WorldWideScience

Sample records for surface wind patterns

  1. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Science.gov (United States)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  2. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  3. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  4. Influence of orographically steered winds on Mutsu Bay surface currents

    Science.gov (United States)

    Yamaguchi, Satoshi; Kawamura, Hiroshi

    2005-09-01

    Effects of spatially dependent sea surface wind field on currents in Mutsu Bay, which is located at the northern end of Japanese Honshu Island, are investigated using winds derived from synthetic aperture radar (SAR) images and a numerical model. A characteristic wind pattern over the bay was evidenced from analysis of 118 SAR images and coincided with in situ observations. Wind is topographically steered with easterly winds entering the bay through the terrestrial gap and stronger wind blowing over the central water toward its mouth. Nearshore winds are weaker due to terrestrial blockages. Using the Princeton Ocean Model, we investigated currents forced by the observed spatially dependent wind field. The predicted current pattern agrees well with available observations. For a uniform wind field of equal magnitude and average direction, the circulation pattern departs from observations demonstrating that vorticity input due to spatially dependent wind stress is essential in generation of the wind-driven current in Mutsu Bay.

  5. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    Science.gov (United States)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  6. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  7. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  8. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  9. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  10. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5 is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  11. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Science.gov (United States)

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  12. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  13. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  14. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Science.gov (United States)

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  15. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  16. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  17. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  18. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  19. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    International Nuclear Information System (INIS)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity. (paper)

  20. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  1. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  2. On the energy pattern factor in wind measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  3. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  4. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  5. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    Science.gov (United States)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  6. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  7. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  8. The winds regime of surface in the Colombian coffee area

    International Nuclear Information System (INIS)

    Orlando Guzman Martinez; Lucia Gomez Gomez

    1994-01-01

    The characteristics of the address and gust of wind of the surface winds have been studied in 15 stations of the Colombian coffee area. It was found that the relief plays an important paper in the wind circulation so that during the day (7 a.m. - 7 p.m.) these they blow of the low sector toward the mountain and at night (7 p.m. - 7 a.m.) this situation is invested, that which is consistent with the characteristic pattern of circulation valley-mountain of the mountainous regions. For this fact, in most of the analyzed places a single day and night dominant address that it takes the orientation in that it is the respective hydrographic basin. It was not observed that the Alisios winds of the northeast and southeast modify the address settled down by the local circulation (valley-mountain) on the other hand a remarkable increase of the gust of wind was appreciated in July and August in the Florida and Ospina, stations located to the south of the country, as direct consequence of the Alisios of the southeast. The daily gust of wind in most of the studied places is low and it doesn't exceed of the 10 km/h, reason why it can consider that the Colombian coffee area is free of important damages for the action of the wind. Nevertheless, in some stations as Alban, Maracay and Paraguaicito the daily maximum gust of wind can surpass the 30 km/h and in occasions to cause damage mechanic to cultivations of high behavior and not well anchored facilities

  9. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  10. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  11. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  12. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  13. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Science.gov (United States)

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  14. The use of energy pattern factor (EPF) in estimating wind power ...

    African Journals Online (AJOL)

    The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...

  15. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  16. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  17. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model (...

  18. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  19. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern....

  20. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  1. The impact of grid and spectral nudging on the variance of the near-surface wind speed

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.

    2015-01-01

    Grid and spectral nudging are effective ways of preventing drift from large scale weather patterns in regional climate models. However, the effect of nudging on the wind-speed variance is unclear. In this study, the impact of grid and spectral nudging on near-surface and upper boundary layer wind...... nudging at and above 1150 m above ground level (AGL). Nested 5 km simulations are not nudged directly, but inherit boundary conditions from the 15 km experiments. Spatial and temporal spectra show that grid nudging causes smoothing of the wind in the 15 km domain at all wavenumbers, both at 1150 m AGL...... and near the surface where nudging is not applied directly, while spectral nudging mainly affects longer wavenumbers. Maps of mesoscale variance show spatial smoothing for both grid and spectral nudging, although the effect is less pronounced for spectral nudging. On the inner, 5 km domain, an indirect...

  2. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    68

    characteristics and variable features where the wind circulation pattern is ..... is extended to understand the quality of AMSR-2 wind speed in a constructive ...... New Disclosures (potential conflicts of interest, funding, acknowledgements):.

  3. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  4. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  5. Controls on wind abrasion patterns through a fractured bedrock landscape

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  6. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  7. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  8. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  9. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns.

    NARCIS (Netherlands)

    Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; Garcia-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Munoz-Roldán, A.

    2013-01-01

    [1] The performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13¿year period (1992 to 2005) over a complex terrain region

  10. Wind effected redistribution of surface contamination. Progress report, September 1974--August 1975

    International Nuclear Information System (INIS)

    Amato, A.J.

    1975-01-01

    Theoretical resuspension ratios were computed through the extension of a one-dimensional model used to simulate the wind effected movement of surface contaminants. The surface movement of contamination associated with inhalable size particles was considered in relation to time, space, wind velocity, distance from the source, soil resuspension ratios, and other variables. A computer program was developed to calculate the wind effected distribution of surface contaminants. (U.S.)

  11. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  12. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  13. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  14. Low-Frequency Rotation of Surface Winds over Canada

    Directory of Open Access Journals (Sweden)

    Richard B. Richardson

    2012-10-01

    Full Text Available Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W to 25 days at Resolute (75°N, 95°W. Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.

  15. Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables

    Directory of Open Access Journals (Sweden)

    Hiroshi Katsuchi

    2017-12-01

    Full Text Available The wind-induced vibration of stay cables of cable-stayed bridges, which includes rain-wind-induced vibration (RWIV and dry galloping (DG, has been studied for a considerable amount of time. In general, mechanical dampers or surface modification are applied to suppress the vibration. In particular, several types of surface-modification cable, including indentation, longitudinally parallel protuberance, helical fillet, and U-shaped grooving, have been developed. Recently, a new type of aerodynamically stable cable with spiral protuberances was developed. It was confirmed that the cable has a low drag force coefficient, like an indented cable, and that it prevented the formation of water rivulets on the cable surface. In this study, the stability for RWIV of this cable was investigated with various flow angles and protuberance dimensions in a wind-tunnel test. It was found that the spiral protuberance cable is aerodynamically stable against both RWIV and DG for all test wind angles. The effects of the protuberance dimensions were also clarified. Keywords: Rain-wind-induced vibration, Dry galloping, Stay cable, Wind-tunnel test

  16. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  17. The impact of urbanization on wind speed and surface aerodynamic characteristics in Beijing during 1991-2011

    Science.gov (United States)

    Liu, Junkai; Gao, Zhiqiu; Wang, Linlin; Li, Yubin; Gao, Chloe Y.

    2018-06-01

    Urbanization has a significant influence on climate and meteorological conditions through altering surface aerodynamic characteristics. Based on observational data collected at 15 levels on a 325 m meteorological tower in Beijing during 1991-2011, changes in wind speed, vertical profile, aerodynamic roughness length (z0), and zero-plane displacement height (zd) were analyzed. Decreasing trends were observed predominantly during this period, especially for levels between 65 and 140 m where the largest decreasing rates often occur. The annual and seasonal (spring, summer, autumn, and winter) mean wind speeds at 15 levels all present decreasing trends with average rates of 0.029, 0.024, 0.023, 0.040, and 0.019 m s-1 a-1, respectively. The decreases in strong wind categories contribute most to the reduction of mean wind speed. Furthermore, in 2005-2011, the diurnal maximum wind speeds at lower levels tend to appear earlier as compared to those in 1991-1997, while the patterns of diurnal cycle between different levels become more similar in these periods. Besides, the phenomena of "kink" in wind profiles are visible in various atmospheric stabilities, and the average height of a kink has increased from about 40 m to nearly 80 m associated with urbanization during 1991-2011. In addition, the results of z0 and zd calculated using the wind profile method vary with wind directions due to surface heterogeneity and that larger values often occur along with southerly winds. Both z0 and zd show increasing trends in different sectors during 1991-2011, and the annual mean z0 and zd have increased from less than 1 m to greater than 2 m, and from less than 10 m to greater than 20 m, respectively.

  18. The variation in visibility and its relationship with surface wind speed in China from 1960 to 2009

    Science.gov (United States)

    Sun, Tianze; Che, Huizheng; Wu, Jian; Wang, Hong; Wang, Yaqiang; Zhang, Xiaoye

    2018-01-01

    This study used daily visibility and surface wind speed observational data over the 50-year period from 1960 to 2009, from 464 national meteorological stations in China, to examine the relationship between these two variables. Specifically, using the statistical methods of empirical orthogonal function (EOF) analysis and wavelet analysis, the data were processed into anomaly data to study their spatial and temporal distributions and the characteristics of each pattern's periodicity after EOF analysis of the whole country's visibility and surface wind speed. Correlation analysis and composite analysis were then used to elucidate the relationship between the two variables on different time scales. The results showed a gradual reduction in visibility nationally, with the nine-point moving mean implying decadal variability of the visibility with a downward trend. However, an irregular oscillation was found for the inter-annual variability of visibility. For the anomaly series of visibility during the 50-year period, a long-period oscillation of around 32 years was apparent. Up until the 1990s, there was an approximate 16-year medium-term oscillation period, whereas, after the 1990s, an approximate 8-year oscillation period was generated. In terms of high correlation between the two variables, for the decadal variability, the changes in visibility and surface wind speed at this time scale were almost in agreement. Meanwhile, with respect to the serious pollution in the Yangtze River Delta Economic Zone, the correlation between the two variables was reasonably high, suggesting that surface wind had a significant influence on the scattering of aerosol particles. However, in the Sichuan Basin, the correlation was relatively low, possibly on account of its landscape limiting the variation of wind speed.

  19. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Science.gov (United States)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  20. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    Science.gov (United States)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  1. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  2. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  3. Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface

    Directory of Open Access Journals (Sweden)

    Madjid Soltani

    2018-04-01

    Full Text Available Passive cooling systems, such as wind towers, can help to reduce energy consumption in buildings and at the same time reduce greenhouse gas (GHG emissions. Wind towers can naturally ventilate buildings and also can create enhanced thermal comfort for occupants during the warm months. This study proposes a modern wind tower design with a moistened pad. The new design includes a fixed column, a rotating and movable head, an air opening with a screen, and two windows at the end of the column. The wind tower can be installed on roof-tops to take advantage of ambient airflow. The wind tower’s head can be controlled manually or automatically to capture optimum wind velocity based on desired thermal condition. To maximize its performance, a small pump was considered to circulate and spray water on an evaporative cooling pad. A computational fluid dynamics (CFD simulation of airflow around and inside the proposed wind tower is conducted to analyze the ventilation performance of this new design of wind tower. Thereby, the velocity, total pressure, and pressure coefficient distributions around and within the wind tower for different wind velocities are examined. The simulation results illustrate that the new wind tower design with a moistened pad can be a reasonable solution to improve naturally the thermal comfort of buildings in hot and dry climates.

  4. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  5. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses.

    Science.gov (United States)

    Thorne, L H; Conners, M G; Hazen, E L; Bograd, S J; Antolos, M; Costa, D P; Shaffer, S A

    2016-06-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. © 2016 The Author(s).

  6. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  7. Wind Patterns of Coastal Tanzania: Their Variability and Trends

    African Journals Online (AJOL)

    Abstract—Patterns in Tanzanian coastal winds were investigated in terms of their variability at the weather stations of Tanga, Zanzibar, Dar es Salaam and Mtwara. Three-hourly data collected over a 30-year period (1977-2006) were used for the study. Statistical analyses included regressions, correlations, spectral analysis,.

  8. Computing and Learning Year-Round Daily Patterns of Hourly Wind Speed and Direction and Their Global Associations with Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Hsing-Ti Wu

    2015-08-01

    Full Text Available Daily wind patterns and their relational associations with other metocean (oceanographic and meteorological variables were algorithmically computed and extracted from a year-long wind and weather dataset, which was collected hourly from an ocean buoy located in the Penghu archipelago of Taiwan. The computational algorithm is called data cloud geometry (DCG. This DCG algorithm is a clustering-based nonparametric learning approach that was constructed and developed implicitly based on various entropy concepts. Regarding the bivariate aspect of wind speed and wind direction, the resulting multiscale clustering hierarchy revealed well-known wind characteristics of year-round pattern cycles pertaining to the particular geographic location of the buoy. A wind pattern due to a set of extreme weather days was also identified. Moreover, in terms of the relational aspect of wind and other weather variables, causal patterns were revealed through applying the DCG algorithm alternatively on the row and column axes of a data matrix by iteratively adapting distance measures to computed DCG tree structures. This adaptation technically constructed and integrated a multiscale, two-sample testing into the distance measure. These computed wind patterns and pattern-based causal relationships are useful for both general sailing and competition planning.

  9. A Response Surface-Based Cost Model for Wind Farm Design

    International Nuclear Information System (INIS)

    Zhang Jie; Chowdhury, Souma; Messac, Achille; Castillo, Luciano

    2012-01-01

    A Response Surface-Based Wind Farm Cost (RS-WFC) model is developed for the engineering planning of wind farms. The RS-WFC model is developed using Extended Radial Basis Functions (E-RBF) for onshore wind farms in the U.S. This model is then used to explore the influences of different design and economic parameters, including number of turbines, rotor diameter and labor cost, on the cost of a wind farm. The RS-WFC model is composed of three components that estimate the effects of engineering and economic factors on (i) the installation cost, (ii) the annual Operation and Maintenance (O and M) cost, and (iii) the total annual cost of a wind farm. The accuracy of the cost model is favorably established through comparison with pertinent commercial data. The final RS-WFC model provided interesting insights into cost variation with respect to critical engineering and economic parameters. In addition, a newly developed analytical wind farm engineering model is used to determine the power generated by the farm, and the subsequent Cost of Energy (COE). This COE is optimized for a unidirectional uniform “incoming wind speed” scenario using Particle Swarm Optimization (PSO). We found that the COE could be appreciably minimized through layout optimization, thereby yielding significant cost savings. - Highlights: ► We present a Response Surface-Based Wind Farm Cost (RS-WFC) model for wind farm design. ► The model could estimate installation cost, Operation and Maintenance cost, and total annual cost of a wind farm. ► The Cost of Energy is optimized using Particle Swarm Optimization. ► Layout optimization could yield significant cost savings.

  10. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  11. CYGNSS Surface Wind Validation and Characteristics in the Maritime Continent

    Science.gov (United States)

    Asharaf, S.; Waliser, D. E.; Zhang, C.; Wandala, A.

    2017-12-01

    Surface wind over tropical oceans plays a crucial role in many local/regional weather and climate processes and helps to shape the global climate system. However, there is a lack of consistent high quality observations for surface winds. The newly launched NASA Cyclone Global Navigation Satellite System (CYGNSS) mission provides near surface wind speed over the tropical ocean with sampling that accounts for the diurnal cycle. In the early phase of the mission, validation is a critical task, and over-ocean validation is typically challenging due to a lack of robust validation resources that a cover a variety of environmental conditions. In addition, it can also be challenging to obtain in-situ observation resources and also to extract co-located CYGNSS records for some of the more scientifically interesting regions, such as the Maritime Continent (MC). The MC is regarded as a key tropical driver for the mean global circulation as well as important large-scale circulation variability such as the Madian-Julian Oscillation (MJO). The focus of this project and analysis is to take advantage of local in-situ resources from the MC regions (e.g. volunteer shipping, marine buoys, and the Year of Maritime Continent (YMC) campaign) to quantitatively characterize and validate the CYGNSS derived winds in the MC region and in turn work to unravel the complex multi-scale interactions between the MJO and MC. This presentation will show preliminary results of a comparison between the CYGNSS and the in-situ surface wind measurements focusing on the MC region. Details about the validation methods, uncertainties, and planned work will be discussed in this presentation.

  12. Pollen, water, and wind: Chaotic mixing in a puddle of water

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig

    2016-01-01

    and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch......This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...

  13. Sporadic wind wave horse-shoe patterns

    Directory of Open Access Journals (Sweden)

    S. Yu. Annenkov

    1999-01-01

    Full Text Available The work considers three-dimensional crescent-shaped patterns often seen on water surface in natural basins and observed in wave tank experiments. The most common of these 'horse-shoe-like' patterns appear to be sporadic, i.e., emerging and disappearing spontaneously even under steady wind conditions. The paper suggests a qualitative model of these structures aimed at explaining their sporadic nature, physical mechanisms of their selection and their specific asymmetric form. First, the phenomenon of sporadic horse-shoe patterns is studied numerically using the novel algorithm of water waves simulation recently developed by the authors (Annenkov and Shrira, 1999. The simulations show that a steep gravity wave embedded into widespectrum primordial noise and subjected to small nonconservative effects typically follows the simple evolution scenario: most of the time the system can be considered as consisting of a basic wave and a single pair of oblique satellites, although the choice of this pair tends to be different at different instants. Despite the effective low-dimensionality of the multimodal system dynamics at relatively sho ' rt time spans, the role of small satellites is important: in particular, they enlarge the maxima of the developed satellites. The presence of Benjamin-Feir satellites appears to be of no qualitative importance at the timescales under consideration. The selection mechanism has been linked to the quartic resonant interactions among the oblique satellites lying in the domain of five-wave (McLean's class II instability of the basic wave: the satellites tend to push each other out of the resonance zone due to the frequency shifts caused by the quartic interactions. Since the instability domain is narrow (of order of cube of the basic wave steepness, eventually in a generic situation only a single pair survives and attains considerable amplitude. The specific front asymmetry is found to result from the interplay of quartic

  14. Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.

    2014-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of

  15. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  16. 77 FR 7601 - Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...

    Science.gov (United States)

    2012-02-13

    ... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy... Acts, for a period of 2 years for the purpose of processing a wind energy right-of-way (ROW... filed by Pattern Energy Group for the Ocotillo Express Wind Project on the above described lands while...

  17. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  18. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  19. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  20. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    Science.gov (United States)

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  1. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind

  2. A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis

    Science.gov (United States)

    Otero, Federico; Norte, Federico; Araneo, Diego

    2018-01-01

    The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.

  3. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  4. Observations of the structure and evolution of surface and flight-level wind asymmetries in Hurricane Rita (2005)

    Science.gov (United States)

    Rogers, Robert; Uhlhorn, Eric

    2008-11-01

    Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.

  5. Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building–Tree Grouping Patterns

    Directory of Open Access Journals (Sweden)

    Bo Hong

    2018-01-01

    Full Text Available Airflow behavior and indoor/outdoor PM2.5 dispersion in different building–tree grouping patterns depend significantly on the building–tree layouts and orientation towards the prevailing wind. By using a standard k-ε model and a revised generalized drift flux model, this study evaluated airflow fields and indoor/outdoor relationships for PM2.5 resulting from partly wind-induced natural ventilation in four hypothetical building–tree grouping patterns. Results showed that: (1 Patterns provide a variety of natural ventilation potential that relies on the wind influence, and buildings that deflect wind on the windward facade and separate airflow on the leeward facade have better ventilation potential; (2 Patterns where buildings and trees form a central space and a windward opening side towards the prevailing wind offer the best ventilation conditions; (3 Under the assumption that transported pollution sources are diluted through the inlet, the aerodynamics and deposition effects of trees cause the lower floors of a multi-storey building to be exposed to lower PM2.5 compared with upper floors, and lower indoor PM2.5 values were found close to the tree canopy; (4 Wind pressure differences across each flat showed a poor correlation (R2 = 0.059, with indoor PM2.5 concentrations; and (5 Patterns with the long facade of buildings and trees perpendicular to the prevailing wind have the lowest indoor PM2.5 concentrations.

  6. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  7. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  8. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation, and study on local wind resource prediction model; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (kyokusho fukyo yosoku shuho ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the study on local wind resource prediction model. The local wind resource prediction models developed so far apply the solutions based on the existing linear models (WASP and AVENU) for relatively flat terrain. These models are studied for their applicability limits. The study covers wind direction and speed patterns of the surface wind and upper winds at 3 sites in Hokkaido, Fukushima Pref. and Shizuoka Pref. The surface winds are found to be correlated with the upper winds both for wind direction and wind speed in almost all cases. Next, wind resources simulations are carried out for each of the classified weather patterns using the existing models, and the prediction errors are studied. The results show that the prediction accuracy of the existing linear models is highly dependent on inputs of observed data, and that the accuracy tends to decrease for the situations where the upper and surface wind conditions greatly differ from each other, as in the case of a land and sea breeze of thermal origin. It is also confirmed that prediction accuracy is lower on complex terrain than on flat terrain. (NEDO)

  9. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  10. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Fore- casts (NCMRWF), New .... mization of a generalized cost function using the. Spectral ... power from a given location on the sea surface at multiple ...

  11. Tornado Damage Assessment: Reconstructing the Wind Through Debris Tracking and Treefall Pattern Analysis

    Science.gov (United States)

    Godfrey, C. M.; Peterson, C. J.; Lombardo, F.

    2017-12-01

    Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.

  12. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  13. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  14. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface in normal flow

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    Over the last two decades, several bridge cable manufacturers have introduced surface modi-fications on the high-density polyethylene (HDPE) sheathing that is often installed for the protection of inner strands. The main goal of this is rain rivulet impedance, leading to the suppression of rain......-wind induced vibrations (RWIVs). The modifications are based on re-search undertaken predominantly in Europe and Japan, with two different systems prevailing; HDPE tubing fitted with helical surface fillets and HDPE tubing with pattern-indented sur-faces. In the US and Europe, helical fillets dominate, whilst...

  15. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  16. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  17. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the

  18. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  19. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  20. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  1. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    Science.gov (United States)

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  2. Faraday instability on patterned surfaces

    Science.gov (United States)

    Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard

    2013-11-01

    We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.

  3. Initialization of high resolution surface wind simulations using NWS gridded data

    Science.gov (United States)

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  4. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  5. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  6. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  7. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surf...... in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog....

  8. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  9. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  10. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  11. On damage diagnosis for a wind turbine blade using pattern recognition

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  12. Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces

    Directory of Open Access Journals (Sweden)

    Sajad M.R. Khani

    2017-06-01

    Full Text Available Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results illustrated that the modular wind tower can decrease the air temperature significantly and increase the relative humidity of airflow into the building. The average differences for air temperature and air relative humidity between ambient air and air exiting from the wind tower were approximately 10 °C and 40%, respectively. The main advantage of the proposed wind tower is that it is a modular design that can reduce the cost of wind tower construction.

  13. "Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS

    Science.gov (United States)

    Park, J.; Johnson, J. T.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.

  14. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  15. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  16. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  17. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  18. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Directory of Open Access Journals (Sweden)

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  19. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    Science.gov (United States)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  20. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  1. Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014

    Science.gov (United States)

    Si, Peng; Luo, Chuanjun; Liang, Dongpo

    2018-05-01

    Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.

  2. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    Science.gov (United States)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  3. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  4. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  5. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  6. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  7. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  8. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  9. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  10. Global surface wind and flux fields from model assimilation of Seasat data

    Science.gov (United States)

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  11. Wind reduction patterns around isolated biomass for wind erosion control in a desertified area of Central Sudan

    NARCIS (Netherlands)

    Nasr Al-amin, N.K.; Stigter, C.J.; El-Tayeb Mohammed, A.

    2010-01-01

    The aim of this study was to assess the effectiveness of sparse vegetation, feature common in arid zone, to reduce wind force (velocity) and hence protect the surface and regions downwind from drifting sand and their consequences. Respectively 4 (with heights h of 4, 3.2, 2 and 1.66 m), 2 (with h of

  12. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  13. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  14. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  15. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds

    Science.gov (United States)

    Troitskaya, Yuliya; Vdovin, Maxim; Sergeev, Daniil; Kandaurov, Alexander

    2017-04-01

    Air-sea coupling at extreme winds is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients was then confirmed by a number of field (e.g.[2]) and laboratory [3] experiments, which showed that the sea surface drag coefficient was significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. The theoretical explanations of the effect of the sea surface drag reduction exploit either peculiarities of the air flow over breaking waves (e.g.[4,5]) or the effect of sea drops and spray on the wind-wave momentum exchange (e.g. [6,7]). Recently an alternative hypothesis was suggested in [8], where the surface drag reduction in hurricanes was explained by the influence of foam covering sea surface on its aerodynamic roughness. This paper describes a series of laboratory experiments in Thermostratified Wind-Wave Tank (TSWiWaT) of IAP directed to investigation of the foam impact on the short-wave part of the surface waves and the momentum exchange in the atmospheric boundary layer at high winds in the range of equivalent 10-m wind speed from 12 to 38 m/s. A special foam generator was designed for these experiments. The air flow parameters were retrieved from measurements of the velocity profiles. The frequency-wavenumber spectra of surface waves were retrieved from the measurements of water surface elevation by the array 3-channel wave gauge. Foam coverage of water surface was controlled by video filming of the water surface. The results of measurements were compared with predictions of the quasi-linear model of atmospheric boundary layer over

  16. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  17. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  18. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  19. Observations of Martian surface winds at the Viking Lander 1 site

    International Nuclear Information System (INIS)

    Murphy, J.R.; Leovy, C.B.; Tillman, J.E.

    1990-01-01

    Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5 degree N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variations have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48 degree N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small

  20. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  1. Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Directory of Open Access Journals (Sweden)

    Y. Lehahn

    2010-07-01

    Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.

  2. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-03-01

    This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.

  3. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  4. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  5. Surface Wind Gust Statistics at the Savannah River Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2001-01-01

    The Atmospheric Technologies Group (ATG) of the Savannah River Technology Center (SRTC) collects meteorological data for many purposes at the Savannah River Site (SRS) including weather forecasting. This study focuses on wind gusts and also, to a lesser degree, turbulence intensities that occur in fair weather conditions near the surface over time periods from 1 hour to one week (168 hours)

  6. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...

  7. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  8. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  9. Wetting study of patterned surfaces for superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)], E-mail: Bhushan.2@osu.edu; Jung, Yong Chae [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43202-1107 (United States)

    2007-10-15

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements.

  10. A modelling framework to predict bat activity patterns on wind farms: An outline of possible applications on mountain ridges of North Portugal.

    Science.gov (United States)

    Silva, Carmen; Cabral, João Alexandre; Hughes, Samantha Jane; Santos, Mário

    2017-03-01

    Worldwide ecological impact assessments of wind farms have gathered relevant information on bat activity patterns. Since conventional bat study methods require intensive field work, the prediction of bat activity might prove useful by anticipating activity patterns and estimating attractiveness concomitant with the wind farm location. A novel framework was developed, based on the stochastic dynamic methodology (StDM) principles, to predict bat activity on mountain ridges with wind farms. We illustrate the framework application using regional data from North Portugal by merging information from several environmental monitoring programmes associated with diverse wind energy facilities that enable integrating the multifactorial influences of meteorological conditions, land cover and geographical variables on bat activity patterns. Output from this innovative methodology can anticipate episodes of exceptional bat activity, which, if correlated with collision probability, can be used to guide wind farm management strategy such as halting wind turbines during hazardous periods. If properly calibrated with regional gradients of environmental variables from mountain ridges with windfarms, the proposed methodology can be used as a complementary tool in environmental impact assessments and ecological monitoring, using predicted bat activity to assist decision making concerning the future location of wind farms and the implementation of effective mitigation measures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  12. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea. A satellite study

    Energy Technology Data Exchange (ETDEWEB)

    Tarkhova, T.I.; Permyakov, M.S.; Potalova, E.Yu.; Semykin, V.I. [V.I. Il' ichev Pacific Oceanological Institute of the Far Eastern Branch of Russian Academy of Sciences, Vladivostok (Russian Federation). Lab. of the Ocean and Atmosphere Interaction Studies

    2011-07-01

    Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summerautumn period of 2006-2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August- September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 C and wind speed lowered down to {proportional_to}7ms {sup -1} relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of {proportional_to}0.3 {sup -1} on 1 C. (orig.)

  13. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  14. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  15. Wind Effects on Retention Time in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2008-01-01

    is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress...... with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non...

  16. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  17. Distribution and provenance of wind-blown SE Pacific surface sediments

    OpenAIRE

    Saukel, C.; Lamy, F.; Stuut, J.B.W.; Tiedemann, R.; Vogt, C.

    2011-01-01

    The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-) environmental studies. The trade winds, extending over 20 degrees to 30 degrees of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of...

  18. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  19. A preliminary evaluation of short-term thunderstorm forecasting using surface winds at Kennedy Space Center

    Science.gov (United States)

    Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.

    1990-01-01

    In 1987 NASA expanded its surface wind network onto the mainland west of Kennedy Space Center, increasing the network area from nearly 800 sq km to over 1600 sq km. Here, the results of this expansion are reported using three years of wind and lightning information collected during June, July, August, and September of 1987, 1988, and 1989. The divergence-lightning relationships and the importance of wind direction are addressed, and the verification is summarized.

  20. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  1. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  2. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    Science.gov (United States)

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  3. Deterministic prediction of surface wind speed variations

    Directory of Open Access Journals (Sweden)

    G. V. Drisya

    2014-11-01

    Full Text Available Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  4. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  5. The dynamics of İzmir Bay under the effects of wind and thermohaline forces

    Science.gov (United States)

    Sayın, Erdem; Eronat, Canan

    2018-04-01

    The dominant circulation pattern of İzmir Bay on the Aegean Sea coast of Turkey is studied taking into consideration the influence of wind and thermohaline forces. İzmir Bay is discussed by subdividing the bay into outer, middle and inner areas. Wind is the most important driving force in the İzmir coastal area. There are also thermohaline forces due to the existence of water types of different physical properties in the bay. In contrast to the two-layer stratification during summer, a homogeneous water column exists in winter. The free surface version of the Princeton model (Killworth's 3-D general circulation model) is applied, with the input data obtained through the measurements made by the research vessel K. Piri Reis. As a result of the simulations with artificial wind, the strong consistent wind generates circulation patterns independent of the seasonal stratification in the bay. Wind-driven circulation causes cyclonic or anticyclonic movements in the middle bay where the distinct İzmir Bay Water (IBW) forms. Cyclonic movement takes place under the influence of southerly and westerly winds. On the other hand, northerly and easterly winds cause an anticyclonic movement in the middle bay. The outer and inner bay also have the wind-driven recirculation patterns expected.

  6. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  7. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  8. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2008-03-01

    Full Text Available The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosondes and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis was used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin-scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns enables the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.

  9. One-level modeling for diagnosing surface winds over complex terrain. II - Applicability to short-range forecasting

    Science.gov (United States)

    Alpert, P.; Getenio, B.; Zak-Rosenthal, R.

    1988-01-01

    The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.

  10. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  11. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  12. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  13. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  14. Surface magnetization and the role of pattern defects in various types of ripple patterned films

    International Nuclear Information System (INIS)

    Colino, Jose M; Arranz, Miguel A; Barbero, Antonio J; Bollero, A; Camarero, J

    2016-01-01

    We present a detailed study of the magnetic properties of cobalt films with wide-area nanoscale ripple patterns, either on their surface only, or on both the film surface and substrate interface. Angular dependence vectorial-resolved magnetometry measurements and magnetic force microscopy with in situ magnetic field have been used to determine the magnetization reversal processes to correlate them to the different patterned nanostructures. All the samples show well-defined uniaxial magnetic anisotropy with the anisotropy axis lying along the ripple direction. Atomic force microscopy of the different types of pattern reveals various pattern defects: height corrugation and breaks of continuity along the ripple direction, and overlapping ripples and Y-shaped defects (pattern dislocation) across the pattern. In spite of the existence of such customary defects of erosive-regime patterns, the type of low-amplitude, surface-patterned films remarkably behave as a macrospin over almost the whole in-plane angular range (340°), with negligible spread of anisotropy axis or energy. In turn, it is found that high-amplitude surface-patterned films develop an angular distribution of anisotropy axes, probably related to the large distribution of amplitudes in a pattern of short ripples, and a significant distribution of anisotropy fields ΔH k /H k up to 15%. On the other hand, films grow on pre-patterned silicon with a significantly longer mean ripple length, and develop a larger anisotropy energy with H k up to 110 mT, probably because of the double interface effect. The switching fields close to the magnetization easy axis of all types of ripple pattern are not well reproduced by the macrospin approximation, but the observed pattern defects seem to be not responsible for the domain wall pinning that occurs with the field applied along the ripple direction. (paper)

  15. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    mesoscale fluctuations in a mesoscale model is then examined using the weather research and forecasting (WRF) model. A set of case studies demonstrate that realistic hour-scale wind fluctuations and open cellular convection patterns develop in WRF simulations with 2 km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplified version of the model that has no large scale weather forcing, topography or surface inhomogeneties. Using the simplified model, the sensitivity of the modelled open cellular convection to choices in model setup and to aspects of the environmental forcing are tested. Finally, the cell-scale kinetic energy budget of the modelled cells is calculated, and it is shown that the buoyancy and pressure balance terms are important for cell maintenance. It is explained that the representation of mesoscale convection in a mesoscale model is not only important to end users such as wind farm operators, but to the treatment of energy transport within the boundary layer. (Author)

  16. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  17. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    International Nuclear Information System (INIS)

    Hai, C.; Yuan, X.; Jiang, H.; Zhou, R.; Wang, J.; Liu, B.; Ye, Y.; Du, P.

    2010-01-01

    Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30 x 30 cm 2 to 10 x 10 cm 2 . The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  18. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  19. Submicron Surface-Patterned Fibers and Textiles

    Science.gov (United States)

    2016-11-04

    www.statista.com/ statistics /263154/ worldwide -production-volume-of-textile-fibers- since-1975/ (accessed October 26, 2016). [2] W. S. Perkins, Textile coloration...Engineering. Submitted to 2 Presently, the worldwide annual production volume of textile fibers is nearly one hundred million metric tons... stress where viscous forces dominate and surface energy- driven deformations are kinetically restrained. A specific example of a surface-patterned

  20. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  1. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km......Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...

  2. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Science.gov (United States)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  3. Investigation of wind turbine effects on Evapotranspiration using surface energy balance model based on satellite-derived data

    Science.gov (United States)

    hassanpour Adeh, E.; Higgins, C. W.

    2014-12-01

    Wind turbines have been introduced as an energy source that does not require a large expenditure of water. However, recent simulation results indicate that wind turbines increase evaporation rates from the nearby land. In this research the effect of wind energy on irrigated agriculture is determined using a Surface Energy Balance Algorithm (SEBAL) on Landsat data spanning a 30 year interval. The analysis allows the characterization of evapotranspiration (ET) before and after wind turbine installations. The time history of ET from Landsat data will be presented for several major wind farms across the US. These data will be used to determine the impact on water demand due to presence of wind turbines.

  4. Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances

    OpenAIRE

    Sarda, Edoardo I.; Qu, Huajin; Bertaska, Ivan R.; von Ellenrieder, Karl D.

    2017-01-01

    Field trials of a 4 meter long, 180 kilogram, unmanned surface vehicle (USV) have been conducted to evaluate the performance of station-keeping heading and position controllers in an outdoor marine environment disturbed by wind and current. The USV has a twin hull configuration and a custom-designed propulsion system, which consists of two azimuthing thrusters, one for each hull. Nonlinear proportional derivative, backstepping and sliding mode feedback controllers were tested in winds of abou...

  5. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  6. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  7. The influence of coastal morphology on wind dynamics

    Directory of Open Access Journals (Sweden)

    Darius Jarmalavičius

    2012-05-01

    Full Text Available An analysis of the dynamics of wind velocity along the Baltic coast of Lithuania is presented, based on data collected during field experiments in the summer, fall and winter of 1999–2001 and 2007–2009 at several sites (Būtingė, Šaipiai, Smiltynė, Juodkrantė, Pervalka and Nida. The locations were chosen in order to encompass a wide spectrum of beach and dune ridge morphology. The relationship between wind velocity dynamics and coastal morphology was established, based on measurements of the slope angle, height and shape of the dune crest, as well as measurements of the morphology of the area behind the foredune ridge. On the basis of a comparison of near-surface wind velocity patterns, shear velocity (U* and surface roughness length (z0 were calculated. It was determined that U* decreases from the middle of the beach towards the foredune toe, then increases towards the crest of the foredune and decreases down the lee slope. A direct correlation exists between U* and the stoss slope inclination, and the relative height of the foredune. Surface roughness length also increases from the beach towards the foredune crest.

  8. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  9. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    Science.gov (United States)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal

  10. Climatology of atmospheric circulation patterns of Arabian dust in western Iran.

    Science.gov (United States)

    Najafi, Mohammad Saeed; Sarraf, B S; Zarrin, A; Rasouli, A A

    2017-08-28

    Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.

  11. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  12. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  13. Root architecture and wind-firmness of mature Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  14. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  15. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    NARCIS (Netherlands)

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.

    2009-01-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  16. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    International Nuclear Information System (INIS)

    Zhang Xiaoliang; Wang Xiu; Kong Wen; Yi Gewen; Jia Junhong

    2011-01-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  17. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Xiu; Kong Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-15

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  18. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  19. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  20. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  1. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  2. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2014-01-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen's and also Ardhuin's wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  3. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  4. Wind effect on salt transport variability in the Bay of Bengal

    Science.gov (United States)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  5. Comparison of the ocean surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John

    2017-03-01

    Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.

  6. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    International Nuclear Information System (INIS)

    Zhong Jian; Dong Gang; Sun Yimei; Zhang Zhaoyang; Wu Yuqin

    2016-01-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. (paper)

  7. Writing magnetic patterns with surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  8. Creation of wettability contrast patterns on metallic surfaces via pen drawn masks

    Science.gov (United States)

    Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.

    2017-12-01

    Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.

  9. The 2015-16 El Niño - Birth, Evolution and Teleconnections from Scatterometer Observations of the Ocean Surface Winds

    Science.gov (United States)

    Hristova-Veleva, S. M.; Lee, T.; Stiles, B. W.; Rodriguez, E.; Turk, J.; Haddad, Z. S.

    2016-12-01

    The 2015-16 El Niño is one of the strongest events observed during the modern instrumentation period, rivaling the two big ones observed by satellites during 1982-83 and 1997-98. Yet, the precipitation anomalies differ from the expectations that were based on these two events. While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the signature eastward-blowing anomalous surface winds in the Western and Central Tropical Pacific are the pre-cursor and the main driver of the El Nino events. Here we use observations from NASA's RapidScat, EUMETSAT's ASCAT and also from collocated ECMWF analysis to monitor the evolution of the anomalous winds associated with the 2015-16 El Niño. To detect the El Nino signal, we first compute monthly means of the wind speed, wind components and wind convergence. We then perform a low-pass filter to extract the components of the larger-scale circulation and compute the 2015-2016 anomalies with respect to the corresponding months of 2014-2015. We find fast-evolving wind anomalies and relate them to the evolution of the SST field as depicted in the observations-based OSTIA product. Furthermore, we investigate the relationship between the GPM-observed precipitation and the surface wind convergence observed by the scatterometers. El Niño is known to have basin to global scale teleconnections. In addition to the characterization of the changes in the tropical Pacific, we will also describe the associated changes in the North and South Pacific. In particular, a strong anticyclonic anomaly is observed in the north-eastern Pacific. This anomalous circulation is likely associated with the subsidence (divergent) region of a stronger-than-normal Hadley cell, leading to modification of the midlatitude storm tracks and the related precipitation anomalies. Furthermore, these

  10. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  11. A statistical nanomechanism of biomolecular patterning actuated by surface potential

    Science.gov (United States)

    Lin, Chih-Ting; Lin, Chih-Hao

    2011-02-01

    Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.

  12. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    Directory of Open Access Journals (Sweden)

    Ioanna Karagali

    2013-11-01

    Full Text Available Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested as an increase in spectral density over similar wavenumber ranges as the spatial resolution increases. The 600-m SAR wind product reveals a range of wavenumbers in which the exchange processes between micro- and meso-scales occur; this range is not captured by the wind products with a resolution of 1.5 km or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent with those obtained from several thousands of samples. Long-term spectra from QuikSCAT show that during the winter, slightly higher energy content is identified compared to the other seasons.

  13. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  14. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Science.gov (United States)

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  15. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2017-10-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  16. Análise dos padrões de vento no Estado de Alagoas Wind patterns analysis in Alagoas State

    Directory of Open Access Journals (Sweden)

    Gabriel Brito Costa

    2012-03-01

    Full Text Available Com o objetivo de identificar áreas do Estado de Alagoas com boas perspectivas de aproveitamento eólico, comparou-se dados de velocidade e direção do vento observados por torres anemométricas do projeto Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas. A série utilizada é de 12/2007 a 11/2008 e o estudo focou três regiões distintas: Litoral, Agreste e Sertão. Os padrões médios com maiores velocidades do vento ocorreram na região do Agreste (7,1 ±1,2 ms-1 mensal, seguido do Sertão (6,8 ±0,9 ms-1 mensal e Litoral ( 5,3 ±0,8 ms-1 mensal. A regularidade da velocidade e a pouca variabilidade de direção do vento torna Alagoas uma ótima opção para a instalação de aerogeradores.Aiming to evaluate areas with good prospects for harnessing wind power, the patterns of wind speed and direction measured at anemometric towers within the Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas project were compared for the period from 12/2007 to 11/2008, at Alagoas State. We analyzed three distinct regions: Coast, Agreste and Sertão. The patterns with higher average wind speeds were in the Agreste regions (7.1 ± 1.2 ms-1 monthly followed by Sertão (6.8 ± 0.9 ms- 1 monthly and by Coast (5.3 ± 0.8 ms-1 monthly. The regularity of the wind speed and the low variability of wind direction make Alagoas be a great option for the installation of wind turbines.

  17. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  18. Wind energy potential of coastal Eritrea: an analysis of sparse wind data

    International Nuclear Information System (INIS)

    Rosen, K.; Buskirk, R. van; Garbesi, K.

    1999-01-01

    This paper describes an analysis of historical surface wind data for the small country of Eritrea, in northeastern Africa. Winds in this region are directed by summer and winter monsoons in addition to diurnal land-sea effects. An analysis of national Eritrean and historical Italian wind records indicated marginal wind resources in the central highlands near the Eritrean capital of Asmera. An analysis of wind speed records recorded at two sites in the southern port city of Aseb indicate mean annual 10-m wind speeds of 9.5 m s -1 at the windier site. Surface wind speed records for the Red Sea suggest that similar potential may be found along the lower 200 km of the Eritrean coastline. Based on these findings, wind-generated electricity in this region should be substantially cheaper than the current supply generated from imported diesel. (author)

  19. Wind tunnel and CFD modelling of wind pressures on solar energy systems on flat roofs

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Franke, J.; Geurts, C.P.W.; Bentum, van C.A.; Grepinet, F.

    2010-01-01

    Design of solar energy mounting systems requires more knowledge on the wind patterns around these systems. To obtain more insight in the flow patterns, which cause the pressure distributions on the solar energy systems, a wind tunnel test and Computational Fluid Dynamics analysis have been

  20. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    International Nuclear Information System (INIS)

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 μm) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  1. Spatial and temporal patterns of global onshore wind speed distribution

    International Nuclear Information System (INIS)

    Zhou, Yuyu; Smith, Steven J

    2013-01-01

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over land areas. The Weibull distribution performs well in fitting the time series wind speed data at most locations according to R 2 , root mean square error, and power density error. The wind speed frequency distribution, as represented by the Weibull k parameter, exhibits a large amount of spatial variation, a regionally varying amount of seasonal variation, and relatively low decadal variation. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in non-negligible errors. While large-scale wind speed data are often presented in the form of mean wind speeds, these results highlight the need to also provide information on the wind speed frequency distribution. (letter)

  2. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  3. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films

    International Nuclear Information System (INIS)

    Smith, Archie P.; Douglas, Jack F.; Meredith, J. Carson; Amis, Eric J.; Karim, Alamgir

    2001-01-01

    Surface pattern formation in diblock copolymer films is investigated as a function of film thickness h and molecular mass M . Smooth films are observed for certain h ranges centered about multiples of the lamellar thickness L 0 , and we attribute this effect to an increase in the surface chain density with h in the outer brushlike copolymer layer. We also observe apparently stable labyrinthine surface patterns for other h ranges, and the average size of these patterns is found to scale as λ∼L -2.5 0 . Hole and island patterns occur for h ranges between those of the labyrinthine patterns and the smooth regions, and their size similarly decreases with L 0 and M

  4. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Directory of Open Access Journals (Sweden)

    Gao eHu

    2016-02-01

    Full Text Available Most insect migrants fly at considerable altitudes (hundreds of meters above the ground where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects’ self-powered speed is directed downstream, and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here we analyze a large dataset of >600,000 radar-detected ‘medium-sized’ windborne insect migrants (body mass from 10 to 70 mg, flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all ‘migration events’ analyzed, and was also frequent at sunset (85% and at night (81%. Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment, but there was no directional bias in the offsets during the day or at sunset. Orientation ‘performance’ significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings.

  5. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  6. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  7. Selective functionalization of patterned glass surfaces

    NARCIS (Netherlands)

    Ploetz, E.; Visser, B.; Slingenbergh, W.; Evers, K.; Martinez-Martinez, D.; Pei, Y. T.; Feringa, B. L.; De Hosson, J. Th. M.; Cordes, T.; van Dorp, W. F.

    2014-01-01

    Tailored writing and specific positioning of molecules on nanostructures is a key step for creating functional materials and nano-optical devices, or interfaces for synthetic machines in various applications. We present a novel approach for the selective functionalization of patterned glass surfaces

  8. Step patterns on vicinal reconstructed surfaces

    Science.gov (United States)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  9. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  10. A comparative analysis of surface winds in the Mid-Continental United States of America during severe droughts in the 1950s and 2010s.

    Science.gov (United States)

    McCarter, R.; Kohfeld, K. E.; Schepanski, K.; Gill, T. E.

    2016-12-01

    In 2011 the Mid-Continental United States of America experienced its worst drought since the 1930s `Dust Bowl` and subsequent 1950s Southwest drought. Both the 1950s and 2010s droughts have had negative ecological and economic impacts the Mid-Continental US (i.e. crops, livestock, fuel, and transportation). Drought distribution, severity, and duration in North America are influenced by large-scale ocean-atmosphere climate variability as well as mesoscale land-surface forcing. Intense surface heating during a drought's summer months promotes dry convection and convergence thereby indirectly increasing dust emissions through increased surface-winds. Thus, drought years are frequently linked with increased dust storms and overall dust production that can affect visibility, crop production, and human health. Another important aspect that influences dust production is the potential change in behavior of surface winds during different drought and non-drought regimes over the past 60 years. This investigation compares historic and modern surface winds to determine if the wind-driven drought and dust producing conditions have changed. We examine hourly wind speed data from 79 meteorological stations distributed over the mid-continental USA (25° to 49°N,-116° to -93°W) for two drought periods (1954-1956, 2011-2013), and two relatively wet time periods (1983-1987, 1992-1998), as determined using the Palmer-Drought Severity Index. Our preliminary examination of annual and seasonal distributions of wind speed and show that wind speeds were statistically higher during the 1950s compared with the 2010s drought and wind speeds were also greater during the spring months compared to other seasons. Characterizing these winds is a first step in identifying if these changes are a result of land surface changes, general circulation changes associated with atmospheric anomalies, and/or climate change.

  11. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    Science.gov (United States)

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  12. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  13. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  14. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    Science.gov (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  15. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    Science.gov (United States)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  16. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Patterning pentacene surfaces by local oxidation nanolithography

    International Nuclear Information System (INIS)

    Losilla, N.S.; Martinez, J.; Bystrenova, E.; Greco, P.; Biscarini, F.; Garcia, R.

    2010-01-01

    Sequential and parallel local oxidation nanolithographies have been applied to pattern pentacene samples by creating a variety of nanostructures. The sequential local oxidation process is performed with an atomic force microscope and requires the application of a sequence of voltage pulses of 36 V for 1 ms. The parallel local oxidation process is performed by using a conductive and patterned stamp. Then, a voltage pulse is applied between the stamp and the pentacene surface. Patterns formed by arrays of parallel lines covering 1 mm 2 regions and with a periodicity of less than 1 μm have been generated in a few seconds. We also show that the patterns can be used as templates for the deposition of antibodies.

  18. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km...... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  19. Exploring the link between multiscale entropy and fractal scaling behavior in near-surface wind.

    Directory of Open Access Journals (Sweden)

    Miguel Nogueira

    Full Text Available The equivalency between the power law behavior of Multiscale Entropy (MSE and of power spectra opens a promising path for interpretation of complex time-series, which is explored here for the first time for atmospheric fields. Additionally, the present manuscript represents a new independent empirical validation of such relationship, the first one for the atmosphere. The MSE-fractal relationship is verified for synthetic fractal time-series covering the full range of exponents typically observed in the atmosphere. It is also verified for near-surface wind observations from anemometers and CFSR re-analysis product. The results show a ubiquitous β ≈ 5/3 behavior inside the inertial range. A scaling break emerges at scales around a few seconds, with a tendency towards 1/f noise. The presence, extension and fractal exponent of this intermediate range are dependent on the particular surface forcing and atmospheric conditions. MSE shows an identical picture which is consistent with the turbulent energy cascade model: viscous dissipation at the small-scale end of the inertial range works as an information sink, while at the larger (energy-containing scales the multiple forcings in the boundary layer act as widespread information sources. Another scaling transition occurs at scales around 1-10 days, with an abrupt flattening of the spectrum. MSE shows that this transition corresponds to a maximum of the new information introduced, occurring at the time-scales of the synoptic features that dominate weather patterns. At larger scales, a scaling regime with flatter slopes emerges extending to scales larger than 1 year. MSE analysis shows that the amount of new information created decreases with increasing scale in this low-frequency regime. Additionally, in this region the energy injection is concentrated in two large energy peaks: daily and yearly time-scales. The results demonstrate that the superposition of these periodic signals does not destroy the

  20. Exploring the link between multiscale entropy and fractal scaling behavior in near-surface wind.

    Science.gov (United States)

    Nogueira, Miguel

    2017-01-01

    The equivalency between the power law behavior of Multiscale Entropy (MSE) and of power spectra opens a promising path for interpretation of complex time-series, which is explored here for the first time for atmospheric fields. Additionally, the present manuscript represents a new independent empirical validation of such relationship, the first one for the atmosphere. The MSE-fractal relationship is verified for synthetic fractal time-series covering the full range of exponents typically observed in the atmosphere. It is also verified for near-surface wind observations from anemometers and CFSR re-analysis product. The results show a ubiquitous β ≈ 5/3 behavior inside the inertial range. A scaling break emerges at scales around a few seconds, with a tendency towards 1/f noise. The presence, extension and fractal exponent of this intermediate range are dependent on the particular surface forcing and atmospheric conditions. MSE shows an identical picture which is consistent with the turbulent energy cascade model: viscous dissipation at the small-scale end of the inertial range works as an information sink, while at the larger (energy-containing) scales the multiple forcings in the boundary layer act as widespread information sources. Another scaling transition occurs at scales around 1-10 days, with an abrupt flattening of the spectrum. MSE shows that this transition corresponds to a maximum of the new information introduced, occurring at the time-scales of the synoptic features that dominate weather patterns. At larger scales, a scaling regime with flatter slopes emerges extending to scales larger than 1 year. MSE analysis shows that the amount of new information created decreases with increasing scale in this low-frequency regime. Additionally, in this region the energy injection is concentrated in two large energy peaks: daily and yearly time-scales. The results demonstrate that the superposition of these periodic signals does not destroy the underlying

  1. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  2. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  3. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  4. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  5. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  6. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...

  7. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Directory of Open Access Journals (Sweden)

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  8. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Science.gov (United States)

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  9. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  10. General aspects of meteorology and wind flow patterns at the National Medical Cyclotron site, Camperdown, NSW, Australia

    International Nuclear Information System (INIS)

    Clark, G.H.; Bartsch, F.J.K.

    1994-06-01

    As part of an assessment into the consequences of a potential accident at the National Medical Cyclotron, Camperdown, NSW., Australia, two meteorological stations were installed to monitor the winds, temperatures and atmospheric dispersion conditions. The data will be used to assess environmental impacts of the Cyclotron's operation. In spite of the relatively poor performance of the stations, the wind data indicated significant effects of local buildings and the general urban surface roughness features. The prevailing winds during the study were from the north-north-west at night and south-south-west or north-east sea breezes during the day. Atmospheric stability/dispersion categories were typical of an urban heat island location. 11 refs., 10 tabs, 6 figs

  11. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  12. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    Science.gov (United States)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  13. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  14. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  15. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias

    Science.gov (United States)

    Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak

    2018-02-01

    The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.

  16. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  17. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  18. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  19. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    Science.gov (United States)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is

  20. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  1. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

    Directory of Open Access Journals (Sweden)

    Eric Simley

    2018-06-01

    Full Text Available IEA Wind Task 32 serves as an international platform for the research community and industry to identify and mitigate barriers to the use of lidars in wind energy applications. The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016 to identify lidar system properties that are desirable for wind turbine control applications and help foster the widespread application of lidar-assisted control (LAC. One of the main barriers this workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine manufacturers, and researchers typically focus on their own areas of expertise, it is possible that current lidar systems are not optimal for control purposes. This paper summarizes the results of the workshop, addressing both practical and theoretical aspects, beginning with a review of the literature on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine control are identified, such as availability and reliability concerns, followed by practical suggestions for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns by minimizing the error between the measurements and the rotor effective wind speed of interest is discussed. Frequency domain methods for directly calculating measurement error using a stochastic wind field model are reviewed and applied to the optimization of several continuous wave and pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally, using measurements from an optimized scan pattern, it is shown that the rotor speed regulation achieved after optimizing the lidar-assisted control scenario via time domain simulations matches the performance

  2. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  3. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  4. Influence of monsoonal winds on chlorophyll-α distribution in the Beibu Gulf.

    Directory of Open Access Journals (Sweden)

    Chunyan Shen

    Full Text Available The influence of seasonal, monsoonal winds on the temporal and spatial variability of chlorophyll-a (chl-a in the Beibu Gulf is studied based on long-term satellite data of sea surface winds, chl-a concentration and sea surface temperature (SST and in-situ observations for the years from 2002 to 2014. The analysis results indicated that under northeasterly monsoonal winds, chl-a concentrations were substantially elevated in most area of the Beibu Gulf, with a high chl-a concentration (>2 mg m-3 patch extending southwestward from the coastal water of the northeastern Gulf, consistent with the winter wind pattern. Meanwhile, the spatial distribution of high chl-a concentration is correlated with low SST in the northeastern Gulf. In the southern Gulf, there was generally low chl-a, except in the coastal waters southwest of Hainan Island. Here, the upwelling cold water prevails outside the mouth of the Beibu Gulf, driven by the southwesterly monsoonal winds and the runoff from the Changhua River, as implied by low observed SST. Correlation analysis indicated the chl-a concentration was strongly modulated by wind speed (r = 0.63, p0.7, p<0.001. Integrated analysis also showed that stratification is weak and mixing is strong in winter as affected by the high wind speed, which suggests that the wind-induced mixing is a dominant mechanism for entrainment of nutrients and the spatial distribution of chl-a in winter.

  5. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  6. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  7. Effect of surface pattern on the adhesive friction of elastomers.

    Science.gov (United States)

    Wu-Bavouzet, Fanny; Cayer-Barrioz, Juliette; Le Bot, Alain; Brochard-Wyart, Françoise; Buguin, Axel

    2010-09-01

    We present experimental results for the friction of a flat surface against a hexagonally patterned surface, both being made of PolyDiMethylSiloxane. We simultaneously measure forces of range 10 mN and observe the contact under sliding velocities of about 100 μm/s. We observe adhesive friction on three different pattern heights (80, 310, and 2100 nm). Two kinds of contacts have been observed: the flat surface is in close contact with the patterned one (called intimate contact, observed for 80 nm) or only suspended on the tops on the asperities (called laid contact, observed for 2100 nm). In the range of velocities used, the contact during friction is similar to the static one. Furthermore, our experimental system presents a contact transition during friction for h=310 nm.

  8. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.

    2007-01-01

    -Obukhov similarity. Above the surface layer the second length scale (L-MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability...... dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L-MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance...... law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L-MBL , for applied use is suggested, based on measurements from the two sites....

  9. Conceptions of Tornado Wind Speed and Land Surface Interactions among Undergraduate Students in Nebraska

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Arthurs, Leilani

    2015-01-01

    To ascertain novice conceptions of tornado wind speed and the influence of surface characteristics on tornado occurrence, 613 undergraduate students enrolled in introductory science courses at a large state university in Nebraska were surveyed. Our findings show that students lack understanding of the fundamental concepts that (1) tornadoes are…

  10. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  11. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  12. Residence time of contaminants released in surface coal mines -- a wind-tunnel study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.S. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    Surface coal mining operations (blasting, shoveling, loading, trucking, etc.) are sources of airborne particles. The 1990 Clean Air Act Amendments direct the EPA to analyze the accuracy of the Industrial Source Complex model and the AP-42 emission factors, and to make revisions as may be necessary to eliminate any significant over-prediction of air concentration of fugitive particles from surface coal mines. A wind-tunnel study was performed at the US EPA`s Fluid Modeling Facility to investigate dispersion from surface coal mines in support of the dispersion modeling activities. Described here is the portion of the study directed at determining the residence time that material released near the floor of a mine will stay within the mine.

  13. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...... charge prediction, we show how ligand induced changes in conformation of two model proteins, both being ligand binding domains from glutamate receptors, can lead to changes in electrostatic potential predicted to be sufficient for NW sensing. Finally we, demonstrate how InAs nanowires can....... In part I - “Surface Patterning” - glass and gold surfaces serve as spatially encoded immobilization supports for patterning of recombinant proteins and organic monolayers. First, we combine micro-contact printing with a reactive SNAP-tag protein to establish a general platform for templated protein...

  14. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds

  15. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  16. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  17. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  18. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  19. Evaporation of liquids on chemically patterned surfaces

    NARCIS (Netherlands)

    Vieyra Salas, J.A.; Darhuber, A.A.

    2011-01-01

    We studied evaporation rates of volatile liquids deposited onto chemically patterned surfaces by means of experiments and numerical simulations. We quantified the influence of the droplet geometry, in particular circular, triangular, rectangular and square shapes, as well as the influence of contact

  20. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  1. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  2. The influence of beam divergence on ion-beam induced surface patterns

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion-beam sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion-beam parameters may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations, where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from experiments, may lead to qualitative changes of surface patterns.

  3. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  4. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Gennaro, Ane Kold Di; Neves Petersen, Teresa

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demons......, with a fine structured interference pattern superimposed. (C) 2010 Optical Society of America...

  5. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  6. Is the wind a periodical phenomenon? The case of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Escobedo, Quetzalcoatl [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas. Reforma 113 Col. Palmira, C. P. 62490, Cuernavaca, Morelos (Mexico); Manzano-Agugliaro, Francisco; Zapata-Sierra, Antonio [Departamento de Ingenieria Rural, Universidad de Almeria, La Canada de San Urbano, 04120 Almeria (Spain); Gazquez-Parra, Jose Antonio [Departamento de Arquitectura de Computadores y Electronica, Universidad de Almeria, La Canada de San Urbano, 04120 Almeria (Spain)

    2011-01-15

    Under some author's opinion the wind is not a periodical phenomenon and therefore it is more reasonable to invest in renewable periodical energies as tides. In this paper we have developed a computer application based in MatLab {sup copyright}, that through the FFT (Fast Fourier Transform) analyzes the variations of wind speed amplitude in the time and frequency domain. The data were sampled every 10 min in the period 2000-2008. The data come from 31 Automatic Meteorological Stations (EMAs), the country of Mexico and correspond one per state. The survey shows the representation of spectral-temporal surfaces to long time intervals, as one year or more and denotes seasonal envelopes that alter the pattern at certain times everyday. As a conclusion, the wind has an important periodical component for the country of Mexico, since the fundamental component of the wind speed represents a frequency of 1/24 h{sup -1} in a very accurate form throughout the time studied. To harness the wind potential of the country of Mexico it should be kept in mind that there is a minimum wind speed between 8 and 16 h and a maximum close to 24 h. (author)

  7. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  8. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  9. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2013-09-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the

  10. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  11. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    Science.gov (United States)

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  12. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  13. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  14. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  15. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  16. Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Scarchilli, C.; Agosta, C.

    2012-01-01

    This paper presents the impact of model resolution on the simulated wind speed, drifting snow climate and surface mass balance (SMB) of Terre Ad´elie and its surroundings, East Antarctica. We compare regional climate model simulations at 27 and 5.5 km resolution for the year 2009. The wind speed

  17. Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation

    NARCIS (Netherlands)

    Jiménez, P.A.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Montávez, J.P.; Vilà-Guerau de Arellano, J.; Dudhia, J.; Muñoz-Roldan, A.

    2010-01-01

    This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the

  18. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    Science.gov (United States)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  19. Wind Doesn't Just Stop at the Earth's Surface

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain such as the pre-Alpine regions of Germany, Austria, and other European Alpine regions, mountainous regions across USA and Canada, and many other parts of the world. In these areas, the system of the atmosphere, terrain, geology, people, and power system has is deeply interconnected but couplings are not completely known. This leads to challenging development conditions, increased cost of energy compared to flat terrain, and sometimes to tensions between different stakeholders. In this presentation, an overview of the wind energy system will be presented, and the challenges of developing wind energy in complex terrain will be highlighted. Results from several recent measurement campaigns and associated modelling carried out by members of WindForS will be used as examples. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to government and industry. Finally, the new WindForS wind energy research facility in complex terrain will be introduced. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. A major focus of the presentation will be on opportunities for interdisciplinary collaboration between the atmospheric science and geosciences communities and other stakeholders.

  20. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  1. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Gordiichuk, Pavlo; Wu, Zhong-Shuai; Liu, Zhaoyang; Wei, Wei; Wagner, Manfred; Mohamed-Noriega, Nasser; Wu, Dongqing; Mai, Yiyong; Herrmann, Andreas; Müllen, Klaus; Feng, Xinliang

    2015-01-01

    The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major

  2. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  3. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  4. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    African Journals Online (AJOL)

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  5. A new class of actuator surface models for wind turbines

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2018-05-01

    Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.

  6. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Science.gov (United States)

    Richter, Ingo; Xie, Shang-Ping; Wittenberg, Andrew T.; Masumoto, Yukio

    2012-03-01

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.

  7. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [Research Institute for Global Change, JAMSTEC, Yokohama (Japan); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); Wittenberg, Andrew T. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2012-03-15

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role. (orig.)

  8. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  9. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  10. Resuspension of toxic aerosol using MATHEW--ADPIC wind field--transport and diffusion codes

    International Nuclear Information System (INIS)

    Porch, W.M.

    1979-01-01

    Computer codes have been written which estimate toxic aerosol resuspension based on computed deposition from a primary source, wind, and surface characteristics. The primary deposition pattern and the transport, diffusion, and redeposition of the resuspended toxic aerosol are calculated using a mass-consistent wind field model including topography (MATHEW) and a particle-in-cell diffusion and transport model (ADPIC) which were developed at LLL. The source term for resuspended toxic aerosol is determined by multiplying the total aerosol flux as a function of wind speed by the area of highest concentration and the fraction of suspended material estimated to be toxic. Preliminary calculations based on a test problem at the Nevada Test Site determined an hourly averaged maximum resuspension factor of 10 -4 for a 15 m/sec wind which is within an admittedly large range of resuspension factor measurements using experimental data

  11. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.

    Science.gov (United States)

    Koontz, Alicia M; Roche, Bailey M; Collinger, Jennifer L; Cooper, Rory A; Boninger, Michael L

    2009-11-01

    To classify propulsion patterns over surfaces encountered in the natural environment during start-up and compare selected biomechanical variables between pattern types. Case series. National Veterans Wheelchair Games, Minneapolis, MN, 2005. Manual wheelchair users (N=29). Subjects pushed their wheelchairs from a resting position over high-pile carpet, over linoleum, and up a ramp with a 5 degrees incline while propulsion kinematics and kinetics were recorded with a motion capture system and an instrumented wheel. Three raters classified the first 3 strokes as 1 of 4 types on each surface: arc, semicircular (SC), single looping over propulsion (SL), and double looping over propulsion (DL). The Fisher exact test was used to assess pattern changes between strokes and surface type. A multiple analysis of variance test was used to compare peak and average resultant force and moment about the hub, average wheel velocity, stroke frequency, contact angle, and distance traveled between stroke patterns. SL was the most common pattern used during start-up propulsion (44.9%), followed by arc (35.9%), DL (14.1%), and SC (5.1%). Subjects who dropped their hands below the rim during recovery achieved faster velocities and covered greater distances (.016propulsion patterns is a difficult task that should use multiple raters. In addition, propulsion patterns change during start-up, with an arc pattern most prevalent initially. The biomechanical findings in this study agree with current clinical guidelines that recommend training users to drop the hand below the pushrim during recovery.

  12. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  13. Wind Streaks on Earth; Exploration and Interpretation

    Science.gov (United States)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  14. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  15. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  16. Preliminary study of the offshore wind and temperature profiles at the North of the Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David; Ricalde-Cab, Lifter

    2011-01-01

    Highlights: → This is the first study that reports the properties of the vertical wind resources for the offshore conditions of the North coast of the Yucatan Peninsula. → A significant and detailed analysis of the thermal patterns has revealed a complex structure of the atmospheric boundary layer close to the shore. → The structure of the diurnal wind patterns was assessed to produce an important reference for the wind resource availability in the study region. → It was identified that the sea breeze blows in directions almost parallel to the shoreline of the North of the Yucatan Peninsula during the majority of the 24 h cycle. → The analysis of the offshore data revealed a persistent non-uniform surface boundary layer developed as result of the advection of a warn air over a cold sea. - Abstract: The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatan Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs

  17. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  18. Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data

    Directory of Open Access Journals (Sweden)

    A. Fontán

    2013-04-01

    Full Text Available Two high-frequency (HF radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air–sea interaction patterns and timescales for the period 2009–2010. The analysis was conducted using the Barnett–Preisendorfer approach to canonical correlation analysis (CCA of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind–current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind–current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.

  19. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model

    Energy Technology Data Exchange (ETDEWEB)

    Goubanova, K. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Echevin, V.; Terray, P. [IPSL/UPMC/IRD, Laboratoire d' Oceanographie et de Climatologie, Experimentation et Approches Numeriques, Paris (France); Dewitte, B. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Instituto Geofisico del Peru, Lima (Peru); Codron, F. [UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France); Takahashi, K. [Instituto Geofisico del Peru, Lima (Peru); Vrac, M. [IPSL/CNRS/CEA/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France)

    2011-04-15

    The key aspect of the ocean circulation off Peru-Chile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru-Chile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10 m for the period 2000-2008. The large-scale 10 m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2 x CO{sub 2} and 4 x CO{sub 2} IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability. (orig.)

  20. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tien-Li, E-mail: tlchang@ntnu.edu.tw; Chen, Zhao-Chi

    2015-12-30

    Graphical abstract: - Highlights: • Direct UV laser irradiation on multilayer graphene was discussed. • Multilayer graphene with screen-printed process was presented. • Surface patterning of multilayer graphene at fluence threshold was investigated. • Electrical response of glucose in sensing devices can be studied. - Abstract: The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm{sup 2}. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  1. Potential climatic impacts and reliability of large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Wang Chien; Prinn, Ronald G

    2011-01-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land

  2. Dynamic Analysis of Wind Power Turbine's Tower under the Combined Action of Winds and Waves

    Institute of Scientific and Technical Information of China (English)

    CHENG You-liang; QU Jiang-man; XUE Zhan-pu; JIANG Yan

    2017-01-01

    To deal with the dynamic response problem of offshore wind power tower under the combined action of winds and waves,finite element method is used to analyze the structure and flow field around the outside flange of the segmentation part.The changes of pressure distribution and vorticity about the outside flange are obtained.Focused on the analysis on the change of hydrostatic pressure and temperature of the tower cut surface,contour lines under the combined action of winds and waves are depicted.Results show that the surface of the offshore wind turbine tower presents instable temperature field when it suffers the action of winds and waves loads,the static pressure increases nonlinearly with the increase of altitude,the fluid vorticity around the outside flange follows an parabolic curve approximately.Results provide a reference for the actual monitoring data of the offshore wind turbine tower under the combined action of winds and waves,so as to ensure the normal operation of tower.

  3. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  4. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  5. Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2013-04-01

    Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results

  6. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    Science.gov (United States)

    Prasad, A. S. Guru; Sharath, U.; Nagarjun, V.; Hegde, G. M.; Asokan, S.

    2013-09-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

  7. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  8. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    Science.gov (United States)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  9. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  10. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  11. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    Science.gov (United States)

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  12. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the Sentinel-1 satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of high resolution sea surface winds data produced from Synthetic Aperture Radar (SAR) on board Sentinel-1A and Sentinel-1B satellites. This...

  13. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  14. Patterns of migrating soaring migrants indicate attraction to marine wind farms.

    Science.gov (United States)

    Skov, Henrik; Desholm, Mark; Heinänen, Stefan; Kahlert, Johnny A; Laubek, Bjarke; Jensen, Niels Einar; Žydelis, Ramūnas; Jensen, Bo Præstegaard

    2016-12-01

    Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed. © 2016 The Author(s).

  15. Impact, runoff and drying of wind-driven rain on a window glass surface: numerical modelling based on experimental validation

    NARCIS (Netherlands)

    Blocken, B.J.E.; Carmeliet, J.E.

    2015-01-01

    This paper presents a combination of two models to study both the impingement and the contact and surface phenomena of rainwater on a glass window surface: a Computational Fluid Dynamics (CFD) model for the calculation of the distribution of the wind-driven rain (WDR) across the building facade and

  16. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    Science.gov (United States)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  17. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  18. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  19. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  20. ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Stone, James M.; Proga, Daniel

    2009-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ∼> 2 x 10 4 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

  1. Effect of Wind Direction on ENVISAT ASAR Wind Speed Retrieval

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2010-01-01

    This paper presents an evaluation of effects of wind directions (NCEP, MANAL, QuickSCAT and WRF) on the sea surface wind speed retrieval from 75 ENVISAT ASAR images with four C-band Geophysical model functions, CMOD4, CMOD_IFR2, CMOD5 and CMOD5N at two target areas, Hiratsuka and Shirahama. As re...

  2. Validation of simulations of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainlie, M.A.; Gerdes, F.; Schäfke, A.; Özkan Sertlekc, H.

    2013-01-01

    This paper shows that it is possible to simulate realistic shallow-water acoustic communication channels using available acoustic propagation models. Key factor is the incorporation of realistic time-dependent sea surface conditions, including both waves and bubbles due to wind.

  3. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  4. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    algorithm for feature recognition. To compare the methods, the mould insert and a number of replicated nano-patterned surfaces, injection moulded with an induction heating aid, were measured on nominally identical locations by means of an atomic force microscope mounted on a manual CMM....

  5. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  6. OGCM Simulations of Equatorial Pacific Current and Temperature to ERS-1, FSU and NMC Surface Winds and to Assimilation of Subsurface Temperature Data

    Science.gov (United States)

    Halpern, David

    1995-01-01

    The relative accuracies of three surface wind data products for the tropical Pacific Ocean during April 1992 to March 1994 were examined by analyzing temperature and current fields along the equator, which were simulated with an ocean general circulation model. Simulations were made with and without assimilation of surface and subsurface temperature data. Simulated currents were compared with observations at three sites (170oW, 140oW, 110oW) at the equator. Model-generated currents and temperatures indicated that the ERS-1 westward wind speeds were low compared to the FSU and NMC winds. With data assimilation, the agreement between simulated and observed currents was highest at 170oW and lowest at 110oW.

  7. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  8. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  9. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  10. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  11. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  12. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  13. Early wind engineering experiments in Denmark

    DEFF Research Database (Denmark)

    Larose, Guy; Franck, Niels

    1997-01-01

    A review of works by Danish wind engineers is presented to commemorate the 100th year anniversary of the first wind tunnel experiments. Pioneer tests by Irminger and Nøkkentved in "artificial" wind on scaled models are described. The early experiments aimed at measuring the surface pressure......" that governs today´s wind engineering practice and gave birth to the boundary layer wind tunnel....

  14. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  16. Changes in the Amplitude and Phase of the Annual Cycle: quantifying from surface wind series in China

    Science.gov (United States)

    Feng, Tao

    2013-04-01

    Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.

  17. Comparison of AMSR-2 wind speed and sea surface temperature ...

    Indian Academy of Sciences (India)

    The SST–wind relation is analyzed using data both from the buoy and satellite. As a result, the low- SST is associated with low-wind condition (positive slope) in the northern part of the Bay of Bengal (BoB), while low SST values are associated with high wind conditions (negative slope) over the southern BoB. Moreover, the ...

  18. Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern

    Science.gov (United States)

    YAMAGUCHI, Takeshi; HOKKIRIGAWA, Kazuo

    2014-01-01

    Abstract: The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are conventionally used in food factories and restaurant kitchens with respect to a stainless steel floor covered with glycerol solution. Gait trials were conducted with 14 participants who wore the footwear on the wet stainless steel floor. The drag test results indicated that the hybrid rubber surface pattern sole exhibited higher SCOF (≥0.44) and DCOF (≥0.39) values than the soles of the comparative footwear (pfootwear with the hybrid rubber surface pattern outsole were significantly lower than those for the comparative footwear, which resulted in no falls during trials. PMID:25055846

  19. The Role of Hierarchy in Response Surface Modeling of Wind Tunnel Data

    Science.gov (United States)

    DeLoach, Richard

    2010-01-01

    This paper is intended as a tutorial introduction to certain aspects of response surface modeling, for the experimentalist who has started to explore these methods as a means of improving productivity and quality in wind tunnel testing and other aerospace applications. A brief review of the productivity advantages of response surface modeling in aerospace research is followed by a description of the advantages of a common coding scheme that scales and centers independent variables. The benefits of model term reduction are reviewed. A constraint on model term reduction with coded factors is described in some detail, which requires such models to be well-formulated, or hierarchical. Examples illustrate the consequences of ignoring this constraint. The implication for automated regression model reduction procedures is discussed, and some opinions formed from the author s experience are offered on coding, model reduction, and hierarchy.

  20. Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.

    Science.gov (United States)

    Zavadsky, Andrey; Shemer, Lev

    2018-02-13

    This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.

  1. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    Science.gov (United States)

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint

  2. Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX)

    International Nuclear Information System (INIS)

    Takle, E S; Rajewski, D A; Lundquist, J K; Gallus, W A Jr; Sharma, A

    2014-01-01

    The Midwest US currently is experiencing a large build-out of wind turbines in areas where the nocturnal low-level jet (NLLJ) is a prominent and frequently occurring feature. We describe shear characteristics of the NLLJ and their influence on wind power production. Reports of individual turbine power production and concurrent measurements of near-surface thermal stratification are used to turbine wake interactions and turbine interaction with the overlying atmosphere. Progress in forecasting conditions such as wind ramps and shear are discussed. Finally, the pressure perturbation introduced by a line of turbines produces surface flow convergence that may create a vertical velocity and hence a mesoscale influence on cloud formation by a wind farm

  3. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  4. A modified model of axial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.

    2014-01-01

    The Axial Flux Permanent Magnet Generators (AFPMGs) are gaining immense attention in the modern era. The single stage AFPMG topology consists of one stator disc which is held stationery between two revolving rotor discs attached with a common shaft. The number of poles of AFPMG depends on the winding pattern in which the coils are connected in series within stator disc. Connecting the coils in begin-to-end winding pattern, doubles the number of poles which also increases the active mass of AFPMG. The AFPMG considering begin-to-end winding pattern, can be operated at half shaft speed. This AFPMG is also having greater air gap flux density which, ultimately, improves the power density parameter of AFPMG. In this paper, a modified AFPMG has been proposed which is designed by considering begin-to-end winding pattern. A 380W single phase, single stage prototype model has been developed and tested. The test results show that power density of designed AFPMG with begin-to-end winding pattern has been improved by 32% as compared to AFPMG with begin-to-begin winding pattern. The proposed low speed and high power density AFPMG model can be actively deployed for wind turbine applications. (author)

  5. Estimation of the under-surface temperature pattern by dynamic remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, M [Univ. of Tokyo; Tao, R; Katsuma, T; Toyota, H

    1977-10-01

    There are three basic classifications of remote sensing: passive RS, which involves measurement of reflected solar radiation; active RS, which involves the use of microwaves or laser radar; and infrared scanning. These methods make possible the determination of an object's surface temperature, its effective emissivity, and its effective reflectivity. The surface temperature, in effect, contains information concerning the structure below the surface. Fundamental experiments were conducted to extract sub-surface information by means of 'dynamic remote sensing.' Aluminum objects were embedded in a container filled with sand, and the container was heated from below. First, the spatial transfer function of the medium (sand) was determined, the surface temperature pattern was filtered, and the subsurface temperature pattern was calculated, allowing the subsurface forms of the aluminum objects to be estimated. The relationship between the thermal input (bottom temperature) and the thermal output (surface temperature) was expressed in terms of electrical circuit analogs, and the heat capacity and thermal conductivity of the sample were calculated, permitting estimation of its composition. This technique will be useful for groundwater and mineral exploration and for nondestructive testing.

  6. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  7. A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management: Part I. Model formulation and comparison against measurements

    Science.gov (United States)

    Jason M. Forthofer; Bret W. Butler; Natalie S. Wagenbrenner

    2014-01-01

    For this study three types of wind models have been defined for simulating surface wind flow in support of wildland fire management: (1) a uniform wind field (typically acquired from coarse-resolution (,4 km) weather service forecast models); (2) a newly developed mass-conserving model and (3) a newly developed mass and momentumconserving model (referred to as the...

  8. A field study of flow turbulence and sediment transport dynamics on a beach surface in the lee of a coastal foredune under offshore winds

    Science.gov (United States)

    Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.

    2010-12-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that

  9. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo; Kristiansen, Kai De Lange; Wang, Peng; Bergli, Joakim; Israelachvili, Jacob N.

    2011-01-01

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  10. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo

    2011-06-07

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  11. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  12. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-03-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  13. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  14. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  15. Realization of diverse displays for multiple color patterns on metal surfaces

    International Nuclear Information System (INIS)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2014-01-01

    Highlights: • We have demonstrated that the combined influence of incident white light angle and the ripples orientation on the diversity of structural colors. • Our investigation revealed that multi-patterns constituted by ripples with different orientations could be precisely designed on metal surfaces. • The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. - Abstract: Enhanced colors can be formed when white light is irradiated on the surface ripples induced by femtosecond laser. In this paper, we have demonstrated the ability to display the diverse colors by simultaneously adjusting the incident white light angle and the ripples orientation. Furthermore, our investigation revealed that multi-patterns constituted by ripples with different orientations could be designed on metal surfaces. The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. More interestingly, it is found that, although the same patterns could be displayed under different conditions, the colors might be different. These findings can provide a novel method to carry and identify high quantity of information, which may find potential applications in the fields of information storage, identifying codes and anti-counterfeiting patterns

  16. On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data - A simulation study

    Science.gov (United States)

    Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.

    1981-01-01

    The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.

  17. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  18. The Alignment of the Mean Wind and Stress Vectors in the Unstable Surface Layer

    Science.gov (United States)

    Bernardes, M.; Dias, N. L.

    2010-01-01

    A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the u- w component with instability. As a result, under more unstable conditions the u- w and the v- w components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the v- w component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin-Obukhov similarity theory hold: it is fair to assume that the v- w stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the u- w and the v- w components confirms this interpretation, with both shear and buoyant production of u- w decreasing with increasing instability. In the v- w budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around

  19. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua

    2016-09-26

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.

  20. WIND SPEED Monitoring in Northern Eurasia

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be

  1. Improving urban wind flow predictions through data assimilation

    Science.gov (United States)

    Sousa, Jorge; Gorle, Catherine

    2017-11-01

    Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian wind comfort, air quality, optimal building ventilation strategies, and wind loading on buildings. However, the significant variability and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the wind flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current wind flow predictions. We consider the incoming wind direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic density function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.

  2. Filament winding technique, experiment and simulation analysis on tubular structure

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  3. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    Science.gov (United States)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  4. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  5. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    Science.gov (United States)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  6. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  7. Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern

    OpenAIRE

    YAMAGUCHI, Takeshi; HOKKIRIGAWA, Kazuo

    2014-01-01

    Abstract: The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are co...

  8. Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges

    International Nuclear Information System (INIS)

    Zhang Wei; Markfort, Corey D; Porté-Agel, Fernando

    2013-01-01

    Large-scale wind farms, covering a significant portion of the land and ocean surface, may affect the transport of momentum, heat, mass and moisture between the atmosphere and the land locally and globally. To understand the wind-farm–atmosphere interaction, we conducted wind-tunnel experiments to study the surface scalar (heat) flux using model wind farms, consisting of more than ten rows of wind turbines—having typical streamwise and spanwise spacings of five and four rotor diameters—in a neutral boundary layer with a heated surface. The spatial distribution of the surface heat flux was mapped with an array of surface heat flux sensors within the quasi-developed regime of the wind-farm flow. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for a staggered wind farm and nearly zero change for an aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on the wind-farm layout, was significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practice and optimizing farm land use strategy regarding wind energy project development. The well-controlled wind-tunnel experiments presented in this study also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations of surface scalar fluxes in numerical models. (letter)

  9. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  10. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    Science.gov (United States)

    Azorin-Molina, Cesar; Asin, Jesus; McVicar, Tim R.; Minola, Lorenzo; Lopez-Moreno, Juan I.; Vicente-Serrano, Sergio M.; Chen, Deliang

    2018-05-01

    Recent studies on observed wind variability have revealed a decline (termed "stilling") of near-surface wind speed during the last 30-50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014-2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.

  11. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  12. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  13. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  14. Wind deployment in the United States: states, resources, policy, and discourse.

    Science.gov (United States)

    Wilson, Elizabeth J; Stephens, Jennie C

    2009-12-15

    A transformation in the way the United States produces and uses energy is needed to achieve greenhouse gas reduction targets for climate change mitigation. Wind power is an important low-carbon technology and the most rapidly growing renewable energy technology in the U.S. Despite recent advances in wind deployment, significant state-by-state variation in wind power distribution cannot be explained solely by wind resource patterns nor by state policy. Other factors embedded within the state-level socio-political context also contribute to wind deployment patterns. We explore this socio-political context in four U.S. states by integrating multiple research methods. Through comparative state-level analysis of the energy system, energy policy, and public discourse as represented in the media, we examine variation in the context for wind deployment in Massachusetts, Minnesota, Montana, and Texas. Our results demonstrate that these states have different patterns of wind deployment, are engaged in different debates about wind power, and appear to frame the risks and benefits of wind power in different ways. This comparative assessment highlights the complex variation of the state-level socio-political context and contributes depth to our understanding of energy technology deployment processes, decision-making, and outcomes.

  15. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    Science.gov (United States)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  16. Small wind rising? Is the market for building-mounted wind power about to pick up?

    International Nuclear Information System (INIS)

    Slowe, J.

    2006-01-01

    The potential market for small roof-mounted wind turbines is discussed. Should the technology prove popular, the market would be enormous. Delta Energy and Environment has prepared a study called, Roof Top Wind Turbines: A Product for Mass Markets? At present, the future for roof-mounted wind turbines is unclear: predictions range from little or no market at all to mass installations with a payback period of as little as five years. Several small roof-top turbines are described. A critical factor influencing the efficiency of a roof-mounted wind turbine is the air flow pattern over the roof which may in turn be affected by neighbouring buildings. (author)

  17. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  18. Determining Wind Erosion in the Great Plains

    OpenAIRE

    Elwin G. Smith; Burton C. English

    1982-01-01

    Wind erosion is defined as the movement of soil particles resulting from strong turbulent winds. The movement of soil particles can be categorized as suspension, saltation, or surface creep. Fine soil particles can be suspended in the atmosphere and carried for great distances. Particles too large to be suspended move in a jumping action along the soil surface, known as saltation. Heavier particles have a rolling movement along the surface and this type of erosion is surface creep.

  19. Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast

    Science.gov (United States)

    Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.

    2017-12-01

    Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.

  20. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  1. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří

    2017-01-01

    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016 http://www.schweizerbart.de/papers/metz/detail/prepub/87659/High_resolution_numerical_simulation_of_summer_wind_field_comparing_WRF_boundary_layer_parametrizations_over_complex_Arctic_topography_case_study_from_central_Spitsbergen

  2. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    Science.gov (United States)

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  3. Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)

    Science.gov (United States)

    Chen, Yi-Ying; Gardiner, Barry; Pasztor, Ferenc; Blennow, Kristina; Ryder, James; Valade, Aude; Naudts, Kim; Otto, Juliane; McGrath, Matthew J.; Planque, Carole; Luyssaert, Sebastiaan

    2018-03-01

    Earth system models (ESMs) are currently the most advanced tools with which to study the interactions among humans, ecosystem productivity, and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach, which ignores the canopy structure information that is required for process-based wind-throw modelling. Recently the big-leaf assumptions in the large-scale land surface model ORCHIDEE-CAN were replaced by a three-dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The integration of ForestGALES into ORCHIDEE-CAN required, however, developing numerically efficient solutions to deal with (1) landscape heterogeneity, i.e. account for newly established forest edges for the parameterization of gusts; (2) downscaling spatially and temporally aggregated wind fields to obtain more realistic wind speeds that would represents gusts; and (3) downscaling storm damage within the 2500 km2 pixels of ORCHIDEE-CAN. This new version of ORCHIDEE-CAN was parameterized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in southern Sweden between 1951 and 2010 and south-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3, which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3, which is between 10 and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of

  4. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  5. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  6. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    Science.gov (United States)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  7. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratification and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the

  8. Ornithological studies of the Cold Northcott Wind Farm in the spring/summer 1994

    International Nuclear Information System (INIS)

    1996-01-01

    Results of ornithological studies carried out at Cold Northcott Wind Farm in North Cornwall during 1994 are presented. Flight patterns of species using the area were studied as were breeding patterns and bird mortality due to collisions with wind turbines. No significant effect on the spring and summer bird communities was observed. Long-term influences on the birds seem, rather, to stem from large scale population changes and local agricultural practice. Wind strength was shown to affect flight patterns in some species, but turbine operation seems unrelated. Death by collision with wind turbines is shown to be very rare. (UK)

  9. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  10. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  11. Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean

    OpenAIRE

    Glantz , P.; Nilsson , D. E.; Von Hoyningen-Huene , W.

    2006-01-01

    International audience; Retrieved aerosol optical thickness (AOT) based on data obtained by the Sea viewing Wide Field Sensor (SeaWiFS) is combined with surface wind speed, obtained at the European Centre for Medium-Range Weather Forecasts (ECMWFs), over the North Pacific for September 2001. In this study a cloud screening approach is introduced in an attempt to exclude pixels partly or fully covered by clouds. The relatively broad swath width for which the nadir looking SeaWiFS instrument sc...

  12. Patterning of gold substrates by surface-initiated polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, D.J. [Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409 (United States)

    2003-09-01

    The design and synthesis of durable and functional organic coatings is an important topic in contemporary polymer science. The well-defined patterning of inorganic substrates is highlighted with an emphasis on planar gold. New advances in contact printing and surface initiated polymerization promise unprecedented control of the polymer architecture in the micrometer and nanometer range. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  14. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  15. Wind power deployment outcomes: How can we account for the differences?

    NARCIS (Netherlands)

    Toke, D.; Breukers, S.; Wolsink, M.

    2008-01-01

    This paper aims to understand different outcomes of implementation of wind power deployment programmes. Geographical variables such as quantity of wind resources are in themselves insufficient to explain patterns of implementation of wind power. To enhance the review of the factors affecting wind

  16. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  17. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  18. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  19. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  20. Partial discharge patterns related to surface deterioration in voids in epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1990-01-01

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level......, where partial discharges were present for more than 1500 h. Two types of electrical tree growth were found, the bush like tree and a single channel-like tree, which led to very different partial discharge patterns. It is concluded that the formation of crystals on a void surface leads to an immediate...... and easy-to-detect increase in the partial discharge activity with subsequent severe surface deterioration (deep pit formations) in the vicinity of the crystal. However, the partial discharge signal from a specimen with a black channel-like tree structure did not give any indication of channel growth...

  1. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  2. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  3. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  4. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  5. Bluff body flow and vortex—its application to wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, Yuji, E-mail: ohya@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan)

    2014-12-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  6. Bluff body flow and vortex—its application to wind turbines

    International Nuclear Information System (INIS)

    Ohya, Yuji

    2014-01-01

    Some interesting phenomena of vortex flows we have found in past experimental research are described. For a given flow configuration, multiple flow patterns can exist and a sudden change from one flow pattern to another can occur. We observed the alternate switching of the flow patterns with irregular periods around a bluff body. The change of vortex flow pattern around a bluff body with geometrical parameters or stratification is not always continuous but often shows a sudden change in the whole flow pattern. Based on our research on vortex flows, an innovative application of the vortex flow to a shrouded wind turbine is made in which the power output of a wind turbine is remarkably enhanced. Unlike the majority of conventional aerodynamic machinery, which tends to minimize vortex shedding, the vortex formation of our ‘brimmed’ shroud plays an important role in capturing and concentrating wind energy. Furthermore, aerodynamic noise is reduced in this design. The blade tip vortex is weakened by a counter-rotating vortex generated along the inner side of the shroud as they travel downstream, making the shrouded wind turbine much quieter than conventional turbines. (paper)

  7. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  8. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  9. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  10. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    Science.gov (United States)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  11. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  12. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  13. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  14. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    Science.gov (United States)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  15. Experimental constraints on impact-induced winds

    Science.gov (United States)

    Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.

    2018-05-01

    A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.

  16. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-06-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces.

  17. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    International Nuclear Information System (INIS)

    Steele, Adam; Bayer, Ilker; Moran, Stephen; Cannon, Andrew; King, William P.; Loth, Eric

    2010-01-01

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  18. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  19. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  20. Advances in single-molecule magnet surface patterning through microcontact printing.

    Science.gov (United States)

    Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante

    2005-07-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.

  1. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    Science.gov (United States)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  2. On the wind speed reduction in the center of large clusters of wind turbines

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    1992-01-01

    of the wind speed assuming the wind turbines effectively act as roughness elements. The model makes use of similarities to so-called canopy flows, where the surface drag and the drag on individual obstacles are added to form the total drag. Results are compared with existing models for reduction of efficiency...

  3. On the influence of surface patterning on tissue self-assembly and mechanics.

    Science.gov (United States)

    Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A

    2018-04-28

    Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  5. Spatial Distribution of Estimated Wind-Power Royalties in West Texas

    Directory of Open Access Journals (Sweden)

    Christian Brannstrom

    2015-12-01

    Full Text Available Wind-power development in the U.S. occurs primarily on private land, producing royalties for landowners through private contracts with wind-farm operators. Texas, the U.S. leader in wind-power production with well-documented support for wind power, has virtually all of its ~12 GW of wind capacity sited on private lands. Determining the spatial distribution of royalty payments from wind energy is a crucial first step to understanding how renewable power may alter land-based livelihoods of some landowners, and, as a result, possibly encourage land-use changes. We located ~1700 wind turbines (~2.7 GW on 241 landholdings in Nolan and Taylor counties, Texas, a major wind-development region. We estimated total royalties to be ~$11.5 million per year, with mean annual royalty received per landowner per year of $47,879 but with significant differences among quintiles and between two sub-regions. Unequal distribution of royalties results from land-tenure patterns established before wind-power development because of a “property advantage,” defined as the pre-existing land-tenure patterns that benefit the fraction of rural landowners who receive wind turbines. A “royalty paradox” describes the observation that royalties flow to a small fraction of landowners even though support for wind power exceeds 70 percent.

  6. Solar-wind interactions with the Moon: nature and composition of nitrogen compounds

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1981-01-01

    The lunar atmosphere and magnetic field are very tenuous. The solar wind, therefore, interacts directly with the lunar surface material and the dominant nature of interaction is essentially complete absorption of solar-wind particles by the surface material resulting in no upstream bowshock, but a cavity downstream. The solar-wind nitrogen ion species induce and undergo a complex set of reactions with the elements of lunar material and the solar-wind-derived trapped elements. The nitrogen concentration indigeneous to the lunar surface material is practically nil. Therefore any nitrogen and nitrogen compounds found in the lunar surface material are due to the solar-wind implantation of nitrogen ions. The flux of the solar-wind nitrogen ion species is about 6 X 10 3 cm -2 s -1 . Since there is no evidence for accumulation of nitrogen species in the lunar surface material, the outflux of nitrogen species from the lunar material to the atmosphere is the same as the solar-wind nitrogen ion flux. The species of the outflux are primarily NO and NH 3 , and their respective concentrations in the near surface lunar atmosphere are found to be 327 and 295 cm -3 . (Auth.)

  7. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimation...

  8. Cell patterning on a glass surface by a mask-assisted ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chan-Hee; Kim, Dong-Ki; Hwang, In-Tae; Lim, Youn-Mook; Kim, Hae-Kyoung; Nho, Young-Chang [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jaehakchoi@kaeri.re.kr

    2009-04-15

    A simple patterning method of cells on a glass has been developed by using ion implantation. The glass was implanted through a pattern mask with 150 keV Ar ions in the absence or presence of oxygen. Surface properties of the ion-implanted glass were investigated by means of X-ray photoelectron spectroscopy, contact angle measurement and cell culture test. The results showed that more hydrophilic groups were formed on the glass surface implanted in the presence of oxygen. Thus, the glass surface implanted in the presence of oxygen showed lower contact angle compared with the glass surface implanted in the absence of oxygen. The cells were strongly adhered to and proliferated on the ion-implanted regions of the glass. The cell population was found to be the highest on the glass implanted at a fluence of 1 x 10{sup 16} ions/cm{sup 2} in the presence of oxygen.

  9. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  10. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  11. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  12. Synthesis of freeform refractive surfaces forming various radiation patterns using interpolation

    Science.gov (United States)

    Voznesenskaya, Anna; Mazur, Iana; Krizskiy, Pavel

    2017-09-01

    Optical freeform surfaces are very popular today in such fields as lighting systems, sensors, photovoltaic concentrators, and others. The application of such surfaces allows to obtain systems with a new quality with a reduced number of optical components to ensure high consumer characteristics: small size, weight, high optical transmittance. This article presents the methods of synthesis of refractive surface for a given source and the radiation pattern of various shapes using a computer simulation cubic spline interpolation.

  13. Spatiotemporal throughfall patterns beneath an urban tree row

    Science.gov (United States)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  14. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  15. A Reexamination of the Emergy Input to a System from the Wind.

    Science.gov (United States)

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a ra...

  16. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  17. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Hao [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  18. Wind Speed Pattern in Nigeria (A Case Study of Some Coastal and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Department of Physics and Solar Energy, Bowen University Iwo, Osun State, Nigeria ... ABSTRACT: In this study, wind speeds were analysed using the daily wind data obtained from Nigeria ..... Selected sites from Three Geopolitical Zones in.

  19. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  20. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  1. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  2. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  3. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  4. Estimation of the mid-century Etesians wind pattern from EURO-CORDEX models

    Science.gov (United States)

    Dafka, Stella; Toreti, Andrea; Luterbacher, Juerg; Zanis, Prodromos; Tyrlis, Evangelos; Xoplaki, Elena

    2017-04-01

    The Etesians are one of the major and most prominent wind system, prevailing over the Aegean Sea during summer and early autumn. Here, projections of changes in 30-year (2021-2050) wind speeds relative to 1971-2000, under the 8.5 and 4.5 Representative Concentration Pathways, have been produced for Etesians. Future changes in the number of Etesian days and the associated large scale dynamics are also considered. We analyze seven simulations from three EURO-CORDEX regional climate models at a 12 km grid resolution. Both scenarios indicate that in most RCMs daily wind speeds are projected to increase by 1-1.5m/s over the Aegean Sea, suggesting that the current estimate of wind power potential for Aegean Sea will be increased with the greenhouse gas forcing in the coming decades (2021-2050). Wind direction at 10-m as well as the number of Etesian days have shown to undergo minor changes. The projected changes in sea level pressure and geopotential height anomalies at 500 hPa have a large spread among the seven simulations with a disperse tendency of strengthening of the ridge over the Balkans.

  5. Photocatalytic Surface Patterning of Cellulose using Diazonium Salts and Visible Light

    OpenAIRE

    Schroll, Peter; Fehl, Charlie; Dankesreiter, Stephan; König, Burkhard

    2013-01-01

    Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed “Photo-Meerwein” arylation. Use of a photomask to pattern the surface resulted in directly visible images.

  6. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    Directory of Open Access Journals (Sweden)

    Hyun Jung Cho

    2007-06-01

    Full Text Available Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  7. A tall tower study of Missouri winds

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Neil I. [Department of Soil, Environmental and Atmospheric Sciences, 332 ABNR Building, University of Missouri, Columbia, MO 65211 (United States)

    2011-01-15

    This paper summarizes the results of a study of wind speeds observed at heights up to 150 m above ground level around Missouri. This is an amalgamation of four projects that allowed a total of eleven tall communication towers to be instrumented with wind observation equipment across the State of Missouri. This provided an assessment of the wind resource and the characteristics of the seasonal and diurnal cycles of wind in different areas of Missouri at the heights of utility scale wind turbines. Comparisons were also made to wind speeds predicted at these levels from a previously published wind map. The main finding was that the observed winds at each tower were smaller than those presented in the wind map. The discrepancy is most likely to be due to underestimation of the surface roughness and turbulence leading to an overestimation of near-surface wind shear. However, the wind shear, as expressed by the shear parameter was consistently greater than the 'standard' value of 1.4. The reconciliation of these two apparently contradictory findings is that the shear varies with the height at which it is measured. In wind resource assessment, wind shear is usually observed below 50 m and is tacitly assumed to be constant with height when used to extrapolate winds to higher levels. The author advocates the use of the friction velocity as a measure of shear in wind power applications in preference to the shear parameter that is usually used. This is because the shear parameter has a velocity bias that can also manifest as a bias with height or season. As wind power resource assessment is starting to use taller towers than the standard 50 m, intercomparison of site resources and extrapolation to turbine heights can be compromised if the shear parameter is used. (author)

  8. The golden-mean surface pattern to enhance flow mixing in micro-channel.

    Science.gov (United States)

    Wang, J F; Liu, Y; Xu, Y S

    2009-04-01

    Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.

  9. Mexico Wind Resource Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1995-05-01

    A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

  10. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Charles L. [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, Victoria, BC (Canada); School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Kamp, Derek van der [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC (Canada); Monahan, Adam H. [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada)

    2012-04-15

    Surface wind speed is a key climatic variable of interest in many applications, including assessments of storm-related infrastructure damage and feasibility studies of wind power generation. In this work and a companion paper (van der Kamp et al. 2011), the relationship between local surface wind and large-scale climate variables was studied using multiple regression analysis. The analysis was performed using monthly mean station data from British Columbia, Canada and large-scale climate variables (predictors) from the NCEP-2 reanalysis over the period 1979-2006. Two regression-based methodologies were compared. The first relates the annual cycle of station wind speed to that of the large-scale predictors at the closest grid box to the station. It is shown that the relatively high correlation coefficients obtained with this method are attributable to the dominant influence of region-wide seasonality, and thus contain minimal information about local wind behaviour at the stations. The second method uses interannually varying data for individual months, aggregated into seasons, and is demonstrated to contain intrinsically local information about the surface winds. The dependence of local wind speed upon large-scale predictors over a much larger region surrounding the station was also explored, resulting in 2D maps of spatial correlations. The cross-validated explained variance using the interannual method was highest in autumn and winter, ranging from 30 to 70% at about a dozen stations in the region. Reasons for the limited predictive skill of the regressions and directions for future progress are reviewed. (orig.)

  11. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  12. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry

    International Nuclear Information System (INIS)

    Moreau, Eric; Sosa, Roberto; Artana, Guillermo

    2008-01-01

    Active flow control is a rapidly developing topic because the associated industrial applications are of immense importance, particularly for aeronautics. Among all the flow control methods, such as the use of mechanical flaps or wall jets, plasma-based devices are very promising devices. The main advantages of such systems are their robustness, their simplicity, their low-power consumption and that they allow a real-time control at high frequency. This paper deals with an experimental study about the electric wind produced by a surface discharge based on a three-electrode geometry. This new device is composed of a typical two-electrode surface barrier discharge excited by an AC high voltage, plus a third electrode at which a DC high voltage is applied in order to extend the discharge region and to accelerate the ion drift velocity. In the first part the electrical current of these different surface discharges is presented and discussed. This shows that the current behaviour depends on the DC component polarity. The second part is dedicated to analysing the electric wind characteristics through Schlieren visualizations and to measuring its time-averaged velocity with a Pitot tube sensor. The results show that an excitation of the electrodes with an AC voltage plus a positive DC component can significantly modify the topology of the electric wind produced by a single DBD. In practice, this DC component allows us to increase the value of the maximum induced velocity (up to +150% at a few centimetres downstream of the discharge) and the plasma extension, to enhance the depression occurring above the discharge region and to increase the discharge-induced mass flow rate (up to +100%), without increasing the electrical power consumption

  13. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  14. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  15. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  16. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-05-01

    Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.

  17. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    Science.gov (United States)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second

  18. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    Highlights: • A more comprehensive metric is developed to accurately assess the quality of wind resources at a site. • WPP exploits the joint distribution of wind speed and direction, and yields more credible estimates. • WPP investigates the effect of wind distribution on the optimal net power generation of a farm. • The results show that WPD and WPP follow different trends. - Abstract: Currently, the quality of available wind energy at a site is assessed using wind power density (WPD). This paper proposes to use a more comprehensive metric: the wind power potential (WPP). While the former accounts for only wind speed information, the latter exploits the joint distribution of wind speed and wind direction and yields more credible estimates. The WPP investigates the effect of wind velocity distribution on the optimal net power generation of a farm. A joint distribution of wind speed and direction is used to characterize the stochastic variation of wind conditions. Two joint distribution methods are adopted in this paper: bivariate normal distribution and anisotropic lognormal method. The net power generation for a particular farmland size and installed capacity is maximized for different distributions of wind speed and wind direction, using the Unrestricted Wind Farm Layout Optimization (UWFLO) framework. A response surface is constructed to represent the computed maximum wind farm capacity factor as a function of the parameters of the wind distribution. Two different response surface methods are adopted in this paper: (i) the adaptive hybrid functions (AHF), and (ii) the quadratic response surface method (QRSM). Toward this end, for any farm site, we can (i) estimate the parameters of the joint distribution using recorded wind data (for bivariate normal or anisotropic lognormal distributions) and (ii) predict the maximum capacity factor for a specified farm size and capacity using this response surface. The WPP metric is illustrated using recorded wind

  19. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns

    International Nuclear Information System (INIS)

    Zhou Xun; Luo Zi-Jiang; Guo Xiang; Zhang Bi-Chan; Shang Lin-Tao; Zhou Qing; Deng Chao-Yong; Ding Zhao

    2012-01-01

    Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As 4 BEP for InGaAs films. When the As 4 BEP is set to be zero, the RHEED pattern keeps a 4×3/(n × 3) structure with increasing temperature, and surface segregation takes place until 470 °C. The RHEED pattern develops into a metal-rich (4 × 2) structure as temperature increases to 495 °C. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515 °C, the RHEED pattern turns into a GaAs(2 × 4) structure due to In desorption. While the As 4 BEP comes up to a specific value (1.33 × 10 -4 Pa−1.33 × 10 -3 Pa), the surface temperature can delay the segregation and desorption. We find that As 4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. (condensed matter: structural, mechanical, and thermal properties)

  20. The Huygens Doppler Wind Experiment: Ten Years Ago

    Science.gov (United States)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  1. Computer modelling of the UK wind energy resource: UK wind speed data package and user manual

    Energy Technology Data Exchange (ETDEWEB)

    Burch, S F; Ravenscroft, F

    1993-12-31

    A software package has been developed for IBM-PC or true compatibles. It is designed to provide easy access to the results of a programme of work to estimate the UK wind energy resource. Mean wind speed maps and quantitative resource estimates were obtained using the NOABL mesoscale (1 km resolution) numerical model for the prediction of wind flow over complex terrain. NOABL was used in conjunction with digitised terrain data and wind data from surface meteorological stations for a ten year period (1975-1984) to provide digital UK maps of mean wind speed at 10m, 25m and 45m above ground level. Also included in the derivation of these maps was the use of the Engineering Science Data Unit (ESDU) method to model the effect on wind speed of the abrupt change in surface roughness that occurs at the coast. With the wind speed software package, the user is able to obtain a display of the modelled wind speed at 10m, 25m and 45m above ground level for any location in the UK. The required co-ordinates are simply supplied by the user, and the package displays the selected wind speed. This user manual summarises the methodology used in the generation of these UK maps and shows computer generated plots of the 25m wind speeds in 200 x 200 km regions covering the whole UK. The uncertainties inherent in the derivation of these maps are also described, and notes given on their practical usage. The present study indicated that 23% of the UK land area had speeds over 6 m/s, with many hill sites having 10m speeds over 10 m/s. It is concluded that these `first order` resource estimates represent a substantial improvement over the presently available `zero order` estimates. (18 figures, 3 tables, 6 references). (author)

  2. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  3. Response of the Benguela upwelling systems to spatial variations in the wind stress

    Science.gov (United States)

    Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker

    2012-08-01

    In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.

  4. Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find; Nissim, Maya

    2016-01-01

    , laminate structure, and lightning protection systems. The statistics consist of the distribution of lightning damage along the blade and classify the damage by severity. In addition, the frequency of lightning damage to more than one blade of a wind turbine after a thunderstorm is assessed. The results......This paper presents statistical data about lightning damage on wind turbine blades reported at different wind farms in the U.S. The analysis is based on 304 cases of damage due to direct lightning attachment on the blade surface. This study includes a large variety of blades with different lengths...

  5. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  6. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    Science.gov (United States)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  7. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    International Nuclear Information System (INIS)

    Smith, Craig M; Barthelmie, R J; Pryor, S C

    2013-01-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m. (letter)

  8. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  9. How wind power landscapes change

    DEFF Research Database (Denmark)

    Möller, Bernd

    2006-01-01

    Following 25 years of continuous development, Danish wind energy landscapes are going to face changes. Ceased on-shore construction, unresolved re-powering and stalled regional planning characterize the situation overshadowed by off-shore development. One of the factors inhibiting development...... in general. However, the pattern of visibility will become askew, and the present homogenous distribution of visibility will disappear. This skewness, together with changing ownership and receding local involvement, could eventually lead to lower popular acceptance of wind power....

  10. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  11. Evaluation of Urbanization Influences on Urban Winds of Kenyan ...

    African Journals Online (AJOL)

    There is need to understand the modification of wind since the wind spped and direction greatly affects dispersion of pollutants in the city and distribution of heat which affect human comfort. The study utilized land surface albedo, decadal population data and daily wind speeds and direction. The wind was analyzed using ...

  12. Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo; Choi, Soo Chang; Kim, Yong Woo [Department of Nano Fusion Technology, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Chae Moon [Samsung Electro-Mechanics, Busan 618-721 (Korea, Republic of); Lee, Deug Woo [Department of Nano System and Process Engineering, Pusan National University, Miryang 627-706 (Korea, Republic of)], E-mail: dwoolee@pusan.ac.kr

    2008-02-27

    This paper demonstrates a micro/nanoscale surface patterning technology for brittle material using mechanical and chemical processes. Fused silica was scratched with a Berkovich tip under various normal loads from several mN to several tens of mN with various tip rotations. The scratched substrate was then chemically etched in hydrofluoric solution to evaluate the chemical properties of the different deformed layers produced under various mechanical scratching conditions. Our results showed that either protruding or depressed patterns could be generated on the scratched surface after chemical etching by controlling the tip rotation, the normal load and the etching condition. In addition, the mask effect of amorphous material after mechanical scratching was controlled by conventional mechanical machining conditions such as contact area, chip formation, plastic flow and material removal.

  13. South Baltic wind atlas. South Baltic offshore wind energy regions project

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Hahmann, A.; Hasager, C.B.; Bingoel, F.; Karagali, I.; Badger, J.; Badger, M.; Clausen, Niels-Erik

    2011-05-15

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles at the masts. The WRF modeling was done in a nested domain of high spatial resolution for 4 years. In addition the long-term wind statistics using the NCAR-NCEP reanalysis data were performed during 30 years to provide basis for a long-term adjustment of the results and the final WRF results include a weighting for the long-term trends variability in the South Baltic Sea. Observations from Earth observing satellites were used to evaluate the spatial resolution of the WRF model results near the surface. The QuikSCAT and the WRF results compared well whereas the Envisat ASAR mean wind map showed some variation to the others. The long-term analysis revealed that the South Baltic Sea has a spatially highly variable wind climate during the 30-years. (Author)

  14. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  15. Mesoscale wind fluctuations over Danish waters

    DEFF Research Database (Denmark)

    Vincent, Claire Louise

    in generated power are a particular problem for oshore wind farms because the typically high concentration of turbines within a limited geographical area means that uctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water......Mesoscale wind uctuations aect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large uctuations in power generation that must be balanced using reserve power. Large uctuations...... that realistic hour-scale wind uctuations and open cellular convection patterns develop in WRF simulations with 2km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplied version of the model that has no large scale weather forcing, topography...

  16. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  17. The influence of the circulation on surface temperature and precipitation patterns over Europe

    Directory of Open Access Journals (Sweden)

    P. D. Jones

    2009-06-01

    Full Text Available The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.

  18. An Analysis of Wintertime Winds in Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Allwine, K Jerry

    2006-06-20

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations located around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind

  19. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  20. The Effect of Heat Waves and Drought on Surface Wind Circulations in the Northeast of the Iberian Peninsula during the Summer of 2003

    NARCIS (Netherlands)

    Jiménez, P.A.; Vilà-Guerau de Arellano, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E.; Dudhia, J.

    2011-01-01

    Variations in the diurnal wind pattern associated with heat waves and drought conditions are investigated climatologically at a regional level (northeast of the Iberian Peninsula). The study, based on high-density observational evidence and fine spatial-scale mesoscale modeling for the 1992–2004