将导致北太平洋西岸SSH升高,东岸SSH降低.%Correlation analysis between sea surface height, wind stress and index of ENSO and PDO for the period of 1958-2008 shows in the North Pacific Ocean, wind stress and its meridional component affect the annual cycle of SSH mainly through the seasonal vibration, and the zonal component affect the ENSO and PDO cycles of the SSH through years of vibration. Separated by the Kuroshio extension spindle, the zonal wind stress and SSH show different trends at the same side: SSH decreases at the north while increasing at the south, and the zonal wind stress decreases at the south while increasing at the north. Wind stress and SSH has the same trend: "increase-decrease-increase". The westerly enhanced the SSH rise in sea area where the topography is steep and isobaths distribute along the north-south direction, and the west side increased more significantly. The north wind enhancement led to SSH rise at the west coast of the North Pacific and drop at the east coast.

  9. WAsP engineering flow model for wind over land and sea

    DEFF Research Database (Denmark)

    Astrup, P.; Larsen, Søren Ejling

    1999-01-01

    This report presents the basic wind flow model of WAsP Engineering. The model consists in principle of three parts: the LINCOM model for neutrally stable flow over terrain with hills and varying surface roughness, a sea surface roughness model, and anobstacle model. To better predict flow over...... or close to water bodies, the model for the sea surface roughness has been developed and interfaced with the existing LINCOM model. As the water roughness depends on the wind velocity, and the wind velocity onthe roughness, the coupling is iterative. The water rougness model is based on a fit to lots...... of literature data for the Charnock parameter as function of the so called wave age, the ratio between wave velocity and friction velocity, plus a correlation ofwave age to the geometrically obtainable water fetch. A model for the influence on the wind of multiple, finite size, interacting obstacles with any...

  10. The wind sea and swell waves climate in the Nordic seas

    Science.gov (United States)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  11. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    coded maps, showing the distribution of mean monthly values of wind and wave parameters over 2.5 degrees square grids. Altimeter derived wind and wave parameters are compared with (1) winds and waves obtained through ships of opportunity and documented...

  12. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms

  13. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind

  14. Evolution of One-Dimensional Wind-Driven Sea Spectra

    CERN Document Server

    Dyachenko, A I; Zakharov, V E

    2016-01-01

    We analyze modern operational models of wind wave prediction on the subject for compliance dissipation. Our numerical simulations from the "first principle" demonstrate that heuristic formulas for damping rate of free wind sea due to "white capping" (or wave breaking) dramatically exaggerates the role of this effect in these models.

  15. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms

  16. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  17. Mapping surface disturbance from wind farms

    Science.gov (United States)

    Diffendorfer, James E.

    2013-04-01

    Wind energy is one of the fastest growing segments of the electricity market and this trend will likely continue as countries strive to reduce CO2 production while meeting growing energy demands. One impact of wind facilities is surface disturbance, including roads, that lead to habitat loss and fragmentation. Numerous studies of wind power utilize estimates of surface disturbance for GIS-based modeling or basic calculations of the land area required to generate energy using wind. However published estimates of the land use required for a MW of electricity from wind facilities vary by more than 10 times (0.83 to 250 MW/Km2). We report results from a geospatial analysis of 39 wind facilities in the United States that we fully digitized using high resolution photo-imagery. The selected sites and analyses were designed to elucidate the effects of turbine size, topography, and land use on the area requirements of wind facilities. The results indicate point estimates of average surface disturbance/MW have wide levels of variation, explained primarily by Landcover and Topography. Wind facilities in agricultural landscapes had smaller surface disturbance/ha than facilities in forests and shrublands, and facilities in relatively flat topography had smaller surface disturbance/ha than facilities on hills, ridges, or mesas. Land use, topography, and turbine size all influenced turbine spacing. The statistical models suggest we can predict geographic locations where new wind facilities could be placed with minimized surface disturbance.

  18. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  19. Wind Atlas of Aegean Sea with SAR data

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Hasager, Charlotte Bay; Badger, Merete

    2013-01-01

    in the North Sea and Baltic Sea but it is the first time it is used for a large scale Mediterranean area. The available dataset is provided by European Space Agency’s ENVISAT mission and recorded between 2002 and 2012. The presented method gives the ability to calculate the wind resource map of an offshore...

  20. Assessment of wind products obtained from multiple microwave scatterometers over the China Seas

    Science.gov (United States)

    Wang, Zhixiong; Zhao, Chaofang

    2015-09-01

    Sea surface winds (SSWs) are vital to many meteorological and oceanographic applications, especially for regional study of short-range forecasting and Numerical Weather Prediction (NWP) assimilation. Spaceborne scatterometers can provide global ocean surface vector wind products at high spatial resolution. However, given the limited spatial coverage and revisit time for an individual sensor, it is valuable to study improvements of multiple microwave scatterometer observations, including the advanced scatterometer onboard parallel satellites MetOp-A (ASCAT-A) and MetOp-B (ASCAT-B) and microwave scatterometers aboard Oceansat-2 (OSCAT) and HY-2A (HY2-SCAT). These four scatterometer-derived wind products over the China Seas (0°-40°N, 105°-135°E) were evaluated in terms of spatial coverage, revisit time, bias of wind speed and direction, after comparison with ERA-Interim forecast winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) and spectral analysis of wind components along the satellite track. The results show that spatial coverage of wind data observed by combination of the four sensors over the China Seas is about 92.8% for a 12-h interval at 12:00 and 90.7% at 24:00, respectively. The analysis of revisit time shows that two periods, from 5:30-8:30 UTC and 17:00-21:00 UTC each day, had no observations in the study area. Wind data observed by the four sensors along satellite orbits in one month were compared with ERA-Interim data, indicating that bias of both wind speed and direction varies with wind speed, especially for speeds less than 7 m/s. The bias depends on characteristics of each satellite sensor and its retrieval algorithm for wind vector data. All these results will be important as guidance in choosing the most suitable wind product for applications and for constructing blended SSW products.

  1. Base line studies North Sea wind farms

    NARCIS (Netherlands)

    Krijgsveld, K.L.; Lieshout, S.M.J.; Schekkerman, H.; Lensink, Rick; Poot, M.J.M.; Dirksen, S.

    2003-01-01

    The Dutch government has granted ‘Noordzeewind’ (Nuon Renewable Energy Projects and Shell Wind Energy) the possibility to build a wind farm consisting of 36 wind turbines off the coast of the Netherlands, near Egmond. This project serves to evaluate the economical, technical, ecological and social e

  2. The impact of land and sea surface variations on the Delaware sea breeze at local scales

    Science.gov (United States)

    Hughes, Christopher P.

    The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i

  3. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  4. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  5. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Larsén, Xiaoli Guo

    2016-01-01

    . The correlation coefficient as a function of the distance calculated from WRF is however higher than observed in the measurements. For the power spectra, wind speed and wind speed step changes distribution the results for all sites are quite similar. The land masses strongly influence the individual wind......A large offshore observational data set from stations across the North and Baltic Sea is used to investigate the planetary boundary layer wind characteristics and their coherence, correlation and power spectra. The data of thirteen sites, with pairs of sites at a horizontal distance of 4 to 848 km......, are analyzed for typical wind turbine nacelle heights. Mean wind characteristics, correlation and coherence are also calculated for analogous wind data from simulations with the Weather Research and Forecasting (WRF) model. Results indicate a general good agreement for the coherence calculated based...

  6. Wind waves in ice-free areas of Arctic seas.

    Science.gov (United States)

    Golubkin, Pavel; Chapron, Bertrand; Kudryavtsev, Vladimir

    Wind-generated waves in Kara, Laptev and East Siberian Seas are investigated using altimeter data from ENVISAT and SARAL-AltiKa. Only the “isolated” ice-free areas had been selected for analysis. In this case wind seas can be treated as pure wind-generated waves without any contamination by the swell. The isolated ice-free areas are identified using National Snow & Ice Data Center (NSIDC) ice concentration data generated from brightness temperatures derived from Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F13 and F17 satellites, respectively. The altimeter data, both significant wave height (SWH) and wind speed which were accompanied with ASCAT scatterometer wind velocity field (since 2007), have been selected for these areas in the time period 2002-2013. This data set is analyzed in terms of dimensionless SWH and dimensionless ice-free area. Either of these quantities is scaled using “standard” dimension analysis based on wind speed and gravity acceleration. Universal empirical dependences of dimensionless SWH on dimensionless ice-free areas are established. At smallest ice-free areas they are consistent with known universal dependences for wind wave generation at fetch limited conditions. At the largest ice-free areas the established dependences are consistent with field data for the open ocean conditions. Impact of climate change and ice melting in the Arctic areas on wind seas is discussed.

  7. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  8. Impact of sea breeze on wind-seas off Goa, west coast of India

    Indian Academy of Sciences (India)

    S Neetu; Satish Shetye; P Chandramohan

    2006-04-01

    After withdrawal of the Indian Summer Monsoon and until onset of the next monsoon,i.e.,roughly during November-May, winds in the coastal regions of India are dominated by sea breeze.It has an impact on the daily cycle of the sea state near the coast.The impact is quite significant when large scale winds are weak.During one such event,1 –15 April 1997,a Datawell directional waverider buoy was deployed in 23 m water depth off Goa,west coast of India.Twenty-minute averaged spectra,collected once every three hours,show that the spectrum of sea-breeze-related ‘wind-seas’ peaked at 0.23 ± 0.05 Hz. These wind-seas were well separated from swells of frequencies less than 0.15 Hz.The TMA spectrum (Bouws et al 1985) matched the observed seas spectra very well when the sea-breeze was active and the fetch corresponding to equilibrium spectrum was found to be 77 ± 43 km during such occasions. We emphasize on the diurnal cycle of sea-breeze-related sea off the coast of Goa and write an equation for the energy of the seas as a function of the local wind.

  9. Characterizing Tropospheric Winds by Combining MISR Cloud-Track and QuikSCAT Surface Wind Vectors

    Science.gov (United States)

    Davies, R.; Garay, M. J.; Moroney, C. M.; Liu, W. T.

    2007-12-01

    Numerous studies have found that the inclusion of wind observations results in a significantly greater improvement in operational weather forecasts compared to the addition of temperature or pressure observations alone. However, global tropospheric wind measurements are only available from 12-hourly rawinsonde launches from selected locations, primarily over land. For years the world's oceans were "data voids" in terms of wind measurements. Only recently have satellites begun to fill this gap. The SeaWinds scatterometer on the QuikSCAT satellite obtains winds referenced to 10 meters above the surface over the global oceans under nearly all weather conditions. The wind speed and direction data from QuikSCAT have been extensively tested against surface observations and are of such quality that these data are routinely assimilated into numerical weather prediction models run by both the National Center for Environmental Prediction (NCEP) and the European Centre for Medium Range Weather Forecasting (ECMWF). However, scatterometer data only provide wind information near the ocean surface. This information can be complemented with satellite cloud-track winds that provide information about winds in the free troposphere over the ocean, as well as over land, where scatterometer data are not available. In particular, the height resolved cloud motion vectors from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite yield wind speeds for clouds at altitudes less than approximately 2.5 km that are shown to compare favorably with the QuikSCAT winds globally. In addition, the direction of the MISR winds is similar to the QuikSCAT wind vectors when compared on the same basis. The synergistic use of these two sets of wind observations has the potential to make possible a variety of new studies: from improved forecast and climate model validation; to increased understanding of tropospheric water vapor transport; to observations of the coupling

  10. Comprehensive Measurements of Wind Systems at the Dead Sea

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s-1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope winds

  11. Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea

    DEFF Research Database (Denmark)

    Furevik, Birgitte R.; Sempreviva, Anna Maria; Cavaleri, Luigi;

    2011-01-01

    Eight years of wind observations from the SeaWinds scatterometer instrument on the National Aeronautics and Space Administration QuikScat satellite and in situ data from 11 locations in the Mediterranean have been considered. The data have been co-located in time and space, and it is shown...

  12. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    that for specific conditions, e.g. very stable atmosphere, the wind profiles can be heavily influenced by the boundary layer height at the 100 m level in the northern European seas. A very interesting part of the analysis includes the shear exponent (alpha) calculated during seasons, during 24-hours and for 12 wind...

  13. Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences

    Science.gov (United States)

    Craeye, C.; Sobieski, P. W.; Bliven, L. F.

    1997-01-01

    Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.

  14. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    Science.gov (United States)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked. While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In this combination image

  15. Accuracy of Wind Prediction Methods in the California Sea Breeze

    Science.gov (United States)

    Sumers, B. D.; Dvorak, M. J.; Ten Hoeve, J. E.; Jacobson, M. Z.

    2010-12-01

    In this study, we investigate the accuracy of measure-correlate-predict (MCP) algorithms and log law/power law scaling using data from two tall towers in coastal environments. We find that MCP algorithms accurately predict sea breeze winds and that log law/power law scaling methods struggle to predict 50-meter wind speeds. MCP methods have received significant attention as the wind industry has grown and the ability to accurately characterize the wind resource has become valuable. These methods are used to produce longer-term wind speed records from short-term measurement campaigns. A correlation is developed between the “target site,” where the developer is interested in building wind turbines, and a “reference site,” where long-term wind data is available. Up to twenty years of prior wind speeds are then are predicted. In this study, two existing MCP methods - linear regression and Mortimer’s method - are applied to predict 50-meter wind speeds at sites in the Salinas Valley and Redwood City, CA. The predictions are then verified with tall tower data. It is found that linear regression is poorly suited to MCP applications as the process produces inaccurate estimates of the cube of the wind speed at 50 meters. Meanwhile, Mortimer’s method, which bins data by direction and speed, is found to accurately predict the cube of the wind speed in both sea breeze and non-sea breeze conditions. We also find that log and power law are unstable predictors of wind speeds. While these methods produced accurate estimates of the average 50-meter wind speed at both sites, they predicted an average cube of the wind speed that was between 1.3 and 1.18 times the observed value. Inspection of time-series error reveals increased error in the mid-afternoon of the summer. This suggests that the cold sea breeze may disrupt the vertical temperature profile, create a stable atmosphere and violate the assumptions that allow log law scaling to work.

  16. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  17. A wind-driven circulation model of the Tyrrhenian Sea area

    Science.gov (United States)

    Pierini, S.; Simioli, A.

    1998-12-01

    The wind-driven component of the circulation in the Tyrrhenian Sea area was analyzed by means of a free-surface, barotropic primitive equation model implemented in the whole Mediterranean Sea. The `National Meteorological Center' (NMC) wind data covering the period 1980-1988 were used to force the model. Both the seasonal and the high frequency variability were studied. For the first case, a perpetual wind forcing was constructed by instantaneously averaging the wind stresses over the 9 years, and the response was Fourier filtered in order to get rid of the residual rapid fluctuations. The daily variability was then produced for the test years 1981 and 1987 by making use of the instantaneous forcing. The main features of the wind-driven climatological Tyrrhenian circulation known from data and general circulation modelling were found to be reproduced by this process model. The winter cyclonic circulation induced by the strong positive wind vorticity input evolved into a much weaker, partially reversed circulation in summer months. A mainly northward flux through the strait of Corsica and a horizontally sheared current in the strait of Sicily were found. The rapid fluctuations that the wind was able to induce in the ocean were then studied. The instantaneous currents were found to be up to 10 times larger than the corresponding climatological ones, with episodes of reversal over a period of few days. The experimental evidence of the existence of these rapid wind-driven fluctuations is discussed. The analysis of the daily variability provides a realistic picture of the character of the wind-driven circulation in the Tyrrhenian Sea that differs considerably from the classical seasonal dynamics. As an indicator of the Tyrrhenian Sea dynamics, the mass transport through the strait of Corsica was evaluated for the year 1987 and compared with available experimental data. As a result, the low-passed wind-driven transport reflects the seasonal trend and accounts for 15

  18. Global analysis of ocean surface wind and wind stress using a general circulation model and Seasat scatterometer winds

    Science.gov (United States)

    Kalnay, E.; Atlas, R.

    1986-01-01

    Instantaneous and 15-day time-averaged fields of surface wind, wind stress, curl of the wind stress, and wind divergence are presented. These fields are derived from the Goddard Laboratory for Atmospheres four-dimensional analysis/forecast cycle, for the period September 6-30, 1978, using conventional data, satellite temperature soundings, cloud-track winds, and subjectively dealiased Seasat scatterometer winds.

  19. Impact of sea breeze on the wind-seas off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Shetye, S.R.; Chandramohan, P.

    After withdrawal of the Indian Summer Monsoon and until onset of the next monsoon, i.e. roughly during November-May, winds in the coastal region of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near...

  20. Wind speed dependent size-resolved parameterization for the organic enrichment of sea spray

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2011-01-01

    Full Text Available For oceans to become a significant source of primary organic aerosol, sea spray must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic fraction of sea spray aerosol (OCss. To test this hypothesis, we developed a new marine primary organic aerosol emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a] are the most consistent predictors of OCss. This relationship, combined with the published aerosol size dependence of OCss, resulted in a new parameterization for the organic carbon fraction of sea spray. Global marine primary organic emission is investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations show that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.1 to 5.3 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.

  1. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  2. Physicochemical Studies of the Sea Surface Microlayer.

    Science.gov (United States)

    Zhengbin; Liansheng; Zhijian; Jun; Haibing

    1998-08-15

    The sea surface microlayer and its thickness are theoretically analyzed. A multiple-layer model of the sea surface microlayer is proposed. Through in situ and laboratory imitation experiments using glass plate, rotating drum, screen, and funnel samplers, the relationships between pH, surface tension, the concentrations of dissolved trace metals Cu and Pb, phosphate, and particulate and sampling thicknesses are carefully investigated. The apparent sampling thickness of the sea surface microlayer is determined to be 50 +/- 10 µm, which is basically consistent with the mean thickness of the liquid boundary film in the models of gas exchange across the sea surface. Copyright 1998 Academic Press.

  3. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  4. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  5. Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects

    Science.gov (United States)

    Gaube, P.; Chelton, D. B.; O'Neill, L. W.

    2011-12-01

    Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction

  6. Analysis of WindSat Data over Arctic Sea Ice

    Science.gov (United States)

    The radiation of the 3rd and 4th Stokes components emitted by Arctic sea ice and observed by the spaceborne fully polarimetric radiometer WindSat is investigated. Two types of analysis are carried out, spatial (maps of different quadrants of azimuth look angles) and temporal (time series of daily av...

  7. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    Science.gov (United States)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  8. Sea ice dynamics and the role of wind forcing over the Beaufort Sea

    Science.gov (United States)

    Petty, A.; Hutchings, J. K.; Farrell, S. L.; Richter-Menge, J.; Tschudi, M. A.

    2014-12-01

    Both the ocean circulation and overlying sea ice cover of the Beaufort and Chukchi seas have experienced significant change in recent decades. We use sea ice drift estimates from satellite feature tracking (NSIDC/CERSAT), wind forcing from atmospheric reanalysis products (NCEP-R2/ERA-I/JRA-55), and ice type information from satellite and direct ship-based observations (obtained during the Beaufort Gyre Exploration Project), to investigate the role of wind forcing and ice mechanics in driving these changes. An assessment of ice drift shows reasonable agreement across the different products, revealing interannual variability in the ice flux around the Beaufort Sea. However, clear uncertainties remain in determining the magnitude of these fluxes, especially in regions of low ice concentration. We find an increase in ice export out of the southern Beaufort Sea (into the Chukchi Sea) across all seasons. We find slight differences in the strength of the decadal (1980-2013) trends in the mean seasonal wind curl over the Beaufort Sea, although all reanalysis products indicate a strong and significant increase in anti-cyclonic winds in summer. Analysis of ice drift curl suggests increasing anti-cyclonic drift across all seasons, despite the wind curl showing a similar trend in summer only. The strongest trend in ice drift curl appears to be in autumn, however recent years have seen a strong reduction in this anti-cyclonic drift, likely due to a combination of changes in the wind forcing and sea ice state. The implication of this finding is an enhanced response of the ocean circulation to shifts in atmospheric circulation compared to that experienced prior to 2000.

  9. Long-term Variability of Sea Surface Temperature in the East China Sea: A Review

    Directory of Open Access Journals (Sweden)

    Jae Hak Lee

    2013-06-01

    Full Text Available The long-term variability of sea surface temperature in the East China Sea was reviewed based mainly on published literatures. Though the quantitative results are not the same, it is generally shown that sea surface temperature is increasing especially in recent years with the rate of increase about 0.03oC/year. Other meaningful results presented in the literatures is that the difference of water properties between layers upper and lower than the thermocline in summer shows an increasing trend both in temperature and salinity, suggesting that the stratification has been intensified. As a mechanism by which to evaluate the wintertime warming trend in the region, the weakening of wind strength, which is related to the variation of sea level pressure and atmospheric circulation in the western North Pacific and northern Asian continent, is suggested in the most of related studies.

  10. Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2011-08-01

    Full Text Available For oceans to be a significant source of primary organic aerosol (POA, sea spray aerosol (SSA must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OMSSA. To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-a, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-a concentration ([Chl-a] are the most consistent predictors of OMSSA. This relationship, combined with the published aerosol size dependence of OMSSA, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-a], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr−1. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.

  11. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2011-01-01

    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining...... field data on plant species frequency, sea-level variation, and sedimentation acquired from the Skallingen salt marsh in Denmark since the 1930s. The environmental and floristic history of Skallingen was summarized as (1) continuous sea-level rise with temporal variability (2.3–5.0 mm yr-1), (2......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...

  12. SEA SURFACE ALTIMETRY BASED ON AIRBORNE GNSS SIGNAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    K. Yu

    2012-07-01

    Full Text Available In this study the focus is on ocean surface altimetry using the signals transmitted from GNSS (Global Navigation Satellite System satellites. A low-altitude airborne experiment was recently conducted off the coast of Sydney. Both a LiDAR experiment and a GNSS reflectometry (GNSS-R experiment were carried out in the same aircraft, at the same time, in the presence of strong wind and rather high wave height. The sea surface characteristics, including the surface height, were derived from processing the LiDAR data. A two-loop iterative method is proposed to calculate sea surface height using the relative delay between the direct and the reflected GNSS signals. The preliminary results indicate that the results obtained from the GNSS-based surface altimetry deviate from the LiDAR-based results significantly. Identification of the error sources and mitigation of the errors are needed to achieve better surface height estimation performance using GNSS signals.

  13. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current

  14. Rainfall effect on wind waves and the turbulence beneath air-sea interface

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongliang; MA Xin; LIU Bin; XIE Lian

    2013-01-01

    Rainfall effects on wind waves and turbulence are investigated through the laboratory experiments in a large wind-wave tank. It is found that the wind waves are damped as a whole at low wind speeds, but are enhanced at high wind speeds. This dual effect of rain on the wind waves increases with the increase of rain rate, while the influence of rainfall-area length is not observable. At the low wind speed, the corresponding turbulence in terms of the turbulent kinetic energy (TKE) dissipation rate is significantly enhanced by rain-fall as the waves are damped severely. At the high wind speed, the augment of the TKE dissipation rate is suppressed while the wind waves are enhanced simultaneously. In the field, however, rainfall usually hin-ders the development of waves. In order to explain this contradiction of rainfall effect on waves, a possibility about energy transfer from turbulence to waves in case of the spectral peak of waves overlapping the inertial subrange of turbulence is assumed. It can be applied to interpret the damping phenomenon of gas trans-fer velocity in the laboratory experiments, and the variation of the TKE dissipation rates near sea surface compared with the law of wall.

  15. NOAA NDBC SOS - sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  16. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  17. Sea Surface Salinity : Research Challenges and Opportunities

    Science.gov (United States)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  18. Methods Of Measurement The Three-Dimensional Wind Waves Spectra, Based On The Processing Of Video Images Of The Sea Surface

    CERN Document Server

    Salin, Boris M

    2013-01-01

    Optical means of measurement of surface waves characteristics provide better spatial and temporal resolution than other methods, but they face definite difficulties, while converting results of the indirect measurements to absolute levels of the waves. This publication solves this problem, to some extent. In this paper we propose an optical method for measuring the 3D power spectral density of the surface waves and the space-time samples of profiles of the waves. The method involves, firstly, synchronous recording of brightness field over a patch of the rough surface and measurement of surface oscillations in one or more points, and secondly, filtering of the image spatial spectrum and the filter parameters are selected to maximize correlation of surface oscillations that are reconstructed and measured in one or two points. In addition to the measurement procedure, the paper provides experimental results on the measurement of multidimensional spectra of roughness, which are, in common, in agreement with theor...

  19. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Science.gov (United States)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  20. Preliminary validation of SMOS sea surface salinity measurements in the South China Sea

    Science.gov (United States)

    Ren, Yongzheng; Dong, Qing; He, Mingxia

    2015-01-01

    The SMOS (soil moisture and ocean salinity) mission undertaken by the European Space Agency (ESA) has provided sea surface salinity (SSS) measurements at global scale since 2009. Validation of SSS values retrieved from SMOS data has been done globally and regionally. However, the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail. In this study, we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea (SCS) expedition during autumn 2011. The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data. Accuracy in terms of bias and root mean square error (RMS) of the SSS retrieved using three different sea surface roughness models is very consistent, regardless of ascending or descending orbits. When ascending and descending measurements are combined for comparison, the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements, with bias -0.33 practical salinity units and RMS 0.74. We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS. The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements. Therefore, accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.

  1. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is observed that an intense dipolar eddy spins up in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend more than 100 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation in an idealized numerical model. Simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. © 2012. American Geophysical Union. All Rights Reserved.

  2. Wave glider observations of surface winds and currents in the core of Typhoon Danas

    Science.gov (United States)

    Mitarai, S.; McWilliams, J. C.

    2016-11-01

    Simultaneous monitoring of surface winds and currents is essential to understand oceanic responses to tropical cyclones. We used a new platform, a Wave Glider (Liquid Robotics) to observe air-sea processes during a typhoon, equivalent to a category 4-hurricane, at peak strength, near Okinawa, Japan. Surface winds showed strong asymmetry in both speed and direction, faster fore than aft. Rotations of surface winds and currents were not coupled; currents rotated clockwise in the wake of the typhoon eye after passage of rapid wind rotations. Wind work was mostly done ahead of the eye, amplifying prior inertial motions with a phase shift. Wind-induced energy was nearly balanced with an increase in estimated kinetic energy of the upper ocean current, relative to prior inertial oscillations. This study provides a newer, more complete view of actual atmosphere-ocean interactions in a typhoon.

  3. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  4. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2017-01-01

    Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.

  5. Analysis of North Sea Offshore Wind Power Variability

    Directory of Open Access Journals (Sweden)

    Aymeric Buatois

    2014-05-01

    Full Text Available This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

  6. Sea surface salinity and temperature seasonal changes in the Solomon and Bismarck Seas

    Science.gov (United States)

    Delcroix, Thierry; Radenac, Marie-Helene; Cravatte, Sophie; Gourdeau, Lionel; Alory, Gael

    2014-05-01

    Small SST and SSS (an indicator of iron-rich Papua New Guinea river outflows) changes in the Solomon and Bismarck Seas may be transported to the equatorial Pacific and have strong climatic and biological impacts. We analyze mean and seasonal change of SST and SSS in the Solomon and Bismarck Seas, using 1977-2009 in situ data collected from Voluntary Observing Ships. Co-variability of these two variables with surface wind, altimeter-derived current anomalies, precipitation, and Sepik river discharge is examined. SST and SSS show large annual oscillations in the Solomon Sea, with the coldest and saltiest waters occurring in July/August mainly due to horizontal advection. In contrast, they show large semi-annual oscillations in the Bismarck Sea. There, the coldest and saltiest waters happen in January/February, when the northwest monsoon winds drive coastal upwelling, and in July/August, when the New Guinea Coastal Current advects cold and high-salinity waters from the Solomon Sea through Vitiaz Strait. The low SSS values observed in April/May, stuck between the two SSS maxima, are further enhanced by the Sepik river discharge annual maximum. A high-resolution model strengthens the conclusions we derive from observations. The impacts of ENSO on SST and SSS are also discussed.

  7. Assimilation of SeaWinds Observations and NWP Impact

    Science.gov (United States)

    Stoffelen, A.; de Vries, J.; Tveter, F.; Mogensen, K.

    2003-04-01

    KNMI works within the EUMETSAT NWP SAF on the processing of SeaWinds scatterometer data and distributes software and winds. The aim is to prepare the wind user community for the ASCAT scatterometer on METOP in 2006. Aspects of concern are spatial resolution and data quality and a trade-off is made. At www.knmi.nl/scatterometer a 100-km product is displayed, which is being tested and used routinely at several European and non-European NWP centres. We show that the spatial averaging of backscatter data is advantageous for both retrieval quality and uniqueness of the winds. Traditionally, 4 local probability maxima are used in the ambiguity removal. At KNMI we devised a new ambiguity removal scheme, called MSS, that not only allows more solutions, but also takes into account their relative probabilities. This is shown to work favourably in keeping well-determined wind structures and reducing noise. We anticipate that MSS will work well for 50-km data which is what we are now testing. The use of the current KNMI 100-km product is neutral or positive in NWP data assimilation, and in particular positive in experiments where the NoSCAT control run contains forecast failures. The KNMI/EUMETSAT project team is looking for people that would like to test both software and data products.

  8. Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations

    Science.gov (United States)

    Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe

    2017-04-01

    Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.

  9. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  10. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  11. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    Science.gov (United States)

    Abualnaja, Yasser O.; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  12. (abstract) Ekman Pumping/Suction and Wind-Driven Ocean Circulation from ERS-1 Scatterometer Measurements Over the Arabian Sea During October 1994-October 1995

    Science.gov (United States)

    Halpern, D.; Freilich, M. H.; Weller, R. A.

    1996-01-01

    Spatial variations of the east-west and north-south components of surface wind stress are critical in studies of ocean circulation and biological-physical interactions because surface wind stress curl produces a vertical velocity in the upper ocean at the bottom of the Ekman Layer.The ERS-1 scatterometer provides reasonable coverage and direct measurements of vector of winds. Three schemes are evaluated relative to high-quality moored-bouy wind observations recorded in the central Arabian Sea, where high surface waves and high atmospheric water content during the southeast monsoon adversely affect the estimation of satellite-derived winds.

  13. Assessment of Sea Surface Temperature and Sea Ice Initial Conditions on Coupled Model Forecasts

    Science.gov (United States)

    Intrieri, J. M.; Solomon, A.; Persson, O. P. G.; Capotondi, A.; LaFontaine, F.; Jedlovec, G.

    2016-12-01

    We present weather-scale (0-10 day) sea ice forecast validation and skill results from an experimental coupled ice-ocean-atmosphere model during the fall freeze-up periods for 2015 and 2016. The model is a mesoscale, coupled atmosphere-ice-ocean mixed-layer model, termed RASM-ESRL, that was developed from the larger-scale Regional Arctic System Model (RASM) architecture. The atmospheric component of RASM-ESRL consists of the Weather Research and Forecasting (WRF) model, the sea-ice component is the Los Alamos CICE model, and the ocean model is POP. Experimental 5-day forecasts were run daily with RASM-ESRL from July through mid-November in 2015 and 2016. Our project focuses on how the modeled sea ice evolution compares to observed physical processes including atmospheric forcing of sea ice movement, melt, and freeze-up through energy fluxes. Model hindcast output is validated against buoy observations, satellite measurements, and concurrent in situ flux observations made from the R/V Sikuliaq in the fall of 2015. Model skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic features, cloud microphysical and ocean properties will be discussed. We will show results of using different initializations of ocean sea surface temperature and sea ice extent and the impacts on sea ice edge prediction.

  14. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed...... offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  15. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  16. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  17. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  18. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  19. Extreme wind speed regime and weather patterns in the Barents Sea

    Science.gov (United States)

    Surkova, Galina; Krylov, Aleksey

    2016-04-01

    The synoptic patterns of extreme wind events over the Barents Sea during 1981-2010 are studied on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude). Frequency of events was defined after analysis of 50, 95, 99, 99.9 percentiles (V(0.50), V(0.95), V(0.99), V(0.999)) of wind speed probability distribution function over the central part of the sea where wind speed is the highest. First part of the study was devoted to the features of seasonal and interannual variability of the surface (10 m) wind speed. Results showed very slow and statistically almost insignificant decreasing of wind speed for all percentile speed values during 1981-2010. The highest standard deviation for annual percentile speed values were derived for the most seldom events, V(0.999). Mean values for the central part of the Barents Sea are V(0.95)=14.3 m/s, V(0.99)=17.2 m/s, V(0.999)=20.3 m/s. At the next stage the calendar of extreme events with wind speed more the threshold value V(0.99) was extracted. Sea level pressure (SLP) fields for these extreme events were classified by cluster analysis. Formal detection of typical SLP fields accompanying by storm winds allows to evaluate their frequency in different time periods. It is more reliable then use of wind speed data because the accuracy of SLP simulation in re-analysis and climate models is higher than that for the wind speed. The progress of the work is seen as further development of climate projection of extreme events on the base of CMIP5 scenarios through the projection of synoptic situations that create these events as it was shown in our previous works. Developed methodology allows to assess the frequency of synoptic events accompanying by hazards, not only in the past, but in the future. The study was supported by the Russian Science Foundation (project no. 14-37-00038).

  20. SMOS Sea Surface Salinity Validation in the South China Sea

    Science.gov (United States)

    Ren, Yongzheng; Li, Xiaoming; Dong, Qing

    2013-01-01

    In November 2009, the European Space Agency (ESA) launched the first soil moisture and ocean salinity (SMOS) satellite, which represented the first use of spaceborne remote sensing tools to probe global sea surface salinity (SSS). The SMOS satellite carries a microwave imaging radiometer with aperture synthesis (MIRAS) for detection in the microwave L-band as the only payload. The MIRAS instrument is expected to provide a global SSS distribution with a spatial resolution of approximately 100 km and an accuracy of 0.1-0.2 practical salinity units (psu). The South China Sea is semi-enclosed, and the sea conditions are relatively complex. The suitability of ESA SMOS salinity products for the South China Sea has not been validated. Therefore, using SSS data measured during an expedition in the South China Sea, which was sponsored by China Natural Science Foundation and conducted in the fall of 2011, this paper validated the SSS products released by ESA, which were retrieved using three sea surface roughness models. To analyze the effect of the spatial resolution on the weekly average SMOS SSS distribution, the weekly average salinity data were averaged to reduce the spatial resolution to 0.25 ° x 0.25°. These average data were then compared to the measured data, followed by an analysis of the error variation. In addition, the effects of the orbital track (ascending or descending) on the SSS retrieval were analyzed.

  1. Waves on Seas of Mars and Titan: Wind-Tunnel Experiments on Wind-Wave Generation in Extraterrestrial Atmospheres

    Science.gov (United States)

    Lorenz, R. D.; Kraal, E. R.; Eddlemon, E. E.; Cheney, J.; Greeley, R.

    2004-01-01

    The generation of waves by winds across Earth's water oceans is a topic of enduring fascination. However, the physics of the problem are rather forbidding and thus the relationships between real-world windspeed and sea state tend to be empirical. Such empirical relations are of limited utility in environments where the physical parameters are different, such as the surfaces of other planets. These environments have only recently come to oceanographers attention, with the discovery of ancient shorelines and lakes on Mars, and the prospects for and recent evidence of lakes and seas of liquid hydrocarbons on Saturn's moon Titan. We are aware of only one other published experimental wind-water tunnel study where the fluid parameters have been varied. This used artificially-generated mm-scale waves at 3.8-7.6 Hz in water, glycerol solutions (higher viscosity) and surfactant solutions (lower surface tension). Lower viscosity solutions had higher wave growth rates: surprisingly, higher surface tension led to more rapid wave growth. The liquid density was not appreciably varied, and 1 bar air was used throughout.We used the MARSWIT (Mars Wind Tunnel) operated by ASU at NASA Ames. A fiberglass tray (5 cm x 120 cm x 75 cm) was installed in the tunnel, with an approx. 1:5 ramp to prevent strong flow separation. The tray was filled to a depth of about 4 cm. Sensors were clamped to the tray itself or held by a steel and aluminium frame just above the water level. A towel was draped on the water surface at the downwind end of the tray to act as a damper to suppress wave reflection. Position-sensitive infrared (IR) reflection sensors (Sharp GP12D02) and ultrasonic rangers (Devantech DF-04) used in mobile robotics were used as water level sensors. The tray was observed with a video camera, whose output could be viewed on a monitor and recorded on VHS tape.

  2. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    Ocean surface winds observed by satellite scatterometer (QuikSCAT) and passive microwave (SMM/I) provide valuable information for wind energy applications. In wind energy two long-term aspects on the offshore wind climate is of concern. One is the 20-year average necessary for the estimation...

  3. The Etesian wind system and wind energy potential over the Aegean Sea

    Science.gov (United States)

    Dafka, Stella; Xoplaki, Elena; Garcia-Bustamante, Elena; Toreti, Andrea; Zanis, Prodromos; Luterbacher, Juerg

    2013-04-01

    The Mediterranean region lies in an area of great climatic interest since it is influenced by some of the most relevant mechanisms of the global climate system. In the frame of the three Europe 2020 priorities for a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion, the Mediterranean energy plan is of paramount importance at the European level, being an area with a significant potential for renewable energy from natural sources that could play an important role in responding to climate change effects over the region. We present preliminary results on a study of the Etesian winds in the past, present and future time. We investigate the variability and predictability of the wind field over the Aegean. Statistical downscaling based on several methodologies will be applied (e.g. canonical correlation analysis and multiple linear regression). Instrumental time series, Era-Interim and the 20CR reanalyses will be used. Large-scale climate drivers as well as the influence of local/regional factors and their interaction with the Etesian wind field will be addressed. Finally, the Etesian wind resources on the present and future climate will be assessed in order to identify the potential areas suitable for the establishment of wind farms and the production of wind power in the Aegean Sea.

  4. Recent studies on wind seas and swells in the Indian Ocean: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rashmi, R.; Samiksha, S.V.; Aboobacker, V.M.

    , we can observe distinct and systematic diurnal variation in wind speed, wave height and wave period, especially, simultaneous increase in wave height and decrease in wave period with increase in local wind speeds due to sea breeze system Fine...

  5. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...

  6. Modeling and Observing the Role of Wind-Waves in Titan's Hydrocarbon Seas

    Science.gov (United States)

    Hayes, A. G., Jr.; Soderblom, J. M.; Donelan, M. A.; Barnes, J. W.; Lorenz, R. D.

    2016-12-01

    Oceanography is no longer just an Earth Science. Standing bodies of liquid that interact with both atmospheric and surface reservoirs are known to exist on Titan and are thought to have existed on early Mars. The exchange of heat, moisture, and momentum between lakes/seas and the atmosphere are of fundamental importance to the hydrologic systems of all three bodies. On Earth, surface liquids are almost always disturbed by some form of wave activity. On Titan, however, Cassini observations through the end of the Equinox Mission (12/2010) showed no indication of surface waves. This was intriguing given the predominance of aeolian features at equatorial latitudes and has been attributed to the light winds predicted during the Titan winter. More recently, the previous series of upper limits and non-detections have given way to indications that the expected freshening of winds in northern summer is causing sporadic ruffling of sea surfaces. Specifically, apparent sunglints offset from the geometric specular point have become a common observation by VIMS and transient radar signatures have been observed over the surfaces of both Ligeia Mare and Kraken Mare. SAR images also reveal morphologies consistent with secondary coastlines, most notably Ontario Lacus and Ligeia Mare. This presentation will review Cassini observations of transient surface activity on Titan's Mare and quantitatively describe the implied constraints on sea surface roughness. Assuming that the transient activity is due to wind waves, we can turn the Cassini spacecraft into an anemometer by coupling roughness constraints to a physics-based model of wave generation and propagation in the Titan environment. By determining the fraction of the lake surface that is oriented in a specific geometry, which can be obtained from either nadir RADAR backscatter or VIMS specular reflection measurements, we can determine the driving wind speeds that best match the observations by matching the fraction of the

  7. Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas-A Case Study with Implications for Climatology

    Institute of Scientific and Technical Information of China (English)

    LI Man; ZHANG Suping

    2013-01-01

    A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model,with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog.Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea,creating conditions favorable for sea fog/stratus formation.The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus.The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer),the sinking branch of which on the cold flank of SSTF helps lower the stratus layer further to reach the sea surface.The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence.The secondary circulation becomes weak and the fog patches are shrunk heavily with the smoothed SSTF.A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas.Finally,the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global warming.

  8. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  9. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  10. Wind-driven export of Weddell Sea slope water

    Science.gov (United States)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  11. Deterministic prediction of surface wind speed variations

    OpenAIRE

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K; K. Satheesh Kumar

    2014-01-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that determin...

  12. Fire Whirl Evolution Observed during a Valley Wind-Sea Breeze Reversal

    Directory of Open Access Journals (Sweden)

    Daisuke Seto

    2011-01-01

    Full Text Available This observational study documented the atmospheric environment of a prescribed fire conducted in a narrow valley when a small fire whirl developed during a mesoscale wind reversal. Based on analysis of in situ meteorological measurements, it is hypothesized that the fire whirl formed due to the presence of strong vertical wind shear caused by the interaction of a sea breeze front with a weaker up-valley wind. Vorticity generated by the interaction of the wind shear and the fire front was estimated to be ~0.2 s−1. Peak turbulence kinetic energy was caused by the wind shear rather than the buoyancy generated by the fire front. It was also found that the convective Froude number itself may not be sufficient for fire whirl prediction since it is less relevant to the near-surface boundary-layer turbulence generated by environmental wind shear. Observations from this case study indicate that even low-intensity prescribed fires can result in the formation of fire whirls due to mesoscale changes in the ambient atmospheric environment.

  13. How much do diurnal land-sea circulations contribute to coastal wind power?

    Science.gov (United States)

    Miller, A. L.; Zender, C. S.

    2013-12-01

    Wind power is a renewable and underused energy source that can help meet energy demands sustainably. However, estimates of coastal wind power potential often rely on measurements that under-sample the diurnal increase in wind speed due to local land/sea circulations. In situ measurements show that the diurnal sea breeze explains a majority of wind power in coastal Southern California. Satellite-retrieved winds overestimate the amount of wind power available by about 15 percent relative to half-hourly measurements of wind speed at Crystal Cove State Park over four years, from 2008-2012. This is because twice-per-day polar satellite overflights (e.g., QuikSCAT) can over-represent the sea breeze component of the wind power potential. Using gridded NASA MERRA analyses, our study quantifies globally the fraction of coastal wind power attributable to land/sea breezes, and shows where wind power based on satellite retrieved wind speeds is most likely biased by these local circulations. Finally, we demonstrate how coastal wind power may change in the 21st century based on IPCC CMIP5 climate change simulations. Future simulations (RCP 8.5) are rescaled by the difference between present day simulations and MERRA analyses. These results highlight the importance of land/sea breezes in potential present day and future wind power.

  14. Characterization of aerosols above the Northern Adriatic Sea: Case studies of offshore and onshore wind conditions

    Science.gov (United States)

    Piazzola, J.; Mihalopoulos, N.; Canepa, E.; Tedeschi, G.; Prati, P.; Zarmpas, P.; Bastianini, M.; Missamou, T.; Cavaleri, L.

    2016-05-01

    Aerosol particles in coastal areas result from a complex mixing between sea spray aerosols locally generated at the sea surface by the wind-waves interaction processes and a continental component resulting from natural and/or anthropogenic sources. This paper presents a physical and chemical analysis of the aerosol data acquired from May to September 2014 in the Adriatic Sea. Aerosol distributions were measured on the Acqua Alta platform located 15 km off the coast of Venice using two Particle Measuring System probes and a chemical characterization was made using an Ion Chromatography analysis (IC). Our aim is to study both the sea-spray contribution and the anthropogenic influence in the coastal aerosol of this Mediterranean region. To this end, we focus on a comparison between the present data and the aerosol size distributions measured south of the French Mediterranean coast. For air masses of marine origin transported by southern winds on the French coast and by the Sirocco in the Adriatic, we note a good agreement between the concentrations of super-micrometer aerosols measured in the two locations. This indicates a similar sea surface production of sea-spray aerosols formed by bubble bursting processes in the two locations. In contrast, the results show larger concentrations of submicron particles in the North-Western Mediterranean compared to the Adriatic, which result probably from a larger anthropogenic background for marine conditions. In contrast, for a coastal influence, the chemical analysis presented in the present paper seems to indicate a larger importance of the anthropogenic impact in the Northern Adriatic compared to the North-Western Mediterranean.

  15. Microwave Radiometric Measurement of Sea Surface Salinity.

    Science.gov (United States)

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  16. Study of Practicability of Improved Irwin's Surface Wind Sensor

    National Research Council Canada - National Science Library

    Junji KATAGIRI; Toshio TSURUMI; Takeshi OHKUMA; Hisao MARUKAWA

    2009-01-01

      The practicability of a surface wind sensor (SWS) is examined by comparing the mean and fluctuating wind velocities obtained from this instrument with those measured by an omni-directional multi-channel anemometer (OMA...

  17. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  18. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate m

  19. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  20. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  1. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate m

  2. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  3. Surface diurnal warming in the East China Sea derived from satellite remote sensing

    Science.gov (United States)

    Song, Dan; Duan, Zhigang; Zhai, Fangguo; He, Qiqi

    2017-09-01

    Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature (SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang (Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.

  4. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  5. Wind atlas of the Northern European Seas based on Envisat ASAR, QuikSCAT and ASCAT

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    In the EU project NORSEWInD (Northern Seas Wind Index database, www.norsewind.eu) which lasted from 2008 to 2012 there was a goal of contributing a satellite-based wind atlas for the Northern European Seas. The effort included collection of more than 9000 Envisat ASAR WSM wide swath mode scenes...

  6. Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase in Indian monsoon wind intensity

    Science.gov (United States)

    Lachkar, Zouhair; Smith, Shafer; Levy, Marina

    2017-04-01

    The decline in oxygen supply to the ocean associated with global warming of sea-surface temperatures is expected to expand the oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the World's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo records and future climate projections indicate strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50% to +50%) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Oceanic Modeling System (ROMS) coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased lateral ventilation. The enhanced lateral ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200m) of the western and central Arabian Sea, leading to intermittent expansions of habitats and a more frequent alternation of hypoxic and oxic

  7. An empirically derived inorganic sea spray source function incorporating sea surface temperature

    Directory of Open Access Journals (Sweden)

    M. E. Salter

    2015-05-01

    Full Text Available We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with increasing seawater temperature (between −1 and 30 °C similar to previous findings. In addition, we observed that the particle effective radius as well as the particle-surface, -volume and -mass, increased with increasing seawater temperature due to increased production of super-micron particles. By combining these measurements with the volume of air entrained by the plunging jet we have determined the size-resolved particle flux as a function of air entrainment. Through the use of existing parameterisations of air entrainment as a function of wind speed we were subsequently able to scale our laboratory measurements of particle production to wind speed. By scaling in this way we avoid the difficulties associated with defining the "white-area" of the laboratory whitecap – a contentious issue when relating laboratory measurements of particle production to oceanic whitecaps using the more frequently applied whitecap method. The here-derived inorganic sea spray sea spray source function was implemented in a Lagrangian particle dispersion model (FLEXPART. An estimated annual global flux of inorganic sea spray aerosol of 5.9 ± 0.2 Pg yr−1 was derived that is close to the median of estimates from the same model using a wide range of existing sea spray source functions. When using the source function derived here, the model also showed good skill in predicting measurements of Na+ concentration at a number of field sites further underlining the validity of our source function. In a final step, the sensitivity of a large-scale model (NorESM to our new source function was tested. Compared to the previously

  8. The role of heating, winds, and topography on sea level changes in the North Atlantic

    Science.gov (United States)

    Zhang, Jinting; Kelly, Kathryn A.; Thompson, LuAnne

    2016-05-01

    Seasonal and interannual-to-decadal variations of large-scale altimetric sea surface height (SSH) owing to surface heating and wind forcing in the presence of topography are investigated using simplified models. The dominant forcing mechanisms are time scale dependent. On the seasonal time scale, locally forced thermosteric height explains most of the SSH variance north of 18°N. First-mode linear long baroclinic Rossby waves forced by changes in the winds and eastern boundary conditions explain most of the variance between 10°N and 15°N and are also important east of Greenland. On interannual-to-decadal time scales, local thermosteric height remains important at several locations in the middle and high latitudes. A topographic Sverdrup response explains interannual-to-decadal SSH between 53°N and 63°N east of Greenland. Farther south, the linear Rossby wave model explains SSH variations on interannual-to-decadal time scales between 30°N and 50°N from mid-basin to the eastern boundary. Propagation of the eastern boundary condition into the interior dominates the interannual-to-decadal SSH signals south of 30°N. The effect from NAO-related heat flux on SSH is small, but forcing the topographic Sverdrup models with NAO-regressed winds gives slightly better agreement with the observed SSH in the subpolar gyre on interannual-to-decadal time scales than using the full winds.

  9. Sea-surface salinity: the missing measurement

    Science.gov (United States)

    Stocker, Erich F.; Koblinsky, Chester

    2003-04-01

    Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

  10. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  11. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    Science.gov (United States)

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.

  12. Inventory of current and future presence of non-wind sea use functions

    NARCIS (Netherlands)

    Wal, van der J.T.; Quirijns, F.J.; Leopold, M.F.; Slijkerman, D.M.E.; Jongbloed, R.H.

    2009-01-01

    In order to assess the suitability of locations on the Central and Southern North Sea for wind parks present sea use functions should also be taken into account. These sea use functions comprise shipping, oil and gas extraction, fisheries, cables and pipelines, military activities, sand extraction,

  13. Experimental Evaluation of the Atmospheric Energy Input to Sea Surface Waves

    Science.gov (United States)

    2011-09-30

    with sonic anemometers , cups , vanes, measuring airflow velocity, sensitive barometers. Instruments for GPS and inertial navigation were positioned...constant, Ω is the Instruments Quantity measured Height/Location 7 Sonic Anemometers Wind velocity, Air temperature On the mast 5 RMY Prop... Anemometers Wind speed & direction At 5 levels on the mast 8 Pressure Instruments Atmospheric pressure On the mast 2 Wave Wires Sea surface elevation At

  14. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    Science.gov (United States)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  15. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  16. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    Science.gov (United States)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  17. Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2011-05-01

    Full Text Available Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.

  18. Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean

    Indian Academy of Sciences (India)

    M Mohapatra; Monica Sharma

    2015-10-01

    Tropical cyclone (TC) wind field monitoring and forecast are important for mariners, ships on sea and modelling group for creation of synthetic vortex, and storm surge and coastal inundation forecasting. Among others, a multi-platform satellite surface wind analysis developed by Co-operative Institute for Research in the Atmosphere (CIRA), USA for the TCs are referred by India Meteorological Department for surface wind field monitoring of TC. Hence, a study has been undertaken to analyze the characteristics of surface wind distribution and hence the structure of TC based on the real time data available from CIRA during 2007–2013. The study includes 19 TCs over the Bay of Bengal (BOB) and six over Arabian Sea (AS). The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms−1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for analysis. The objective is to develop a reference surface wind structure of TC and examine its validity with respect to physical processes. The size of outer core (34(17) knot (ms−1) wind radial extension) as well as inner core (50(26) and 64(33) knot (ms−1) wind radial extension) increases significantly with increase in intensification of TC over BOB during both pre-monsoon and post-monsoon seasons and over AS during pre-monsoon season. The outer core of winds in TCs over the BOB is asymmetric in both pre-monsoon and post-monsoon seasons and for all categories of intensity of TCs. On the other hand, the asymmetry in inner core winds is significantly less. There is also no asymmetry in radial wind extension over the AS during both the seasons, except in case of outer core wind radial extension of VSCS during pre-monsoon season. The low level environment like enhanced cross equatorial flow, lower/middle level relative humidity, vertical wind shear and proximity of TC to the land surface are the determining

  19. Satellite monitoring of sea surface pollution

    Science.gov (United States)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  20. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed...

  1. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    Science.gov (United States)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  2. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    Science.gov (United States)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  3. Deterministic prediction of surface wind speed variations

    Science.gov (United States)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  4. Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions

    Science.gov (United States)

    2016-06-07

    science /abl/cblast LONG-TERM GOALS We will investigate air-sea transfer of momentum, heat, and moisture under weak wind conditions. We will...over the ASIT tower and the wind direction was good for the tower sonic performance (6 days in total). As we found last year that although the momentum...flux derived from the aircraft is flight- direction dependent, which was recently found to be a common problem for all aircraft flux measurements

  5. Multiresolution infrared optical properties for Gaussian sea surfaces: theoretical validation in the one-dimensional case.

    Science.gov (United States)

    Fauqueux, Sandrine; Caillault, Karine; Simoneau, Pierre; Labarre, Luc

    2009-10-01

    The validation of the multiresolution model of sea surface infrared optical properties developed at ONERA is investigated in the one-dimensional case by comparison with a reference model, using a submillimeter discretization of the surface. Having expressed the optical properties, we detail the characteristics of each model. A set of numerical tests is made for various wind speeds, resolutions, and realizations of the sea surface. The tests show a good agreement between the results except for grazing angles, where the impact of multiple reflections and the effects of adjacent rough surfaces on shadow have to be investigated.

  6. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  7. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    Science.gov (United States)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  8. Detection and Monitoring of New-Ice in the East Greenland Sea Using the SeaWinds Scatterometer

    Institute of Scientific and Technical Information of China (English)

    Robert Ezraty

    2002-01-01

    Space borne radar scatterometers are primarily designed to measure the wind vector over the world ocean; yetthey also provide useful information on sea ice type and extent. In this paper, it is shown how the SeaWinds scatterometercan be used to detect new sea ice at the very beginning of its growth. Taking advantage of the very good coverage of the EastGreenland Sea by SeaWinds on board the QuikSCAT satellite it has been possible to detect the early stage of formation of thesea ice peninsula, named the Odden, and to monitor its evolution during March 2001. The early sea ice detection has beenvalidated by using RADARSAT Synthetic Aperture Radar scenes. It is also shown that microwave radiometers, such as theSpecial Sensor Microwave Imager (SSM/I), which are used as standard sensors for sea ice monitoring, do not detect the veryearly stage of sea ice growth and lag behind new sea ice occurrence by about twelve to twenty four hours.

  9. Wind influence on surface current variability in the Ibiza Channel from HF Radar

    Science.gov (United States)

    Lana, Arancha; Marmain, Julien; Fernández, Vicente; Tintoré, Joaquin; Orfila, Alejandro

    2016-04-01

    Surface current variability is investigated using 2.5 years of continuous velocity measurements from an high frequency radar (HFR) located in the Ibiza Channel (Western Mediterranean Sea). The Ibiza Channel is identified as a key geographical feature for the exchange of water masses but still poorly documented. Operational, quality controlled, HFR derived velocities are provided by the Balearic Islands Coastal Observing and Forecasting System (SOCIB). They are assessed by performing statistical comparisons with current-meter, ADCP, and surface lagrangian drifters. HFR system does not show significant bias, and its accuracy is in accordance with previous studies performed in other areas. The main surface circulation patterns are deduced from an EOF analysis. The first three modes represent almost 70 % of the total variability. A cross-correlation analysis between zonal and meridional wind components and the temporal amplitudes of the first three modes reveal that the first two modes are mainly driven by local winds, with immediate effects of wind forcing and veering following Ekman effect. The first mode (37 % of total variability) is the response of meridional wind while the second mode (24 % of total variability) is linked primarily with zonal winds. The third and higher order modes are related to mesoscale circulation features. HFR derived surface transport presents a markedly seasonal variability being mostly southwards. Its comparison with Ekman-induced transport shows that wind contribution to the total surface transport is on average around 65 %.

  10. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  11. Biogeochemical patchiness at the sea surface

    Science.gov (United States)

    Mahadevan, A.; Campbell, J. W.

    2002-10-01

    The surface distributions of many tracers in the ocean are highly correlated in time and space on meso (~100 km) and smaller scales (refid="fig01" type="media">Figure 1). However, their characteristic scales of variability differ. Some variables like sea surface chlorophyll (Chl) are very fine-scaled or patchy, while others like sea surface temperature (SST) are not. We characterize the patchiness of a distribution quantitatively by the dependence of the variance V on the length scale L as V ~ Lp; smaller p corresponds to greater patchiness. Using scaling and a numerical model we show that patchiness, p, varies with the characteristic response time τ of the tracer to processes that alter its concentration in the upper ocean as p ~ log τ. This suggests that sea surface Chl is more patchy (has smaller p) than SST at mesoscales because the characteristic time scale of phytoplankton growth in response to the availability of nutrients is less than that for the equilibration of temperature in response to heat fluxes. Similarly, sea surface dissolved oxygen (O2) exhibits more fine-scaled variability than total dissolved inorganic carbon (TCO2) because O2 equilibrates with the atmosphere much more rapidly than TCO2. Tracers that are more patchy require higher resolution to model and sample; the sampling or model grid spacing required scales as exp(-1/log τ). The quantitative relationship between p and τ can be used to relate various biogeochemical distributions, particularly to those that are remotely sensed, and to deduce biogeochemical response times of various tracers or plankton species from the characteristics of their distributions in space or time.

  12. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    Science.gov (United States)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles 60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on upwind (windward) face of the tilting wave. Retrieval of Bragg roughness properties shows that omni-directional saturation spectra at ~1000 rad/m are 2-3 times higher (0.01 at 10 m/s wind speed) than the spectra obtained from optical measurements of regular sea surface without wave breaking. This suggests that observed difference can arise

  13. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    An analysis of the heat budgets of the near-surface Arabian Sea and Bay of Bengal shows significant differences between them during the summer monsoon (June-September). In the Arabian Sea the winds associated with the summer monsoon are stronger...

  14. Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna

    2016-01-01

    A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing...... observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of -0.06 °C compared to moored buoys and a 0.46 °C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years......, with a negligible temporal trend when compared against drifting and moored buoys. Analysis of the SST CDR reveals that the monthly anomalies for the North Sea, the Danish straits, and the central Baltic Sea regions show a high degree of correlation for interannual and decadal time scales, whereas the monthly...

  15. Sound Scattering From Rough Bubbly Ocean Surface Based on Modified Sea Surface Acoustic Simulator and Consideration of Various Incident Angles and Sub-surface Bubbles’ Radii

    Institute of Scientific and Technical Information of China (English)

    Alireza Bolghasi; Parviz Ghadimi; Mohammad A. Feizi Chekab

    2016-01-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  16. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    Science.gov (United States)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-09-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  17. Sea surface temperature (SST) and surface current data collected from the Mar Mostro during the around-the-world Volvo Ocean Race (VOR) from 2011-11-05 to 2012-07-12 (NCEI Accession 0130694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Navigation, surface current, sea surface temperature, wind, and atmospheric pressure data collected by the Mar Mostro during the around-the-world Volvo Ocean Race...

  18. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  19. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  20. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  1. Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-10-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.

  2. Multiscale wind cycles and current pulses at the Black Sea eastern boundary

    Science.gov (United States)

    Melnikov, Vasiliy; Moskalenko, Lidija; Piotoukh, Vladimir; Zatsepin, Andrey

    2015-04-01

    quantified anomalies, associated with different frequency components of variability, such as sub-meso-scale eddies, marginal shelf waves, inertial oscillations, diurnal, semi-diurnal and short-period internal waves, long surface waves, were estimated. Based on estimates of the statistical relationships between the different parameters of hydro-meteorological system, including meteorological elements, sea level, sea temperature and flow fields, space/time scales of the observed fields variability were estimated. Several new features of the physical mechanisms of multiscale hydro-physical processes in the shelf zone of the Black Sea, have been revealed. In particular, it is shown, that there are wind self-similar cycles at different time scales, each cycle being consisted of a pair of northeast and then southeast winds, which corresponds to the alternative influences of the Azores and Siberian highs(in winter). In the range of decadal (10 years) scale and in macro space view, long-term wind cycles support basic Black Sea circulation(Rim Current).Wind cycles with a time scale of about 20 days give rise to distinct upwellings, appeared with the same frequency. Along with each upwelling, radical hydrological restructuring of the stratification is accompanied by intense advection with high velocities(up to 1 m/s). Kinetic energy is dominated by alongshore currents, the direction being reversed periodically. The vertical structure of currents is rather complicated. When the current speed exceeds some threshold value, the flow gives rise to relaxation oscillations with a period of about 24 hours with counterclockwise velocity vector rotation. All the above mentioned events and current pulses cause significant variations of air-sea fluxes. This research was jointly supported by Ministry of Education of the RF (Agreement №14.604.21.0044), Russian Academy of Sciences(Program No 23), RFBR grant 14-05-00159,contract No 10/2013 RGS-RFBR.

  3. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  4. Sea surface height variability in the North East Atlantic from satellite altimetry

    Science.gov (United States)

    Sterlini, Paul; de Vries, Hylke; Katsman, Caroline

    2016-08-01

    Data from 21 years of satellite altimeter measurements are used to identify and understand the major contributing components of sea surface height variability (SSV) on monthly time-scales in the North East Atlantic. A number of SSV drivers is considered, which are categorised into two groups; local (wind and sea surface temperature) and remote (sea level pressure and the North Atlantic oscillation index). A multiple linear regression model is constructed to model the SSV for a specific target area in the North Sea basin. Cross-correlations between candidate regressors potentially lead to ambiguity in the interpretation of the results. We therefore use an objective hierarchical selection method based on variance inflation factors to select the optimal number of regressors for the target area and accept these into the regression model if they can be associated to SSV through a direct underlying physical forcing mechanism. Results show that a region of high SSV exists off the west coast of Denmark and that it can be represented well with a regression model that uses local wind, sea surface temperature and sea level pressure as primary regressors. The regression model developed here helps to understand sea level change in the North East Atlantic. The methodology is generalised and easily applied to other regions.

  5. Impacts of wind farms on surface air temperatures

    Science.gov (United States)

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  6. Quantifying equivalent neutral wind speed variance due to temporal and spatial difference between SeaWinds and in situ data

    Science.gov (United States)

    May, J. C.; Bourassa, M. A.

    2010-12-01

    Satellite measured winds, such as those reported by the SeaWinds scatterometer onboard the QuikSCAT satellite, can be validated with in situ data. The in situ data used for comparison with SeaWinds should be collocated in both time and space; however, due to the sparseness of data and time sampling intervals of the in situ data, ideally collocated observations are rare. Therefore, in situ data within a certain time and space range to the satellite overpass are used. This approach results in a total variance from three primary sources: variance in SeaWinds, variance in the comparison data, and variance associated with the temporal and spatial difference. The purpose of this study is to determine the amount of variance due to the temporal and spatial difference between two observations, in particular the equivalent neutral wind speed reported by SeaWinds and in situ data. Initially, this natural variability is examined in an idealized scenario where only in situ data is considered: the one-minute observations collected through the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative from 2005 through 2009. The satellite is assumed to pass over the ship on the hour every hour. Shifts in time are used to examine the error associated with a mismatch in time. Taylor’s hypothesis can be used to translate a temporal shift to a spatial shift. The results show that the variance associated with the temporal difference increases as the mismatch in time increases. The temporal variance can also be separated into wind speed groups, which shows that there is a larger amount of variance associated with higher wind speeds. Confirmation of the idealized case method and results is done by using collocated SeaWinds and SAMOS observations. The comparison uses the closest collocation in both time and space to the satellite overpass. The total variance associated with a time shift from 0 to 60 minutes is estimated as the root mean square sum of the temporal

  7. The wind and thermally driven circulation of the eastern Mediterranean Sea. Part II: the Baroclinic case

    Science.gov (United States)

    Malanotte-Rizzoli, Paola; Bergamasco, Andrea

    1991-04-01

    anticyclonic ones in summer, according to the vorticity input by the wind. When surface thermal forcing is included, the winter-to-summer differences become very small and the yearly pattern is dominant. The second important result is that the intercomparisons of the various numerical experiments in which each driving mechanism is studied in isolation from the others allows us to classify unambiguously the three forcing mechanisms in order of relative importance in driving the circulation in the different sub-basins of the eastern Mediterranean. Specifically, for the Ionian Sea and Sea of Crete the dominant forcing is the inflow at the Straits of Sicily while for the Levantine Sea thermohaline fluxes are the main driving function. The wind-stress forcing induces a seasonal fluctuation only in the meandering path of the Atlantic jet entering the Ionian Sea through the Sicily Straits. We finally carry out a 'central experiment', the most realistic one in which all forcing functions drive the circulation that we compare quantitatively with other model results and qualitatively with observations. Major features can be recognized and are shown to be persistent all year long. These features are also found in the dynamic heights of the general hydrographic surveys of the Physical Oceanography of the Eastern Mediterranean (POEM) programme. The only POEM feature not reproduced by the model, an intense anticyclonic region in the south eastern Levantine, may be attributed to errors and specifically underestimates, of the available thermal fluxes whose effect is partially overcome by the wind-stress forcing. This anticyclonic cell is in fact obtained when the model is driven by the thermal fluxes alone. Overall, the model results compare well with the observational evidence provided by the POEM surveys and the thermohaline vertical circulation cell reproduced by the model is consistent with the preliminary results of the transient-tracer survey POEM-V-87. Finally, many of the persistent

  8. Wind flow modulation due to variations of the water surface roughness

    Science.gov (United States)

    Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana

    2016-04-01

    Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described

  9. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2012-09-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the south-eastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the Central and Northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore-winds and northwards transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport in both, the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during open water season. A continuing trend toward shoreward winds

  10. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea

    Science.gov (United States)

    Akpinar, Adem; Ponce de León, S.

    2016-03-01

    This study aims at an assessment of wind re-analyses for modelling storms in the Black Sea. A wind-wave modelling system (Simulating WAve Nearshore, SWAN) is applied to the Black Sea basin and calibrated with buoy data for three recent re-analysis wind sources, namely the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA) during an extreme wave condition that occurred in the north eastern part of the Black Sea. The SWAN model simulations are carried out for default and tuning settings for deep water source terms, especially whitecapping. Performances of the best model configurations based on calibration with buoy data are discussed using data from the JASON2, TOPEX-Poseidon, ENVISAT and GFO satellites. The SWAN model calibration shows that the best configuration is obtained with Janssen and Komen formulations with whitecapping coefficient (Cds) equal to 1.8e-5 for wave generation by wind and whitecapping dissipation using ERA-Interim. In addition, from the collocated SWAN results against the satellite records, the best configuration is determined to be the SWAN using the CFSR winds. Numerical results, thus show that the accuracy of a wave forecast will depend on the quality of the wind field and the ability of the SWAN model to simulate the waves under extreme wind conditions in fetch limited wave conditions.

  11. Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea

    Science.gov (United States)

    Eleveld, Marieke A.; Pasterkamp, Reinold; van der Woerd, Hendrik J.; Pietrzak, Julie D.

    2008-10-01

    An algorithm is presented for estimating near-surface SPM concentrations in the turbid Case 2 waters of the southern North Sea. The single band algorithm, named POWERS, was derived by parameterising Gordon's approximation of the radiative transfer model with measurements of Belgian and Dutch inherent optical properties. The algorithm was used to calculate near-surface SPM concentration from 491 SeaWiFS datasets for 2001. It was shown to be a robust algorithm for estimating SPM in the southern North Sea. Regression of annual geometric mean SPM concentration derived from remote sensing (SPM rs), against in situ (SPM is) data from 19 Dutch monitoring stations was highly significant with an r2 of 0.87. Further comparison and statistical testing against independent datasets for 2000 confirmed the consistency of this relationship. Moreover, time series of SPM rs concentrations derived from the POWERS algorithm, were shown to follow the same temporal trends as individual SPM is data recorded during 2001. Composites of annual, winter and summer SPM rs for 2001 highlight the three dominant water masses in the southern North Sea, as well as their winter-fall and spring-summer variability. The results indicate that wind induced wave action and mixing cause high surface SPM signals in winter in regions where the water column becomes well mixed, whereas in summer stratification leads to a lower SPM surface signal. The presented algorithm gives accurate near-surface SPM concentrations and could easily be adapted for other water masses and seas.

  12. Wind stress over the Arabian Sea from ship reports and Seasat scatterometer data

    Science.gov (United States)

    Perigaud, C.; Minster, J. F.; Delecluse, P.

    1989-01-01

    Seasat scatterometer data over the Arabian Sea are used to build wind-stress fields during July and August 1978. They are first compared with 3-day wind analyses from ship data along the Somali coast. Seasat scatterometer specifications of 2-m/s and 20-deg accuracy are fulfilled in almost all cases. The exceptions are for winds stronger than 14 m/s, which are underestimated by the scatterometer by 15 percent. Wind stress is derived from these wind data using a bulk formula with a drag coefficient depending on the wind intensity. A successive-correction objective analysis is used to build the wind-stress field over the Arabian Sea with 2 x 2-deg and 6-day resolution. The final wind-stress fields are not significantly dependent on the objective analysis because of the dense coverage of the scatterometer. The combination of scatterometer and coastal ship data gives the best coverage to resolve monsoon wind structures even close to the coast. The final wind stress fields show wind features consistent with other monthly mean wind stress field. However, a high variability is observed on the 6-day time scale.

  13. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than _ is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  14. Emissivity of rough sea surface for 8-13 num: modeling and verification.

    Science.gov (United States)

    Wu, X; Smith, W L

    1997-04-20

    The emissivity model for rough sea surface [Remote Sensing Environ. 24, 313-329 (1988)] is inspected in light of the measured surface emissivity. In the presence of moderate wind (5 m/s or less), the emissivity model is found to be adequate for small to moderate view angles. For large view angles, the discrepancy between the computed and the measured emissivity is large, but one can reduce this considerably by incorporating the reflected sea surface emission into the emissivity model. In addition, examination of the spectral variation of the observed and computed emissivity suggests the need for refined measurements of the complex refractive index. An improved model is constructed to calculate the rough sea surface emissivity that can be used to provide accurate estimates of sea surface skin temperatures from remotely sensed radiometric measurements. An important feature of the improved model is that the computed sea surface emissivity is only weakly dependent on wind speed for most view angles used in practice.

  15. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    Science.gov (United States)

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  16. North Sea Offshore Wind Power Variability in 2020 and 2030

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2012-01-01

    Wind power is currently the most promising renewable technology and is expected to contribute significantly to achieving the “20-20-20” target set by EU - 20% reduction of greenhouse gases and 20% share of renewables by 2020. The development potential of wind power, especially offshore, is huge....... The experience with large offshore wind farms so far has clearly shown that the offshore wind power is significantly more variable than the on-shore wind power, first of all because offshore wind power is more concentrated geographically than existing on-shore wind power. The focus is on time scales of interest...... for power system operation, thus ranging from minutes to hours. The simulations are based on the offshore wind power development plans developed in the TWENTIES project and includes details such as installed capacity and coordinates for each wind farm existing or planned to be installed in North Europe...

  17. Dependence of the surf zone aerosol on wind direction and wind speed at a coastal site on the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tymon Zieliński

    2003-09-01

    Full Text Available Since 1992 lidar-based measurements have been carried out under various meteorological conditions and at various times of the year. The aerosol optical properties were determined in the marine boundary layer as a function of altitude using such factors as wind direction, duration and velocity and aerosol size distribution and concentration. It was confirmed that in all cases, the total aerosol concentration, size distribution and aerosol extinction increase with wind speed but decrease with altitude. In the range of wind velocities from 1 to 15 m s-1 the mean aerosol optical thickness of the atmosphere (VIS obtained from the lidar varied from 0.1 to 0.38 for offshore winds and from 0.01 to about 0.1 for onshore winds, while the Ångström parameter for VIS oscillated around 0.65 for onshore winds and around 1 for offshore winds. Both parameters depended strongly on the history of the air mass above the Baltic Sea. Such aerosol optical thicknesses are in agreement with those obtained by other researchers in the Baltic Sea area.

  18. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.

    2013-08-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2. m and mean periods of 8. s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19-20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east-west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2. m and maximum wave heights of 14. m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a

  19. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month

    Science.gov (United States)

    Kettle, A. J.; Andreae, M. O.; Amouroux, D.; Andreae, T. W.; Bates, T. S.; Berresheim, H.; Bingemer, H.; Boniforti, R.; Curran, M. A. J.; Ditullio, G. R.; Helas, G.; Jones, G. B.; Keller, M. D.; Kiene, R. P.; Leck, C.; Levasseur, M.; Malin, G.; Maspero, M.; Matrai, P.; McTaggart, A. R.; Mihalopoulos, N.; Nguyen, B. C.; Novo, A.; Putaud, J. P.; Rapsomanikis, S.; Roberts, G.; Schebeske, G.; Sharma, S.; Simó, R.; Staubes, R.; Turner, S.; Uher, G.

    1999-06-01

    A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°×1° latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.

  20. A decision support system for assessing offshore wind energy potential in the North Sea

    NARCIS (Netherlands)

    Schillings, Ch.; Wanderer, T.; Cameron, L.; Wal, van der J.T.; Jacquemin, J.; Veum, K.

    2012-01-01

    Offshore wind energy (OWE) in the North Sea has the potential to meet large share of Europe’s future electricity demand. To deploy offshore wind parks in a rational way, the overall OWE potential has to be realistically determined. This has to be done on an international, cross-border level and by t

  1. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  2. Widespread land surface wind decline in the Northern Hemisphere

    Science.gov (United States)

    Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.

    2010-09-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from

  3. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar.

    Science.gov (United States)

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-11-05

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  4. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Delpeche-Ellmann, Nicole; Mingelaitė, Toma; Soomere, Tarmo

    2017-07-01

    We employ in-situ surface drifters and satellite derived sea surface temperature data to examine the impact that an upwelling event may have on mixing and Lagrangian transport of surrounding surface waters. The test area is located near the southern coast of the Gulf of Finland where easterly winds are known to trigger intense coastal upwellings. The analysis is based on the comparison of motions of three drifters that follow the currents in the uppermost layer with a thickness of 2 m with MODIS-based sea surface temperature data and high-quality open sea wind time series. The presence of an upwelling event superseded the classic Ekman-type drift of the surface layer and considerably slowed down the average speed of surface currents in the region affected by the upwelled cold water jet and its filaments. The drifters tended to stay amidst the surrounding surface waters. The properties of mixing were evaluated using the daily rate of temperature change along several transects. The upwelled cooler water largely kept its identity during almost the entire duration of the upwelling event. Intense mixing started at a later stage of the upwelling and continued after the end of the event when the winds that have driven the entire process began to subside.

  5. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  6. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  7. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  8. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  9. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  10. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  11. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  12. Assessment of Wind Shear and Wind Energy Potential in the Baltic Sea Region of Latvia

    Science.gov (United States)

    Bezrukovs, V.; Bezrukovs, Vl.; Zacepins, A.; Komashilovs, V.

    2015-04-01

    The paper is devoted to the investigation into the wind energy potential based on long-term observations of the wind speed and energy density fluctuations at heights from 10 to 160 m on the Baltic Sea coast of Latvia. During the observations (2004 - 2013), the wind speed and direction values were measured, and the statistical database was accumulated using a LOGGER 9200 Symphonie measuring systems mounted on 60 m masts - one on the western coast and another on the north-east of Latvia. From June 2011 to May 2012, these measurements were complemented with the data for the heights from 40 to 160 m obtained by means of a ZephIR lidar and with the metrological data provided by "Latvian Environment, Geology and Meteorology Centre" for the same period. The graphs of seasonal fluctuations in the wind speed were obtained for the heights up to 160 m by measurements over the period of 2007 - 2013. The results of the research on the wind speed distribution up to 200 m are promising for evaluation of the wind energy potential of Latvia and will be helpful in assessment of prospective sites for construction of WPPs. Zinātniskais raksts ir veltīts pētījumam par vēja enerģijas potenciālu Latvijas teritorijā, Baltijas jūras piekrastē, balstoties uz ilgtermiņa vēja ātruma un vēja enerģijas blīvuma svārstību novērojumiem no 10 līdz 160 metriem augstumā. Vēja ātruma un vēja virziena mērījumu dati tika iegūti un apkopoti statistiskajā datubāzē laika periodā no 2004 līdz 2013. gadam, izmantojot mērīšanas sistēmu LOGGER 9200 Symphonie, kas bija ierīkotā uz 60 metru augsta masta - viena rietumu piekrastē un otra Latvijas ziemeļu-austrumos. No 2011. gada jūnija līdz 2012. gada maijam mērījumu datubāze tika papildināta ar datiem, kas tika iegūti ar lidaruZephIR augstumos no 40 līdz 160 metriem, un datiem no "Latvijas Vides, ģeoloģijas un meteoroloģijas centra" tam pašam laika periodam. Analizējot mērījumus 2007. g.-2013. g., grafiki ar

  13. Global ocean wind power sensitivity to surface layer stability

    Science.gov (United States)

    Capps, Scott B.; Zender, Charles S.

    2009-05-01

    Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind power by +58% and -4%, respectively. Our best estimate of mean global ocean wind power is 731 W m-2, about 50% greater than the 487 W m-2 based on previous methods. 80 m wind power is 1.2-1.5 times 10 m power equatorward of 30° latitude, between 1.4 and 1.7 times 10 m power in wintertime storm track regions and >6 times 10 m power in stable regimes east of continents. These results are relatively insensitive to methodology as wind power calculated using a fitted Weibull probability density function is within 10% of power calculated from discrete wind speed measurements over most of the global oceans.

  14. A model of the tropical Pacific sea surface temperature climatology

    Science.gov (United States)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  15. Carbon dioxide, temperature, salinity, wind speed, air temperature, and atmospheric pressure collected via surface underway survey from R/V Aegaeo in Aegean Sea from February 8, 2006 to February 13, 2006 (NODC Accession 0084543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0084543 includes chemical, meteorological, and physical underway data collected aboard the AEGAEO in Aegean Sea, and Mediterranean Sea from 8 February...

  16. OW ASCAT Ocean Surface Winds - 2-Day Composites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  17. 风驱粗糙海面背景下海雾对可见和红外光多次散射特性研究%Multiple Scattering of Visible and Infrared Light by Sea Fog over Wind Driving Rough Sea Surface

    Institute of Scientific and Technical Information of China (English)

    孙贤明; 王海华; 类成新; 申晋

    2013-01-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context.The single scattering characteristics of sea fog were studied by Mie theory,and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory.The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation,with shadowing effects taken into account.The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method,and the results indicated that the reflected light intensity of sea fog increased with the sea background.%通过测量空间辐射反演海雾气溶胶的微观特性是一种重要的遥感方法,但是海雾对辐射的反射会受到海面背景的影响.该工作研究了海雾与海面的耦合多次散射.利用Mie理论研究了海雾气溶胶的单次散射特性,利用辐射传输理论研究太阳光在无下垫面海雾中传输多次散射特性;在基尔霍夫近似下研究了风驱粗糙海面的散射特性,并考虑了海面的遮蔽效应,得到了风驱海面随风速的反射函数.根据累加法研究了海雾和海面的耦合散射,计算结果表明海雾在有粗糙海面作为背景的情况下,其整体反射有较大增强.

  18. Wind-driven interannual variability of sea ice algal production over the western Arctic Chukchi Borderland

    Directory of Open Access Journals (Sweden)

    E. Watanabe

    2015-05-01

    Full Text Available Seasonal and interannual variability in sinking flux of biogenic particles was reported by the multi-year bottom-tethered sediment trap measurements in the Northwind Abyssal Plain (Station NAP: 75° N, 162° W, 1975 m water depth of the western Arctic Chukchi Borderland. Whereas the trapped particle flux had an obvious peak with the dominance of sea ice-related diatom valve in August 2011, the observed particle flux was considerably suppressed throughout the summer season in 2012. In the present study, response of ice algal production and biomass to wind-driven changes in physical environments was addressed using a pan-Arctic sea ice–ocean modeling approach. Sea ice ecosystem with ice algae was newly incorporated into the lower-trophic marine ecosystem model, which was previously coupled with a high-resolution (i.e., horizontal grid size of 5 km ocean general circulation model. Seasonal experiments covering two year-long mooring periods indicated that primary productivity of ice algae around the Chukchi Borderland depended on basin-scale wind pattern through various processes. Easterly wind in the southern part of distinct Beaufort High supplied high abundance of nutrient for euphotic zones of the NAP region via both surface Ekman transport of Chukchi shelf water and vertical turbulent mixing with underlying nutricline water as in 2011. In contrast, northwesterly wind flowing in the northern part of extended Siberian High transported oligotrophic water within the Beaufort Gyre circulation toward the NAP region as in 2012. The modeled ice algal biomass during the summer season certainly reflected the differences in nutrient distribution. The sinking flux of Particulate Organic Nitrogen (PON was comparable with the time series obtained from the sediment trap data in summer 2011. On the other hand, lateral advection of shelf-origin ice algal patch during a great cyclone event might have caused a model bias on the PON flux in 2012. The extension

  19. The near-surface wind field over the Antarctic continent

    Science.gov (United States)

    van Lipzig, N. P. M.; Turner, J.; Colwell, S. R.; van den Broeke, M. R.

    2004-12-01

    A 14 year integration with a regional atmospheric model has been used to determine the near-surface climatological wind field over the Antarctic ice sheet at a horizontal grid spacing of 55 km. Previous maps of the near-surface wind field were generally based on models ignoring the large-scale pressure-gradient forcing term in the momentum equation. Presently, state-of-the-art atmospheric models include all pressure-gradient forcing terms. Evaluation of our model output against in situ data shows that the model is able to represent realistically the observed increase in wind speed going from the interior to the coast, as well as the observed wind direction at South Pole and Dumont d'Urville and the bimodal wind distribution at Halley.

  20. Impact of the parameterization scheme about sea surface wind stress drag coefficients on numerical simulation of strom surge%海面风应力拖曳系数参数化方案对风暴潮数值模拟的影响

    Institute of Scientific and Technical Information of China (English)

    罗蒋梅; 潘静; 杨支中

    2011-01-01

    To compare the effects of different sea surface wind stress drag coefficient parameterization schemes,nine kinds of schemes were used in numerical simulation of fifteen storm surges induced by tropical cyclones near Zhanjiang Sea. The result indicates that the effects of numerical simulation are not completely same in different parameterization schemes and it is necessary that the proper scheme is selected in numerical simulating storm surge. The simulation errors of storm surge maximum are smaller in Sm80 and YT98 schemes, and it also indicates it is feasible to extraplant in high wind speed of tropical cyclone in the two schemes. Additionally, under the conditions of selecting proper parameterization schemes of sea surface wind stress drag coefficient, the simulating effect of stronger storm surges are better in using the storm surge model.%为了比较不同的海面风应力拖曳系数参数化方案在风暴潮数值模拟中的效果,采用9种不同的风应力拖曳系数参数化方案对湛江附近海域15个热带气旋风暴潮进行数值模拟.模拟结果表明,不同风应力拖曳系数参数化方案对热带气旋风暴潮增水最大值的数值模拟效果不完全相同,在风暴潮数值模拟中要选择合适的风应力拖曳系数参数化方案;文中Smith(1980)、Yelland和Taylor(1998)风应力拖曳系数参数化方案增水最大值模拟的误差较小,这也说明两种参数化方案在风暴潮数值模拟中外推到热带气旋高风速范围内是可行的.另外,数值模拟结果也表明,在选择合适海面风应力参数化方案情况下,文中采用的风暴潮模式对强热带气旋增水的数值模拟效果较好.

  1. Observed variability of sea surface salinity and thermal inversions in the Lakshadweep Sea during contrast monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Johnson, Z.; Salgaonkar, G.; Nisha, K.; Rajan, C.K.; Rao, R.R.

    The sea surface salinity (SSS) of the Lakshadweep Sea (LS) shows large seasonal variability due to horizontal advection of low (high) salinity waters from south (north) during winter (summer) monsoon. The measurements made in the LS during...

  2. The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    An analysis of thermal Structure in the East Central Arabian Sea associated with a moderate cyclone is presented. The heat storage and the heat budget components have been computed. Under the influence of the cyclone the Sea Surface Temperature (SST...

  3. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  4. Strategic environmental assessment (SEA) for wind energy planning: Lessons from the United Kingdom and Germany

    Energy Technology Data Exchange (ETDEWEB)

    Phylip-Jones, J., E-mail: jonesjp@liverpool.ac.uk; Fischer, T.B., E-mail: fischer@liv.ac.uk

    2015-01-15

    This paper reports on SEA applied in the wind energy sector in the UK and Germany. Based on a review of 18 SEAs, it is found that the quality of SEA documentation is variable, with over a third of them being deemed unsatisfactory. Furthermore, SEA processes are conducted to varying degrees of effectiveness, with scoping a strength but impact prediction and mitigation weaknesses. Generally speaking, the influence of SEA on German wind energy plan making was found to be low and the influence of SEA on UK plans deemed to be moderate. The German plans had a low influence mainly because of a perceived high environmental performance of the underlying plans in the first instance. Substantive outcomes of SEA are not always clear and the influence of SEA on decision making is said to be limited in many cases. Finally, a lack of effective tiering between SEA and project level EIA is also observed. In addition, our findings echo some of the weaknesses of SEA practice found in previous studies of SEA effectiveness, including poor impact prediction and significance sections and a lack of detailed monitoring programmes for post plan implementation.

  5. Characteristic analysis of wind field and sea wave field over the NW Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    刘金芳; 唐晓卫; 何丹华

    2001-01-01

    According to ship observation data over the NW Pacific Ocean during 1950 - 1995, taking 5°x5° grid, the characteristics and variation rule of wind, wave and swell are analyzed. This area is typical monsoon area. In the period of monsoon, the directions of wind, sea wave and swell are roughly consistent. Sea wave of northeasterly is always prevailing in equatorial zone. The monsoon in winter is stronger than in summer, correspondingly, average wave height is higher, and the frequencies of high sea and heavy swell are also bigger. Both of North Indian Ocean and adjacent sea area is also monsoon area, but characteristic is opposite. This paper provides specific data of wind field and wave field and variaton for ship navigation, operation and scientific experiment in the NW Pacific Ocean.

  6. Statistical Seasonal Sea Surface based Prediction Model

    Science.gov (United States)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  7. Modeling the spectrum of infrasonic hydroacoustic radiation generated by the sea surface under storm conditions

    Science.gov (United States)

    Zapevalov, A. S.; Pokazeev, K. V.

    2016-09-01

    Generation of infrasonic radiation into a water medium by sea surface waves is analyzed. The analysis is carried out for the situation in which the infrasound is generated by surface waves with frequencies close to those of dominant waves. The presence of two wave systems on the sea surface is assumed: swell and wind waves. It is shown that if the frequencies of spectral peaks of wind waves and swell diverge by 20%, the maximum value of the radiation spectrum decreases by approximately 40% (if the general directions of the two wave systems are oriented strictly towards each other). A deviation of the general directions of the two wave systems from the opposite direction by 45° leads to a decrease in the maximum value of the radiation spectrum by more than two times.

  8. Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Izumo, T.; Lengaigne, M.; Han, W.; McCreary, J.; Muraleedharan, P.M.

    . Previous studies suggested that WCI sea level variability is primarily driven by remote wind forcing from the Bay of Bengal and equatorial Indian Ocean through coastal Kelvin wave propagation. Using a linear ocean model, we demonstrate that wind forcing...

  9. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high-resolution hur......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  10. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  11. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea

    DEFF Research Database (Denmark)

    Sathe, Ameya; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    A comparison of the atmospheric stability and wind profiles using data from meteorological masts located near two wind farm sites in the North Sea, Egmond aan Zee (up to 116 m) in the Dutch North Sea and Horns Rev (HR; up to 45 m) in the Danish North Sea, is presented. Only the measurements...... that represent long marine fetch are considered. It was observed that within a long marine fetch, the conditions in the North Sea are dominated by unstable [41% at Egmond aan Zee Offshore Wind Farm (OWEZ) and 33% at HR] and near-neutral conditions (49% at OWEZ and 47% at HR), and stable conditions (10% at OWEZ...

  12. Quality control methods for KOOS operational sea surface temperature products

    Institute of Scientific and Technical Information of China (English)

    YANG Chansu; KIM Sunhwa

    2016-01-01

    Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System (KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC (OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.

  13. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002

    Institute of Scientific and Technical Information of China (English)

    HE Hailun; XU Yao

    2016-01-01

    We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns ofN-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.

  14. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Larsén, Xiaoli Guo

    2016-01-01

    , are analyzed for typical wind turbine nacelle heights. Mean wind characteristics, correlation and coherence are also calculated for analogous wind data from simulations with the Weather Research and Forecasting (WRF) model. Results indicate a general good agreement for the coherence calculated based....... The correlation coefficient as a function of the distance calculated from WRF is however higher than observed in the measurements. For the power spectra, wind speed and wind speed step changes distribution the results for all sites are quite similar. The land masses strongly influence the individual wind...... direction distribution of each site. The ability of the WRF model to reproduce the coherence of the measurements demonstrates that its output can be used to estimate the coherence of fluctuations for the integration of offshore energy. The power spectra of WRF time series underestimates the high frequency...

  15. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  16. Validation of simulations of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainlie, M.A.; Gerdes, F.; Schäfke, A.; Özkan Sertlekc, H.

    2013-01-01

    This paper shows that it is possible to simulate realistic shallow-water acoustic communication channels using available acoustic propagation models. Key factor is the incorporation of realistic time-dependent sea surface conditions, including both waves and bubbles due to wind.

  17. Projected changes to surface wind characteristics and extremes over North America in CRCM5

    Science.gov (United States)

    Jeong, Dae Il; Sushama, Laxmi

    2017-04-01

    Changes in the tendency of wind speed and direction have significant implications for long-term water cycle, air pollution, arid and semiarid environments, fire activity, and wind energy production. Furthermore, changes in wind extremes have direct impacts on buildings, infrastructures, agriculture, power lines, and trees. This study evaluates projected changes to wind speed characteristics (i.e., seasonal and annual mean, seasonal and diurnal cycles, directional distribution, and extreme events) for the future 2071-2100 period, with respect to the current 1981-2010 period over North America, using four different simulations from the fifth-generation Canadian Regional Climate Model (CRCM5) with two driving GCMs under RCP (Representative Concentration Pathways) 4.5 and 8.5 scenarios. The CRCM5 simulates the climatology of mean sea level pressure gradient and associated wind direction over North America well when compared to ERA-Interim reanalysis dataset. The CRCM5 also reproduces properly the spatial distributions of observed seasonal and annual mean wind speeds obtained from 611 meteorological stations across North America. The CRCM5 simulations generally suggest an increase in future mean wind speed for northern and eastern parts of Canada, due to a decrease of future mean sea level pressure and more intense low pressure air circulation systems already situated in those regions such as Aleutian and Icelandic Lows. Projected changes to annual maximum wind speed show more spatial variability compared to seasonal and annual mean wind speed as extreme wind speed is influenced more by regional-scale features associated with instantaneous surface temperature and air pressure gradients. The CRCM5 simulations suggest some increases in the future 50-year return levels of wind speed, mainly due to changes in the inter-annual variability of annual maximum wind speed. However, the projected changes vary in spatial pattern with the driving GCM fields and emission scenarios

  18. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  19. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  20. Assessment of offshore wind power potential in the Aegean and Ionian Seas based on high-resolution hindcast model results

    Directory of Open Access Journals (Sweden)

    Takvor Soukissian

    2017-03-01

    Full Text Available In this study long-term wind data obtained from high-resolution hindcast simulations is used to analytically assess offshore wind power potential in the Aegean and Ionian Seas and provide wind climate and wind power potential characteristics at selected locations, where offshore wind farms are at the concept/planning phase. After ensuring the good model performance through detailed validation against buoy measurements, offshore wind speed and wind direction at 10 m above sea level are statistically analyzed on the annual and seasonal time scale. The spatial distribution of the mean wind speed and wind direction are provided in the appropriate time scales, along with the mean annual and the inter-annual variability; these statistical quantities are useful in the offshore wind energy sector as regards the preliminary identification of favorable sites for exploitation of offshore wind energy. Moreover, the offshore wind power potential and its variability are also estimated at 80 m height above sea level. The obtained results reveal that there are specific areas in the central and the eastern Aegean Sea that combine intense annual winds with low variability; the annual offshore wind power potential in these areas reach values close to 900 W/m2, suggesting that a detailed assessment of offshore wind energy would be worth noticing and could lead in attractive investments. Furthermore, as a rough estimate of the availability factor, the equiprobable contours of the event [4 m/s ≤ wind speed ≤ 25 m/s] are also estimated and presented. The selected lower and upper bounds of wind speed correspond to typical cut-in and cut-out wind speed thresholds, respectively, for commercial offshore wind turbines. Finally, for seven offshore wind farms that are at the concept/planning phase the main wind climate and wind power density characteristics are also provided.

  1. Surface chlorophyll, westerly winds, and El Nino in the western Pacific warm pool

    Science.gov (United States)

    Radenac, Marie-Hélène; Messié, Monique; Bosc, Christelle

    The western equatorial Pacific warm pool is characterized by sea surface temperature (SST) higher than 29° C and sea surface salinity (SSS) lower than 35. It is usually considered as a broad oligotrophic region with a nitrate exhausted and low chlorophyll (lower than 0.1 mg m-3 ) surface layer. Nevertheless, ocean colour imagery shows that surface chlorophyll concentrations vary at the interannual, seasonal, and intraseasonal time-scales. In this study, we use the 2000-2007 SeaWiFS data together with QuikScat wind, TMI SST, altimetric sea level, and OSCAR satellite-derived surface currents to describe and understand the variability of the surface chlorophyll in the region. In particular, nutrient and phytoplankton-rich waters upwelled near the country-regionplaceNew Guinea coast influence the distribution of surface chlorophyll in the equatorial warm pool from intra-seasonal to interannual time-scales. We show that the eastern part of the region is occupied by a quasi-persistent strip of very oligotrophic waters with chlorophyll concentrations close to those observed in the subtropical gyres (0.07 mg m-3 ). It extends over about 20 degrees of longitude and its width varies seasonally and with the El Niño/La Niña phases. Overall, this very oligotrophic zone matches n n the well-documented region with the warmest SST (over 30° C), thickest barrier layer (more than 20 m), and highest sea level (more than 220 cm) of the equatorial Pacific. Its eastern limit matches the eastern edge of the warm pool and moves zonally at seasonal and interannual time-scales. While the eastern edge has been described in previous studies, the western edge is poorly known. It is marked by the 0.1 mg m-3 chlorophyll isoline and its zonal motions occur at seasonal, interannual, and intraseasonal time-scales, as well. We investigate the late-2001 to late-2002 time period to assess the intra-seasonal variability of the surface chlorophyll in relation with the wind intra-seasonal variability

  2. The inter-annual variability of the Yellow Sea Warm Current surface axis and its influencing factors

    Institute of Scientific and Technical Information of China (English)

    SONG Dehai; BAO Xianwen; WANG Xiaohua; XU Lingling; LIN Xiaopei; WU Dexing

    2009-01-01

    Based on the Pathfinder sea surface temperature (PFSST), the surface axis and its pattern of the Yellow Sea Warm Current (YSWC) are discussed. A structure of double-warm-tongue is found in February and it varies in different years. Two indexes are calculated to represent the westward shift (WSI) and northward extension (NEI) of the warm water in the Yellow Sea (YS). Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years, respectively. The Empirical Orthogonal Function (EOF) decomposition is applied to the winter wind stress curl and the Kuroshio Current (KC) transport, which are believed to play important roles in forcing the variability of the YSWC surface axis. Statistics shows that the WSI is significantly related with the second EOF mode of the wind stress curl in February, which may force the YSWC surface axis moving westward and maintaining the double warm tongues because of its opposite curl in the YSWC domain. The first EOF mode of wind stress curl in January is propitious for inducing the warm tongue in the YS to advance more northward. Hence, the wind stress curls both in January and in February could force variations of the YSWC surface axis; however, the effect of the January wind stress curl is relatively weaker than that of the February. The relationship between the NEI and the KC transport is remarkable, and it seems that the stronger KC supplies more power to push the YSWC northward against the southward wind.

  3. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    Science.gov (United States)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  4. Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient

    Indian Academy of Sciences (India)

    E C Monahan

    2002-09-01

    Stage A whitecaps (spilling wave crests) have a microwave emissivity of close to 1. Thus if even a small fraction of the sea surface is covered by these features there will be a detectable enhancement in the apparent microwave brightness temperature of that surface as determined by satellite-borne microwave radiometers. This increase in the apparent microwave brightness temperature can as a consequence be routinely used to estimate the fraction of the sea surface covered by stage A whitecaps. For all but the very lowest wind speeds it has been shown in a series of controlled experiments that the air-sea gas transfer coeffcient for each of a wide range of gases, including carbon dioxide and oxygen, is directly proportional to the fraction of the sea surface covered by these stage A whitecaps.

  5. Recent advance in Mean Sea Surface estimates

    Science.gov (United States)

    Pujol, M. I.; Gerald, D.; Claire, D.; Raynal, M.; Faugere, Y.; Picot, N.; Guillot, A.

    2016-12-01

    Gridded Mean Sea Surface (MSS) estimate is an important issue for precise SLA computation along geodetic orbits. Previous studies emphasized that the error from MSS models older than Jason-1 GM was substantial: on average more than 10 to 15% of the SLA variance for wavelengths ranging from 30 to 150 km. Other MSS have been released this last 2 years, and they use geodetic missions such as CryoSat-2 and Jason-1 GM which strongly contribute to improve their resolution and accuracy.We evaluate in this paper the improvements of the recent MSS. This study, mainly based on spectral approach allows us to quantify the errors at various wavelengths. The use of new missions (e.g. SARAL-DP/AltiKa; Sentinel-3A) with low instrumental noise measurement levels (Ka, SAR) opens new perspectives to understand the MSS errors and improve MSS estimate for wavelengths lower than 100km.

  6. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  7. Test of the Louis scheme and COARE algorithm for friction velocity in different wind-sea/swell regimes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing data, tabulated by Donelan et al. (1997.J Phys Oceanog, 27:2 087~2 099), were collected from a mast on the foredeck ofa SWATH (small water-plane area, twin hull) ship in deep sea off the State of Virginia during the surface wave dynamics experiment. These data are representative of low to moderate wind regimes.The aerodynamic roughness length is determined by using the Charnock relationship. The intercomparison shows that the Louis scheme and the COARE algorithm underestimate the friction velocity by 6% and 3% respectively under pure wind sea conditions, 15% and 13% respectively under cross swell conditions, and 21% and 17% respectively under counter swell conditions. The analysis shows that these underestimations were caused by the method chosen to determine the aerodynamic roughness length because it significantly underestimates the aerodynamic roughness length. It is especially true under the cross swell and counter swell conditions.

  8. NUMERICAL STUDY OF WAVE EFFECTS ON SURFACE WIND STRESS AND SURFACE MIXING LENGTH BY THREE-DIMENSIONAL CIRCULATION MODELING

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2006-01-01

    The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A three- dimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.

  9. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  10. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  11. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces is dete...

  12. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.;

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atl...

  13. Errors of five-day mean surface wind and temperature conditions due to inadequate sampling

    Science.gov (United States)

    Legler, David M.

    1991-01-01

    Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.

  14. Dynamic Mechanism of Interannual Sea Surface Height Variability in the North Pacific Subtropical Gyre

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Chui; ZHANG Li-Feng; L(U) Qing-Ping

    2011-01-01

    In this study, the dynamic mechanisms of interannual sea surface height (SSH) variability are investigated based on the first-mode baroclinic Rossby wave model, with a focus on the effects of different levels of wind stress curl (WSC)、 Maximum covariance analysis (MCA) of WSC and SSH anomalies displays a mode with significant WSC anomalies located primarily in the mid-latitude eastern North Pacific and central tropical Pacific with corresponding SSH anomalies located to the west. This leading mode can be attributed to Ekman pumping induced by local wind stress and the westward-propagating Rossby wave driven by largescale wind stress. It is further found that in the middle latitudes, the SSH anomalies are largely determined by WSC variations associated with the North Pacific Gyre Oscillation (NPGO)、 rather than the Pacific Decadal Oscillation (PDO). The sensitivity of the predictive skill of the linear first-mode baroclinic model to different wind products is also examined.

  15. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  16. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite

    Institute of Scientific and Technical Information of China (English)

    MA Wentao; YANG Xiaofeng; YU Yang; LIU Guihong; LI Ziwei; JING Cheng

    2015-01-01

    Rainfall has two significant effects on the sea surface, including salinity decreasing and surface becoming rougher, which have further influence on L-band sea surface emissivity. Investigations using the Aquarius and TRMM 3B42 matchup dataset indicate that the retrieved sea surface salinity (SSS) is underestimated by the present Aquarius algorithm compared to numerical model outputs, especially in cases of a high rain rate. For example, the bias between satellite-observed SSS and numerical model SSS is approximately 2 when the rain rate is 25 mm/h. The bias can be eliminated by accounting for rain-induced roughness, which is usually modeled by rain-generated ring-wave spectrum. The rain spectrum will be input into the Small Slope Approximation (SSA) model for the simulation of sea surface emissivity influenced by rain. The comparison with theoretical model indicated that the empirical model of rain spectrumis more suitable to be used in the simulation. Further, the coefficients of the rain spectrum are modified by fitting the simulations with the observations of the 2–year Aquarius and TRMM matchup dataset. The calculations confirm that the sea surface emissivity increases with the wind speed and rain rate. The increase induced by the rain rate is rapid in the case of low rain rate and low wind speed. Finally, a modified model of sea surface emissivity including the rain spectrum is proposed and validated by using the matchup dataset in May 2014. Compared with observations, the bias of the rain-induced sea surface emissivity simulated by the modified modelis approximately 1e–4, and the RMSE is slightly larger than 1e–3. With using more matchup data, thebias between model retrieved sea surface salinities and observationsmay be further corrected, and the RMSE may be reduced to less than 1 in the cases of low rain rate and low wind speed.

  17. The climatology of the Red Sea - part 1: the wind

    KAUST Repository

    Langodan, Sabique

    2017-05-12

    The wind climatology of the Red Sea is described based on a 30-year high-resolution regional reanalysis generated using the Advanced Weather Research Forecasting model. The model was reinitialized on a daily basis with ERA-Interim global data and regional observations were assimilated using a cyclic three-dimensional variational approach. The reanalysis products were validated against buoy and scatterometers data. We describe the wind climatology and identify four major systems that determine the wind patterns in the Red Sea. Each system has a well-defined origin, and consequently different characteristics along the year. After analysing the relevant features of the basin in terms of their climatology, we investigate possible long-term trends in each system. It is found that there is a definite tendency towards lowering the strength of the wind speed, but at a different rate for different systems and periods of the year.

  18. Biweekly Sea Surface Temperature over the South China Sea and its association with the Western North Pacific Summer Monsoon

    Science.gov (United States)

    Vaid, B. H.

    2017-02-01

    The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.

  19. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  20. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  1. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  2. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  3. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  4. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  5. Evaluation of model simulated and MODIS-Aqua retrieved sea surface chlorophyll in the eastern Arabian Sea

    Science.gov (United States)

    Chakraborty, Kunal; Gupta, Anubhav; Lotliker, Aneesh A.; Tilstone, Gavin

    2016-11-01

    In this study we assess the accuracy of sea surface Chlorophyll-a (Chla) retrieved from satellite (MODIS-Aqua), using standard OC3M algorithm, and from a Regional Ocean Modelling System (ROMS) biophysical model against in situ data, measured in surface waters of the eastern Arabian Sea, from April 2009 to December 2012. MODIS-Aqua OC3M Chla concentrations showed a high correlation with the in situ data with slope close to unity and low root mean square error. In comparison, the ROMS model underestimated Chla, though the correlation was significant indicating that the model is capable of reproducing the trend in in situ Chla. Time Series trends in Chla were examined against wind driven Upwelling Indices (UIW) from April 2009 to December 2012 in north-eastern (Gujarat) and south-eastern (Kochi) coastal waters of the Arabian Sea. The annual peak in Chla along the Kochi coast during the summer monsoon was adequately captured by the model. It is well known that the peak in surface Chla along the Kochi and Gujarat coasts during the summer monsoon is the result of coastal upwelling, which the ROMS model was able to reproduce accurately. The maximum surface Chla along the Gujarat coast during the winter monsoon is due to convective mixing, which was also significantly captured by ROMS biophysical model. There was a lag of approximately one week between the maximum surface Chla and the peak in the Upwelling Index.

  6. Forward scattering from the sea surface: Observations of both subtle and profound effects of bubbles in single-interaction measurements

    Science.gov (United States)

    Dahl, Peter H.

    2005-04-01

    For frequencies of O(10) kHz and above, field data show that near-surface bubbles impact forward scattering from the sea surface in three phases. The first occurs under mild conditions (wind speed less than 5-7 m/s); here a pulse forward scattered from the sea surface is extended in time, but only at levels ~30 dB below the peak level, which itself is not attenuated. The second occurs under more vigorous conditions (wind speed 7-12 m/s); here a significant energy loss is observed, but time and angle spreading (dominated by rough surface scattering) remain relatively unchanged. The third occurs under still more vigorous conditions (wind speed greater than ~12 m/s). Here, there is near total occlusion of the sea surface, time and angle spreading are manifestly altered, and bubble-mediated energy loss becomes bounded by scattering from bubbles. Examples from ASIAEX East China Sea and other archival data sets will be discussed along with a model for bubble-mediated energy loss in forward scattering from the sea surface. In the case of near total occlusion, an interesting example of the knock-down of horizontal coherence will be discussed along with a model that utilizes the van Cittert-Zernike Theorem. [Research supported by ONR Ocean Acoustics.

  7. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    Science.gov (United States)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  8. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    Science.gov (United States)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchanges in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: Air-sea interface in hurricane conditions. J. Geophys. Res. 117, C00J34.

  9. The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan;

    2011-01-01

    This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...... of uncertainties and discuss the utilization of reliability-based design of surface footings for wind turbines....

  10. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    Science.gov (United States)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by

  11. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    Science.gov (United States)

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of surface wind speed decline on hydrology in China

    Science.gov (United States)

    Liu, X.; Zhang, X.; Tang, Q.; Zhang, X.

    2013-12-01

    Surface wind speed decline in China has been widely reported, but its effects on hydrology have not been fully evaluated to date. In this study, we evaluate the effects of wind speed decline on hydrology in China during 1966-2011 by using the Variable Infiltration Capacity (VIC) hydrological model. Two model experiments, i.e. VIC simulations with the observed (EXP1) and detrended wind speed (EXP2), are performed in the major river basins in China. The differences between the two experiments are analyzed to assess the effects of wind speed decline on hydrology. Results show that wind speed has decreased by 29% of its mean in China, even by 80% for some areas in the northern China. The wind speed decline have resulted in a decrease of evapotranspiration by 1-3% of mean annual evapotranspiration and an increase of runoff by 1-6% of mean annual runoff at most basins in China. The effect of wind speed on runoff and soil moisture is large in the northern basins where small change in hydrological conditions would have significant implications for water management. In addition, Wind speed decline has offset the expansion of the drought area in China. It has contributed to a reduction of drought areas by 21%, 17%, 15% and 12% for the mean drought area in the Songhuajiang River, Hai River, Liao River and Yellow River basins, respectively, and by 8.8% of the mean drought area over China. The effect of wind speed decline on soil moisture drought is large in most basins in China expect for the Southwest and Pearl River basins.

  13. Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Shata, A.S.; Hanitsch, R. [Faculty of Electrical Engineering and Computer Science, Institute of Energy and Automation Technology, Technical University, Einsteinufer 11, EM4, Berlin 10587 (Germany)

    2006-07-15

    Wind data from 10 coastal meteorological stations along the Mediterranean Sea in Egypt have been used for statistical analysis to determine the wind characteristics. It was found that three stations show annual mean wind speed greater than 5.0m/s. In order to identify the Weibull parameters for all stations two different methods were applied. The methodical analysis for all stations was done for the corrected monthly and annual mean wind power at a height of 10m, over roughness class 0 (water). The recommended correlation equation was also stated for Mediterranean Sea zone in Egypt. Also the wind power densities for heights of 30-50m were calculated for all stations. Three of them are the best locations, namely: Sidi Barrani, Mersa Matruh, and El Dabaa, where these contiguous stations have great abundantly wind energy density. A technical assessment has been made of the electricity generation using WASP program for two commercial turbines (300kW and 1MW) considering at the three promising sites. The wind turbine of capacity 1MW was found to produce an energy output per year of 2718MWh at El Dabaa station, and the production costs was found 2|cent/kWh. (author)

  14. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  15. Low-Frequency Rotation of Surface Winds over Canada

    Directory of Open Access Journals (Sweden)

    Richard B. Richardson

    2012-10-01

    Full Text Available Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W to 25 days at Resolute (75°N, 95°W. Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.

  16. Collision risks at sea: species composition and altitude distributions of birds in Danish offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Blew, J.; Hoffmann, M.; Nehls, G. [BioConsult SH (Germany)

    2007-07-01

    This study investigates the collision risks of birds in operating offshore wind farms, focussing on all bird species present in the direct vicinity of the wind farms, their altitude distribution and reactions. The project was conducted jointly by BioConsult SH and the University of Hamburg in the two Danish offshore wind farms Horns Rev (North Sea) and Nysted (Baltic Sea) in the framework of a Danish-German cooperation and financed by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Data were collected between March 2005 and November 2006, using a ship anchored at the edge of the offshore wind farms. In this way, bird species of all sizes could be considered. Daytime observations yielded data on species composition, flight routes and potential reactions of the birds. Radar observations provided altitude distributions inside and outside the wind farm area and also reactions. The results shall help to further describe and assess the collision risk of different species groups. Since data analysis is still running, exemplary results will be presented here. 114 species have been recorded in Nysted and 99 in Horns Rev, approximately 65% of which have been observed inside the wind farm areas. Migrating birds seem to avoid flying into the wind farms, whereas individuals present in the areas for extended time periods utilize areas within the wind farms. While a barrier effect exists for species on migration, resident species probably have a higher collision risk. Raptors migrating during daylight frequently enter the wind farm area on their flight routes, correcting their flight paths in order to avoid collisions. Radar results show that during times of intensive migration, the proportion of birds flying at high altitudes and thus above windmill height is higher than in times of low migration intensity. Consequently, there is a lower proportion of migrating birds flying within the risk area. Data will be further analysed to

  17. Influence of northeasterly trade winds on intensity of winter bloom in the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, R.M.; Raman, M.; Parab, S.; Matondkar, S.G.P.; Nayak, S.

    , University of Pune for help and su g- gestions. Received 22 July 2005; revised accepted 20 January 2006 In fluence of northeasterly trade winds on inte n sity of winter bloom in the Northern Arabian Sea R. M. Dwivedi 1, *, Mini Raman 1...

  18. Storm surges in the Singapore Strait due to winds in the South China Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Tkalich, P.; Vethamony, P.; Babu, M.T.; Malanotte-Rizzoli, P.

    with one-dimensional two-step channel. The solution is utilized to derive simple model connecting SLAs in SS with the wind speeds over central part of SCS. Due to delay of sea level anomaly in SS with respect to the remote source at SCS, the simplified...

  19. A wind-driven nonseasonal barotropic fluctuation of the Canadian Inland Seas

    Directory of Open Access Journals (Sweden)

    C. G. Piecuch

    2014-10-01

    Full Text Available A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian Inland Seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin is identified based on Gravity Recovery and Climate Experiment (GRACE retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is partly related to the North Atlantic Oscillation and is associated with net flows into and out of the Canadian Inland Seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, possibly related to wind setup, as well as over the northern North Atlantic Ocean, potentially mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian Inland Seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.

  20. Superimposition of wind seas on pre-existing swells off Goa coast

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Aboobacker, V.M.; Menon, H.B.; AshokKumar, K.; Cavaleri, L.

    increase in wave height and decrease in wave period with increase in local wind speeds due to sea breeze system. During a typical daily cycle, the wave height reaches its peak early in the afternoon, then it decays progressively back to the swell conditions...

  1. Determining Land-Surface Parameters from the ERS Wind Scatterometer

    NARCIS (Netherlands)

    Woodhouse, I.H.; Hoekman, D.H.

    2000-01-01

    The ERS-1 wind scatterometer (WSC) has a resolution cell of about 50 km but provides a high repetition rate (less than four days) and makes measurements at multiple incidence angles. In order to retrieve quantitative geophysical parameters over land surfaces using this instrument, a method is presen

  2. The Influence of Wind on HF Radar Surface Current Forecasts

    Science.gov (United States)

    2008-12-01

    9 1. Ekman , 1905 .........................................................................................9 2. McNally, Luther and...x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. Ekman Spiral. – The angle between the wind and the surface current is 45º... Paul Jessen Terry Rago Superv. Gen. Eng. Robert Wyland I also appreciate the Oceanography and Meteorology/Oceanography students

  3. Meteorological influences on the surface hydrographic patterns of the North Aegean Sea:

    Directory of Open Access Journals (Sweden)

    Georgios Sylaios

    2011-03-01

    Full Text Available Hydrographic data from the North Aegean Sea were used to examine the summer variability of surface water masses during the period 1998-2001. Attention was placed on the surface hydrographic features of the area, such as the Black Sea Water (BSW plume expansion, the frontal characteristics of the BSW with the Levantine Intermediate Water (LIW and the variability of submesoscale hydrographic features (such as the Samothraki Anticyclone. Strong southerly wind stresses were found responsible for relaxing the horizontal density gradients across the BSW-LIW frontal zone and displacing this front to the north of Lemnos Island, thus suppressing the Samothraki Anticyclone towards the Thracian Sea continental shelf. Under northerly winds, the BSW-LIW front returns to its regular position (south of Lemnos Island, thus allowing the horizontal expansion of the Samothraki gyre up to the Athos Peninsula. Present results indicate the importance of medium-term wind stress effects on the generation of Samothraki Anticyclone suppression/expansion events.

  4. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  5. Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes

    Science.gov (United States)

    Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.

    2010-12-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from

  6. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    Science.gov (United States)

    Ito, Junshi; Niino, Hiroshi

    2016-06-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  7. Steps towards a SAR-based wind atlas in the Baltic Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    In the EU-Norsewind project (2008-2012) one task was to assess the wind climate in the Baltic Sea using Synthetic Aperture Radar (SAR) observations. The presentation outlines the methodology and key results. The Baltic Sea has been mapped relatively frequently by Envisat ASAR since 2002 and during...... and time prior to input in CMOD-5. Around 900 collocated pairs of observations were found between the SAR-based wind maps and the 10 offshore meteorological masts. The statistical comparison on wind speed (direction) showed root mean square error 1.17 m/s (6.29°), bias of -0.25 m/s (7.75°), standard...

  8. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Andrew Bakun

    2001-09-01

    Full Text Available The historical file of wind observations from maritime weather reports is summarized to identify the characteristic seasonal distributions of wind-induced Ekman upwelling and downwelling in the Mediterranean Sea. Both coastal upwelling/downwelling and wind-stress curl-driven open ocean upwelling/downwelling are treated in a unified description. Vigorous upwelling zones are found in the eastern Aegean Sea, off the west coast of Greece, and in the Gulf of Lyons. The southern coast of the Mediterranean is found to be primarily a downwelling area, although significant coastal upwelling does appear in the Gulf of Sidra during the spring and summer seasons, and along the Algerian coast during summer.

  9. Sea Spray Effects on Surface Heat and Moisture Fluxes

    Science.gov (United States)

    2016-06-07

    Andreas, E. L., and E. C. Monahan, 1999: The role of whitecap bubbles in air- sea heat and moisture exchange. J. Phys. Oceanogr., in press. ...1 Sea Spray Effects on Surface Heat and Moisture Fluxes Edgar L Andreas U. S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road...www.crrel.usace.army.mil LONG-TERM GOAL The goal is to investigate, theoretically and through analyzing existing data, the role that sea spray plays in

  10. Assessment of Sea Surface Temperatures in the Caribbean Sea Associated with Hurricane Tracks Using GOES-East Infrared Measurement

    Science.gov (United States)

    Comeaux, J. C.; Walker, N. D.; Haag, A.; Pino, J. V.

    2016-02-01

    A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.

  11. Sea Surface Sound: discussion session on future research and applications

    Science.gov (United States)

    Buckingham, M. J.; Potter, J. R.

    On one evening during the week of the workshop, a brain-storming session was held with a view to identifying important areas of research into sea surface sound that should be addressed in the future. Potential applications of sea surface sound were included in the discussion. Acting as chairman, Michael Buckingham (MB) introduced the session, which was attended by most of the participants at the workshop. The intention was to encourage the participants to explore, in an informal setting, the future of sea surface sound. A summary of comments and conclusions, compiled from MB's notes of the discussion, is presented below…

  12. Fouling-resistant surfaces of tropical sea stars.

    Science.gov (United States)

    Guenther, Jana; Walker-Smith, Genefor; Warén, Anders; De Nys, Rocky

    2007-01-01

    Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.

  13. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  14. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Russian Foundation for Basic Research (Grants No. 15-35-20953, 14-05-00367, 15-45-02580) and project ASIST of FP7. The field experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), numerical simulations are partially supported by Russian Science Foundation (Agreement No. 14-17-00667). References 1. A.V. Babanin, V.K. Makin Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233 2. S.S. Atakturk, K.B. Katsaros Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 1999, 29, pp. 633-650 3. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu.I. Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment // Hindawi Publishing Corporation, Advances in Meteorology, 2016, Vol. 1, article ID 574602 4. G.A. Baydakov, A.M. Kuznetsova, D.A. Sergeev, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, and Yu.I. Troitskaya Field study and numerical modeling of wind and surface waves at the middle-sized water body // Geophysical Research Abstracts, Vol.17, EGU2015-9427, Vienne, Austria, 2015.

  15. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface.

    Science.gov (United States)

    D'Alimonte, Davide; Kajiyama, Tamito

    2016-04-18

    Above-water radiometry depends on estimates of the reflectance factor ρ of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on ρ values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on ρ simulations reduces from ∼17 to ∼10% when the wind speed increases from 0 to 14m s-1. An opposite tendency characterizes the modeling of the sea-surface slope variance, with ρ differences up to ∼12% at a wind speed of 10m s-1. The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range ∼13 to ∼18%. The ρ changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40° with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field.

  16. Future trends of the Sea Surface Temperature for the Caribbean and the Western Mediterranean Seas

    Directory of Open Access Journals (Sweden)

    L. Garcies

    2006-01-01

    Full Text Available Global Climate Models foresee a general warming of the atmosphere, with varying intensity depending on the characteristics of each model and the hypotheses made on the release of gases of antropic origin. The warming is not expected to be homogeneous over the planet. In this work we focus on the evolution of the sea surface temperature of the Caribbean and the Mediterranean seas, and its linked with the likely prolongation of the hurricane season and the increase of strength of the hurricanes in the Caribbean, as well as with the more apt conditions for severe weather in the Mediterranean sea. In both areas more frequent occurence and intensity of severe weather events are expected due to the predicted increment of the sea surface temperature, 1.5ºC for the Caribbean sea and 2.5ºC for the Mediterranean sea.

  17. Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics.

    Science.gov (United States)

    Bourlier, Christophe

    2005-07-10

    The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.

  18. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  19. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  20. Sea state observation in island-sheltered nearshore zone based on in situ intermediate-water wave measurements and NCEP/CFSR wind data

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.

    In this study, wind-seas, swells, and the coastal wind pattern are examined to interpret the temporal diversity of the sea state in the island-sheltered nearshore zone off Karwar on the west coast of India. The sea state is analyzed based on the sea...

  1. Influence of surface stressing on stellar coronae and winds

    CERN Document Server

    Jardine, M; van Ballegooijen, A; Donati, J -F; Morin, J; Fares, R; Gombosi, T I

    2013-01-01

    The large-scale field of the Sun is well represented by its lowest energy (or potential) state. Recent observations, by comparison, reveal that many solar-type stars show large-scale surface magnetic fields that are highly non-potential - that is, they have been stressed above their lowest-energy state. This non-potential component of the surface field is neglected by current stellar wind models. The aim of this paper is to determine its effect on the coronal structure and wind. We use Zeeman-Doppler surface magnetograms of two stars - one with an almost potential, one with a non-potential surface field - to extrapolate a static model of the coronal structure for each star. We find that the stresses are carried almost exclusively in a band of uni-directional azimuthal field that is confined to mid-latitudes. Using this static solution as an initial state for an MHD wind model, we then find that the final state is determined primarily by the potential component of the surface magnetic field. The band of azimut...

  2. Deterministic nature of the underlying dynamics of surface wind fluctuations

    Directory of Open Access Journals (Sweden)

    R. C. Sreelekshmi

    2012-10-01

    Full Text Available Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  3. Deterministic nature of the underlying dynamics of surface wind fluctuations

    Science.gov (United States)

    Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.

    2012-10-01

    Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  4. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  5. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  6. OW AVISO Sea-Surface Height & Niiler Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  7. OW AVISO Sea-Surface Height & Levitus Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  8. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  9. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  10. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  11. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  12. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  13. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  14. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  15. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  16. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  17. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  18. Zooplankton incidence in abnormally high sea surface temperature in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Zooplankton in an abnormally high sea surface temperature (33.1 to 33.8 degrees C) and alternate bands of slick formation were studied in the Eastern Arabian Sea during 26 and 29 April 1981. The phenomenon which may be due to intense diurnal heating...

  19. Effects of the surface waves on air-sea interactions of the sea spray

    NARCIS (Netherlands)

    Francius, M.J.; Eijk, A.M.J. van

    2006-01-01

    Aerosols are important to a large number of processes in the marine boundary layer. On a micro-meteorological scale, they influence the heat and moisture budgets near the sea surface. Since the ocean acts both as a source and a sink for aerosols, the sea spray droplets may transfer water vapour and

  20. Reminiscences on the study of wind waves

    OpenAIRE

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Resear...

  1. Pelagic effects of offshore wind farm foundations in the stratified North Sea

    Science.gov (United States)

    Floeter, Jens; van Beusekom, Justus E. E.; Auch, Dominik; Callies, Ulrich; Carpenter, Jeffrey; Dudeck, Tim; Eberle, Sabine; Eckhardt, André; Gloe, Dominik; Hänselmann, Kristin; Hufnagl, Marc; Janßen, Silke; Lenhart, Hermann; Möller, Klas Ove; North, Ryan P.; Pohlmann, Thomas; Riethmüller, Rolf; Schulz, Sabrina; Spreizenbarth, Stefan; Temming, Axel; Walter, Bettina; Zielinski, Oliver; Möllmann, Christian

    2017-08-01

    A recent increase in the construction of Offshore Wind Farms (OWFs) has initiated numerous environmental impact assessments and monitoring programs. These focus on sea mammals, seabirds, benthos or demersal fish, but generally ignore any potential effects OWFs may have on the pelagic ecosystem. The only work on the latter has been through modelling analyses, which predict localised impacts like enhanced vertical mixing leading to a decrease in seasonal stratification, as well as shelf-wide changes of tidal amplitudes. Here we provide for the first-time empirical bio-physical data from an OWF. The data were obtained by towing a remotely operated vehicle (TRIAXUS ROTV) through two non-operating OWFs in the summer stratified North Sea. The undulating TRIAXUS transects provided high-resolution CTD data accompanied by oxygen and chlorophyll-a measurements. We provide empirical indication that vertical mixing is increased within the OWFs, leading to a doming of the thermocline and a subsequent transport of nutrients into the surface mixed layer (SML). Nutrients were taken up rapidly because underwater photosynthetically active radiation (PAR) enabled net primary production in the entire water column, especially within submesoscale chlorophyll-a pillars that were observed at regular intervals within the OWF regions. Video Plankton Recorder (VPR) images revealed distinct meroplankton distribution patterns in a copepod-dominated plankton community. Hydroacoustic records did not show any OWF effects on the distribution of pelagic fish. The results of a pre-OWF survey show however, that it is difficult to fully separate the anthropogenic impacts from the natural variability.

  2. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  3. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  4. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  5. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    Abhijit Sarkar; Sujit Basu; A K Varma; Jignesh Kshatriya

    2002-09-01

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall of the auto- correlation in the first few hours with a decorrelation time scale of about 6 hours. For a meaningful comparison between satellite derived products and in situ data, satellite data acquired at different time intervals should be used with appropriate `weights', rather than treating the data as concurrent in time. This paper presents a scheme for temporal weighting using the auto-correlation analysis. These temporal `weights' can potentially improve the root mean square (rms) deviation between satellite and in situ measurements. A case study using the TRMM Microwave Imager (TMI) and Indian Ocean buoy wind speed data resulted in an improvement of about 10%.

  6. Polarimetric Scattering from Two-Dimensional Dielectric Rough Sea Surface with a Ship-Induced Kelvin Wake

    Directory of Open Access Journals (Sweden)

    Pengju Yang

    2016-01-01

    Full Text Available Based on the polarimetric scattering model of second-order small-slope approximation (SSA-II with tapered wave incidence for reducing the edge effect caused by limited surface size, monostatic and bistatic polarimetric scattering signatures of two-dimensional dielectric rough sea surface with a ship-induced Kelvin wake is investigated in detail by comparison with those of sea surface without ship wake. The emphasis of this paper is on an investigation of depolarized scattering and enhanced backscattering of sea surface with a ship wake that changes the sea surface geometric structure especially for low wind conditions. Numerical simulations show that in the plane of incidence rough sea surface scattering is dominated by copolarized scattering rather than cross-polarized scattering and that under low wind conditions a larger ship speed gives rise to stronger enhanced backscattering and enhanced depolarized scattering. For both monostatic and bistatic configuration, simulation results indicate that electromagnetic scattering signatures in the presence of a ship wake dramatically differ from those without ship wake, which may serve as a basis for the detection of ships in marine environment.

  7. Generation of intermediately-long sea waves by weakly sheared winds

    CERN Document Server

    Chernyavski, V M; Golbraikh, E; Mond, M

    2010-01-01

    The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic wind at hurricane conditions (ignoring non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003)^1, Shtemler et al. (2003)^2. The central point of the study is the calculation of the growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula Charnock (1955)^3 for roughness to the hurricane -wind parameters underestimates the growth rate of the wind waves 5-40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.^1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics obtained on the base of the hurricane-wind experimental parameters are self-consistent with the other results of the observations. A maximum ...

  8. Application of a wind-wave-current coupled model in the Catalan coast (NW Mediterranean sea), for wind energy purposes

    Science.gov (United States)

    María Palomares, Ana; Navarro, Jorge; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2016-04-01

    This work shows the main results of the HAREAMAR project (including HAREMAR, ENE2012-38772-C02-01 and DARDO, ENE2012-38772-C02-02 projects), concerning the local Wind, Wave and Current simulation at St. Jordi Bay (NW Mediterranean Sea). Offshore Wind Energy has become one of the main topics within the research in Wind Energy research. Although there are quite a few models with a high level of reliability for wind simulation and prediction in onshore places, the wind prediction needs further investigations for adaptation to the Offshore emplacements, taking into account the interaction atmosphere-ocean. The main problem in these ocean areas is the lack of wind data, which neither allows for characterizing the energy potential and wind behaviour in a particular place, nor validating the forecasting models. The main objective of this work is to reduce the local prediction errors, in order to make the meteo-oceanographic hindcast and forecast more reliable. The COAWST model (Coupled-Ocean-Atmosphere-Wave Sediment Transport Model; Warner et al., 2010) system has been implemented in the region considering a set of downscaling nested meshes to obtain high-resolution outputs in the region. The adaptation to this particular area, combining the different wind, wave and ocean model domains has been far from simple, because the grid domains for the three models differ significantly. This work shows the main results of the COAWST model implementation to this particular area, including both monthly and other set of tests in different atmospheric situations, especially chosen for their particular interest. The time period considered for the validation is the whole year 2012. A comparative study between the WRF, SWAN and ROMS model outputs (without coupling), the COWAST model outputs, and a buoy measurements moored in the region was performed for this year. References Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean

  9. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    Science.gov (United States)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  10. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  11. Offshore wind farms: effects on the water exchange of the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Burchard, H.; Rennau, H.

    2007-07-01

    Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea Basins. With the present research activities within the BMU project QuantAS-Off (Quantification of water mass transformations in the Arkona Sea - Impact of Offshore Wind Farms) a first attempt is made to obtain estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. With the help of cruise- and station-measurements, numerical local and regional-scale modelling and lab modelling, scientists from the Baltic Sea Research Institute, the University of Rostock and the University of Hanover are bringing their knowledge and techniques together to obtain an estimate of additional turbulent mixing of Offshore wind Farms to dense bottom currents. This estimate is then being implemented into a high-resolution regional model running at the Baltic Sea Research Institute of Warnemuende. This numerical model simulation, which is carried out using the General Estuarine Transport Model (GETM; www.getm.eu) during nine months in 2003 and 2004, has already successfully been validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea with an agreement that is fairly good representing the strength and occurrence of inflow events. A bulk measure for mixing activity is then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance. This measure identifies the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and northwest of the island of Ruegen. (orig.)

  12. Comparison of remote sensing data with in-situ wind observation during the development of the South China Sea monsoon

    Institute of Scientific and Technical Information of China (English)

    LI Jian; WANG Dongxiao; CHEN Ju; YANG Lei

    2012-01-01

    Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009.The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate,except for the extremes of high wind speeds (>13.8 m/s) and very low wind speeds (<1.5 m/s)where direction is poorly predicted.In-situ observations show that the summer monsoon in the northern S CS starts between May 6 and June 1.From March 13,2010 to August 31,2010,comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands,as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT,ASCAT and AMSR-E data are good enough for research.It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements.Remarkable changes were observed in wind,barometric pressure,humidity,outgoing longwave radiation (OLR),air temperature,rainfall and SST during the monsoon onset.The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS.The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt,and then the belt bifurcates in the SCS,with one part moving northeastward into the tropical western North Pacific,and another southward into western Kalimantan.This largely determined the pattern of the SCS summer monsoon.Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer.This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.

  13. The impact of grid and spectral nudging on the variance of the near-surface wind speed

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.

    2015-01-01

    variance in the Weather Research and Forecasting model is analyzed. Simulations are run on nested domains with horizontal grid spacing 15 and 5 km over the Baltic Sea region. For the 15 km domain, 36-hr simulations initialized each day are compared with 11-day simulations with either grid or spectral......Grid and spectral nudging are effective ways of preventing drift from large scale weather patterns in regional climate models. However, the effect of nudging on the wind-speed variance is unclear. In this study, the impact of grid and spectral nudging on near-surface and upper boundary layer wind...

  14. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  15. Converting Offshore Wind into Electricity. The Netherlands' contribution to offshore wind energy knowledge. We at Sea research programme 2004-2010

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, J. (ed.); Westra, C.; Rademakers, L. [ECN Wind Energy, Petten (Netherlands); De Vries, E. [Rotation Consultancy, Amersfoort (Netherlands); Zaaijer, M. [Delft University of Technology TUD, Delft (Netherlands); Asjes, J.; Lindeboom, H. [IMARES, Wageningen UR, Wageningen (Netherlands); Van Hulle, F. [XP Wind, Brussels (Belgium)

    2011-07-01

    This book offers an overview of the results of the Netherlands' offshore wind energy research program We at Sea. The program was carried out from 2004 to 2010 and covered the entire spectrum of topics associated with the accelerated implementation of large scale offshore wind power on the North Sea. The topics, described in this book include: Wind turbines and wind farms (new concepts and design tools); Transport, installation and logistics; Operation and maintenance; Grid integration; Ecological impacts and spatial planning; Implementation scenarios; Industrial and societal aspects. The We at Sea programme's results are presented in the context of worldwide advances in large scale implementation of offshore wind power and science and technology development. From the We at Sea topics, selected projects are summarised. These give a comprehensive view of the contribution of the Netherlands' technical and scientific community to the knowledge base of offshore wind power. In particular significant results were achieved in the development of operation and maintenance (cost estimation and operational optimisation), access technology, new concepts and the analysis of the impact of wind turbines on marine life and birds.

  16. Gas transfer under high wind and its dependence on wave breaking and sea state

    Science.gov (United States)

    Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi

    2016-04-01

    Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer

  17. On the onset of surface wind drift at short fetches as observed in a wind wave flume

    Science.gov (United States)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Robles, Lucia

    2014-05-01

    Ocean surface drift is of great relevance to properly model wind waves and specially the early stages of surface waves development and ocean-atmosphere fluxes during incipient wind events and storms. In particular, wave models are not so accurate predicting wave behaviour at short fetches, where wind drift onset might be very important. The onset of surface drift induced by wind and waves is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide reference information to the corresponding surface drift onset recorded at rather short non-dimensional fetches. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Surface drift values were up to 0.5 cm/s for the highest wind while very distinctive shear was detected in the upper 1.5 cm. Rather linear variation of surface drift was observed with depth. Evolution of the surface drift velocity is analysed and onset behaviour is addressed with particular emphasis in accelerated winds. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from ANUIES-ECOS M09-U01 project, CONACYT-187112 Estancia Sabática, and Institute Carnot, is greatly acknowledged.

  18. Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds

    Indian Academy of Sciences (India)

    B N Goswami; E N Rajagopal

    2003-03-01

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds su ered from easterly bias of 1.0-1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0-3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.

  19. Onshore and offshore wind resource evaluation in the northeastern area of the Iberian Peninsula: quality assurance of the surface wind observations

    Science.gov (United States)

    Hidalgo, A.; González-Rouco, J. F.; Jiménez, P. A.; Navarro, J.; García-Bustamante, E.; Lucio-Eceiza, E. E.; Montávez, J. P.; García, A. Y.; Prieto, L.

    2012-04-01

    Offshore wind energy is becoming increasingly important as a reliable source of electricity generation. The areas located in the vicinity of the Cantabrian and Mediterranean coasts are areas of interest in this regard. This study targets an assessment of the wind resource focused on the two coastal regions and the strip of land between them, thereby including most of the northeastern part of the Iberian Peninsula (IP) and containing the Ebro basin. The analysis of the wind resource in inland areas is crucial as the wind channeling through the existing mountains has a direct impact on the sea circulations near the coast. The thermal circulations generated by the topography near the coast also influence the offshore wind resource. This work summarizes the results of the first steps of a Quality Assurance (QA) procedure applied to the surface wind database available over the area of interest. The dataset consists of 752 stations compiled from different sources: 14 buoys distributed over the IP coast provided by Puertos del Estado (1990-2010); and 738 land sites over the area of interest provided by 8 different Spanish institutions (1933-2010) and the National Center of Atmospheric Research (NCAR; 1978-2010). It is worth noting that the variety of institutional observational protocols lead to different temporal resolutions and peculiarities that somewhat complicate the QA. The QA applied to the dataset is structured in three steps that involve the detection and suppression of: 1) manipulation errors (i.e. repetitions); 2) unrealistic values and ranges in wind module and direction; 3) abnormally low (e.g. long constant periods) and high variations (e.g. extreme values and inhomogeneities) to ensure the temporal consistency of the time series. A quality controlled observational network of wind variables with such spatial density and temporal length is not frequent and specifically for the IP is not documented in the literature. The final observed dataset will allow for a

  20. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?

    Science.gov (United States)

    Newman, Matthew; Sardeshmukh, Prashant D.

    2017-08-01

    The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.

  1. Influence of winds on temporally varying short and long period gravity waves in the near shore regions of Eastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    J. Glejin

    2012-09-01

    Full Text Available Wave data collected off Ratnagiri, west coast of India during 1 May 2010 to 30 April 2012 is used in the study. Seasonal and annual variation in wave data controlled by the local wind system such as sea breeze and land breeze, and remote wind generated long period waves observed along the west coast of India, is studied. Sea breeze plays an important role in determining the sea state during pre and post monsoon seasons and the maximum wave height is observed during peak hours of sea breeze at 15:00 UTC. Long period waves (peak period over 13 s are observed mainly during the pre and the post monsoon season. Maximum peak period observed during the study is 22 s and is in the month of October. Long period waves observed during the south west monsoon period of 2011 are identified as swell propagated from the Southern Ocean with an estimated travelling time of 5–6 days. The swells reaching the Arabian Sea from the South Indian Ocean and Southern Ocean, due to storms during the pre and post monsoon periods will modify the near surface winds, due to the dominant wave induced wind regime. Energy spectrum of observed waves indicates onset and decline of strong south west monsoon winds. Convergence of energy-containing frequency bands corresponding to short period waves (Tp < 8 s and long period waves (Tp > 13 s to intermediate period waves (8 < Tp < 13 s are observed at the end of the pre monsoon season; divergence is observed during the start of the post monsoon period from intermediate period waves to short period waves and long period waves. South west monsoon period is characterized by the energy corresponding to the frequency band of intermediate period waves along the west coast of India.

  2. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  3. Impact of Air Pollution on Summer Surface Winds in Xi'an

    Institute of Scientific and Technical Information of China (English)

    杨新; 董文杰; 刘芳霞

    2011-01-01

    By analysis of observation data,this paper demonstrates that pollution particles could reduce surface wind speed through blocking solar radiation to the ground.The comparation between temperature at the lowland meteorological station Xi'an and that over the nearby highland station Mt.Hun suggests that surface solar radiation at Xi'an is reduced due to the increasing anthropogenic aerosols.The reduced surface energy suppresses the atmospheric instability and convective flows,and thus the downward transfer of faster winds aloft is reduced.Consequently,wind speeds near surface are weakened.This reduction of surface winds is shown by the significant reverse trends of wind speeds over the two stations at different elevations.The aerosols' effects on winds are also manifested in the trends of radionsonde wind speed.The decreased surface winds in Xi'an have also reduced local pan evaporation.

  4. Assessing the Impact of the Tunø Knob Wind Park on Sea Ducks : the Influence of Food Resources

    DEFF Research Database (Denmark)

    Guillemette, M.; Larsen, J. K.; Clausager, I.

    Abstract This study deals with the influence of benthos abundance when assessing the potential impact of a small wind park on wintering sea ducks. Using the Before-After-Control-Impact design, it was suggested in a recent study (Guillemette et al. 1998) that the wind park provoked a decline...... did not reach the level observed during the baseline year. Finally, the distribution of common eiders in 1997-98 on the study site as a whole was very similar to the distribution observed during the baseline year. A similar observation was made around the wind park. These results support...... the hypothesis that the decline of sea ducks observed during the two After years was not caused by the wind park. We conclude that without measuring the abundance and the distribution of food supply, it will remain difficult to make any reliable impact assessment of an offshore wind park on sea ducks....

  5. Generation of intermediately-long sea waves by weakly sheared winds

    CERN Document Server

    Chernyavski, V M; Golbraikh, E; Mond, M

    2010-01-01

    The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic-wind profile at hurricane conditions. Non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003), Shtemler et al. (2010) are ignored. The central point of the study is the calculation of the wave growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula for roughness to the hurricane-wind parameters underestimates the growth rate from 5 to 40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics found on the base of the hurricane-wind experimental parameters are consistent with the other results of the observations. Obtained in the present study a maxi...

  6. Global monitoring of Sea Surface Salinity with Aquarius

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  7. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  8. Reminiscences on the study of wind waves.

    Science.gov (United States)

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  9. Direct and Inverse Cascades in the Wind-Driven Sea

    CERN Document Server

    Zakharov, Vladimir E

    2015-01-01

    We offer a new form for the S(nl) term in the Hasselmann kinetic equation for squared wave amplitudes of wind-driven gravity wave. This form of S(nl) makes possible to rewrite in differential form the conservation laws for energy, momentum, and wave action, and introduce their fluxes by a natural way. We show that the stationary kinetic equation has a family of exact Kolmogorov-type solutions governed by the fluxes of motion constants: wave action, energy, and momentum. The simple "local" model for S(nl) term that is equivalent to the "diffusion approximation" is studied in details. In this case, Kolmogorov spectra are found in the explicit form. We show that a general solution of the stationary kinetic equation behind the spectral peak is described by the Kolmogorov-type solution with frequency-dependent fluxes. The domains of "inverse cascade" and "direct cascade" can be separated by natural way. The spectrum in the universal domain is close to $\\omega^{-4}$.

  10. Theoretical investigation and mathematical modelling of a wind energy system case study for Mediterranean and Red Sea

    Energy Technology Data Exchange (ETDEWEB)

    Shata, Ahmed Shata Ahmed

    2008-06-26

    Fossil fuel is getting more and more expensive every year, and is not readily available in some remote locations. Today, wind power can be harnessed to provide some or all of the power for many useful tasks such as generating electricity, pumping water and heating a house or barn. Egypt has two coastal areas that show significant promise for wind energy exploitation; the north coast on the Mediterranean Sea and the east coast on the Red Sea. The wind energy is utilized along the coast of Mediterranean Sea in Egypt on few occasions, while from national programs for wind energy utilization in Egypt, at the Red Sea coast, the master plan calls for 600 MW which are expected to be achieved by the year 2005. The contribution of fossil fuels (oil and natural gas) to electricity production in Egypt accounts for about 79% of total production, while 21% is hydropower. The demand is expected to grow rapidly to meet the large requirements of future projects. Studies showed that there is an additional need of annual electricity generation capacity around 1000 MW/year up to 2017 [14]. The purpose of this thesis is to present a new analytical method for the calculation of the wind energy potential available along the north coast of the Mediterranean Sea and the east coast of Red Sea in Egypt and moreover, it estimates the possible electrical power generated by large wind turbines and the expected cost in Euro cent/kWh for the power level of 2000 kW. It is hoped that the data analysis will help to identify good sites in Egypt for new wind turbine installations. This evaluation is hoped to trigger the use of large wind turbines at the selected sites along the coasts of Mediterranean Sea and Red Sea in Egypt. (orig.)

  11. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  12. Impact Assessment of an Off-Shore Wind Park on Sea Ducks

    DEFF Research Database (Denmark)

    Guillemette, M.; Larsen, J. K.; Clausager, I.

    and maintain these populations of aquatic birds and such shallow coastal areas are precisely the type of areas in which future wind parks are planned. Two general approaches were adopted for the investigation: the before-after-control-impact design (BACI) and After studies conducted around the wind park...... in 1994-97. Danish coastal waters support very large, internationally important concentrations of moulting, migrating and wintering sea ducks which depend on shallow water areas as major feeding habitats. Denmark is committed, in relation to international conventions and EU directives, to protect....... The aim of the BACI studies was to compare bird abundance and distribution before and after the construction of the wind park and between the area presumably affected by the development and a control area. This was carried out on three spatial scales: i) conducting aerial surveys in two large zones (about...

  13. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  14. The Response of North Pacific Sea Surface Temperature, Wind Speed and Ocean Circulation to the Freshwater Forcing in Boreal Winter%北太平洋冬季SST、风场及环流对淡水强迫的响应

    Institute of Scientific and Technical Information of China (English)

    周舒岚; 林霄沛; 张进乐

    2012-01-01

    通过海气耦合模式CCSM3( The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异.结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布.阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强.黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制.风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导.%The changes and its regional differences of sea surface temperature, wind speed and ocean circulation in North Pacific Ocean induced by freshwater input in North Atlantic Ocean are investigated using The Community Climate System Model version 3 (CCSM 3). The analyses are based on boreal winter responses. The results demonstrate as follow: warming in particular areas on North Pacific Ocean although cooling is dominated; SST increases on south of the equator in the eastern tropical Pacific and causes tropical SST dipole. Aleutian low is shifted northward while midlatitude westerlies are weakened; the northeast trades are intensified in tropical Pacific. Kurshio and south equatorial current are weakened while subtropical countercurrent and north equatorial current are intensified. The southward currents play a crucial role in Japan Sea. The changing of wind and ocean current together cause SST in north Pacific. a-nomaly distributes in a complex space variability. The cooling in North Pacific mid and high latitudes are dominated by atmospheric processes. Ocean dynamic process mainly affects the area of Kuroshio, Japan Sea and

  15. Epifauna dynamics at an offshore foundation--implications of future wind power farming in the North Sea.

    Science.gov (United States)

    Krone, Roland; Gutow, Lars; Joschko, Tanja J; Schröder, Alexander

    2013-04-01

    In the light of the introduction of thousands of large offshore wind power foundations into the North Sea within the next decades, this manuscript focuses on the biofouling processes and likely reef effects. The study explores the macrozoobenthos (biofouling) colonization at an offshore platform which is comparable to offshore wind turbine foundations. A total of 183 single samples were taken and the parameters water depth and time were considered comparing biofouling masses and communities. The blue mussel Mytilus edulis, Anthozoa and the Amphipoda Jassa spp. were the dominant species. The community from the 1 m zone and those from the 5 and 20-28 m zones can clearly be differentiated. The 10 m zone community represents the transition between the M. edulis dominated 1 m and 5 m zones and the Anthozoa dominated 20-28 m zone. In the future offshore wind farms, thousands of wind turbine foundations will provide habitat for a hard bottom fauna which is otherwise restricted to the sparse rocky habitats scattered within extensive sedimentary soft bottoms of the German Bight. However, offshore wind power foundations cannot be considered natural rock equivalents as they selectively increase certain natural hard bottom species. The surface of the construction (1280 m²) was covered by an average of 4300 kg biomass. This foundation concentrates on its footprint area (1024 m²) 35 times more macrozoobenthos biomass than the same area of soft bottom in the German exclusive economic zone (0.12 kg m(-2)), functioning as a biomass hotspot. Concerning the temporal biomass variation, we assume that at least 2700 kg biomass was exported on a yearly basis. 345 × 10(4) single mussel shells of different sizes were produced during the study period. It is anticipated that the M. edulis abundance will increase in the North Sea due to the expansion of the offshore wind farm development. This will result in the enhanced production of secondary hard substrate (mussel shells

  16. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    Science.gov (United States)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  17. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  18. Statistics of Wind over the Red Sea with Application to the Exodus Question.

    Science.gov (United States)

    Nof, Doron; Paldor, Nathan

    1994-08-01

    This paper supplements an earlier article by Nof and Paldor that offered a possible explanation for the biblical crossing of the Red Sea in terms of natural phenomena. In that article, it was suggested that sustained winds (of 20 m s1) could have caused a receding of the shoreline (of the Gulf of Suez) of more than a kilometer from its original prewind position. Such a wind would also be associated with a sea level drop of more than 2.5 m that would expose a swath of Red Sea bottom and make a crossing possible. The present article puts this nonlinear theory on firmer ground by providing a statistical analysis of the actual wind pattern in the area.The authors used the Weibull distribution, the known duration of typical storms in the area, and direct measurements in the region. On the basis of the Weibull distribution applied to winds in the part of the Indian Ocean adjacent to the Red Sea, it is argued that the likelihood of a storm sustaining winds of 20 m s1 and lasting, as required, for the entire night is roughly once every 2000 years. Direct measurements along the Gulf of Suez suggest, on the other hand, a somewhat lower probability—once every 2400 years or so. When the application of the direct measurement calculation is restricted to a specific time of the year, such as the spring, when the crossing presumably occurred and when the area is usually more stormy than the rest of the year, the likelihood of the event increases to once every 1400 years. However, the relatively high likelihood associated with the last calculation is at least partially a result of the fact that one of the stations was situated in the mountains a few hundred meters above sea level. When this station is excluded from the computation, the likelihood of the storm occurring in April decreases to once every 2400 years.Given the sensitivity of the above predictions to the distribution of the measured values and the fact that both the Weibull distribution method and the direct

  19. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Flores, Hauke; van Franeker, Jan-Andries; Cisewski, Boris; Leach, Harry; Van de Putte, Anton P.; Meesters, Erik (H. W. G.); Bathmann, Ulrich; Wolff, Wirn J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0-2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  20. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Franeker, van J.A.; Cisewski, B.; Leach, H.; Putte, van de A.P.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0–2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  1. Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kontoyiannis, H.; Papadopoulos, V.; Georgopoulos, D. [Hellenic Center for Marine Research, Attica (Greece); Kazmin, A.; Zatsepin, A. [P.P. Shirshov Institute of Oceanography, Moscow (Russian Federation)

    2012-09-15

    Non-smoothed yearly temperature records with minimal statistical uncertainties are constructed for winter and summer of the period 1950-2000 in two areas in the Aegean Sea, for the sub-surface layer of 80-120 m, and two areas in the Black Sea, for the sub-surface layer of sigma-theta isopycnals between 14.5 and 15.4. The specific areas are selected mostly because of the dense hydrographic-data coverage they have during the period 1950-2000. Two trend regimes appear in both Seas: a period of decreasing sea temperatures from the early/mid 1960s to the early/mid 1990s and an apparent warming afterwards. Trends in sea temperatures correlate with trends in the North Atlantic Oscillation (NAO) and partly the East Atlantic West Russian (EAWR) indexes, but the signs of NAO and/or EAWR cannot sufficiently justify the winter-to-winter temperature changes in the entire study area. In examining the wind flows in the sea-level-pressure maps for characteristic winters in which local peaks in the sea-temperature records occur, we identify particular sea-level-pressure structures that are not accounted for by the typical North-Atlantic or East Atlantic-West Russia positive or negative dipoles. In addition, there are winters when the Siberian High induces local maxima in sea-temperatures in the study area. A spectral-coherence analysis of the unfiltered winter sea-temperature and the corresponding teleconnection NAO/EAWR records, shows that common spectral and coherence peaks exist at {proportional_to}5-6, {proportional_to}9-10 and {proportional_to}15-17 years. (orig.)

  2. Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing

    Science.gov (United States)

    Kontoyiannis, H.; Papadopoulos, V.; Kazmin, A.; Zatsepin, A.; Georgopoulos, D.

    2012-09-01

    Non-smoothed yearly temperature records with minimal statistical uncertainties are constructed for winter and summer of the period 1950-2000 in two areas in the Aegean Sea, for the sub-surface layer of 80-120 m, and two areas in the Black Sea, for the sub-surface layer of sigma-theta isopycnals between 14.5 and 15.4. The specific areas are selected mostly because of the dense hydrographic-data coverage they have during the period 1950-2000. Two trend regimes appear in both Seas: a period of decreasing sea temperatures from the early/mid 1960s to the early/mid 1990s and an apparent warming afterwards. Trends in sea temperatures correlate with trends in the North Atlantic Oscillation (NAO) and partly the East Atlantic West Russian (EAWR) indexes, but the signs of NAO and/or EAWR cannot sufficiently justify the winter-to-winter temperature changes in the entire study area. In examining the wind flows in the sea-level-pressure maps for characteristic winters in which local peaks in the sea-temperature records occur, we identify particular sea-level-pressure structures that are not accounted for by the typical North-Atlantic or East Atlantic-West Russia positive or negative dipoles. In addition, there are winters when the Siberian High induces local maxima in sea-temperatures in the study area. A spectral-coherence analysis of the unfiltered winter sea-temperature and the corresponding teleconnection NAO/EAWR records, shows that common spectral and coherence peaks exist at ~5-6, ~9-10 and ~15-17 years.

  3. Site characterization of foundation soil for Offshore Wind Farms - an example from the German North Sea

    Science.gov (United States)

    Kreiter, Stefan; Mörz, Tobias; Metzen, Jan F.; Hepp, Daniel A.; Ossig, Benjamin; Otto, Daniel; Socko, Lukasz; Keil, Hanno; Spieß, Volkhard; Hebbeln, Dierk

    2010-05-01

    The promising possibility to reduce CO2 emissions from energy production by the erection of offshore wind farms caused a boom of wind farm projects in the German North Sea. The projected wind turbines have overall heights of up to 200 m above sea level and require considerable foundation depths of up to 50 m pile length in the subsoil. Little experience exists concerning the optimal geotechnical site characterisation for such projects. As approximately 80 considerable sized foundations are needed per wind farm, costs have to be minimized to help making renewable energies competitive. The cost effective and save design of the foundation depends on a reliable knowledge of the upper 50 to 100 m of the subsoil. The marine subsoil of the German North Sea is in general a favourable foundation soil, but Quaternary buried glacial and fluvial valleys introduce heterogeneities, which have to be accurately mapped and considered for the installation planning. Necessary site investigations combine geophysical exploration, core drilling and cone penetration testing. At the same time they have to be in accordance with the national approval procedure which is organised in Germany in several steps. Here, an industry-financed and scientifically-accompanied geotechnical site characterisation of one exemplary offshore wind farm project is presented (partners: RWE-Innogy, ENOVA and MARUM; Initiative "germanwind"). In order to image the lateral highly heterogeneous sedimentation environment in the North Sea a dense net of high resolution multichannel seismic lines was acquired using the University of Bremen shallow water seismic equipment. This provided seismic images of 1.5 m lateral resolution and 2-3 m vertical resolution therefore overcoming the low signal penetration of conventional boomer seimics and the low resolution of conventional multichannel seismics. The seismic survey was complemented with push cores and cone penetration tests at 14 sites, each reaching down to about 50 m

  4. Changes in snow distribution and surface topography following a snowstorm on Antarctic sea ice

    Science.gov (United States)

    Trujillo, Ernesto; Leonard, Katherine; Maksym, Ted; Lehning, Michael

    2016-11-01

    Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1-10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.

  5. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    Science.gov (United States)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  6. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    OpenAIRE

    2014-01-01

    We analyse recent Mediterranean Sea surface temperatures (SSTs) and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR) daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea) and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin). Ensemble mean scenarios indicat...

  7. Barents Sea heat – transport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  8. STUDY OF NON-BOUSSINESQ EFFCET ON SEA SURFACE HEIGHT

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-yao; WANG Xuan; WANG Xiu-hong; QIAO Fang-li

    2004-01-01

    A set of equations was derived for a non-Boussinesq ocean model in this paper.A new time-splitting scheme was introduced which incorporates the 4th-order Runge-Kutta explicit scheme of low-frequency mode and an implicit scheme of high-frequency mode.With this model,potential temperature,salinity fields and sea surface height were calculated simultaneously such that the numerical error of extrapolation of density field from the current time level to the next one could be reduced while using the equation of mass conservation to determine sea surface height.The non-Boussinesq effect on the density field and sea surface height was estimated by numerical experiments in the final part of this paper.

  9. Effects of the 2003 European heatwave on the Central Mediterranean Sea surface layer: a numerical simulation

    Directory of Open Access Journals (Sweden)

    A. Olita

    2006-05-01

    Full Text Available The effects of anomalous weather conditions on the sea surface layer over the Central Mediterranean were studied with an eddy resolving regional ocean model by performing a 5-year long simulation from 2000 to 2004. The focus was on surface heat fluxes, temperature and dynamics. The analysis of the time series of the selected variables permitted us to identify and quantify the anomalies of the analysed parameters. In order to separate the part of variability not related to the annual cycle and to locate the anomalies in the time-frequency domain, we performed a wavelet analysis of anomalies time series. We found the strongest anomalous event was the overheating affecting the sea surface in the summer of 2003. This anomaly was strictly related to a strong increase of air temperature, a decrease of both wind stress and upward heat fluxes in all their components. The simulated monthly averages of the sea surface temperature were in a good agreement with the remotely-sensed data, although the ocean regional model tended to underestimate the extreme events. We also found, on the basis of the long-wave period of the observed anomaly, this event was not limited to the few summer months, but it was probably part of a longer signal, which also includes negative perturbations of the involved variables. The atmospheric parameters responsible for the overheating of the sea surface also influenced the regional surface and sub-surface dynamics, especially in the Atlantic Ionian Stream and the African Modified Atlantic Water current, in which flows seem to be deeply modified in that period.

  10. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  11. Space Weathering of the Lunar Surface by Solar Wind Particles

    Science.gov (United States)

    Kim, Sungsoo S.; Sim, Chaekyung

    2017-08-01

    The lunar regolith is space-weathered to a different degree in response to the different fluxes of incident solar wind particles and micrometeoroids. Crater walls, among other slating surfaces, are good tracers of the space-weathering process because they mature differently depending on the varying incident angles of weathering agents. We divide a crater wall into four quadrants (north, south, east, and west) and analyze the distribution of 950-nm/750-nm reflectance-ratio and 750-nm reflectance values in each wall quadrant, using the topography-corrected images by Multispectral Imager (MI) onboard SELENE (Kaguya). For thousands of impact craters across the Moon, we interpret the spectral distributions in the four wall quadrants in terms of the space weathering by solar wind particles and micrometeoroids and of gardening by meteroids. We take into account the solar-wind shielding by the Earth’s magnetotail to correctly assess the different spectral behaviors between east- and west-facing walls of the craters in the near-side of the Moon.

  12. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor

    Science.gov (United States)

    Meissner, Thomas; Wentz, Frank J.; Ricciardulli, Lucrezia

    2014-09-01

    In order to achieve the required accuracy in sea surface salinity (SSS) measurements from L-band radiometers such as the Aquarius/SAC-D or SMOS (Soil Moisture and Ocean Salinity) mission, it is crucial to accurately correct the radiation that is emitted from the ocean surface for roughness effects. We derive a geophysical model function (GMF) for the emission and backscatter of L-band microwave radiation from rough ocean surfaces. The analysis is based on radiometer brightness temperature and scatterometer backscatter observations both taken on board Aquarius. The data are temporally and spatially collocated with wind speeds from WindSat and F17 SSMIS (Special Sensor Microwave Imager Sounder) and wind directions from NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System). This GMF is the basis for retrieval of ocean surface wind speed combining L-band H-pol radiometer and HH-pol scatterometer observations. The accuracy of theses combined passive/active L-band wind speeds matches those of many other satellite microwave sensors. The L-band GMF together with the combined passive/active L-band wind speeds is utilized in the Aquarius SSS retrieval algorithm for the surface roughness correction. We demonstrate that using these L-band wind speeds instead of NCEP wind speeds leads to a significant improvement in the SSS accuracy. Further improvements in the roughness correction algorithm can be obtained by adding VV-pol scatterometer measurements and wave height (WH) data into the GMF.

  13. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds

    Science.gov (United States)

    Troitskaya, Yuliya; Vdovin, Maxim; Sergeev, Daniil; Kandaurov, Alexander

    2017-04-01

    Air-sea coupling at extreme winds is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients was then confirmed by a number of field (e.g.[2]) and laboratory [3] experiments, which showed that the sea surface drag coefficient was significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. The theoretical explanations of the effect of the sea surface drag reduction exploit either peculiarities of the air flow over breaking waves (e.g.[4,5]) or the effect of sea drops and spray on the wind-wave momentum exchange (e.g. [6,7]). Recently an alternative hypothesis was suggested in [8], where the surface drag reduction in hurricanes was explained by the influence of foam covering sea surface on its aerodynamic roughness. This paper describes a series of laboratory experiments in Thermostratified Wind-Wave Tank (TSWiWaT) of IAP directed to investigation of the foam impact on the short-wave part of the surface waves and the momentum exchange in the atmospheric boundary layer at high winds in the range of equivalent 10-m wind speed from 12 to 38 m/s. A special foam generator was designed for these experiments. The air flow parameters were retrieved from measurements of the velocity profiles. The frequency-wavenumber spectra of surface waves were retrieved from the measurements of water surface elevation by the array 3-channel wave gauge. Foam coverage of water surface was controlled by video filming of the water surface. The results of measurements were compared with predictions of the quasi-linear model of atmospheric boundary layer over

  14. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  15. Measurements of wind friction speeds over lava surfaces and assessment of sediment transport

    Science.gov (United States)

    Greeley, Ronald; Iversen, James D.

    1987-01-01

    Wind velocity profiles were obtained over alluvial plains, lava flows, and a cinder cone in the Mojave Desert to determine the wind shear and the potential for particle transport. It was found that aerodynamic roughness for winds increases nearly a factor of 5 as flow crosses from the alluvium to the lava surface, resulting in wind shear that is 21 percent greater. Thus, wind erosion and sand flux may be substantially enhanced over the lava field. Moreover, wind flow turbulence is enhanced in the wake of the cinder cone, which also increases erosion and sediment transportation by the wind.

  16. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  17. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  18. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    Science.gov (United States)

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  19. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  20. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.